Penn

Libraries) , University of Pennsylvania
O UNIMERSITY 0f PENNSYLVANIA 4 ScholarlyCommons
Departmental Papers (CIS) Department of Computer & Information Science
February 2002

Verisim: Formal Analysis of Network Simulations

Karthikeyan Bhargavan

University of Pennsylvania

Carl A. Gunter

University of Pennsylvania

Moonjoo Kim
SECUi.com Corporation

Insup Lee

University of Pennsylvania, lee@cis.upenn.edu

Davor Obradovic

Susquehanna International Group

See next page for additional authors

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Recommended Citation

Karthikeyan Bhargavan, Carl A. Gunter, Moonjoo Kim, Insup Lee, Davor Obradovic, Oleg Sokolsky, and Mahesh Viswanathan,
"Verisim: Formal Analysis of Network Simulations", . February 2002.

Copyright 2002 IEEE. Reprinted from IEEE Transactions on Software Engineering, Volume 28, Issue 2, February 2002, pages 129-145.
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresultjsp?isNumber=21282&puNumber=32

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

An earlier, conference version of this paper may be found at http://repositoryupenn.edu/cis_papers/84/.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=21282&puNumber=32
http://repository.upenn.edu/cis_papers/84/

Verisim: Formal Analysis of Network Simulations

Abstract

Network protocols are often analyzed using simulations. We demonstrate how to extend such simulations to
check propositions expressing safety properties of network event traces in an extended form of linear temporal
logic. Our technique uses the NS simulator together with a component of the MaC system to provide a
uniform framework. We demonstrate its effectiveness by analyzing simulations of the Ad Hoc On-Demand
Distance Vector (AODV) routing protocol for packet radio networks. Our analysis finds violations of
significant properties and we discuss the faults that cause them. Novel aspects of our approach include modest
integration costs with other simulation objectives such as performance evaluation, greatly increased flexibility
in specifying properties to be checked and techniques for analyzing complex traces of alarms raised by the
monitoring software.

Keywords
Verisim, formal analysis, network, simulation, testing, routing, NS, MaC, AODV, temporal logic, ad hoc
networks, packet radio, tuning, population abstraction, packet-type abstraction

Comments

Copyright 2002 IEEE. Reprinted from IEEE Transactions on Software Engineering, Volume 238, Issue 2,
February 2002, pages 129-145.

Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=21282&puNumber=32

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

An earlier, conference version of this paper may be found at http://repositoryupenn.edu/cis_papers/84/.

Author(s)
Karthikeyan Bhargavan, Carl A. Gunter, Moonjoo Kim, Insup Lee, Davor Obradovic, Oleg Sokolsky, and
Mahesh Viswanathan

This journal article is available at ScholarlyCommons: http://repositoryupenn.edu/cis_papers/85

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=21282&puNumber=32
http://repository.upenn.edu/cis_papers/84/
http://repository.upenn.edu/cis_papers/85?utm_source=repository.upenn.edu%2Fcis_papers%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002 129

Verisim: Formal Analysis of
Network Simulations

Karthikeyan Bhargavan, Carl A. Gunter, Senior Member, IEEE,
Moonjoo Kim, Insup Lee, Fellow, IEEE, Davor Obradovic,
Oleg Sokolsky, and Mahesh Viswanathan

Abstract—Network protocols are often analyzed using simulations. We demonstrate how to extend such simulations to check
propositions expressing safety properties of network event traces in an extended form of linear temporal logic. Our technique uses the
NS simulator together with a component of the MaC system to provide a uniform framework. We demonstrate its effectiveness by
analyzing simulations of the Ad Hoc On-Demand Distance Vector (AODV) routing protocol for packet radio networks. Our analysis
finds violations of significant properties and we discuss the faults that cause them. Novel aspects of our approach include modest
integration costs with other simulation objectives such as performance evaluation, greatly increased flexibility in specifying properties
to be checked and techniques for analyzing complex traces of alarms raised by the monitoring software.

Index Terms—Verisim, formal analysis, network, simulation, testing, routing, NS, MaC, AODV, temporal logic, ad hoc networks,
packet radio, tuning, population abstraction, packet-type abstraction.

1 INTRODUCTION

ETWORK protocols such as routing protocols are

difficult to test because meaningful experiments may
involve dozens or even thousands of hosts and routers.
Developing an adequate testbed would be prohibitively
expensive while experiments involving operational systems
may be too risky or inconvenient. Thus, simulations are
widely used as a testing technique for both performance
and correctness properties.

The need for validating protocol implementations in
simulators has been well recognized. Not only could an
improper implementation of the given protocol lead to
incorrect simulation results, but, if it becomes a part of the
simulation suite, it could lead to incorrect results for other
protocols simulated with it. Network simulators come with
validation test suites for most of the core protocols, so that
modified versions of these protocols can be validated to
have the same properties. These tests compare the
performance of a modified protocol with a precomputed
expected performance chart for the scenario.

There are at least three ways in which testing based only
on performance measures is less than one would like for
careful analysis of a protocol: Such an analysis may not be

e K. Bhargavan, C. Gunter, 1. Lee, and O. Sokolsky are with the Department
of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA 19104.

E-mail: {bkarthik, gunter, lee, sokolsky}@saul.cis.upenn.edu.

e M. Kim is with the SECUi.com Corporation in Seoul, Korea. E-mail:
moonjoo@saul.cis.upenn.edu.

e D. Obradovic is with the Susquehanna International Group, 401 City Line
Ave., Bala Cynwyd, PA 19004. E-mail: davor@saul.cis.upenn.edu.

o M. Viswanathan is with the Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana, IL 61801.

E-mail: vmahesh@cs.uiuc.edu.

Manuscript received Mar. 2001; revised June 2001; accepted July 2001.
Recommended for acceptance by M.]. Harrold and A. Bertolino.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 115153.

able to detect certain kinds of bugs in the simulator code, it
is desirable to have more support for finding flaws in the
protocol itself, and there are flaws of interest that are not
immediately manifested as performance problems. Let us
consider each of these briefly.

Simulator code can be buggy. An inherent assumption in
the validation tests is that any significant bug will show up
as a performance degradation, but this need not be true. In
particular, a bug may simply alter the overall performance
profile. If the aim of the simulation is to find the right
parameters to include in the standard specification of the
protocol, these parameters may be incorrect because they
were learned from a simulation that was incorrectly coded.
In particular, there may be poorer-than-expected perfor-
mance from a deployed system if it implements the protocol
properly. Assuming this is even discovered, it may be very
painful to reconcile the differences and find the proper
parameters, especially if they have been set in stone by the
standard.

Suppose the protocol has a design flaw that causes bad
performance figures during simulation. The performance
figures alone may give only limited information about the
nature of the flaw. For a complex protocol that interacts
with many other protocols, fuller diagnostic information
would be invaluable. Current practice involves searching
for the flaw by repeated runs of the simulation as informed
by manual inspection of the packet trace or processing by
ad hoc shell scripts. A structured, logical framework for
discovering these flaws can facilitate such interactive
discovery.

There are some properties of protocols that do not relate
directly to performance. Suppose that a routing protocol
also has a security requirement that a packet at a node n;
meant for a neighboring node n, will never be seen by a
third node nj. If this property is violated, the hit on
performance is likely to be very small, but one would still

0098-5589/02/$17.00 © 2002 IEEE

130 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002

like to know if the property is violated in any of the
simulated scenarios. Even if one is only concerned with
performance, there are correctness properties that will
impact performance in important circumstances. It may be
easier to find these flaws by searching for non-performance-
affecting violations rather than by creating scenarios in
which these flaws actually cause performance problems.
For instance, routing loops can degrade performance, but
may also occur without significant impact on performance.
Since they are not expected to happen, their occurrence in a
simulation would be of interest, even if they did not impact
performance in that particular scenario.

In this paper, we describe a tool suite called Verisim
which facilitates the analysis of correctness properties in
network simulations. The advantage of Verisim comes from
its combination of a popular network simulator tool, NS
[13], with the flexible trace-checking component of the MaC
system [17]. Traces are generated using NS (version 2) and
analyzed to determine whether they satisfy desired proper-
ties. These properties are expressed using the Meta-Event
Definition Language (MEDL) used in MaC. MEDL is an
expressive language extending Linear Temporal Logic; it is
able to express a variety of important safety properties of
the kind network software is expected to satisfy. With this
combination, it is possible to seamlessly integrate flexible
testing of such properties into the processes generally used
to design and analyze network systems.

We provide an overview of the MaC framework for
system analysis, describe its instantiation in Verisim and
illustrate the application of Verisim to existing simulation
code for Ad Hoc On-Demand Distance Vector routing
(AODV), a protocol for routing in ad hoc packet radio
networks. Our case study has two parts based on code we
obtained from the Monarch Group at Carnegie-Mellon
University. The first part illustrates a basic approach for
using Verisim to find and correct bugs in the simulation
code, the second part shows how the flexibility of Verisim
can reduce turn-around time in debugging.

In the first part of our case study, we run an
NS simulation and create a trace 17" which is analyzed for
properties AODV is expected to satisfy. The properties are
expressed by a MEDL formula ¢ and the checker produces
as its output a metatrace T? of alarms indicating violations of
¢ by the given trace. Our study revealed several bugs in the
simulation code and we use Verisim to locate each of these
and carry out regression testing until they are all removed.
The technique is what we call Repair First Bug (RFB). RFB
proceeds by taking the trace and analyzing the first alarm to
determine what may have caused it. Assuming that the
formula ¢ is properly expressed, this represents a bug in the
simulation code. This bug is repaired and the newly
modified program P, is again run through the simulation
to produce an output trace 77, which is again examined to
find a second bug. Assuming that three bugs are found, this
process generates a program P; which satisfies the property
¢ in the tested scenario. In all, this debugging session
required three runs of the simulation.

