
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

May 2004

Resource Modeling for Embedded Systems Design
Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Copyright 2004 IEEE. Reprinted from Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems
2004 (WSTFEUS 2004), pages 99-103.
Publisher URL: http://dx.doi.org/10.1109/WSTFES.2004.1300422

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/86
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Oleg Sokolsky, "Resource Modeling for Embedded Systems Design", . May 2004.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/WSTFES.2004.1300422
http://repository.upenn.edu/cis_papers/86
mailto:libraryrepository@pobox.upenn.edu

Resource Modeling for Embedded Systems Design

Abstract
The paper describes a formal framework for designing and reasoning about resource-constrained embedded
systems. The framework is based on a series of process algebraic formalisms which have been previously
developed to describe and analyze various aspects of real-time concurrent systems. We present a uniform
framework for formal treatment of resources and illustrate modeling of common resource classes.

Keywords
Model-based design, resource modeling, process algebra

Comments
Copyright 2004 IEEE. Reprinted from Proceedings of the Second IEEE Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems 2004 (WSTFEUS 2004), pages 99-103.
Publisher URL: http://dx.doi.org/10.1109/WSTFES.2004.1300422

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/86

http://dx.doi.org/10.1109/WSTFES.2004.1300422
http://repository.upenn.edu/cis_papers/86?utm_source=repository.upenn.edu%2Fcis_papers%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages

Resource Modeling for Embedded Systems Design�

Oleg Sokolsky
University of Pennsylvania

Abstract

The paper describes a formal framework for designing
and reasoning about resource-constrained embedded sys-
tems. The framework is based on a series of process alge-
braic formalisms which have been previously developed to
describe and analyze various aspects of real-time concur-
rent systems. We present a uniform framework for formal
treatment of resources and illustrate modeling of common
resource classes.

1. Introduction

An embedded system consists of a collection of com-
ponents that interact with each other and with their envi-
ronment through sensors and actuators. Embedded software
is used to control these sensors and actuators and to pro-
vide application-dependent functionality. An important dis-
tinguishing characteristic of embedded applications is lim-
ited resources (processing power, memory, network band-
width, power consumption, etc.). Many embedded systems
are part of safety-critical applications, e.g., avionic sys-
tems, manufacturing, automotive controllers, and medical
devices. Their reliability has to be properly assured.

At the same time, complexity of embedded systems has
been progressively increasing due to more powerful micro-
processors and wider use of networking. A natural response
to the increasing complexity is an increased emphasis on
model-based development of embedded software. Models
can be constructed for embedded systems and their proper-
ties can be analyzed through simulation and model check-
ing. Models can be used to generate code skeleton and task
structures and then platform dependent code can be added
to work on specific environment. Since it may not be pos-
sible to completely automate code generation, models can
later be used to validate the implementation.

Figure 1 provides an overview of our model-based devel-
opment framework. The development process begins with

� This research was supported in part by NSF CCR-0086147, NSF
CCR-0209024, ARO DAAD19-01-1-0473

functional
system
model

resource
parameters

and tradeoffs

resource
allocation

resource
modeler

resource-
aware model

task set

timing
analysis

schedulability
analysis

functional
analysis

system
requirements

environment
model

code
generation

test
generation

platform
constraints

Figure 1. Model-based development frame-
work

system requirements that specify high-level behavior of the
system, and a model of the system environment. They are
combined into a single model that captures the system func-
tionality with respect to a given environment. The system
contains a collection of concurrent components. Compo-
nents can communicate with each other during execution,
representing a wide variety of data dependencies and prece-
dence requirements. Such a model, however, does not take
resource constraints into consideration. Every concurrent
process that is ready to execute, can proceed forward. From
this behavioral model we extract a set of tasks that cap-
ture the structure of components in the model, abstract-
ing away computation details. The task set is then enriched
with information about resource types and constraints. Each
computational step of a task is annotated with required re-
sources. If a resource that is needed by a step is shared with
another task, the two tasks cannot proceed concurrently. On
this model, we perform schedulability and timing analysis
of the system to ensure that, for a given allocation of re-
sources to components, timing requirements of the system
are satisfied and no resource conflicts arise. If a resource
conflict is found, a new resource allocation has to be used,
or more resources need to be added to the system. In ad-
dition, we can perform analysis of behavioral properties of
the model to ensure that functional requirements are satis-
fied. Once model analysis is performed to a satisfactory de-
gree, we can proceed with the implementation of the sys-
tem, driven by the resource-aware model. Automatic code

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

generation can create a skeleton of the system implementa-
tion, while test generation provides a test suite that demon-
strates the compliance of the implementation to the model.

