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Hierarchically Consistent Control Systems

Abstract

Large-scale control systems typically possess a hierarchical architecture in order to manage complexity. Higher
levels of the hierarchy utilize coarser models of the system, resulting from aggregating the detailed lower level
models. In this layered control paradigm, the notion of hierarchical consistency is important, as it ensures the
implementation of high-level objectives by the lower level system. In this paper, we define a notion of
modeling hierarchy for continuous control systems and obtain characterizations for hierarchically consistent
linear systems with respect to controllability objectives. As an interesting byproduct, we obtain a hierarchical
controllability criterion for linear systems from which we recover the best of the known controllability
algorithms from numerical linear algebra.
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Hierarchically Consistent Control Systems

George J. Pappadember, IEEEGerardo Lafferriere, and Shankar Saskgllow, IEEE

Abstract—tL arge-scale control systems typically possess a hier- HIGH LEVEL
archical architecture in order to manage complexity. Higher levels SYSTEM
of the hierarchy utilize coarser models of the system, resulting from
aggregating the detailed lower level models. In this layered control
paradigm, the notion of hierarchical consistency is important, as v
it ensures the implementation of high-level objectives by the lower
level system. In this paper, we define a notion of modeling hier- LOW LEVEL
archy for continuous control systems and obtain characterizations SYSTEM
for hierarchically consistent linear systems with respect to control-
lability objectives. As an interesting byproduct, we obtain a hier- g 1. Two-layer control hierarchy
archical controllability criterion for linear systems from which we
recover the best of the known controllability algorithms from nu-
merical linear algebra.

Commands

of abstraction, the abstracted system will be defined as the in-
duced quotient dynamics. Discrete abstractions of continuous
systems have been considered in [7], [8] as well as [2], [10],
[31]. Hierarchical systems for discrete event systems have been
formally considered in [6], [35], [36], [38]. In this paper, we

|. INTRODUCTION focus oncontinuous abstractiond herefore, our first priority is

ARGE-SCALE systems such as Intelligent vVehicld® have a formal nption of quotient control systems.
Highway Systems [34] and Air Traffic Management Problem 1.1: Given a control system
Systems [28] are systems of very high complexity. Complexity i = f(z, ), r€R" weR™ (1.1)
is typically reduced by imposing a hierarchical structure on
the system architecture. In such a structure, systems of highed some mag = h(z), whereh: R* — R?, p < n, we
functionality reside at higher levels of the hierarchy and amgould like to define a control system
therefore unaware of unnecessary lower-level details. The main . » %
types of hierarchical structures are classified and described in =9y, v), yeER" veR (1.2)

the visionary work of [23]. . _.which can produce as trajectories all functions of the form

Fig. 1 shows a typical two-layer control hierarchy which ig, sy — p(5()), wherex(#) is a trajectory of syster(L.1). That
frequently used in the quite common planning and control Kk j, maps trajectories of system (1.1) to trajectories of system
erarchical systems. Multilayered versions of Fig. 1 are Used(lﬂz)_
both [28] and [34]. In this layered control paradigm, each layer the function: is the “quotient map” which performs the state
has different objectives. In performing their tasks, the hlgh% regation. System (1.2) will be referred to asahstraction
level uses a coarser system model than the lower level. Q”EI?T% or macromodebf the finermicromode(1.1). Note that the
the main challenges in hierarchical systems is the extraction@firol inputw of the coarser model (1.2) is not the same input
a hierarchy of models at various levels of abstraction which aye,¢ system (1.1) and should be thought of as a macroinput. For
compatibl_e with the functionality and obje_ctives of each _layerexamplep can be velocity inputs of a kinematic model, whereas

In the Iltergture, the notions cﬂb;tract|0|jor aggregation ,, may be force and torque inputs of a dynamic model. This
refer to grouping the system states into equivalence classes. Retherefore, quite different from model-reduction techniques
pending on the cardinality of the resulting quotient space, W ich reduce or aggregate dynamics while using the same con-
may havediscreteor continuousabstractions. With this notion ¢,q inputs [3], [15]-[18]. The difference between model reduc-

tion and abstraction is illustrated in Fig. 2.
We will solve Problem 1.1 by first generalizing the geometric
Manuscript received May 12, 1998; revised April 16, 1999. Recommended Bption of ®-related vector fields to control systems. A notion of

Associate Editor M. Krstic. This work was supported by DARPA under Gran® _re|ated control systems would allow us to push forward con-
F33615-98-C-3614 and F33615-00-C-1707.

G. J. Pappas was with the Department of Electrical Engineering and Colf@l Systéms through quotient maps and obtain well-defined con-
puter Sciences, University of California at Berkeley, Berkeley, CA 94720 USArol systems describing the aggregate dynamics. The notion of
He is now with the Department of Electrical Engineering, University of Pennp_re|ated control systems introduced in this paper is more gen-

sylvania, Philadelphia, PA 19104 USA (e-mail: pappasg@seas.upenn.edu). . . . .
G. Lafferriere is with the Department of Mathematical Sciences, Portlarﬁfal than the notion of prOJectabIe systems defined in [18] and

State University, Portland, OR 97207 USA (e-mail: gerardo@mth.pdx.edu).[22] (see Example 3.6), as we will show that given any control
S. Sastry is with the Department of Electrical Engineering and ComputerSgiystem and any surjective map there always exists another
ences, University of California at Berkeley, Berkeley, CA 94720 USA (e-mail: . . .
sastry@eecs.berkeley.edu). System that igb-related to it. Our notion oft-related control

Publisher Item Identifier S 0018-9286(00)04165-9. systems mathematically formalizes the concepiifial inputs

Index Terms—Abstraction, consistency, controllability algo-
rithms, hierarchical control.

0018-9286/00$10.00 © 2000 IEEE



PAPPASet al: HIERARCHICALLY CONSISTENT CONTROL SYSTEMS 1145

u Reduced Order v Abstracted this notion of abstraction, typically faces problems of exponen-

1 Y Y : : ’
Model Model tial complexity and abstractions are frequently used for com-
plexity reduction [9], [13], [21], [30]. Depending on the prop-
T O ETION TABSTRACTION erty, special graph quotients which preserve the property of in-
terest are constructed. More recently, a methodology for con-
u Original < u Original . Structing finite graph quotients which have equivalent reacha-

Model Model bility properties with analytic vector fields is presented in [19],
[20]. A similar construction which characterizes reachability of

a continuous system in terms of an associated discrete system
may be found in [8].