In the second part of our case study, we illustrate how
the flexibility of Verisim can be exploited to improve turn-
around time for debugging. In this study, we attempt to
avoid some steps where the simulation was rerun to
generate a new trace for continued debugging. The situation

is similar to what one sees in compilers, where an effort is
made to produce error messages that are as independent as
possible in hope that the several faults in the program can
be removed before the compilation needs to be repeated.
This is especially useful for simulations, which may run for
long periods of time (even days) and where analysis may
generate vast, incomprehensible metatraces of alarms.
Alarms represent bugs that must be repaired and it is
necessary to repair as many as possible before rerunning
the simulation. The automated techniques used by compi-
lers are largely inapplicable since errors generated by
routing protocols are quite different in nature. We focus
on a mixture of manual and automated techniques we call
tuning. The metatrace T¢ is manually inspected to find bug
classes and then the MEDL property ¢ is modified or
“tuned” to produce a formula) that ignores one or more
bugs recognized in this first manual analysis. Verisim then
reanalyzes the original T to produce a new metatrace 77,
which is inspected for new bugs. Note that, the second step
can proceed without rerunning the simulation. This strategy
is repeatedly applied until it becomes desirable to fix a
collection of bugs and rerun the simulation.

The paper is divided into seven sections. After this
introduction, we describe Verisim and its components, the
MaC framework, and the NS system. Then, in the third
section, we describe the AODV protocol. Simulator code for
this protocol is then analyzed in two case studies in the
fourth section. The fifth section describes abstraction
techniques that can be used to improve the scalability of
checking. The sixth section discusses some of the related
work and the seventh section concludes the paper.

2 VERISIM

The need to analyze protocol simulation results beyond
performance measures led us to design an integrated
environment for protocol simulation and analysis. The
environment, which we call Verisim, enables us to perform
simulations and explore their properties within the same
framework. Rather than developing Verisim components
from scratch, we envisioned Verisim as a collection of tools
that have been tried by researchers and developers and
proven to be useful in similar contexts.

We designed Verisim within the MaC monitoring and
checking framework [18]. The MaC framework appeared to
be a natural choice for the toolset architecture. MaC is
designed for the formal analysis of trace-based executions
with respect to user-specified properties. This setup exactly
matches our needs regarding simulation trace analysis. We
designed Verisim as an integrated system that combines the
network simulator NS [13] and the checker from an earlier
MaC-based monitoring system for Java programs [17]. The
individual tools are described below. A simulation trace
produced by NS is automatically transformed into the input
format of the MaC checker. The resulting toolset provides
the instantiation of the MaC framework depicted in Fig. 1
The resulting integrated system enables flexible formal
analysis of network simulations where properties are
expressed in MEDL, the input language of MaC based on
temporal logic, and checked on traces produced by NS.

BHARGAVAN ET AL.: VERISIM: FORMAL ANALYSIS OF NETWORK SIMULATIONS 131

Properties:
. MEDL
Instrumented
Protocol: C++
NS Trace Checker - Metatrace
Scenario:
OTcl
Fig. 1. The architecture of Verisim.
NS simulator
Instrumented
Protocol Code Q Q Q Trace:
P P P
P: C++ Protocol NS Trace

Scenario

Agents

Network

Configuration
Parameters:

Model

OTcl

Topology:

OTcl

Traffic Model:
OTel

Fig. 2. Simulations using NSv2.

The use of MEDL allows the users writing a property to
be checked to concentrate on what needs to be checked
rather than how to check it. We note that, for simple
properties, an ad hoc implementation of the checker—say, as
a Perl script—may be easy to write and faster than a
general-purpose checker. However, the checking algorithm
will have to be implemented anew for every property one
wants to check and, as properties become more complex, ad
hoc checkers become more and more error-prone.

2.1 NS Network Simulations

Simulator implementations of protocols under development
can provide an idea of how the protocols behave in a wide
variety of network environments. Typically, a protocol and
a suite of scenarios can be generated quickly and the
simulation result is then provided as a feedback to the
protocol designer. As such, simulator traces often reveal
design flaws and potential improvements in the protocol
before a laboratory testbed is even considered. Moreover,
the simulator code often serves as a reference implementa-
tion for the protocol.

The development of a custom simulation framework
for a single protocol allows the designer to investigate
small topologies and basic characteristics of a new
protocol. However, such simulations are limited in their
ability to provide data about how a protocol interacts in
the larger, multiprotocol environments where it must
eventually operate. An extensible, multiprotocol simula-
tion framework allows protocol designers to layer their
protocol implementation at the node level and analyze its
performance and interaction with other protocols. NS [13]

is a discrete event network simulator developed by the
VINT Project (http://netweb.usc.edu/vint), a collabora-
tion between UC Berkeley, LBL, USC/ISI, and Xerox
PARC, that provides such a framework. The system we
study in this paper is based on NS and our case studies
use an extension of it by the CMU Monarch group
(http:/ /monarch.cs.cmu.edu) that adds link-layer and
physical layer support for wireless networks.

A block diagram showing the steps in an NS simulation
is shown in Fig. 2. In order to carry out simulations using
NS, one first implements the protocol in C++ using a
collection of simulator constructs. A number of well-known
protocols have been implemented for NS and can be used in
simulations of newer protocols. For instance, the NS release
provides TCP, UDP, IP, and various routing protocols.
These protocols are typically implemented as vertical layers
on a node. New protocols may be implemented on top of or
in between such preexisting layers. Next, one needs to
generate a simulation scenario written as a script. A typical
NS scenario consists of a dynamic topology description, a
traffic model, and various protocol configuration para-
meters. The simulator is then compiled with the protocol
code and the scenario to produce a protocol-specific
simulator. When the simulator is executed, a network
model is constructed from the scenario topology, while data
sources and sinks are added according to the traffic model.
Protocol agents are attached to nodes in the network and
their behavior is simulated. The result is a trace of all the
packets produced, transported, dropped in the network,
and any other diagnostic information directly instrumented
into the protocol simulator code. This trace is typically used

132 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002

Properties

Trace

Metatrace

3 Monitoring :
3 Script 3
! Program \ !
i Data / 3

Fig. 3. Overview of the MaC framework.

to analyze the performance of the protocol in terms of
metrics like end-to-end delay, queue lengths, bandwidth,
network throughput, and goodput. It can also be fed into a
visualization tool to help understand the network scenario
and protocol response.

2.2 MaC Monitoring and Checking

Monitoring and Checking (MaC) is a framework for dynamic
analysis of safety properties of systems with a trace-based
semantics. The overall framework is depicted in Fig. 3. The
framework includes two main phases: 1) Before the system
is run, its requirement and implementation specification are
used to generate runtime monitoring components; 2) during
system execution, information about the running system is
collected and matched against the requirements.

A major task in the first phase is to specify requirements
formally. In addition, a user identifies aspects of the
program execution that must be observed and reported in
the trace, so that the desired properties may be checked.
This is specified in what we call the monitoring script. The
primary reason for having a separate monitoring script and
requirement specification, is to separate implementation-
specific details of monitoring from requirements specifica-
tion. This separation helps in extending the framework for
different implementation languages and specification form-
alisms, while providing a clean interface to the designer of
monitors. In the first phase, runtime components of the
MaC framework are generated from a requirement speci-
fication and monitoring script automatically, the monitor-
ing script generates a monitor, and the requirement
specification generates a checker.

The runtime architecture of the MaC framework consists
of a monitor and a checker [17], [18]. The monitor observes
the running program and generates a sequence of events
which is then examined by the checker. The metatrace,
which is generated by the checker, contains the timed
sequence of properties that have been violated during the
execution, along with additional information about the
system state, which can then be used for the purposes of
debugging. Previously, we developed an implementation of
the MaC framework for monitoring and checking of Java
programs, called Java-MaC.

Verisim uses the checker component of Java-MaC, while
the monitor component of Java-MaC is replaced by NS . The
checker is based on the Meta Event Definition Language
(MEDL), which is designed to express properties of traces.
MEDL is an extension of linear temporal logic (LTL) that
captures safety properties (see [25] for a precise character-
ization of MEDL'’s expressive power). Safety properties [1]

are requirements whose violation can be detected by
examining a finite prefix of the execution. Any runtime
checking of computation must make decisions about the
validity or faultiness of a trace based on what it has seen so
far; hence, safety properties are the class of properties that
can be checked dynamically. MEDL also has additional
variables that may be used to record certain aspects of the
trace. These variables represent the checker’s state when
trying to check if the trace conforms to the property. The
presence of auxiliary variables in MEDL allows users to
overcome certain well-known limitations in the expressive
power of LTL. For example, within MEDL, one can “count”
and, so, it is possible to express things like, “RREP should
happen before the fifth occurrence of RREP.” As in SCR
[14], we distinguish between two kinds of data that make
up the trace of an execution: things that are true at some
instant during the execution (which we call events) and facts
that hold for a longer duration of time (which are called
conditions). For example, the return from the method
SendRequest occurs only at the instant when the control
returns from the method, while a Boolean condition like,
(next_hop, == 2) holds for as long as next_hop, does not
change its value from 2. The distinction between events and
conditions is important in terms of what the checker can
infer about the execution based on the information
extracted by the monitor. The checker assumes that truth
values of all conditions remain unchanged between updates
from the monitor. For events, the checker makes the dual
assumption, namely, that no events (of interest) happen
between updates.

Based on this distinction between events and conditions,
wehave a simple two-sorted logic that constitutes MEDL. The
syntax of conditions (C) and events (E) is given in Table 1.
Here, e refers to primitive events that are reported in the trace
by the monitor; c is either a primitive condition reported in
the trace or a Boolean condition defined on the auxiliary
variables. Guards (G) are used to update auxiliary variables
that may record something about the history of the execution.