In this paper, we limit our discussion to the resource-
handling part of the framework, highlighted in Figure 1. We
use a formalism that provides a formal semantical founda-
tion for understanding resource-constrained behaviors sub-
ject to real-time constraints, memory limitations, power
consumption, etc. The notion of a resource plays a central
role in the specification and design of embedded systems,
where execution is subject to various resource constraints,
such as timing, power consumption, size and weight, etc.
We feel that, in order to properly specify and analyze such
systems, a modeling formalism should incorporate the no-
tion of a resource as a first-class entity. Other aspects of the
development framework are described in [2, 3, 10].

Related work in the area of resource modeling in embed-
ded real-time systems falls into two categories. On the one
hand, the importance of the issue has been long realized by
practitioners and a number of model-based, albeit informal,
approaches have been published. We mention [15, 17, 11, 4]
among many others. On the other hand, several formal ap-
proaches have emerged that aim at scheduling of sets of
tasks under constraints. For the most part, these approaches
consider only timing constraints and do not introduce the
notion of resource, implicitly considering the processor as
the only shared resource in the system [6, 7, 9]. A differ-
ent approach is taken in [1], where the authors view the
scheduling activity as control and use controller synthesis
techniques to model scheduled real-time systems.

In our previous work, we have proposed a family
of process-algebraic formalisms for modeling and rea-
soning about resource-constrained systems (see [13]
for an overview). The family is built around ACSR, a
discrete-time process algebra. Extensions and variations in-
clude ACSR-VP that includes a value-passing capability;
PACSR, a probabilistic formalism for quantitative rea-
soning about fault-tolerance properties; P�ACSR [20]
specifying power-constrained systems. The PARAGON
toolset [19] provides tool support for modeling and analy-
sis using these formalisms. The formalisms share the mod-
eling approach, where a system is modeled as a collection
of communicating concurrent processes, and offer sim-
ilar modeling constructs. The difference lies in the way
resources are used and the attributes they carry. For ex-
ample, in PACSR resources have an attribute that captures
the probability of failure for the resources. In ACSR-VP
we can have tuples of data values associated with a re-
source that are manipulated during execution, and P�ACSR
has power consumption attributes. In each formalism, the
set of resource attributes and the way the attributes are ma-
nipulated are slightly different. We outline a general
process algebraic framework to facilitate the construc-

tion of system models that allow us to capture faithfully
all of their relevant functional and non-functional re-
quirements. The framework captures all the formalisms
in the ACSR family and allows us to uniformly incorpo-
rate new features both into the formalism and PARAGON
in a uniform manner.

Acknowledgements. I would like to thank Insup Lee of
the University of Pennsylvania and Anna Phillippou of the
University of Cyprus for fruitful collaboration in the devel-
opment of the framework.

2. The Framework

We define a process-algebraic formal framework for rea-
soning about real-time systems. The basic entity of the
framework is that of a resource. We assume that a system
contains a finite set of resources. A resource is character-
ized by a set of attributes, such as timing parameters, prior-
ity, power consumption; probabilistic or communication be-
havior. Resources are partitioned into classes. All resources
in a class have the same attributes. An attribute � of a class
is specified as � � �� � �����, where � is a basic type such as
integers, characters, tuples, etc, and ���� � ������ ���� de-
noting whether the value of the attribute’s element remains
constant throughout computation (����) or is associated to
every resource use (���). We write �� for the attribute � of
resource �.
Example. As an example, consider the class of re-
sources �� that may experience failures, consume power,
and whose use is regulated by priorities. We may character-
ize this class by three attributes as follows:

�� � �� � ���� �� � ������ �� � ���� � ����� �� � ���� � ������

Attribute � captures the possibility of a resource failure. It
has one element, that of the probability of failure, which is
assumed to be constant throughout all executions of the re-
source. Attribute �� is the power consumption, which may
be different in each resource access depending on the re-
quested operation, and �� is the priority of the access, which
may also be different depending on which process uses �.