In this spirit, and after having characterized consistent linear
used in backstepping designs [14]. The fact that the aggregatiifstractions, we obtain a hierarchical controllability criterion
map sends trajectories of (1.1) to trajectories of (1.2) will eRghich has computational and conceptual advantages over
able us to propagate controllability from the micromodel to th@ye Kalman rank condition and the Popov—Belevitch—Hautus
macromodel. (PBH) tests for large-scale systems. Intuitively, instead of

Aggregation, however, is notindependent of the functionalighecking controllability of a large-scale system, we construct
of the layer at which the abstracted system will be used. Thege-sequence of consistent abstractions and then check the
fore, when an abstracted model is extracted from a more g@ntrollability of a system, which is much smaller in size.
tailed model, one would also like to ensure that certain Progonsistency will then propagate controllability along this
erties propagate from the macromodel to the micromodel. Thgquence of abstractions from the simpler quotient system to
properties that are of interest at each layer may include op#e original complex system. The computational advantages
mality, controllability, stabilizability, and trajectory tracking. If of this approach are verified by recovering the best of the
one considers the property of controllability, then one woulghown controllability algorithms from numerical linear algebra

like to determine conditions under which Controllabi”ty of thqll]' [12] as a specia' case of the hierarchical Contro”abi”ty
abstracted system (1.2) implies controllability of system (1.1jyiterion.

Obtaining such conditions would ensure that the macromodel |S'|'he structure of this paper is as follows. In Section ||' we

aconsistent abstractioof the micromodel in the sense that conreview some standard differential geometric concepts and the
trollability requests from the macromodel aneplementabl®y  notion of -related vector fields. Section Ill generalizes these
the micromodel. Such conditions will serve as good design prifotions for control systems and establishes the connection be-
ciples for hierarchical control systems. Different properties mayeen trajectories ob-related control systems. In Section IV,
require different conditions. For example, the notions of coiye define consistent abstractions and in Section V, we restrict
sistency [23], dynamic consistency [6] and hierarchical consigrese notions to linear abstractions and characterize consistent
tency [38] have been defined in order to ensure feasible exegHear abstractions. These results are used in Section VI in order
tion of high-level objectives for discrete event systems. In thig obtain a hierarchical controllability criterion. Finally, Section

paper, we will focus on controllability of linear control systemsy|| discusses many interesting directions for further research.
and characterize consistent linear abstractions. More precisely,

we will solve the following problem.
Problem 1.2: Given the linear control system

Fig. 2. Model reduction versus abstraction

Il. ®-RELATED VECTORFIELDS

We first review some basic facts from differential geometry.
The reader may wish to consult numerous books on the subject
_ _such as [1], [24], [33]. LefM/ be a differentiable manifold and
= Cw, so that the ab 1, M be the tangent space df atp € M. We denote by’ M =

U,ecar IpM the tangent bundle ai/ and by the canonical
projection mapr: T'’M — M taking a tangent vectak, €
T,M C TM to the pointp € M.
1= Fy+ G, yeRP veRk (1.4) Now let A/ and N be smooth manifolds anéi: M — N
be a smooth map. Let € M and letq = ®(p) € N. We push
is controllable if and only if (iff) system (1.3) is controllable. forward tangent vectors frof, M to T, N using the induced

In addition to hierarchical control, the above ideas could algpush forward mapb.: 1,M — 1;N. A vector field on a
be useful in the analysis of complex systems. In order to tackignifold M is a smooth magX: M — T'M which assigns to
the complexity involved in verifying that a given large-scaleach pointp of M a tangent vector iff ,M. Let/ C R be an
system satisfies certain properties, one tries to extract a simpeen interval containing the origin. An integral curve of a vector
but qualitatively equivalent abstracted system. Checking the dield is a smooth curve: I — M whose tangent at each point
sired property on the abstracted system shoulddegvalentor is identically equal to the vector field at that point. Therefore,
sufficientto checking the property on the original system. Than integral curve satisfieg = ¢.(1) = X oc(t) forallt € [
area of computer aided verification, which must be credited withherec, (1) denotes:, (d/dt).

& = Ax + Bu, zeR” weR™ (1.3)

characterize linear quotient mapg
stracted linear system
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An abstraction or aggregation map is a mapM — N, tual framework for generalizing these concepts to control sys-
which we will assume to be surjectiveGiven a vector fieldY tems, where due to the freedom of control inputs the equivalent
on manifoldM and a smooth mapg: M — N, notnecessarily conditions will not be as restrictive.

a diffeomorphism, the push forward &f by ®.. is generally not
a well-defined vector field orv. This leads to the concept of [ll. CONTROL-SYSTEM ABSTRACTIONS
d-related vector fields.

o . In this section, the notions of Section Il for vector fields are
Definition 2.1 @-Related Vector Fields): LefX and Y

. ) ) extended to control systems. We will develop such notions for
be vector fields on manifold3/ and A, respectively, qnd rather general control systems, since it does not require more ef-
®: M — N be a smooth map. Theti andY” are &-related iff fort to do so. In addition, generality will ensure that the concepts
d,0X =Y od, 2.1 of this section do not depend on the particular system structure.
We first present a global and coordinate-free description of con-
If  is not surjective, thetX may be®-related to many vector trol systems which is due to Brockett [4], [5] and can also be
fields onV. If @ is a smooth surjection frod to V, then given found in [25]. This global description is based on the notion of
a vector fieldX on a manifold}/, the push forward o by &, fiber bundles, which are defined first.
is a well-defined vector field oV only if @, (X, ) = ®.(X,,) Definition 3.1 (Fiber Bundles): A fiber bundle is a five-tuple
whenever®(p; ) = ®(p2) for any two pointg;,p. € M. (B, M, w, U, {O;};cr) whereB, M, U are smooth manifolds
Example 2.2: Consider, for example, the linear vector field called the total space, the base space and the standard fiber,
respectively. The map: B — M is a surjective submersion
& = Az, r € R" (2.2) and{0;}ics is an open cover ofi/, such that for every e
) ) ) I, there exists a diffeomorphisf;: 7=1(0;) — O; x U
and Fhe onto, Ilngar quotlgnt map= Ca: Then, in order to satisfyingr, o W; = x, wherer, is the projection from0; x U
obtain a well-defined quotient vector field to O;. The submanifold—*(p) is called the fiber ap € M. If
(2.3) all the fibers are vector spaces of constant dimension, then the
fiber bundle is called a vector bundle

by C-relatedness we must hatgédz = FCgz for all z € R™. Definition 3.2 _ (Control_ Systems): A control system
But for z € Ker(C) = {z € R" | Cx = 0} we must have S = (B, I') consists of a fiber bundle: B — M called
CAz = F(Cz) = 0, and hencelz € Ker(C). Thus, a neces- the control bundle and a smooth m&p B — T'M which is

sary condition to obtain a well-defined quotient vector field isfiber preserving, thatis’ o F' = 7, wheren’: TM — M is
the tangent bundle projection