The models for this logic are similar to those for linear
temporal logic, in that, they are sequences of worlds. The
worlds correspond to instants in time at which we have
information about the truth values of primitive conditions
and events. Intuitively, these worlds correspond to the times
when the monitor adds something to the trace. The intuition
in describing the semantics of events and conditions based on
such models is that conditions retain their truth values in the
duration between two worlds, while events are present only
at the instants corresponding to certain worlds. The labels on

BHARGAVAN ET AL.: VERISIM: FORMAL ANALYSIS OF NETWORK SIMULATIONS 133

TABLE 1
MEDL Grammar

<C> ::= C <E> ::= e <G> ::= <E> -> <Statements>
| [<E>, <E>) | start(<C>)
| 1 <C> | end(<C>)
| <C> && <C> | <E> && <E>
| <C> || <C> | <E> || <E>
| <C> => <C> | <E> when <C>

the worlds give the truth values of primitive conditions and
events. The semantics for negation (!c), conjunction
(c1 && c2), disjunction (c1 | | c¢2), and implication (c1 =>
c2) of conditions is standard. Each condition is associated
with two events, one that happens when the condition
becomes true (start (c)) and the other that happens when
the condition becomes false (end(c)). Conversely, occur-
rences of any two events el, e2 define an interval of time
and, thus, form a condition [el, e2) that is true from an
occurrence of event el until the first occurrence of e2. The
event e when cis trueif e occurs and condition c is true at that
time instant. Finally, a guard e -> stmt is executed when
event e is true; the effect of the execution is to update the
values of the auxiliary variables according to the assignments
given in stmt. In the assignments, we follow the common
practice to denote by x’ the “next state” value of variable x.
The formal semantics for the logic is given in [17], [18].
Primitive events sent by the checker may have values
associated with them that give detailed information about
the event. For example, an event that represents an update
of a monitored variable will have the new value of the
variable attached to it. The values may be used in assign-
ments to auxiliary variables and event definitions.
Appendix A gives a complete MEDL script for some of
the properties used in the Verisim analysis that we describe
in subsequent sections. Here, we use it to illustrate the
concrete syntax of MEDL. The script opens with a script
name. The first section identifies primitive events and
conditions that are sent to the checker by the monitor with
the keyword import. For example, import event
eventty yields one primitive event, which represents the
type of the simulation event in the example. The next
section gives typed declarations of auxiliary variables. The
declaration var int best_hc[at] [dst] introduces, for
each pair of nodes (at, dst), a variable that represents the
best known distance (hop count) between the nodes.
Further in the script, events and conditions are defined in
terms of other events and conditions and the values of
primitive events and auxiliary variables. For example, we
represent an event that happens when a packet containing
routing information about node dst is sent by node at as:

event sendroute [at] [dst] =
routeinfo [at] [dst] when
((value(eventty,0) == 1)
&& (value(src_hc,0) < 255));

Here, routeinfo is a previously defined event that occurs
when routing information is present in a packet and the first
value associated with the last occurrence of event eventty
is 1, denoting a send event. Values of primitive events are

accessed by their index, starting at 0. Finally, the script
contains assignments to the auxiliary variables in response
to events. For example, event init, which is the first event
sent by the monitor, performs initialization of the checker
state: init -> { best_hc [at] [dst]’ = 0; }. The
checker, which is generated automatically from the MEDL
script evaluates the events and conditions described in the
script whenever it reads an element from the trace. There
can be dependencies between different events and condi-
tions. For example, an event el that is defined in terms of
an auxiliary variable that is updated by event e2, must be
evaluated after e2 and the variable have been updated. In
order to evaluate events and conditions in a consistent
order, we use a DAG data structure that implicitly encodes
this dependency and has additional information that allows
for fast evaluation of the events and conditions. A very
important feature of our checking algorithm is that it
evaluates events, conditions, and guards on a need basis.
This is particularly useful when checking simulations of
network protocols. The requirements for a network protocol
typically impose constraints on every pair of nodes in the
network. However, a simulation event, such as a packet
arrival, affects only a few of the nodes and, thus, only a
small subset of the constraints may be violated. The
evaluation algorithm reevaluates only those events and
condition that are affected by the incoming data.

The remainder of this paper deals with the validation of
Verisim as a test harness for network simulations. To carry
out this validation, we perform a case study based on a new
protocol currently being standardized by IETF in the Manet
Working Group. We present the protocol in the next section,
along with some of the properties it is expected to satisfy.
For this study, we selected simulation code written by the
Monarch group at CMU, one of the research groups
working on Manet protocols. As with any complex soft-
ware, the version of the Monarch code we study has some
bugs. We show how to find several of these using Verisim
in a simulation of modest complexity.' Our first analysis
focuses on the use of Verisim as a debugging aid,
demonstrating the kinds of bugs that can be found. Our
second study focuses on the strategy for using Verisim for
debugging, focusing on efficient means for analyzing
metatraces to find collections of independent bugs. The
aim of the first study is to determine whether Verisim is
useful while the aim of the second is to determine whether
refinements in methodology can make it more useful.

1. We reported these bugs when we found them so they could be
removed from subsequent versions of the Monarch simulator code.

134 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002

3 AODV RouTING

This section describes the AODV routing protocol [21], [22]
which we used in our case study. The first part provides a
short description of the protocol. The second part discusses
some of its requirements—properties that are expected to
hold in AODV implementations.

3.1 AODV Protocol

The Ad Hoc On-Demand Distance Vector (AODV) routing
protocol is used in packet radio networks. A packet radio
network consists of a collection of mobile nodes whose link
connectivity frequently changes due to the node movement.
Because of dynamic connectivity and a typically low link
bandwidth, AODYV establishes routes “on-demand” (that is,
only when they are needed).

A route to a destination d contains the following fields:

e next_hop,; Next node on a path to d.
e hops_cnt,: Distance from d, measured in the number
of nodes (hops) that need to be traversed to reach d.

e seqnmoy, Last recorded sequence number for d.

e lifetimes: Remaining time before route expiration.
The purpose of sequence numbers is to track changes in
topology. Each node maintains its own sequence number. It
is incremented whenever the set of neighbors of the node
changes. When a route is established, it is stamped with the
current sequence number of its destination. As the topology
changes, more recent routes will have larger sequence
numbers. That way, nodes can distinguish between recent
and obsolete routes.

When a node s wants to communicate with a
destination d, it broadcasts a route request (RREQ) message
to all of its neighbors. The message has the following
format:

RREQ(d, hops_to_src, dest_sec_no,s,src_seq.-no).

Argument hops_to_src determines the current distance
from the node which initiated the route request. The initial
RREQ has this field set to 0 and every subsequent node
increments it by 1. Argument dest_seq_no specifies the least
sequence number for a route to d that s is willing to accept
(s usually uses its own seq_no, for this purpose). Argument
src_seq-no is the sequence number of the initiating node.

When a node ¢ receives a RREQ, it first checks whether it
has a route to d stamped with a sequence number at least as
big as dest_seq-no. If it does not, it rebroadcasts the RREQ
with incremented hops_to_src field. At the same time, ¢ can
use the received RREQ to set up a reverse route to s. This
route would eventually be used to forward replies back to s.
If ¢ has a fresh enough route to d, it replies to s (unicast via
the reverse route) with a route reply (RREP) message which
has the following format:

RREP(d, hops_to_dest, dest_seq no,route_lifetime).

Arguments hops_to_dest, dest_seq.no,and route lifetime
are the corresponding attributes of t’s route to d. Similarly, if ¢
is the destination itself (¢ = d), it replies with

RREP(0, d,big_seq-no, MY_ROUTE_TIMEQUT).

The value of big_seq_no needs to be at least as big as d’s
own sequence number and at least as big as dest_seq.no
from the request. Parameter MY_ROUTE_TIMEOUT is the default
lifetime, locally configured at d. Every node that receives a
RREP increments the value of the hops_to_dest packet field
and forwards the packet along the reverse route to s. When
a node receives a RREP for some destination d it uses
information from the packet to update its own route for d. If
it already has a route to d, preference is given to the route
with the bigger sequence number. If sequence numbers are
the same, the shorter route is chosen. This rule is used both
by s and by all of the intermediate forwarding nodes.

The above preference rule is important for propagating
error messages. In addition to the routing table, each node s
keeps track of the active neighbors for each destination d. This
is the set of neighboring nodes that use s as their next_hop,
on the way to d. If s detects that its route to d is broken, it
sends an unsolicited RREP message to all of its active
neighbors for d. This message contains hops_to_dest = 255
(infinity) and its dest_seq_no is one more than the previous
sequence number for that route. Such artificially incremen-
ted sequence number forces the recipients to accept this
“route” and propagate it further upstream, all the way to
the origin of the route.

3.2 AODV Properties

Routing protocols are often compared based on perfor-
mance statistics like speed of convergence, amount of
bandwidth, and memory needed for control data etc.
However, the quality of the results produced by different
protocols may vary. For instance, it is unfair to compare a
slow routing protocol that always finds shortest routes with
a really fast protocol that sometimes creates routing loops.
This is why it is important to know what kind of correctness
attributes a given protocol provides when comparing its
performance to other protocols.

Our study focuses on analyzing correctness of AODV
implementations. This can be studied from two angles:
correctness with respect to the requirements and correctness
with respect to the standard.

Requirements are high-level properties that a protocol is
supposed to satisfy. They are usually not protocol specific,
in the sense that a same requirement property usually
makes sense in the context of many different protocols. A
common requirement for a routing protocol is Loop Freedom:
Computed routes never contain loops. It turns out that, in
the case of AODV, it suffices to prove a simple invariant in
order to guarantee loop freedom [5]. The loop freedom
invariant is described in Table 2. Other typical routing
protocol requirements are optimality of the computed
routes, convergence to valid routes, etc.

A protocol standard is a document which gives basic
guidelines on how to implement a protocol. Its purpose is
two-fold—it ensures interoperability between different
implementations and it (supposedly) ensures satisfaction
of the requirements. The standard helps the implementors
by describing a particular way in which the requirements
are supposed to be satisfied. Since each protocol has its own
standard specification, properties that describe the standard
will be much more protocol-specific than the properties that
describe the requirements.

BHARGAVAN ET AL.: VERISIM: FORMAL ANALYSIS OF NETWORK SIMULATIONS 135

TABLE 2
AODV Requirement: Loop Freedom

Loop Invariant: Along every AODV route to a destination d, pair (—seq-no,, hop_cnt,) strictly

decreases in the lexicographic ordering.

TABLE 3
AODV Standard Properties

Property Name

Property Description

Monotone Sequence Numbers

A node’s own sequence number never decreases.