When we use a resource � in a model we specify once the
values of all the static elements of its attributes, and then,
whenever � is used in the model, it is accompanied by val-
ues for all of the dynamic elements of its attributes in a tuple
called resource access. We will always assume positional
correspondence between the dynamic attribute names in the
attribute tuple of a resource class and the values of attributes
in the resource use. If we have resources ��� and ���	 in
the resource class �� , we specify initially that, for example,
���� � �
�� and ����� � �
�. An access of the resource
��� may be ����� �
�� ��. We will always assume positional
correspondence between the dynamic attribute names in the
attribute tuple of a resource class and the values of attributes

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

in the resource use. Therefore, in ����� ���� ��, �� � ��� and
�� � �. Resource accesses are specified in actions. An ac-
tion � is a collection of resource accesses. By ���� we de-
note the names of resources used in �. Actions are building
blocks for processes.
Syntax. Below, � , 	 range over processes, � ranges over
actions, and
 ranges over sets of resources. The following
grammar describes the syntax of processes and actions.

� ��� ��	 � � � � � �
	 � ��	 � �� �� � ���

Process ��	 represents the inactive process. Process � � �
executes action � and proceeds as � . Process �
	 repre-
sents a nondeterministic choice between the two summands.
Process ��	 describes the concurrent composition of �

and 	: the component processes may proceed indepen-
dently or interact with one another while executing actions.
The construct �� �� ,
 � �, referred to as resource closure,
produces a process that reserves the use of resources in

for itself, extending every action � in � with resources in

 � ����. Finally, ���
 , referred to as resource hiding, al-
lows the process to hide or restrict the identity of resources
in
 so that they are not visible on the interface with the en-
vironment of process � .
Example. As an example of a process, consider

�
���
� ������ � ��� ����� �� ��� � ��
 ������ �� ��� � �� �

where resources ��� and ��� are drawn from the resource
class� of Example 1. Process � represents a processor that
can accept messages from a channel. We assume that read-
ing the message from the channel requires additional power
than remaining idle. Depending on whether the message ar-
rives or not, � has two alternative behaviors. If the mes-
sage arrives, as described in resource access ����� �� ��,
the processor may receive the message, consuming 3 units
of power, and proceed to process it as ��. Otherwise, the
processor consumes 1 unit of power and continues as ��.
Semantics. The semantics is given operationally by a tran-
sition system that captures the behavior of processes. It is
based on the notion of a configuration which comprises of a
process and a world/state that can be used to keep useful in-
formation about the resources of the process. We write � for
the set of all configurations and we write ��� � 	 �, for a
configuration containing process� in state �. Finally, Act is
the set of all actions a configuration can engage in. The se-
mantics is based on a function

� ���Act� �
 ��

which, given a process configuration ��� � and an action �,
returns the set of configurations that can be reached from
��� � by performing action �. Thus, the semantics is based
on the following rule:

���� �� 	 � ���� �� ��

��� �
�
�
���� ��

Domain specialization. In order to adjust the gen-
eral framework for the needs of a specific application
domain, we must give meaning for resources and their at-
tributes and establish the semantics for the processes. The
following steps perform the specialization for a particu-
lar domain: 1) Establish a finite set of resource classes for
the domain, along with the attributes of the class. 2) Pro-
vide the syntactic consistency predicate �����. For a given
action �, �������� denotes that the action can be legiti-
mately used in a model within this domain. Furthermore,
we may restrict the domain for the set of resources
 ap-
pearing in process constructs �� �� and ���
 . 3) Define the
set � of configurations and the function � .