AKer(C) C Ker(C). (2.4) Essentially, the base manifold of the control bundle is the
o o _ _ state space and the fibers!(p) can be thought of as the state
Itturns out that this is also sufficient for the existence ofaumqlﬂ%pendem control spaces. Given the statnd the input, the
quotient vector field [37]. _ _ mapF selects a tangent vector frdfiy M. The notion of trajec-
The following well-known theorem gives us a condition ORgries of control systems is now defined.
the integrgl curves of tweé-related vector fields. A proof may  pefinition 3.3 (Trajectories of Control Systems): A smooth
be found in [1]. curvec: I — M is called a trajectory of the control system

Theorem 2.3 (Integral Curves ofp-Related Vector ¢ _ (B, F) if there exists a curve®: I — B satisfying
Fields): Let X and Y be vector fields onA/ and N re- 5

spectively and le®: M — N be a smooth map. Then vector Toc® = ¢, d=c(1)=Focb.
fields X andY are ¢-related iff for every integral curve of
X, ® ocis an integral curve ol.

If Xx andXy denote all integral curves of vector fields
andY’, respectively, then Theorem 2.3 simply states fiatnd
Y are®-related iff (X x) C Xy. ThereforeY overapprox-

y=Fy, yeR™

In local (bundle) coordinates, Definition 3.3 simply says that
a trajectory of a control system is a curwel — M for which
there exists a functiom: I — U satisfying,z = F(z, u).
Note that even though Definition 3.3 assumg® be smooth,
imates the collection of curved(Xx) and allows redundant the bundle curve” is not necessarily smooth. The definition,

evolutions. This is the notion of abstraction of dynamical sy&ierefore, a}allows.nonsmokc:th control inputs as long as th?, pro-
tems defined in [27]. Instead of checking reachability of vectdfClionToc” = c is smooth. We are now in a position to define
field X . it is sufficientto check it ony”. which is of smaller di- d-related control systems in a manner similar to Definition 2.1
mension. If the mag is surjective, then under some technical®" Vector fields. _
assumptions, it is clear that X andY are ¢-related vector Definition 3.4 @-Related Control ~ Systems): Let
fields then®(Xx) = Xy. In that case, checking reachabilitySM = (Bu, FM,)hW'th_ ™ By — M andl
properties of vector field( is equivalentto checking reacha- N = (B, Fx) with wy: By — N be two contro
bility on vector fieldY". systems. Le®b: M — N be a smooth map. Then control
Even thoughb-relatedness of vector fields is a rather restricYStem®x and Sy are ¢-related iff for every € M
tive condition, the above discussion provides the correct concep- ®, o Fy (m&l (») C FAf(WJTfl(‘P(p))). (3.1)
INote that any ma® gives rise to an equivalence relation by defining state& . .
2 andy equivalent if®(x) = ®(y). In order for the resulting quotient space to ontrol systenty will be ref?rred to as ambstractionof con-
have a manifold structure, the equivalence relation must be regular [1].  trol systemS,, ([27]). Condition (3.1) states that for eaphe
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M the left-hand side of (3.1) first takes the input space availabiet ®-related to any vector field oR. For the nonlinear control
atp, and pushes it throughy, to obtain all possible tangent di- system

rections of the control systeffy,; atp. This set of tangent direc-

tions is pushed throug.. to obtain a set of tangent vectors in &1 = fi(we, z2), T2 = fo(w1, x2, 1)

Ty N. In order forSy, andSy to be®-related, this set must . o

be contained in the image undg; of the input space available With states,, zs, inputw, and the projectiom(x, x2) = 21,
at®(p). Note that many control systenss, may bed-related @ @-related system is

to Sy, as the set of tangent vectors dhthat must be captured, .

can be generated using many control parameterizations. &1 = fi(z1, z2)

It is easy to show thab-relatedness is transitive. Indeed, h:/vith stater: . but wherer is now thouaht of as an inout. This
®y: My — My, ®9: My — Ms, Sy, is ®, -related toSy,, , and L 2 9 pult.

S, is By-related taSyy, , thenSyy, is s o @, -related 105y, is the notion of V|r.tual inputs used in backstep_pmg deS|gn.s [14].
3 . 3*  Amore constructive methodology for generating abstractions of

It therefore makes sense to consider a sequence-reflated linear svstems will be presented in Section V.

systems. In addition, givend, N, a map®: M — N and a Y P |

systemsS),, one can put a partial order on all possifleelated The following theorem should be thought of as a generaliza-

systemsSy, where the partial ordering arises from ointwis(teion of Theorem 2.3 for control systems.
y s P 9 P Theorem 3.7 (Trajectories ofb-Related Control Sys-

subset inclusion of_ th_e rlght-h_and side of (_3.1_) (see [27]_).__ tems): LetSy = (Bw, Fy) and Sas = (Bar, Fry) be two
To see that Definition 3.4 is a generalization of Definition
. . control systems ané: A/ — N be a smooth map. Thefy,
2.1, consider vector field¥ ;; on M and X on N. ThenX andS are d-related iff for every traiectorg., of Sur. o
and Xy can be thought of as trivial control systemshand N yta) ¥ Ot o, M
N respectively by letting3,, = M, By = N =id Is a trajectory ofSly.
P y by M= DN =Y, T = LM Proof: (Sufficiency) Assume thaf,; and Sy are ®-re-
my = ddy, andly = Xy, Fiy = Xy, whereidyy, idy are o4 o 0q'thie for ap € M we have
the identity maps od{ and IV, respectively. Condition (3.1) ' '

become®, o X/ (p) = Xn o ®(p), which is Definition 2.1 of P o Fry(n=t C Frln=Y(® 392
d-related vector fields. 0 Far(myi (P) € (i (2(p)))- (32)
quence of Definition 3.4, shows that every control or dynamic@l , ., is a trajectory ofSx. We must therefore find a curve

system igb-related to some control system for any mip cB: I — By such that for alt € I we havery o ¢B(t) =
Proposition 3.5: Given any control systemfy, = o car () and(® o ey ) (1) = Fiy o cB(1).