Destination Stops

When a packet (RREQ, RREP or data) reaches its destination,
it should not be forwarded.

Correct Forwarding

If a packet addressed to d (RREP or data) is forwarded, it is
forwarded along the best unexpired route to d seen so far.

Destination Reply

When the destination replies to a route request,
the value of the hops_to_dest ficld of the reply should be 0.

Node Reply
scen so far.

When a node sends a route, it sends the best unexpired route

RREQ Sequence Number

When a node initiates a route request for a destination d,
the requested sequence number should either be 0,
or the last sequence number recorded for d (seq-noy).

Detect Route Error

If a node detects a broken route, it should use
dest_seq_no = 1 + (its own) seq_no, in the unsolicited RREP.

Forward Route Error

When a node forwards an unsolicited RREP, it should forward
the same sequence number that it received.

The core part of a protocol standard describes what
kinds of events can occur and how are nodes supposed to
handle them. Network protocols usually represent reactive
systems, which means that every action is carried out in
response to an event. Although the standard is written in
natural language, one can typically extract the state
machine that it is trying to express. For example, the state
machine corresponding to an AODV process is shown in
Appendix B. To monitor conformance with such a state
machine, we convert it to a monitoring specification that
gets triggered every time a network event of interest
happens. The monitoring specification attempts to keep
track of the state of the protocol and checks that the events
generated by the protocol are correct with respect to the
state machine.

MEDL, with its explicit notion of events and its notion of
explicit state transformations, proves to be a very practical
language for expressing properties of network protocols.
Events include, but are not limited to, packet receipts and
timeouts. When an event occurs, the state of the protocol is
updated and possibly new packets and timers are gener-
ated. Table 3 shows some of the properties that test
adherence to the AODV standard. These properties were
generated from the state machine description in Appendix
B. Notice how each property contains an event in its
description (denoted by a phrase of the form when... or if...).
We should point out that the set of standard properties
listed in Table 3 is not complete—satisfying all of the
properties still does not guarantee adherence to the
standard. In particular, there are a number of properties
about the timing of protocol events that our state machine
and, consequently, our monitoring specification, does not
express. It is generally not feasible to capture the whole

standard as a single set of checkable properties. Size and
complexity of the standard impose practical limitations on
this task. Another limitation is the expressive power of the
logic in which the properties are stated, as well as the
complexity of checking procedures. For instance, we can
only express and check safety properties, but it is
conceivable that a standard may include liveness properties
as well. Finally, standards sometimes prescribe implemen-
tation details whose satisfaction can not be checked by
observing protocol runs. Completeness is not essential since
our goal is finding errors, not showing correctness. The
richer the set of properties, the more kinds of errors can be
detected.

4 CHECKING AODV SIMULATIONS

In this section, we analyze AODV simulations using
Verisim. Verisim generates a large metatrace of property
violations. We use bug-repairing and tuning to discover
errors in the protocol implementation.

4.1 AODV properties in MEDL

Our first task is to translate properties given in Section 3.2 in
MEDL. Generally, all properties are constructed to capture
deviations of the observed behavior from the ideal (correct)
behavior. In our framework, observable behavior of a
routing protocol is the sequence of packets exchanged
between the nodes. Based on the packet sequence, our
MEDL property constructs the ideal system state and
compares it to the observed system state. For instance, if a
RREP packet heading towards a node u is forwarded from
node v to node w, the observed routing table at v has
next_hop, = w. However, by monitoring the history of

136 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28,

NO. 2, FEBRUARY 2002

TABLE 4
Loop Invariant in MEDL

alarm LoopInv[at] [nxt] [dst] =

start((at!=nxt) && (at!=dst) && (nxt'!=dst) &&

(best_next[at] [dst] == nxt) &&

((best_seqlat] [dst] > best_seq[nxt][dst]) ||
((best_seql[at] [dst] == best_seq[nxt] [dst]) &&
(best_hops[at] [dst] <= best_hops[nxt] [dst]))))

RREP messages received at v, we can see whether v was
indeed expected to have such a route to w.

To give an example, recall the Loop Invariant property
from the previous section. Consider some three different
nodes: at, nzt, and dst. Assume that the node at has a route
to dst through its neighbor nat:

next_hop,(at) = nxt.

Let (s(at), h(at)) be the sequence number and the hop
count that node at has for the destination dst (similarly
(s(nat), h(nzt)) for the node nzt). The Loop Invariant

property says:
(s(at) < s(nat)) A (s(at) = s(nzt) = h(at) > h(nzt)).

Therefore, the property is violated exactly when the
following holds:

(s(at) > s(nxt)) V (s(at) = s(nxt) A h(at) < h(nzt)).

Table 4 shows a MEDL alarm that detects this violation in
the state of the nodes, as reconstructed from observed
events.

The auxiliary variables: best_seq, best_next, and
best_hops keep track of the sequence number, next hop,
and hop count of a node’s current route to the destination
dst. We compare the states of nodes at and nzt to check if
the loop invariant is being violated.

This will be our general strategy for translation—we first
encode the ideal state machine in terms of auxiliary
variables; then we convert the desired state invariants and
properties of the outputs into alarms by negation. Table 5
shows AODV properties and their corresponding MEDL
alarm names. Appendix A gives the complete MEDL scripts
for many of these properties.

4.2 AODV Simulation Case Study

We consider an implementation of AODV written by the
CMU Monarch Project (http:/ /monarch.cs.cmu.edu) for the
network simulator NS. This code was used primarily for
performance analysis of AODV in comparison with other
routing protocols for mobile, ad hoc networks [9]. In order
to carry out this comparison, a number of large random
scenarios were constructed as well.

The Monarch implementation is based on the first
version of AODV [21] and is known to have bugs—because
of incomplete specification in the standard and due to
programmer errors. The code is already instrumented to
produce a packet trace for every packet generated,

forwarded, and dropped by the protocol. We use Verisim
to analyze NS simulations of this code on a small network
scenario S with five nodes, as shown in Fig. 4.

e Topology: There are five nodes initially arranged as
in Fig. 4 (Phase I). Then, node 5 starts moving away
from the network, causing the wireless links to break
after 2.5s (Phase II). 30s into the simulation, node 5
heads back towards node 1. At 55s, it is within the
range of node 4 (Phase III), at 70s it is in the range of
nodes 2, 3, and 4 and, finally, it is in the range of 1, 2,
and 3 (Phase IV).

e Traffic Model: Nodes 1, 2, and 3 are constant bit rate
(CBR) sources for node 5. They send a total of 1,000
packets of size 512 bytes each, one packet every 0.1s.

e AODV parameters: We use the optimal AODV
configuration computed by the Monarch group.
The configuration involves parameters like route
timeout intervals and the number of times a request
should be retried.

When the AODV protocol is simulated on scenario .S, NS
generates a trace T'. The initial fragment of a typical trace is
shown in Table 6. When a packet send or receive event
happens at a node N, there is a line in the trace with the
format:

<send/recv> <time> _N_ RTR — <Link Layer info>
<IP info> <AODV info>

For instance, the third line of the trace tells us that, at
time 0.0, node 3 broadcasts an AODV REQUEST, for
destination 5, with hop count 0, and broadcast id 1.
Moreover, node 3’s current sequence number is 1 and the
last sequence number it heard from the destination (5) is 0.
This request eventually reaches the destination 5, through

TABLE 5

MEDL Alarms
Property MEDL alarm
Monotone Sequence Numbers | MonSeqNo
Destination Stops DestStops
Correct Forwarding CorrectFwd
Destination Reply DestRep
Node Reply NodeRep
RREQ Sequence Number RegSeqNo
Loop Invariant Looplnv
Detect Route Error DetectRErr
Forward Route Error FwdRErr

BHARGAVAN ET AL.: VERISIM: FORMAL ANALYSIS OF NETWORK SIMULATIONS 137

2 3 2 3
4 4
5
5
Phase I Phase II
1 1
5
2 3 2 3
4 4

5

Phase 111 Phase IV

Fig. 4. Scenario S.

node 4. The last line of the trace is node 5’s REPLY to the
request which it unicasts to node 3, via node 4.

4.3 Repair First Bug

We start with Monarch code for AODV (P) and simulate it
using NS for the scenario S to produce the trace T' (Table 6).
Verisim then checks whether 7" satisfies the AODV proper-
ties ¢ and produces a metatrace 7% of property violations
(alarms). This metatrace generation is then repeated, on
succeeding versions of P. Statistics on the alarms found in
these metatraces are shown in Table 7. We show the results
for a representative set of AODV properties. The last
column in the table contains the total number of violations
of all the properties (including the ones not shown). The
MEDL specification for these selected AODV properties is
given in Appendix A.

Step L. The first metatrace T contains 220 alarms and the
initial fragment is as shown in Table 8. This alarm trace has
four DestRep alarms, 43 instances of LoopInv, 54 Detec-
tRErr alarms, and 38 instances of NodeRep. Incidentally,
the first alarm in 7 is raised at the last event of T shown in
Table 6. The first alarm is a DestRep at destination 5, which
means that the implementation is not setting the initial hop
count value in an RREP correctly. All four instances of the
alarm in 7 indicate that the initial value has been set to 1.
So, we go into the code and correct this simple off-by-one
error, changing the initial hop count from 1 to 0. This
produces a new implementation P;, which we use to
produce a new trace T}, by running the simulation again.

Step II. We run Verisim on 77 and ¢ to produce the
second metatrace T7. 7! has 216 alarms and is the same as
T except that the DestRep alarms have been eliminated. The
first alarm in the trace is a DetectRErr at node 4, where the
node 4 is sending an unsolicited RREP, saying that the
destination 5 is unreachable. However, the sequence number
in the RREP is not one more than the best sequence number at
4. This leads us to suspect that the implementation fails to
increment the sequence number at 4 before sending the
unsolicited RREP. Looking at other DetectRErr alarms in the
trace confirms this bug. We repair P, to eliminate this bug
and produce the third version of our code, P;.