3. Resource classes

We consider a number of resource class definitions that
are useful for modeling embedded systems. Class defi-
nitions include serially reusable shared resources, used
to model processor units, communication resources, used
to model synchronous and asynchronous communica-
tion channels, and multi-capacity resources that naturally
correspond to memory modules. For each class of re-
sources, we specify the set of attributes and define the se-
mantic function � ���Act� for a formalism that uses this
resource class. Note that if a formalism uses multiple re-
source classes, the semantic function should also deal
with actions that contain resources of several kinds. Func-
tions for several such formalisms are given in [14].
Serially reusable resources. The basic kind of resources
that is necessary to consider for schedulability analysis of
real-time systems are serially reusable resources. While
such a resource is used by a process, no other process can
access it. As soon as the process releases the resource, it is
immediately available for use by another process. It is a nat-
ural abstraction for a processor unit. One task is scheduled
to execute on a processor, and any other task that is also
ready to run is blocked until the processor becomes avail-
able. Tasks access processors according to their priorities.
Different tasks can access processor resources with differ-
ent priorities, therefore priority is a dynamic attribute of a
serially reusable resource. We will assume here that all re-
sources are used for one time unit. A more complex defini-
tion can be given, where a resource access has another at-
tribute, access duration.

The resource class is defined as��� � ��� � ��� � �����.
The consistency predicate �������� states than an action �
is well-formed if the resources occurring in �, ����, are
pairwise distinct. The semantic function uses the following
auxiliary functions:

��� �

�
� � � if ��� � ��� ���� � ���� � �
� otherwise

���� � � � ������ � � � � 	 ����

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

���� � ���� �� � � � � �� ��

��� ensures that two timed actions may be composed to-
gether only if they do not compete for the use of any com-
mon resources. Otherwise, ��� � �, signifying that a
deadlock arises. ���� reserves access to resources � for the
process performing � by employing all of the resources
� � � � ���� at priority level 0. As a result, resource in
� cannot be shared with any other process (according to
���). ���� hides the use of �-resources from timed ac-
tions. We also use the preemption relation on actions. Intu-
itively, action �� preempts action ��, written �� � ��,
if �� has a resource � that has a higher priority in �� than
in ��, and �� does not have such resources. There is no
need to store extra state information, so for each configura-
tion �, ��� � � � .

� ������� � ���
� � � ��� � ��� �� iff �� � ��� �� such that � � � ���� ��

and, if � ������ 	� �� �, then � �� 	

� � � ���	��� �� iff [(� �

� � � ���� ���, � �

� � � ���� ���,
� � ��	��, � � � �

�	�
�

�)
and, if � ���	��� 	� �� � then � �� 	

� � � ��� �� � �� iff �� � � ������, � � ����� , � � �����
and, if � ��� �� � 	� �� � then � �� �	��

� � � ����
� �� iff �� � � ������, � � ����
 , � � ����
 ,
and, if � ����
�	� �� � then � �� 	��

Communication resources. To model synchronous com-
munication resources, we introduce a resource class that al-
lows us to specify input and output actions. We will use
this distinction in the semantic function to define that an
input and an output on the same channel can synchronize
and produce an internal step. We introduce a resource class
�� � �� � ���	 �	
	 � ���
�. The class has one dynamic at-
tribute that indicates the polarity of resource access, distin-
guishing between an input action on channel � (denoted ��
instead of �(a,?)), an output action on channel �, denoted
��, and an internal step that involves a busy channel �, de-
noted ��. The consistency predicate stipulates that a com-
munication action can contain only one resource of the class
�� and no other resources. The semantic definition uses the
following function:

��� �

�
�� if ��	�	 � ���	 ��	
�	 otherwise

Thus two actions may be composed in parallel if they are
send and receive actions on the same channel, and the com-
position results in a busy channel step. Composition of any
other communication actions is undefined.
Asynchronous communication resources. To model asyn-
chronous buffered communication between processes, we
can use the following resource class. Contents of messages
are not modeled, however processes can store or retrieve
several messages in one step. The resource class is de-
scribed as �� � �� � ���	 �	 � ���
	 ��� � ��� � ���
	 � �

��� � ����
�. The static attribute �� represents the capac-
ity of resource �, that is, the maximum number of mes-
sages that can be stored in the buffer. In order to define
the semantic function for such resources, we need to main-
tain state information that keeps, for each channel, the num-
ber of messages stored in the buffer of the channel. Using
���� for the number of messages in the resource � in state
�, the following clause of � ���� �	 �� deals with commu-
nication actions: � ���� � � �	 ��� � ����� �	 iff either
� � ����	 ��		 ���� � ��	��� � �	 ����� � ���, and
����� � ������	 � �� ��, or � � ����	 ��	,���� � ��	� 	
� ��	 �

���� � � 	 �, and ����� � ������	 � �� ��. This
definition represents the natural intuition that a process can
read from a channel if the channel has enough messages
and can write to a channel if there are enough empty slots
to write all the messages. With these definitions we can ob-
tain a formalism similar to communicating real-time state
machines of [18].
Resources with failures. For probabilistic reasoning about
fault tolerance of resource-constrained systems, we have
defined a class of resources �� that can experience tran-
sient failures with a fixed probability [16, 14]. It extends
��� with an additional attribute � of type ���	
� � ����
,
representing the probability of the resource failing in the
next step. To be able to reason about failed as well as non-
failed resources, we also have the attribute ������ of type
����	 ����	 � ���
. The process ���	
	 ���	 � � will suc-
ceed in using � with probability ��, or fail, becoming ��,
with probability
 � ��. Replacing �� with ����, we get
the process that fails exactly when the other one succeeds.
Failed resources are useful to specify failure recovery.
Combining resource classes. When multiple resources are
used in the same formalism, the definitions need to be
extended to handle the case when an action contains re-
sources of multiple classes. For example, the process al-
gebra ACSR [12] employs serially reusable resources and
a variant of synchronous communication resources. How-
ever, from the point of view of the formalism, synchroniza-
tion on communication channels happens instantaneously,
while access of other resources takes time. Therefore, the
syntactic consistency predicate includes a provision that re-
sources of the two classes cannot appear in the same action.

4. Analysis

We can employ a number of different techniques to an-
alyze models in the resulting formalisms. Analysis of tim-
ing behavior for systems using serially reusable resources
has been performed in [5]. More generally, similar tech-
niques can be used to analyze functional correctness with
respect to arbitrary safety properties. Schedulability anal-
ysis for a variety of scheduling algorithms has been de-
scribed in [8]. Probabilistic analysis of timing and fault tol-

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

erance properties has been considered in [16]. An exten-
sion of that approach to power-aware system has been con-
sidered in [20]. Analysis techniques include model check-
ing with respect to a temporal logic that can express power
consumption constraints, as well as computation of prob-
abilistic bounds on power consumption. We can also com-
pute minimum and maximum power consumption over a set
of executions. Power-aware scheduling has been modeled
and analyzed in [20]. The resource-based approach also al-
lows us to explore a number of design trade-offs. For ex-
ample, we have considered trade-offs between performance
and power consumption [20] and between performance and
memory consumption [14].

5. Conclusions and future work

We have presented a formal approach to the design of
real-time embedded systems, which explicitly captures re-
source constraints that affect the system behavior. The ap-
proach includes an extension mechanism that allows us to
easily incorporate new kinds of resources and resource con-
straints. We defined several resource classes for commonly
encountered modeling scenarios. The resource-modeling
formalism is incorporated into a larger model-based devel-
opment framework for embedded systems.

We are working to identify additional classes of re-
sources and develop means of incorporating them into the
formalism, as well as providing flexible tool support for the
model development in the formalism. An interesting direc-
tion is to consider consumable resources, which can be used
only a fixed amount of times during a computation and pos-
sibly replenished after a certain amount of time passes. Such
an extension will allow us to have a more natural treatment
of battery-operated devices.

References

[1] K. Altisen, G. Goessler, and J. Sifakis. Scheduler modeling
based on the controller synthesis paradigm. Journal of Real-
Time Systems, 23:55–84, 2002.

[2] R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional
refinement for hierarchical hybrid systems. In Proceedings of
Hybrid Systems: Computation and Control, volume 2034 of
Lecture Notes in Computer Science, pages 33–48. Springer-
Verlag, Mar. 2001.