(By, Fy) and any smooth mag: M — N, then  gincec,,: I — M is a trajectory ofSy,, by Definition 3.3

there exists a control systerfiy = (By, Fiv) which is there exists a curve?: I — By, such that for allt € I

$-related to Sy, In particular, every vector field on M is e haver,, o ¢B(t) = ep(t) anddy, (t) = Fay o cB(t). By

¢-related to some control systesiy. d-relatedness afy; and.Sy, we obtain that for alt € 1

Proof. Given Sy, constructSy by simply lettingBy =
TN andFy: TN — TN equal the identity. Then Condition B, 0 Fps(myt(ear(t)) CFn(mt (®(em(t))) =
(3.1) is trivially satisfied. ThusSy = (By, Fy) is ®-related ®, 0 Fyr o cBy(t) € Fy(n i (@(ca(D))).  (3.3)
to Syr. O ‘
The concept ofb-related control systems is a generalizatiogongition (3.3) implies that for each € I, there must exist

of the notion ofprojectablecontrol systems defined in [18], 5t |east one element (t) € 7y (®(car (1)) (and thusry o
[22]. A control system is projectable, essentially, when eaglfr(t) = ® o ¢y (t)) such that

vector field corresponding to a fixed input valuedsrelated

to some vector field. Definition 3.4, instead of globally pushing ®, o FyyocB(t) =Fn o cB(t)
a vector field for each fixed yalue of the control_lnput, takes a ©, 0 dyy(t) = Fy o B (1)
pointwise approach by pushing forward all possible tangent di- , B

rections at a state for all possible inputs available at that state. (@ ocar)'(t) = Fiy oen(?).

The following example illustrates thétrelated control systems
are not necessarily projectable.
Example 3.6: Consider the double integrator

Therefored o ¢y, is a trajectory ofS .

(Necessity) Assume that for every trajectery: I — M
of Sy, ® ocypy is atrajectory ofSy. Now for any pointp € M
{tl = X2, .’tQ = U let
with 1, z2, u € R and the projectiod® (1, x;) = z1. Using Yo € ®u(Far(myf (p))) (3.4)

Definition 3.4, we obtain that L )
We must show that's,y € Fin(my ((p))). We can write

1= 2o Yo = ®.(X,) for some (not necessarily unique) tangent
vector X, € Fy(my/(p)). Then there exists a trajectory
is a valid®-related system. The double integrator, however, is,: I — M, such that at som& € I, we have
not projectable in the sense of [22], [18] with respect to this
map as for any fixed value af, the vector fieldz u]” is em(t)y=p (3.5)
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and exists a smooth curvef\i: I — Bjy such that for allt € I,
nocR(t) = Docy(t)andFy o cR(t) = (@ ocy) (1),
() = X, (3.6) Proof: SinceS,,; andSy are®-related we havé, o Fi; o
B () € Fx(my'(®(cpr(t)))) for eacht € I. Moreover, since
Indeed, a curve), satisfying (3.5), (3.6) always exists by thepy assumptiory is an embedding, the spaf is diffeomor-
existence theorems for differential equations. To showdhat phic to its image undeF. We can then define

is a trajectory, we need to findf;: I — Bj, such thatr o
B = cpr. LetO be a bundle-trivializing neighborhood pind cR(t) = FH (P, 0 Fyr o chy(t))
U: 771(O) — Ox U the trivializing map. There existse I/,
such thatX,, = Fj o U—(p, u). Restricting! if necessary we Which is clearly smooth and satisfies the desired propertigs.
may assume,,(I) C O. We can then define the desired curve
by B (t) = Fa o U= ep(8), u). IV. CONSISTENTCONTROL ABSTRACTIONS

Sincecy, is a trajectory ofS,, satisfying (3.5), (3.6), then by
assumption we have thébc,, is a trajectory of5 5. Therefore
by Definition 3.3, there must exist a cur\cﬁ: I — By,
such that for alk € I, we havery o cK(t) = ® o cp(¢) and
(®ocp)(t) = Fiv ocR(¢). In particular, at* € I, we have

In general, we are not simply interested in abstracting sys-
' tems but also propagating properties between the original and
abstracted model. In this paper, we focus on various notions of
controllability.
Definition 4.1 (Controllability): LetS = (B, F) be a con-
frpey B trol system oM/ For p € M, defineReach(p, S) to be the set
(@ oen)(t) =Fyock(t") of pointsqg € M for which there exists a trajectory I — M
D, 0 chy (t*) € Fn(my (®leam(t)))) of S, such that for some,, ¢, € I, we havec(t;) = p and
Y, = ®.(X,) € Fn(r3 (2(p)))- ¢(tz) = ¢. The control systerfi is called controllable iff for all
p € M, Reach(p,S) = M.
Therefore, at all pointsp € M, we must haved, o Theorem 3.7 allows us to always propagate the property of
Fu(ryi(p)) € Fn(ry'(@(p))), and thusSy and Sy controllability from the micromodel to the macromodel for any
are®-related. This completes the proof. L aggregation map.
If X5, andXs, denote all trajectories of control systems Theorem 4.2 (Controllability Propagation): Let control sys-
Sy and Sy, respectively, then Theorem 3.7 simply states thedmsS,, = (B, Fiy) and Sy = (B, Fi) be -related
Sy and Sy are ®-related iff ®(Xs,,) € Xs,. The quotient with respect to some smooth surjecti®n — N. Then for
system therefore overapproximates the abstracted trajectod##y ¢ A
of the original system which may result in trajectories that the

macrosystenty may generate but are infeasible in the micro- ®(Reach(p, Syr)) C Reach(®(p), Sn).
modelSy;. _ _ _

Theorem 3.7 does not guarantee that the cuff&) is a Thus, ifSy is con_trollable thenSy is controllable
smooth curve. The main obstacle for generating smegttt) Proof: Consider any p € M and let

is whether the mag'y: By — TN is an embedding. An ex- ¢ € ®(Reach(p, Sy)). Then there existg; € ®~'(g), with
ample showing thak'y being only an immersion is not enough?1 € Reach(p, Syr). Thus, there exists a trajectory; of Sy,

can be found in [29]. The following theorem shows tig¢ Such thatey (1) = p andey(t2) = pi. By ®-relatedness,
being an injective embedding is sufficient to guarantee smoothe curve ® o cy is a trajectory of Sy which connects
ness of the:3 (¢). Note that requiring”y to be an injective em- ®(ca(t1)) = ®(p) and®(cy(t2)) = ®(p1) = g. Therefore,
bedding implies that the dimension of the input space is less tha§ Reach(®(p), Sy).

the dimension of’N and thus there are no redundant inputs f Sn is controllable, then for allp € M, we have
(which covers the cases of interest). In particular, if the coieach(p, Sy) = M. But then®(Reach(p, Sn)) = ¢(M) =

trol systemSy is affine in the controls then this is equivalentV = Reach(®(p), Sx). Thus,Sy is controllable. 0

to Saying that the “Controned” vector f|e|ds are |inear|y inde_ Note that Theorem 4.2 is true regardleSS of the structure of the
pendent at each point. That is, if we write the system in loc@ggregation mag. From a hierarchical perspective, the reverse

(bundle) coordinates aBy and local (vector bundle) coordi- question is a lot more interesting since it would guarantee that
nates of’N as controllability requests are implementable by the lower-level

system. In order to arrive at this goal, we define the notions of

) k implementability and consistency. We also give descriptions of
&= f(z)+ Z gi(a)u, those concepts in terms of reachable sets.
=1 Definition 4.3 (Controllability Implementation): Lef; =
then for eachr, the vectorgy; (z), - - -, gx(z) are linearly inde- (B, £ar) and Sy = (By, Fiv) be two control systems and
pendent. ®: M — N be a smooth surjection. The$iy is imple-
Theorem 3.8 (Control Input Smoothness): L&t = Mmentable by Sy, iff whenever there is a trajectory &y con-

(B, Fy) and Syr = (B, Fay) be two@-related control nectingqll € N andg, € N, then there exist; € ®1(q;)and
systems wheréy: By — TN is an injective embedding. P2 € ®~ (g2) and a trajectory ofS; connectingp; andps.