Step III. As before, we analyze P through Verisim to
produce Ty and 7. Ty has 206 alarms, of which 44 alarms
are due, Looplnv, 48 are DetectRErr alarms, and 39 are
NodeRep alarms. Some of the DetectRErr alarms we
detected before are gone, but a number of alarms remain.
Interestingly, the NodeRep alarms and the LoopInv alarms
increase by one. This is because in the old trace, when the
incorrect route errors are received by nodes, the MEDL
formula assumes they are ignored. However, in the new
trace, the generated route errors have the correct hop count,
so ¢ recognizes that they will be acknowledged by the
recipients. This leads to more errors being recognized.

The first alarm is a NodeRep at node 3, which advertises
a route with hop count 2 for the destination 5 even though it
no longer has a route to the destination. It is in effect
advertising outdated routes. We conclude that the condi-
tions that check whether an RREP should be sent are buggy

TABLE 6
Typical Trace T

s 0.000000000 _1_ RTR =--- 0 AODV 52 [0 0 0 O 0] —-------
s 0.000000000 _2_ RTR --- 0 AODV 52 [0 0 0 O 0] -------
s 0.000000000 _3_ RTR --- 0 AODV 52 [0 0 0 0 0] —--—----
r 0.000519784 _2_ RTR --- 0 AODV 52 [20 0 ffff 1 800]
r 0.000535386 _3_ RTR --- 0 AODV 52 [20 O ffff 1 800]
r 0.002002991 _1_ RTR --- O AODV 52 [20 0 ffff 3 800]
r 0.002006118 _2_ RTR --- O AODV 52 [20 0 ffff 3 800]
r 0.00201448% _4_ RTR --- 0 AODV 52 [20 O ffff 3 800]
s 0.002360210 _4_ RTR --- 0 AODV 52 [20 O ffff 3 800]
r 0.002689326 _1_ RTR --- O AODV 52 [20 0 ffff 2 800]
r 0.002700822 _4_ RTR --- 0 AODV 52 [20 O ffff 2 800]
r 0.002708053 _3_ RTR --- 0 AODV 52 [20 O ffff 2 800]
s 0.002777804 _4_ RTR --- 0 AODV 52 [20 O ffff 2 800]
r 0.003439172 _2_ RTR --- 0 AODV 52 [20 0 ffff 4 800]
r 0.003449342 _5_ RTR --- 0 AODV 52 [20 O ffff 4 800]
s 0.003449342 _5_ RTR --- 0 AODV 44 [0 0 0 0 0] —-—----

[1:255 -1:255 32 0] [0x2 0 1 [5 0] [t 1]1] (REQUEST)
[2:255 -1:255 32 0] [0x2 0 1 [5 0] [2 1]] (REQUEST)
[3:255 -1:255 32 0] [0x2 0 1 [5 0] [3 1]1] (REQUEST)
-- [1:255 -1:255 32 0] [0x2 0 1 [5 0] [1 111 (REQUEST)
-- [1:255 -1:255 32 0] [0x2 0 1 [5 0] [1 111 (REQUEST)
-- [3:255 -1:255 32 0] [0x2 0 1 [5 0] [3 111 (REQUEST)
-- [3:255 -1:255 32 0] [0x2 0 1 [5 0] [3 111 (REQUEST)
-- [3:255 -1:255 32 0] [0x2 0 1 [5 0] [3 111 (REQUEST)
-- [4:255 -1:255 31 0] [0x2 1 1 [5 0] [3 111 (REQUEST)
-- [2:255 -1:255 32 0] [0x2 0 1 [5 0] [2 111 (REQUEST)
-- [2:255 -1:255 32 0] [0x2 0 1 [5 0] [2 1]] (REQUEST)
-- [2:255 -1:255 32 0] [0x2 0 1 [5 0] [2 111 (REQUEST)
-- [4:255 -1:255 31 0] [0x2 1 1 [5 0] [2 111 (REQUEST)
-- [4:255 -1:255 31 0] [0x2 1 1 [5 0] [3 111 (REQUEST)
-- [4:255 -1:255 31 0] [0x2 1 1 [5 0] [3 111 (REQUEST)
[5:255 3:255 32 4] [0x4 1 [56 2] 600] (REPLY)

138

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002

TABLE 7
RFB Alarms
Meta-trace | DestRep | DetectRErr | NodeRep | Looplnv | Total alarms
¢ 4 54 38 43 220
T? 0 54 38 43 216
TS 0 48 39 44 206
Ty 0 0 0 0 1
TABLE 8

Typical MetaTrace T?

Time: 0.003449342s,
best route at 5 for 5:
observed route at b

Time: 0.004823314s,
best route at 5 for 5:
observed route at 5

Alarm DetectRErr raised at 4 for dest 5§
<seqno:
for 5: <seqno: 3,hc: 265>
Alarm DetectRErr raised at 4 for dest 5§
<seqno:
for b: <segno: 3,hc: 2bb>

Time: 2.567054284s,
best route at 4 for 5:
observed route at 4

Time: 2.567054284s,
best route at 4 for 5:
observed route at 4

and that routes are not deleted properly in the code. Indeed
we find, when we look at the code that the RREP generation
code has multiple errors in it. We need to change three
conditional expressions in the code, to make it conform to
our properties. Finally, we again run Verisim on this new
implementation P; to produce a trace T3 and metatrace 75 .
Step IV. The fourth metatrace just contains one alarm,
which is raised because of an unexpected buffering event ata
lower layer protocol in the simulation. Essentially, a packet p,,
received at node 3 is buffered at a lower layer while the
protocol responds to an older packet p,. However, our MEDL
formula, which does not model lower layer protocols,
assumes that p, has already been seen and processed by the
protocol, causing the alarm. As such, T3 is “correct” with
respect to the AODV properties that we modeled in MEDL.

4.4 Tuning

The previous section demonstrated the repair first bug
technique for bug hunting, involving new simulations every
time a bug was discovered. In this section, we demonstrate
tuning for MEDL, which allows us to discover multiple bugs
in every simulation run. We first simulate P with S to get T,
which is analyzed with the MEDL formula ¢ to get the
metatrace 7. As before, we start our analysis by looking at
T?. However, when we find a bug, we tune our MEDL
formula ¢ instead of repairing the protocol code P. After this
tuning, we rerun the checking part of Verisim on T along
with the new MEDL formula to generate the next metatrace.
The alarm statistics for tuning are as shown in Table 9. The
MEDL script for the properties in the table is included along
with the tuning modifications in Appendix A.

Alarm DestRep raised at 5 for dest 5
<segno:
for 5: <seqno: 2,hc: 1>

-1,hc: -1,next: -1>

Alarm DestRep raised at 5 for dest 5
<seqno:
for 5: <segno: 3,hc: 1>

2,hc: -1,next: -1>

3,hc: 1,next: 5>

3,hc: 1,next: 5>

Step 1. As before, the first alarm in 7 is a DestRep at
destination 5, which initializes the hop count in the RREP to 1.
This probably means that the code is initializing a node’s self-
hop count to 1 instead of 0. So, we modify the alarm DestRep
to check whether a node ever emits a hop count other than 1
(instead of 0). Then, we run Verisim on 7" and this new MEDL
formula ¢; to get the metatrace 7%'. All the DestRep alarms
disappear in the new metatrace which validates our
assumption and identifies the first bug in the code.

Step II. The second metatrace 7% has 216 alarms and is
the same as T° except that the DestRep alarms no longer
appear. After looking at the metatrace, we guess that the
first alarm, DetectRErr, is because a node that discovers a
route error fails to increment the destination sequence
number. As before, we can modify the alarm DetectRErr to
ignore this case. However, according to the metatrace, route
error information still seems to propagate through the
network. This means that the implementation of the route
error packet handler must be incorrect, but in a way that
allows the route error to be propagated. So, in order to
ignore alarms related to the route error messages, we
modify the route error packet handling routine in the
MEDL formula as well. Note that, by making this
modification, we are making the MEDL formula “incor-
rect”—we are changing the ideal state so that it becomes the
same as the observed state. This change generates the third
version, ¢,, which is used to produce the metatrace 7%.
Indeed, 7% seems to not have the kinds of DetectRErr
alarms and follow-up alarms as noticed before.

Step IIL. 7% has 166 alarms, of which 50 are Looplnv
alarms and 38 are NodeRep alarms. Both DestRep and
DetectRErr have been eliminated. Observe that the LoopInv

BHARGAVAN ET AL.: VERISIM: FORMAL ANALYSIS OF NETWORK SIMULATIONS

139

TABLE 9
Tuning Alarms

Meta-trace | DestRep | DetectRErr | NodeRep | LoopInv | Total alarms
T 4 54 38 43 220

T 0 54 38 43 216

T2 0 0 38 50 166

T3 0 0 21 0 30

alarms have increased because the modified MEDL state
allows more alarms to be identified. As before, we look at
the metatrace and conclude that the way replies are
generated in the protocol code is incorrect. In particular,
even when a node has lost a route, it keeps its hop count
around and when an RREQ is received, it incorrectly replies
as if it has a route. We imitate this behavior by changing the
MEDL formula to assume the same by allowing hop counts
to stay even after the route has been lost. We run Verisim on
this formula ¢3 and generate the fourth metatrace 7.

Step IV. The new metatrace T% still has 30 alarms, with
21 NodeRep alarms that are difficult to interpret. Essen-
tially, at this point, too much information has been filtered
out of the trace to make any good guesses about the origin
of the errors. So, we go back to the code to repair the three
bugs detected above. When we look at the code for the RREP
generation, we realize that the implementation has multiple
bugs causing it to behave highly unexpectedly. These bugs
explain the alarms remaining in 7.

We repair P to produce a new implementation Py, which
is analyzed through Verisim to produce Tf T;’ has a total of
one alarm due to a packet buffering event at a node.

4.5 Analysis

We discovered three errors in the AODV implementation,
which altogether required rewriting 18 lines of the Monarch
code. Of these, the RREP generation problem is particularly
interesting. This error causes the AODV implementation to
actually form loops, which we detected in our simulation.
In general, loop formation is difficult to detect by other
analyses. Indeed, our previous manual analyses of AODV
simulations failed to detect the existence of loop or the RREP
generation bugs that cause it. The automation provided by
Verisim was crucial to detect and wade through property
violations in the simulation.