[3] R. Alur, F. Ivancic, J. Kim, I. Lee, and O. Sokolsky. Gen-
erating embedded software from hierarchical hybrid models.
In International Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES ’03), June 2003.

[4] L. Baum and T. Kramp. Towards a uniform modeling
technique for resource-usage scenarios. In Proceedings of
PDPTA ’99, June-July 1999.

[5] H. Ben-Abdallah, I. Lee, and Y. S. Kim. The Integrated
Specification and Analysis of Functional, Temporal, and Re-

source Requirements. In Proceedings of Conference on Re-
quirement Engineering, 1997.

[6] V. Braberman and M. Felder. Verification of real-time de-
signs: combining scheduling theory with automatic formal
verification. In Proceedings of the 7th European Engineer-
ing Conference, pages 494–510, 1999.

[7] M. Buchholtz, J. Andersen, and H. Loevengreen. Towards a
process algebra for shared processors. In Workshop on Mod-
els for Time-Critical Systems, BRICS Notes Series NS-01-5,
pages 87–99, Aug. 2001.

[8] J.-Y. Choi, I. Lee, and H.-L. Xie. The specification and
schedulability analysis of real-time systems using ACSR.
In Real-Time Systems Symposium. IEEE Computer Society
Press, December 1995.

[9] J. Ermont and F. Boniol. TPAP: an algebra of preemptive
processes for verifying real-time systems with shared re-
sources. In Workshop on Theory and Practice of Timed Sys-
tems, Apr. 2002.

[10] H. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic
based theory of test coverage and generation. In Proceedings
of TACAS ’02, Apr. 2002.

[11] E. Huh, L. Welch, B. Shirazi, and C. Cavanaugh. Hetero-
geneous resource management for dynamic real-time sys-
tems. In Heterogeneous Computing Workshop, pages 287–
296, May 2000.

[12] I. Lee, P. Brémond-Grégoire, and R. Gerber. A process alge-
braic approach to the specification and analysis of resource-
bound real-time systems. Proceedings of the IEEE, pages
158–171, Jan 1994.

[13] I. Lee, J.-Y. Choi, H.-H. Kwak, A. Philippou, and O. Sokol-
sky. A family of resource-bound real-time process algebras.
In Formal Techniques for Networked and Distributed Sys-
tems (FORTE’01), Aug. 2001.

[14] I. Lee, A. Philippou, and O. Sokolsky. A general resource
framework for real-time systems. In Post-workshop proceed-
ings of the Workshop on Radical Innovations of Software and
Systems Engineering in the Future, LNCS, 2003. to appear.

[15] A. Mehra, A. Indiresan, and K. Shin. Resource management
for real-time communication: Making theory meet practice.
In Proceedings of IEEE Real-Time Technology and Applica-
tions Symposium, pages 130–138, June 1996.

[16] A. Philippou, O. Sokolsky, R. Cleaveland, I. Lee, and
S. Smolka. Probabilistic resource failure in real-time pro-
cess algebra. In Proceedings of CONCUR ’98, pages 389–
404. Springer-Verlag, 1998.

[17] S. Saewong and R. Rajkumar. Cooperative scheduling of
multiple resources. In IEEE Real-Time Systems Symposium,
pages 90–101, 1999.

[18] A. Shaw. Communicating Real-Time State Machines. IEEE
Trans. on Software Eng., 18(9):805–816, 1992.

[19] O. Sokolsky, I. Lee, and H. Ben-Abdallah. Specification and
analysis of real-time systems with PARAGON. Annals of
Software Engineering, 7:211–234, 1999.

[20] O. Sokolsky, A. Philippou, I. Lee, and K. Christou. Mod-
eling and analysis of power-aware systems. In Proceedings
of TACAS ’03, volume 2619 of LNCS, pages 409–425, Apr.
2003.

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

	University of Pennsylvania
	ScholarlyCommons
	May 2004

	Resource Modeling for Embedded Systems Design
	Oleg Sokolsky
	Recommended Citation

	Resource Modeling for Embedded Systems Design
	Abstract
	Keywords
	Comments

	Resource modeling for embedded systems design - Software Technologies for Future Embedded and Ubiquitous Systems, 2004. Proceedings. Second IEEE W