Letcy: I — _ M be a trajectory O_fSM and assume that 2, yis paper, we only consider implementation of controllability requests.
the corresponding=¥,: I — By, is smooth. Then there Thus, implementability will refer to controllability implementation.
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Implementability is therefore an existential property. If oné&: M/ — N. ThenS is consistent with respect b iff for all
thinks of the mapP as a quotient map, then implementabilityp € A
requires that a reachability request is implementable by at least
one member of the equivalence class. It is clear from Definition ®(Reach(®~L(B(p)), S)) = ®(Reach(p, S)). (4.2)
4.3 that implementability is transitive, that is,Sf,;, is imple-
mentable bySy,, with respecttab;, andSyy, is implementable Proof: Clearly ®(Reach(p, S)) -
by S, with respect tad,, thensSyy, is implementable by, d(Reach(® 1 (®(p)), S)) foranyp € M. Letq = &(p') with
with respect to?; o ®,. This is important in hierarchical sys-,/ ¢ Reach(®~1(®(p)), S). There existyy € ®~H(d(p))
tems which should consist of a sequence of implementable @bch thatp’ € Reach(po, S). By consistency, since

stractions. It should be noted that the notion ofimplementabilitjy(po) = ®(p), there existsp” € Reach(p, S) with

defined above is related to the notion of between-block contrqi.(p// = ®(p). But theng = ®(p") € ®(Reach(p, S)).

lability, defined in [6], [8]. Conversely, assume (4.2) holds. Lete Reach( S) and
Proposition 4.4 (Implementation Condition): Consider cond(p') = ®(p). Then®(q) € ®(Reach(®~(®(p)), S)) =

trol systemsSy; = (Bar, Fiy) andSy = (B, Fiv) and @ g(Reach(p/, S)) and there exists/ € Reach(p’, S) with

smooth surjectiorp: A/ — N. ThenSy is implementable by ¢(q) = &(¢/). O

Sy iffforall g € N Consistency does not place any conditions on which element

of the final equivalence class the system will be steered to. In
Reach(g, Sy) € ®(Reach(®7*(q), Sm))  (41) some hierarchical systems, this may be acceptable, as the high-
level systeny may be interested in its command having a fea-
sible execution by, without being interested about the partic-
ular state of5,,, as long as it steers it to the correct equivalence

. . . 1
there exists a trajectory dfy; connecting some € ¢ “(q)  ¢jass, This form of generalized output controllability is now de-
to somep’ € ®~!(¢') and thug’ € Reach(p, Syr). Butthen goq.

— —1
¢ = 2(p') € ®(Reach(p, Swr)) © 2(Reach(®7(q), Su))- Definition 4.7 (Macrocontrollability): LetS = (B, F) be
Conversely, le; € Reach(g:, Sn) for somegqi € N.BY 5 control system or/ and let®: M — N be a smooth
assumption surjection. Ther$ is called macrocontrollable if for alp € M
_ and anyg € N there exists a trajectory of connectingp to
g2 € ®(Reach(®™(q1), Sr)) somep’ € M with ®(p') = ¢.
= (Up,ca-1(q)Reach(py, Su)) By combining the notions of implementability and consis-
= Up, co—1(q) P(Reach(p1, Snr))- tency, we can propagate some controllability information from
the coarser systet$iy to the more detailed systeffy,;.
But then there must exist at least gslec ®~1(q;) such that  Proposition 4.8 (Macrocontrollability Propaga-

WhereReach(q)_l(q), Sp) = Upeq,fl(q)Reach(p, Sn)-
Proof: Let ¢ € Reach(q, Sy). By implementability,

72 € ®(Reach(p], Sar)) whichin turn implies that there existstion): Consider control system$,, = (Bas, Fiy) and
ph € Reach(p], Sn) with ®(ps) = ¢o and thusSy is imple- Sy = (By, Fn) which are ®-related with respect to the
mentable byS,,. This completes the proof. O smooth surjectiond: M — N. Assume thatSy; is an

We will mostly be interested in implementability @frelated implementation ofSy, and Sy, is consistent. Therb,, is
systems, in which case the above inclusion becomes an equaiitgcrocontrollable iffS - is controllable.
by Theorem 4.2. Proof: Letp € M andq € N be any points. Lety =

Implementability may depend on the particular elemedi(p). SinceSy is controllable, there exists a trajectory £f;
chosen from the equivalence class!(q). In order to make the connectinggy and q. SinceS,, is an implementation of y,
controllability request well-defined, it would have to be indethere exists a trajectory @f;; connecting somg; € ®*(go)
pendent of the particular element chosen from the equivaleraoed somep; € ®~!(g). Moreover, sinceS,, is also consis-
class. This leads to the important notion of consistency. tent, there is a trajectory df,, connectingp to somep’ with

Definition 4.5 (Consistency): Ly, = (Bar, Fiar) be a @®(p') = ®(p2) = ¢. Therefore,Sy, is macrocontrollable. The
control system o/ and let®: M — N be a smooth surjec- other direction follows easily from Theorem 4.2. O
tion. ThenS,, is called consistent with respect f@whenever In order to propagate full controllability frorfiy; to Sn, we
the following holds. If there exists a trajectory®{; connecting need a stronger notion of consistency which would be indepen-
p andg, then for allp’ such thatb(p) = ®(p’), there exists a dent from the elements chosen from both the initial and final
trajectory ofS», connectings’ to somey’ with ®(q) = ®(¢’).  equivalence class.

Note that while implementability is a condition between two Definition 4.9 (Strong Consistency): L8, = (B, Fir)
systemsS,, and Sy, consistency is a condition on a singlebe a control system oA/ and ®: M — N a smooth sur-
system with respect to some quotient mapConsistency re- jection. ThenS,, is called strongly consistent with respect to
quires that the ability to reach a particular equivalence class@*swhenever the following holds. If there exists a trajectory of
independent of the chosen element from the initial equivalen§g; connectingp and g, then for allp’ and for al ¢’ such that
class. Notice thab—1(®(p)) is the equivalence class pfwith  ®(p) = ®(p'), ®(q) = ®(¢) there exists a trajectory con-
respect tod. nectingy’ to ¢'.