It must be emphasized that the intuition that allows one
to tune MEDL formulas is highly protocol specific. One
must have a good understanding of the protocol and
conduct a manual analysis of the metatrace before the faults
that caused the errors can be guessed. It is often the case
that there are several useful ways to tune a formula. We
have demonstrated that Verisim is flexible enough to allow
our guesses to be validated without even rerunning the
simulation, let alone looking at or modifying the code.

5 ABSTRACTIONS AND “OFF-THE-SHELF”
SIMULATIONS

In order to see how well our techniques scale up to
simulations usually analyzed to measure the performance
of a network protocol, we applied our techniques to the
largest trace made available by the CMU Monarch group [9].
This “Off-The-Shelf” (OTS) trace was generated by AODV

simulation on a site of size 1, 500 x 300 meters with 50 nodes
constantly moving at 20 meters per second. There were
150 data connections transmitting four 64 byte packets every
second. The simulation and our Verisim analyses of the trace
were carried out on a dual Pentium-III 550Mhz Xeon
processors machine with one gigabyte of memory. The OS
was Red Hat Linux 6.1 with the 2.2.12-20 SMP Kernel. We
used NS version 2.1b1 and MACSware 0.99 implemented in
IBM JDK 1.1.8 for Linux and running on the JVM. The
NS simulation itself required about 5220 seconds to complete
and generated 6,446,316 events. This is much larger than the
traces analyzed by Verisim in the previous section, which all
had less than 10,000 events. A naive effort to use Verisim to
analyze MonSeqNo, a relatively simple property, on this trace
was prohibitively time consuming. We estimate that the time
required to check the desired relationship after each of
6,446,316 events between each pair of nodes (2,500 relations)
to be more than 100 days based on extrapolating a four-day
run of the analysis. On the bright side, errors with MonSeqNo
were detected in the first four days of analysis. More
significantly, there are a number of optimizations that will
find an error with considerably less effort. The results of
analyzing the OTS simulation with various optimizations for
the MonSeqNo (called 1) property are given in Table 10. Two
additional optimizations were tested on the LoopInv
(called X) property and these results are provided in
Table 11. The OTS trace is called T" in the tables. The naive
analysis is Experiment A, recorded in the first line of Table 10.

The experiments measure the effects of various abstrac-
tions that one may perform on either the trace or the property
to make the analysis feasible, while also finding errors in the
code. There were two abstractions that we chose to apply:
population abstraction and packet-type abstraction. Population
abstraction focuses only on a small set of nodes, while
ignoring the others. We can apply this abstraction to either the
property being tested or to the trace. For example, when
applied to the property MonSeqNo, it would mean that we
check that only certain nodes satisfy the MonSeqNo property.
When we apply this to the trace, we prune the trace to consist
of only events sent or received by these nodes. In our case
study, we looked at two population abstractions. In one, we
focused on packets at nodes 6 through 10 for the destinations
6 through 10 (25 relations). We call this 7. In the other
population abstraction, called 7'/, we also considered only
packets at nodes 6 through 10, but we let the destination be
any of the 50 nodes (250 relations). The result of applying the
population abstraction 7 to a formula ¢ is denoted by F.(¢).
When the population abstraction is applied to a trace 7', we
denoteitby P.(T). Population abstraction is applied to either
the property or the trace in Experiments B, D, E, F, G, H, I of
Tables 10 and 11.

In packet-type abstraction, we prune the trace to include
only events that directly affect the property we are

140 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28,

NO. 2, FEBRUARY 2002

TABLE 10
Results of MonSeqNo Property on Trace
Exp Trace Property Time Rate
[# of events] [size in bytes] | (in secs) | (time/events/prop)
A T 16,446, 316] p [1,476,638] | > 4 days N/A
B [6,446, 316] Fr(p) (14,543 51,045 0.54ps
C E.(T) [706,753] p [1,476.638] | > 4 days N/A
D E(T) [706,753] Fr(p) [14,543] 5,440 0.53ps
E Po(T) [631,253] | Fro(pe) [145,178] 85,012 0.93us
F P (T) [69,411] Fr(p) [14,543) 556 0.554s
G E. (P (T)) [6,812] Fr(u) [14,543) 51 0.5545
TABLE 11
Results of Looplnv Property on Trace
Exp Trace Property Time Rate
[# of events] [size in bytes] | (in secs) | (time/events/prop)
H P.(T) [69,411] | Fr(\) [75,508] 8064 1.54ps
I E.(P:(T)) [48,735] | Fx(\) [75,508] 5912 1.61us

interested in. For example, for the MonSeqNo property, this
abstraction (denoted by E;) when applied to the trace,
removes all events except for the sendroute[at] [dst]
event. The corresponding abstraction for the ooplnv
property (denoted by E!), removes a different set of events
from the trace. In experiments C, D, G, and I a packet type
abstraction was applied.

Itis important to make the distinction between population
abstractions and packet-type abstractions. These two classes
of abstractions have essential differences that one needs to be
aware of when interpreting results of the abstracted
simulations. Packet-type abstractions, if applied properly,
are complete. This means that all errors from the original trace
will still exist in the abstracted trace. Because of this, it is
generally always useful to perform packet-type abstractions.
They will, more than likely, improve the performance, while
producing the same result as checking the original trace. In
contrast, population abstractions can miss errors. This can
happen if an error occurs outside the observed population.
However, this is not very likely to happen with network
protocols where all nodes run identical processes. Generally,
both population abstractions and packet-type abstractions
are sound—every error present in the abstracted simulation
indicates an error in the original simulation. Formally, if we
use the notation T" | ¢ to indicate that a trace 7" satisfies a
formula ¢, the following will hold for every event-type
abstraction 7 and a population abstracton 7:

TkEe <= E[@Ee
TEy = FPIEy
TEe = TEF(p)

Our case study revealed two things: linear growth in
complexity and significant benefits from abstractions. First,
the time taken to process the trace depends only linearly on
the length of the trace and the size of the formula; this can be
seen from the fact that the last column of our tables is nearly
constant. The reason why the rates in Table 11 are three times
more than those in Table 10 is because the property of
LoopInv is more complicated and has three alternations
between && and | |. Second, abstractions can significantly

improve the time taken in performing the analysis. For
example, after applying both population and packet type
abstractions, the time for the analysis went from more than
four days (Experiment A) to 51 seconds (Experiment G).
Moreover, this optimization did not excessively compromise
our ability to discover bugs in the trace: The alarms associated
with nodes 6 to 10 that would have been generated had we
analyzed the entire trace are still generated when we test the
much smaller trace we get after applying the abstractions.

6 RELATED WORK

While there has been a great deal of research on the formal
verification of communication systems, these efforts have
generally been limited in two respects. First, they generally
prove properties of the protocol and, therefore, may not be
helpful in finding problems in protocol implementations.
Second, few efforts have focused on multiparty protocols
like routing, where proving a property of a fixed number of
routers limits the scope of the proof drastically. [15]
describes a method for studying behavior of multiparty
protocols (such as PIM-SM) in “stressful” conditions. (See
reference [5] for a general discussion of verifying routing
protocols.) These two problems are partially addressed by
the Verisim strategy of analyzing trace runs from simula-
tions. First, the simulation code is closer to the implementa-
tion code and, therefore, the Verisim tests are more likely to
reveal problems with the deployed system. Second, the ease
of creating simulations makes it possible to test a large
variety of configurations, thus partially addressing the
problem that all configurations cannot be tested. In any
event, Verisim analysis is complementary to both static and
dynamic analysis, so it can be useful as long as it is
convenient. Integration with NS contributes to this objective
since simulations created for other reasons like performance
analysis can easily be subjected to Verisim analysis as well.

A large body of related research work concentrates on
automated generation of test oracles from the requirements.
A general methodology for doing this is discussed in [24],
together with examples in Real Time Interval Logic (RTIL)
and Z. Papers [7], [6], [8] describe a trace analysis tool for

BHARGAVAN ET AL.: VERISIM: FORMAL ANALYSIS OF NETWORK SIMULATIONS 141

ReqSpec AODVSpec

/* imported events: packet fields */
import event atnode, fordest, src, src_seq, src_hc, dest, dest_seq, bcastid;
import event prev, next_hop, init, eventty, pktty, pkt_rcv;

/* state variables for each pair of nodes */
var int best_seqlat] [dst], best_hc[at] [dst], best_next[at] [dst];

/* packet with routing information is detected */
event routeinfolat] [dst] = pkt_rcv when
((value(atnode,0)==at) && (value(src,0)==dst) &&
(value(pktty,0) > 0))
/* packet with routing information is received by node at */
event recvroutelat] [dst] = routeinfolat] [dst] when ((value(eventty,0) == 0) &&
(value(src_hc) < 255));
/* a better route is received by node at */
event recvbetter[at][dst] = recvroutel[at] [dst]
when ((value(src_seq,0) > best_seqlat][dst]) ||
((value(src_seq,0) == best_seqlat] [dst]) &&
(value(src_hc,0) < best_hc[at][dst])));
/* route error received */
event recverr[at][dst] = routeinfo[at] [dst] when ((value(eventty,0) == 0) &&
(value(pktty,0) == 2) &&
(value(src_hc,0) >= 255));
/* received route error means that route is broken */
event recvbettererr([at][dst] = recverr[at] [dst] when
when (value(src_seq,0) > best_seqlat][dst]);

/* packet with routing information is sent by node at */
event sendroutelat] [dst] = routeinfol[at] [dst] when ((value(eventty,0) == 1) &&
(value(src_hc,0) < 255));

/* route error sent */

event senderr([at][dst] = routeinfolat] [dst] when ((value(eventty,0) == 1) &%
(value(pktty,0) == 2) &&
(value(src_hc,0) >= 255))

/* initial route error packet is sent by node at */

event sendiniterr[at][dst] = senderr[at] [dst]

when (best_hclat] [dst] < 255);

/* increased sequence number is sent by destination dst */
event sendincseqlat] [dst] = sendroutelat] [dst]
when ((dst == at) &&
(value(src_seq,0) > best_seqlat][at]));

/* Alarm: sequence number sent by a node has decreased */
alarm MonSeqgNo[at] [dst] = sendroute[at] [dst]
when ((dst == at) &&
(value(src_seq,0) < best_seqlat][at]));
/* Alarm: destination’s reply has wrong hop count */
alarm DestRep[at] [dst] = sendroute[at] [dst] when

((dst==at) &&
(value(src_hc,0) > 0));

Fig. 5. Complete MEDL script.