Proposition 4.6 (Consistency Condition): Consider a Definition 4.9 is weaker than the notion of in-block control-
control systemS = (B, F)) on M and a smooth surjection lability of [6], [8] as it does not restrict the system to remain
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within the equivalence class in order to steer from one elemanith = € R*, « € R*, 4y € R™, v € R!, A € R™*", B € Rk,

to another in the same class. F ¢ R G e R™X!, and the surjective linear aggregation
Proposition 4.10 (Strong Consistency Condition): Considenapy = Cz. Then by Definition 3.4%; andX, areC-related

control systenS = (B, F) on M and the smooth surjection if for all x € R™ andu € R* there existe € R, such that

$: M — N.ThenS is strongly consistent with respect 4o
iff forall p € M C(Azx + Bu) = FCx + Gwo. (5.1)

By Proposition 3.5, given any control system and any rbap
there always exists another control system which-ielated to

it. We are interested, however, in a constructive methodology for
= generatingb-related systems. The following proposition gives

Reach(p, S) = ®~H(®(Reach(®71(®(p)), S))). (4.3)

Proof: The inclusion  Reach(p, S)

-1 -1
¢ ((I)(R‘ialCh((I) (@(p))_,lS))) always ~ holds.  Let g a systematic way to generaterelated linear abstractions of
¢ < ¢ ((P(Rf?Ch(q) (2(p)). 5)))- /Then there exists alinear system with respect to a linear aggregationimapC.
¢ € li‘fa‘jh(q) (2(p)), 5) with &(¢') = (g). L&t prpogition 51 (Construction of Linear Abstrac-
P € 27(%(p)) be such thaly’ € Reach(p’, 5). Since onq) Consider the linear system
®(q) = @(¢') and®(p) = &(p'), strong consistency implies
q € Reach(p, 5). (21) & = Ar + Bu
Conversely, assume (4.3) holds. lete Reach(p, S) and o
7, ¢ be such tha®(p’) = ®(p), ®(¢’) = ®(q). Then and a surjective map = Cz. Let
¢ € 97 (®(g)) €9~ (@(Reach(p, 5)) ()= yra
C & H(@(Reach(®1(d(p)), S))) be the system where
—H—1 —1 /
=07 (P(Reach(@™(2(p")), 5))) = CAC+, G = [CB CAv, - CAU,,]
=Reach(p’, S).
with ¢+ = T (CccT)~1, the pseudoinverse of, and
Therefore,S is strongly consistent. O wy, -+, v, spanningker(C). ThenX; and>, are C-related.

Since strong consistency is a more restrictive notion, itis nat- Proof: We need to show that for all € R* andu € R¥,
ural that Condition (4.3) is stronger than Condition (4.2) for conhere existss € R!, such that

sistency.
Proposition 4.11 (Controllability Equivalence): Consider C(Az + Bu) =Fy + Guv
control systemsy; = (Byy, Far) andSy = (B, Fiv) which or equivalently
are ¢-related with respect to smooth surjectién A4/ — N. Gv =CBu+ (CA — FO)z.

Assume thatS,; is an implementation o5y, and Sy, is
strongly consistent. Thefiy is controllable iff Sy, is control-  Clearly, C Bu belongs in the range & for all ». Decompose
lable. R™ = Ker(C) & Ker(C)+. If x € Ker(C)1, thenC+Cxz = z,
Proof: Letpy, p» € M any points. Lety; = ®(p1) and and thus
g2 = ®(p2). SinceSy is controllable, there exists a trajectory
of Sy connectingg; andg,. SinceS,, is an implementation (CA - FO)z = (CA - CACTC)z = 0.
of Sy, there exists a trajectory df;; connecting some; € .
®~1(q1) and somes, € d—(gs). Then, SinceS is strongly :I] fhi ;irg(lg)otgen(CA — FC)xz = C Az, which also belorllz_?s
consistent, there is a trajectory 8f; connectingp; to p». The o o . .
) y s @1 102 It is immediate from Proposition 5.1 that an abstraction of

other direction is given by Theorem 4.2. : . . :
(%Imear system with respect to a linear aggregation map can be

In this section, we identified the relevant notions for the stu . . . . .
of controllability in b-related systems. We also described the so alinear system. Proposition 5.1 is interesting as it construc-
ely generates for linear systems the so-calletual inputs

for arbitrary systems in terms of reachable sets. In the followir! d in backstepping designs [14]. In particular, if the aggrega-

sections, we will illustrate these notions (see Example 5.7), al] ) ot fthe states. then the states that
give concrete characterizations of these concepts for linear sggp map s a projection on some otihe states, tnen the states tha

tems. Moreover, we show how to use them to construct expli e ignored appear as inputs at the abstracted system. As another

d-related systems with the desirable properties. Special case, suppose that K&} = IW(B>- Then we can take
aswi, -- -, v, the columns ofB. The input vectors fob:, are

the images unde¥’ of the vectorsdw;, which correspond to the
V. CONSISTENTLINEAR ABSTRACTIONS nextr vectors in the controllability matrix of; . The following
The notion of®-related control systems is now specialize@xample illustrates the proposition.
for the case of linear time-invariant systems with linear aggre- Example 5.2: Consider again the double integrator
gation maps. Consider the linear control systems . .
L1 = T2, To = U
(¥1)  &=Az+Bu and the projectiony = z;. So hered = [J3], B=[0 1], and
(X2) y=Fy+Gv C =[1 0].ThenKefC) = span{[0 1]} andthe procedure
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of Proposition 5.1 results i = 0, G = [0 1]. We can reduce and surjective mag = Cxz. ThenX, is implementable by,

further to G= 1 and get iff for all 4 we have

i=. Uev+reE el U

T>0 T>0zeC~1(y)
Now consider the dynamics of the oscillating vector field CeTx + CR(A, B). (5.3)
&1 = 29, fo = —x1 Proof: Follows from Proposition 4.4 and (5.2). O
The following theorem gives a simple characterization of

with the same projection map= z;. HereA = [_% §]. Then consistency for linear systems in terms of subspace invariance.
Proposition 5.1 results in the same control system (or better,Theorem 5.5 (Consistency Characterization for Linear Sys-
differential inclusion) tems): The linear system

§=w. (Xy) &= Ax+ Bu

The fact that the coarser system may have control inputs, eveffonsistent with respect to the mgp= Cu iff
though the original one did not, is clearly undesirable. However, c
as will be shown, this will be taken care of by the notion of AKer(C) < Ker(C) +R(4, B) (5.4)

consistency. _ Proof: First, notice that for any sé¢ C R”, we have
From linear systems theory we know that for the linear systegi-1(cv) = v + Ker(0).

Assume (5.4) holds. We must show consistency Condi-

(X1) & =Av+Bu tion (4.2), which for linear systems requires, for all that
o C(Reach(z + Ker(C), £1)) = C(Reach(z, X)), or equiv-
the reachable space from any € R is given by alently
Reach(zo, ¥1) = U e*T'zo + Reach(0, ;)
T>0 C U e (z 4+ Ker(C)) + R(A, B)
= |J ez + R(4, B) (5.2) 20
T>0
=C||Je*z+R(A,B)|. (55)
where T>0
R(A, By=ImB AB .- A" B] Clearly,C Reach(z, 31) C C(Reach(z + Ker(C), £1). Con-

dition (5.4) andA-invariance ofR(A, B) imply that for all
is the reachable space from the origin. In particular, system 7 > 0 we have
is controllable iff R(A, B) = R". As a corollary of Theorem
4.2, we obtain the following result.
Theorem 5.3 (Controllability Propagation for Linear Ab-and therefore

e*T'Ker(C) CKer(C) +R(A, B)

stractions): Consider the linear systems CeTKer(C) C CR(A, B).
(>1) & =Az+ Bu This gives the other inclusion, proving consistency.
() y=Fy+Gu Conversely, assume thaf is consistent. Lekq € Ker(C').

From (5.5) withz = 0 we get for anyl’ > 0 there exists: €
which areC-related which respect to the surjective map= R(A, B) such thale*wg = Cr. Thereforeg™ zg = o+

Cz. Then for somex;, € Ker(C).
We have therefore shown that for &l > 0, 74z €
CR(A, B) C R(F, G) Ker(C) + R(A, B). By usingde!/dt = Aet* and taking
limits as7” — 0, we conclude thatiz, € Ker(C)+R(A, B).O
In particular, if ¥ is controllable ther®, is controllable. Note that Condition (5.4) is clearly weaker than the well-
Proof: Simple application of Theorem 4.2. O known condition

In order to propagate controllability from the linear system
Y5 to X1, the notions of implementability and consistency were
defined in Section IV. ;

", . o whereR(B) = Im(B)) for Ker(C) to be a controlled-in-

Proposition 5.4 (Implementability Characterization for( (B) m(B)) (©)

Li Svst " Consider two li " variant (or (4,B)-invariant) subspace.
inear Systems). Consider two linear systems Theorem 5.6 (Strong Consistency Characterization for

Linear Systems): The linear system

AKer(C) C Ker(C) + R(B)

(31) & =Az+ Bu
(X2) y=Fy+ Gu (1) z = Az + Bu
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is strongly consistent with respect to the map: Cxz iff In order to propagate some form of controllability fraip to
31, we need to check two properties, namely implementability
(56) and (strong) consistency. Unfortunately, Condition (5.3) is not
is strongly consistent. Condition 4.388SY to .check since it involves the gxphcn mtejgrauo.n of _the
differential equation. However, Condition (5.3), in conjunction
with consistency Conditions (5.4) or (5.6), results in checkable
U M+ R(A, B) characterizations of implementations which are also (strongly)
T>0 consistent. To achieve this, we will need the following lemma.
. AT Lemmab5.8: Led (n x n), C (m x n), F (m x m)andG
- U ™ (w + Ker(C) + R(4, B) +Ker(C). (5.7) (m x 1) be matrices with < m and G of full rank. If for all

Ker(C) C R(A, B).

Proof: AssumeX;
for linear systems becomes

=0 x € R" (CA - FC)z € R(F, G), then for allt > 0,
Using (5.7) withz = 0 givesR(A4, B) 2 Ker(C). i
Conversely, assume (5.6) holds. Byinvariance ofR(A, B) (Ce™ =" Oz € R(F, G). (5.8)

> . . .
we get, for alll” > 0 In particular, the conclusion holds i, F', are GG are the corre-

ATKer(C) C R(A, B). sponding matrices for th€'-related systems; and ;.
B Proof: We have the following identity for all > 0:
This gives the inclusion

tA tF o~y S j j t
U AT+ R(A, B) Cett — tf o = Z(CAJ - FJC)ﬁ. (5.8)
T>0 3=0
) U AT (z + Ker(C)) + R(A, B) + Ker(C). We prove by induction the statement
=0 (P)) VzeRYCA — FIC)x e R(F, Q).

The other inclusion always holds. O . ) o

Note that by thed-invariance ofR(A, B), Condition (5.6) If[ is clearly true forj = 0 arld by hypothe5|§ it is also true for
is indeed stronger than (5.4). Consistency Conditions (5.4) ahd 1- ASsumer; holds fori < j. We can write
(5.6) are rather intuitive. Condition (5.4) essentially says th AL Fj+1c)x
whatever piece of Ké>) is notA-invariant can be compensate h h h
by R(A, B). On the other hand, Condition (5.6) is a form of = (CA = FPC)Ax + F/(CA = FO)z.
controllability within the equivalence classes. The trajectori%%, the inductive hypothesis applied tor and A,
of the system which connect two points of the same equivalenge 4; _ FiC)Az € R(F, G) and(CA — FO)x € R(F, G).

class (as defined bg') are not, however, restricted to remaiq3ut thenF¥ (CA — FC)x € R(F, G) for all j, sinceR(F, G)
within the equivalence class. The following example illustrates 7 ariant. Therefore ’ ’ ’

the notions of implementability and consistency.
Example 5.7: Consider the linear system (without controls)  (CAY — FVIC) Az 4+ F/(CA — FO)z € R(F, G).
& = Az, where

By taking the limitin (5.8), we conclude the proof. O
A= [0 1} . o=[1 0] Theorem 5.9 (Implementability and Consistency Characteri-
00 zation): Consider the linear systems
and theC-related (one-dimensional) systein= Fy + Gu, (1) i = Az 4+ Bu

whereF = 0and G = 1. We also have .
(32) 1 =Fy+ Gu

Ker(C) :span{ {1} } which areC-related which respect to the surjective map=
1 Cz. Then; is implementable by, and>:; is consistent iff
AKer(C) :span{ {0} } 7 Ker(C).