LOTOS requirements, while [12] describes a similar tool for Interval Logic (GIL) is discussed in [11], [20]. An equivalent
Estelle requirements. Generating test oracles for Graphical problem for a safe fragment of Linear Temporal Logic is

142

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002

/* Alarm: unsolicited route error message does not have
incremented sequence number */

alarm DetectRErr[at] [dst] = sendiniterr[at] [dst] when
(value(src_seq,0) !'= best_seql[at] [dst]+1);

/* Alarm: node does not send best route */

alarm NodeRepl[at] [dst] = sendroute[at] [dst] when
((dst !'= at) &&
((value(src_hc,0) != best_hcl[at][dst] + 1) ||
(value(src_seq,0) '= best_seql[at] [dst])));

/* Alarm: loop invariant is violated */

alarm LoopInv[at] [nxt][dst] =

start((at!=nxt) &&
(at!=dst) &&
(nxt!=dst) &%
(best_next[at] [dst] == nxt) &&
((best_seqlat] [dst] > best_seqlnxt] [dst]) ||
((best_seq[at] [dst] == best_seq[nxt][dst]) &&

(best_hops[at] [dst] <= best_hops[nxt] [dst]))))

/* initialization: reset all state variables */
init -> {

best_seqlat] [dst]’ = 0; best_hc[at][dst]’ = 0; best_next[at][dst]’ = 0;
}

/* new route established: update checker state */

recvbetter[at] [dst] -> {

best_seqlat] [dst]’ = value(src_seq,0); best_hclat][dst]’ = value(src_hc,0);
best_next[at] [dst]’ = value(prev,0);

}

/* route error received: update checker state */
recvbettererr[at] [dst] -> {

best_seqlat] [dst] = value(src_seq,0);
best_hc[at] [dst] = 255;
best_next[at] [dst] = 0;

/* dst(at) sent a larger sequence number: update checker state */
sendincseqlat] [dst] -> { best_seqlat][at]’ = value(src_seq,0); }

/* at sent a route error: update checker state */
sendiniterr[at] [dst] -> {

best_seqlat] [dst]’ value(src_seq,0); best_hc[at] [dst]’ = 255;
best_next[at] [dst]’ = 0;

}

End

Fig. 6. Complete MEDL script (cont.).

discussed in [16]. This fragment is expressively similar to
the requirements language of Verisim. However, an

important feature that distinguishes Verisim from most of

the above work is its focus on integration of simulation and
testing. Another toolset that follows this idea is the

simulation and monitoring platform MTSim [10], based on

BHARGAVAN ET AL.: VERISIM: FORMAL ANALYSIS OF NETWORK SIMULATIONS 143

TABLE 12
ADOQV State Machine with No Route

STATE: No Route

Condition

Action

Next State |

TimeQOut

seq_no < ()

No Route

Reev from p:
RREQ(d, hops_to_src, dest_seq_no, s, src_seq-no)
Ad = dst

dest_seq_no + max(seq_no, dest_seq_no);
Broadcast RREQ(d, hops_to_src + 1,
dest_seq_no, s, src_seq_no)

No Route

Recv from p:
RREQ(d, hops_to_src, dest_seq_no, s, src_seq_no)
A s =dst A src_seq_no > seq_no

next_hop < p; hop_cnt < hops_to_src + 1;
S€q_NO <— Src_seq-no;
lifetime «<~REV_ROUTE_LIFE;

Has Route

Recv from p:
RREP({hops_to_dest, d, dest_seq_no, route_lifetime)

A d =dst A dest_seq-no > seq_no

next_hop < p; hop_cnt < hops_to_dest + 1;
seq_no < dest_seq_no;
lifetime < route_lifetime

Has Route

TABLE 13
ADQV Machine with Route

STATE: Has Route

|

| Condition

‘ Action

Next State l

TimeOut

seq_no < seq_no+ 1;
next_hop <« 0; hop_¢cnt < 255
Send to active neighbors:
RREP(255,dst, seq-no,
BAD_LINK_LIFETIME)

No Route

Recev from p:

RREQ(d, hops_to_src, dest_seq_no, s, src_seq_no)
A s =dst

A [src_seq-no, hops_to_src| is better than
[seq_no, hop_cnt]

next_hop < p;

hop_cnt < hops_to_src + 1;
S€(_NO — Src_seq-no;

lifetime <~ REV_ROUTE_LIFE

Has Route

Recv from p:

RREP (hops_to_dest, d, dest_seq_no, route_lifetime)
A d =dst

A [dest_seq_no, hops_to_dest] is better than
[seq_no, hop_cnt]

next_hop « p;

hop_cnt < hops_to_dest + 1;
seq-_no < dest_seq_no;
lifetime <— route_lifetime

Has Route

Recv from p:

RREP(255, d, dest_seq_no, route_lifetime)
A d =dst

A dest_seq-no > seq-no

next_hop « 0;

hop_cnt < 253;

seq-_no < dest_seq_no;

lifetime + BAD_LINK_LIFETIME

Has Route

RREP(hops_to_dest + 1, d, dest_seq_no,
route _lifetime)

Recev from p: Unicast from me for s : Has Route
RREQ(d, hops_to_src, dest_seq_no, s, src_seq-no) RREP(hop_cnt, d, seq_no,

A d = dst A dest_seq_no < seq-no MY_ROUTE_.TIMEOUT)

Recv unicast from p for dst: DATA Send to next_hop : DATA Has Route
Recv unicast from p for dst: Send to next_hop : Has Route

RREP (hops_to_dest, d,
dest_seq_no, route_lifetime)

the graphical real-time specification language Modechart.
An advantage of Verisim is that instead of using formal
models, it uses off-the-shelf network simulators already
designed for prototyping, performance evaluation, and
other purposes.

There is similarity between Verisim formal analysis of
protocol simulations and network Intrusion Detection
Systems (IDS’s). IDS’s aim to detect anomalies in network
traffic to enable operators to discover problems or trigger
automated responses. Examples include Next-generation
Intrusion Detection Expert System (NIDES) [2], which
performs both statistical analysis and rule-based signature

analysis on audit records and Event Monitoring Enabling
Responses to Anomalous Live Disturbances (EMERALD)
[23], which detects malicious activity through and across
large networks. Although IDS’s often focus on detecting
statistical anomalies like unusual volumes of certain kinds
of traffic, at least some are able to check properties of the
kind we describe in MEDL. Although we are not aware of
any efforts to do so, such systems could perhaps be used in
the way we have used Verisim to produce metatraces as a
debugging aid for analyzing simulations. For instance, the
rule-based analysis language (P-BEST language) [19] used
in [2], [23] is as expressive as MEDL.

144 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002

Additional information about related work can be
obtained from [4], which describes a taxonomy for logical
analysis of networks and uses this to classify some of the
literature. A survey of tools used in the Verinet project
(including Verisim) can be found in [3].

7 CONCLUSION

We have demonstrated an integrated system called Verisim
consisting of a network simulator and a logic-based checker
for traces of events. This combination provides a flexible
approach to studying correctness properties of network
simulations. We have shown the usefulness of the tool by
demonstrating how it can find flaws in nontrivial simulator
code. We have also shown how its flexibility can be exploited
through the concept of tuning to improve the turn-around
time in debugging. We believe that the approach is practical
and scalable and can be used as a productive adjunct to
standard network protocol engineering practices.

APPENDIX A

THE MEDL SpPEecIFICATION OF AODV PROPERTIES

To illustrate the use of MEDL in specification of AODV
properties, we show a complete MEDL script that contains
all the properties that are discussed in the paper. (See Figs. 5
and 6.) These are the MonSeqNo, DestRep, DetectRErr,
NodeRep, and LoopInv properties.

APPENDIX A.1
TUNING

Step I We change DestRep as follows:

alarm DestRep [at] [dst] =
sendroute [at] [dst] when
((dst==at) &&
(value(src_hc,0) != 1));
Step II We change the DetectRerr alarm and the event-
handling conditions for route error packets as follows:

alarm DetectRErr [at] [dst] =
senderr [at] [dst] when
((best_hc [at] [dst] < 255) &&
(value(src_seq,0) !=
best_seq [at] [dst]));

event recvbettererr [at] [dst] =
recverr [at] [dst] when
(value(prev,0) ==
best_next [at] [dst]);

Step III We change the state machine as follows:

sendiniterr [at] [dst] -> {
best_seq [at] [dst]” = value(src_seq,0);
best_next [at] [dst]” = 0;

}

recvbettererr [at] [dst] -> {
best_seq [at] [dst] = value(src_seq,0);
best_next [at] [dst] = 0;

}

APPENDIX B

THE AODV STATE MACHINE

The AODV Specification [21] is an evolving document
published by the MANET working group at the IETF
(http:/ /www ietf.org). The document describes the various
packets and network events that an AODV process needs to
respond to. Here, we present the reactive state machine that
an implementation of AODV version 0 is supposed to
implement. There are two control states corresponding to
the presence or absence of a route to the destination. In
addition, for each destination AODV keeps track of the best
known route: seq_no, hops_cnt, next _hop, and lifetime. An
AODV node runs a state machine for each destination; the
state machine for the destination dst is shown in Tables 12
and 13. We have left out some details of timeouts and link
error events, which the protocol needs to handle as well.
The state machine presented here captures the major packet
events and their relation to the state at an AODV process.

ACKNOWLEDGMENTS

The authors would like to express their thanks to Mike
Berry and Sampath Kannan for their early involvement in
this project. The authors are also grateful to the Monarch
group at Carnegie Mellon University for making their code
available; clearly, this open code generosity was important
to the study. This research was partially supported by: ARO
DAAGS55-98-1-0393, ARO DAAG55-98-1-0466, Defense Ad-
vanced Research Projects Agency Contract F30602-98-2-
0198, US National Science Foundation CCR-9619910, ONR
NO00014-97-1-0505 (MURI), US National Science Foundation
CCR-9988409, US National Science Foundation CISE-
9703220, and Defense Advanced Research Projects Agency
ITO MOBIES F33615-00-C-1707.

REFERENCES

[1] B. Alpern and F.B. Schneider, “Defining Liveness,” Information
Processing Letters, vol. 21, no. 4, pp. 181-185, Oct. 1985.

[2] D. Anderson, T. Frivold, and A. Valdes, “Next-Generation
Intrusion Detection Expert System (NIDES): A Summary,”
Technical Report, SRI-CSL-95-07, May 1995.

[3] K. Bhargavan, C.A. Gunter, and D. Obradovic, “An Assessment of
Tools Used in the Verinet Project,” Technical Report MS-CIS-00-
15, Univ. of Pennsylvania, 2000, http://www.cis.upenn.edu/
verinet/papers/tool-assessment.ps.

[4] K. Bhargavan, C.A. Gunter, and D. Obradovic, “A Taxonomy of
Logical Network Analysis Techniques,” Technical Report MS-CIS-
00-14, Univ. of Pennsylvania, 2000, http://www.cis.upenn.edu/
verinet/papers/taxonomy.ps.

[5] K. Bhargavan, D. Obradovic, and C.A. Gunter, “Formal Verifica-
tion of Standards for Distance Vector Routing Protocols,” Feb.
2000, http://www.cis.upenn.edu/hol/papers/rip.ps.

[6] G.V.Bochmann and O. Bellal, “Test Result Analysis with Respect
to Formal Specifications,” Proc. Second Int'l Workshop Protocol Test
Systems, pp. 272-294, Oct. 1989.

[71 G.V. Bochmann, D. Desbiens, M. Dubuc, D. Ouimet, and F. Saba,
“Test Result Analysis and Validation of Test Verdicts,” Proc.
Workshop Protocol Test Systems (IFIP), 1990.

[8] G.V. Bochmann, R. Dssouli, and J.R. Zhao, “Trace Analysis for
Conformance and Arbitration Testing,” IEEE Trans. Software Eng.,
vol. 15, no. 11, pp. 1347-1356, Nov. 1989.

[9] J. Broch, D.A. Maltz, D.B. Johnson, Y.-C. Hu, and J. Jetcheva, “A
Performance Comparison of Multi-Hop Wireless Ad Hoc Net-
work Routing Protocols,” Proc. Fourth Ann. ACM/IEEE Int’l Conf.
Mobile Computing and Networking, Oct. 1998.

BHARGAVAN ET AL.: VERISIM: FORMAL ANALYSIS OF NETWORK SIMULATIONS

(10]

(1]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

(23]

M. Brockmeyer, F. Jahanian, C. Heitmeyer, and B. Labaw, “A
Flexible, Extensible Environment for Testing Real-Time Specifica-
tions,” Proc. IEEE Real-Time Technology and Applications Symp.
(RTAS), 1997.

L.K.Dillonand Q. Yu, “Oracles for Checking Temporal Properties of
Concurrent Systems,” Proc. Second ACM SIGSOFT Symp. Founda-
tions of Software Eng. (SIGSOFT '94), vol. 19, pp. 140-153, Dec. 1994.
S.A.Ezustand G.V. Bochmann, “An Automatic Trace Analysis Tool
Generator for Estelle Specifications,” Computer Comm. Rev., Proc.
ACM SIGCOMM "95 Conf., vol. 25, no. 4, pp. 175-184, Oct. 1995.

K. Fall and K. Varadhan, “The VINT Project,” ns Notes and
Documentation, Feb. 2000.

C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw, “SCR: A Toolset
for Specifying and Analyzing Requirements,” Proc. Conf. Computer
Assurance (COMPASS), 1995.

A. Helmy and D. Estrin, “Simulation-Based (STRESS) Testing
Case Study,” Proc. Sixth Int’'l Symp. Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
July 1998.

L.J. Jagadeesan, A. Porter, C. Puchol, J.C. Ramming, and L.G.
Votta, “Specification-Based Testing of Reactive Software: Tools
and Experiments,” Proc. Int’l Conf. Software Eng., May 1997.

M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and
O. Sokolsky, “Formally Specified Monitoring of Temporal Proper-
ties,” Proc. European Conf. Real-Time Systems, 1999.

I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan,
“Runtime AssuranceBased onFormalSpecifications,” Proc. Int’l Conf.
Parallel and Distributed Processing Techniques and Applications, 1999.
U. Lindqvist and P.A. Porras, “Detecting Computer and Network
Misuse Through the Production-Based Expert System Toolset
(P-BEST),” Proc. 1999 IEEE Symp. Security and Privacy, May 1999.
T.O. O’'Malley, D.J. Richardson, and L.K. Dillon, “Efficient
Specification-Based Test Oracles,” Proc. Second California Software
Symp. (CSS "96), Apr. 1996.

C. Perkins, “Ad Hoc On-Demand Distance Vector (AODV)
Routing,” Internet-Draft Version 00, (IETF), Nov. 1997.

C.E. Perkins and E.M. Royer, “Ad Hoc On-Demand Distance
Vector Routing,” Proc. Second IEEE Workshop Mobile Computer
Systems and Applications, pp. 90-100, Feb. 1999.

P.A. Porras and P.G. Neumann, “EMERALD: Event Monitoring
Enabling Responses to Anomalous Live Disturbances,” Proc. Nat’'l
Information Systems Security Conf., 1997.

D.J. Richardson, S.L. Aha, and T.O. O’Malley, “Specification-
Based Oracles for Reactive Systems,” Proc. 14th Int’l Conf. Software
Eng., May 1992.

M. Viswanathan, “Foundations for the Run-Time Analysis of
Software Systems,” PhD thesis, Univ. of Pennsylvania,
Philadelphia, Dec. 2000.

Karthikeyan Bhargavan received the BTech
degree in computer science and engineering
from the Indian Institute of Technology, New
Delhi, in May 1997. He received the MS degree
in computer science in December 1998. Since
Fall 1997, he has been enrolled in the PhD
program at the University of Pennsylvania,
Philadelphia. His research interests are in formal
methods, programming languages and the
analysis of networking software. He is currently

investigating the application of light-weight formal methods to network
protocol monitoring, as his thesis research.

Carl A. Gunter received the PhD degree from
the University of Wisconsin at Madison in 1985.
After working as a research associate at
Carnegie Mellon University and Cambridge
University he joined the faculty at the University
of Pennsylvania, Philadelphia in 1987, where he
is currently a professor in the Department of
Computer and Information Science. He does
research in the areas of security, networks,

Y N programming languages, and software engi-

neering. He is the author of more than 60 research papers on these
topics, as well as, a graduate textbook on the semantics of programming
languages, and software engineering, and the coeditor of a book on the
theory of object-oriented languages. He is a senior member of the IEEE.

145

Moonjoo Kim received the BS degree in
computer science from the Korea Advanced
Institute of Science and Technology in 1995, and
the PhD degree in computer and information
science from the University of Pennsylvania,
Philadelphia in 2001. His research activities
included formal methods, embedded real-time
systems, and runtime software analysis. His
current research interest is on secure network
design and analysis. He is currently a technical

staff member at SECUi.com located in Seoul, Korea.

-
-

Insup Lee received the BS degree in mathe-
matics from the University of North Carolina,
Chapel Hill, in 1977, and the PhD degree in
computer science from the University of Wis-
consin, Madison, in 1983. He is currently a
professor in the Department of Computer and
Information Science at the University of Penn-
sylvania, Philadelphia, where he has been since
1983. His research interests include the speci-
fication and analysis of time dependent systems,

the semantics and implementation of real-time programming languages,
software engineering methods and tools, and operating systems. He
was the cochair of the Program Committee for the 1992 IEEE Real-Time
Systems Symposium, and is the general cochair for the 1993 IEEE
Real-Time Systems Symposium. He is a fellow of the IEEE.

Davor Obradovic received the Bachelors de-
gree in mathematics in 1996 from the University
of Zagreb, Croatia. From 1996 to 2001, he has
been enrolled in the PhD program in computer
science at the University of Pennsylvania,
Philadelphia with Carl A. Gunter as his advisor.
His thesis work was about formal analysis of
network protocols. Currently, he works at the
Quantitative Research Department of Susque-
hanna International Group.

Oleg Sokolsky received the MSc degree in
computer science from St. Petersburg Technical
University (Russia), in 1988, and the PhD
degree in computer science from the State
University of New York at Stonybrook. He is a
research assitant professor at the University of
Pennsylvania, Philadelphia, where he has occu-
pied research staff positions since 1998. His
research interests include formal methods for
the analysis of real-time and hybrid systems,

model checking, and runtime verification.

Mahesh Viswanathan received the Bachelor of
Technology degree in computer science from
the Indian Institute of Technology, Kanpur, India,
and the PhD degree from the University of
Pennsylvania, Philadelphia. He was a post-
doctoral fellow at the Center for Discrete
Mathematics and Computer Science during the
academic year of 2000-01, and is currently an
assistant professor at the University of lllinois at
Urbana-Champaign.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dilb.

	University of Pennsylvania
	ScholarlyCommons
	February 2002

	Verisim: Formal Analysis of Network Simulations
	Karthikeyan Bhargavan
	Carl A. Gunter
	Moonjoo Kim
	Insup Lee
	Davor Obradovic
	See next page for additional authors
	Recommended Citation

	Verisim: Formal Analysis of Network Simulations
	Abstract
	Keywords
	Comments
	Author(s)

	Verisim: Formal analysis of network simulations - Software Engineering, IEEE Transactions on