Therefore, the systeri; is not consistent. To show it is im-
plementable we simply solve the system explicitly. Notice th

CR(A, B) = R(F, G) (5.9)

él? addition, X, is implementable b¥; and:; is strongly con-

sincey = v, any two points (oR) can be connected by atrajec-SIStent iff
tory of 2, in arbitrary positive time. Le§o, v € R. The curve R(A, B) = C"Y(R(F, G)). (5.10)
zi(t) = gr =% ; Nt 4+ yo, xo(t) = gr— 4% ; Yo Proof: Assume CR(A, B) = R(F, @), and thus

R(F, G) C CR(A, B). Now letz € Ker(C). By C-related-
is a trajectory of%; from [zof_yo 7] o [z-;_yO/T] at time7. ness, there exists € R! such thalC Az = FCr + Gv = Gv
Therefore X5 is implementableé 1. Notice that ify; # 4o, (usingw = 0 and sinceCz = 0). So,CAx € R(F, Q)
there is no trajectory af; connecting’] to any pointz with and by assumption, there is; € R(A, B), such that
Cz = yy. The reason is that all the poirf8] are equilibria of Cz; = CAx. Therefore, Az — z; € Ker(C) and
3. Az = Az — z1 + 1 € Ker(C) + R(A, B). Thus
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AKer(C) C Ker(C)+ R (A, B) and; is consistent. We must ~ Thus, in order to propagate controllability between two linear

now show that Condition (5.3) holds. Consider any systems, we have to ensure that the systemgareated and
o . check either Condition (5.9) or (5.10) depending on the no-
yr =¢" " yo+ 1 € Reach(yo, X2) tion of controllability that is needed. It is desirable to have a
= U Ty + R(F, G) methodology for constructing’ related systems with the de-
=0 sirable properties. Fortunately, for tiiérelated system con-

B structed in Proposition 5.1, (strong) consistency implies imple-
with r}. € R(F, G). By Lemma 5.8, we have that' "y, = mentability. In order to show this, we will need the following
Ce'zg + Cri for somers € R(A, B), and for anyzo with  lemma.

1o = Cxo. But then Lemma5.11: Le#d € R**" B € R™**, and full rankC e

T L ) R™>"™ be such that
yr=Ce™zog+rp+7%
=CeM gy + Cry € U U CeATw 4 OR(A, B) AKer(C) C Ker(C) + R(A, B)
T202cC™Hw) and letl’ = CACT. ThenCR(A, B) is F-invariant, that is
= C(Reach(C™*(y0), X1))

FCR(A, B) C CR(A, B).
for somers € R(A, B) sinceR(F, G) C CR(A, B). There-

fore 3, is implementable by, . Proof: Lety = Cx for x € R(A, B) and consider
For the converse notice that, since the systemg&arelated, + +
Proposition 5.3 implieR (F, G) 2 CR(A, B). Moreover, the Fy=CACTy = CAC™Cx

implementability Condition (5.3) witly = 0 gives Decomposer = ¢ + " wherez® € Ker(C) andz" €

1
R(F, G) € | Cc*"Ker(C) + CR(A, B) Ker(C)L. Then
=0 Fy = CAC+C(.’IZ'C + .’L’n) = CAz" = CA(.’L’ — :L-C).

and the consistency Condition (5.5) with= 0 gives . S .
! y ftion (5.5) w gv Sincex € R(A, B) andR(A, B) is A-invariant, we get that
U CeATKer(C) C OR(A, B). CAxz € CR(A, B). By consistency, there exist € Ker(C)
- ’ andz" € R(A, B) such that

T>0

These two combined givE&(F, @) C CR(A, B). This con- CAz® = C(z° +2") = C2". (5.11)

cludes the proof of the first equivalence. Thus CAze al bel N CR(A B i .
Now assume thatR(A, B) = C-X(R(F,G)). Then 1hus CAz® also belongs in C'R(A, B) resulting in

CR(A, B) = R(F, G) and thereforeX; implementsZ,. Fy € CR(4, B). . . O
Since0 € R(F, G) we also have KéC) C R(A, B). There- Theorgm 5'1,2 (CQnS|stency Implies Imple-
fore, 3; is strongly consistent. I1&; is strongly consistent mentability): Consider the linear system
and implements;, then; is also consistent and therefore (1)
must satisfyCR(A4, B) = R(F, G). Therefore,R(A, B) C
C~(R(F, G)) = R(A, B) + Ker(C). By strong consistency which is consistent with respect to the surjective map Cz.
Ker(C) C R(A, B), and thusC—}(R(F, G)) C R(A, B). Let
ThereforeC~H(R(F, G)) = R(A, B). O

We now have the main ingredients for propagating con- (X2) y=Fy+Gv
trollability from the coarser to the more complex model. The
following theorem is conceptually similar to [8, Th. 2.2], eveie the system where
though this paper focuses on purely continuous and linear

&= Az + Bu

_ +
models. F=CAC
Theorem 5.10 (Consistency and Implementability imply Con- G=[CB CAv; - CAv,]
trollability): Consider the li t . . .
rollability): Consider the linear systems with CT the pseudoinverse of and v, ---, v, spanning
(=) = Azx+ Bu Ker(C). ThenX, is implementable by, .

Proof: By Theorem 5.3 we have thaR(F, G) 2
CR(A, B) and thus we only need to show tHR{F, G) C

which areC-related system with respect to the surjectipe= CR(A, B). Letyy € R(F, G). Then
Cz. Assume that; implements,, and?:; is consistent, that . 1
is OR(A, B) = R(F, G). Then¥, is controllable iff % is vp =G FG - TG (6.12)
macrocontrollable. If in additiort; is strongly consistent, that for some » € R™. By an appropriate partition of
isR(A, B) = C~H(R(F, ), thenXy is controllable iffS2 is 5 = [z; 2y -+ 2,,]7, we get
controllable.

Proof: Same as the proof of Propositions 4.8 and 4(11. yr=Go1 + FGoo+ - + F" Gz, (5.13)

(22) y=Fy+ Guv
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It suffices to show that R(G) - CR(A, B) which, recall from Section Il is the necessary and sufficient con-
since then, by Lemma 5.11, we get thatlition to obtain a well-defined quotient vector field. Therefore
R(FG) C CR(A, B),---, R(F"'G@) C CR(A, B). aconsistentabstraction of a linear vector field cannot have any
Now consider control inputs (or cannot be a differential inclusion). Condition
1 (5.6) reduces to
y1 =Gay = [CB CAvy --- CAuy {””;}
1 Ker(C) = {0}
=CBuxi + [CAvy -+ CAuvylzi. (5.14)
and thusy = Cxz must be an invertible linear transformation

L .
Clearly, CBxy € CR(4, B). By consistency, we have (since it is already surjective). We will be typically interested

AKer(C) C Ker(C) + R(A, B) (5.15) in consistent abstraction; which arentrivial, in the sense that
some state space reduction is performed (thug®gee£ {0}),
and therefore fot = 1, ---, k& but the abstracted system is also nontrivial (iK&r # R™).
Corollary 5.14: Consider the assumptions of Theorem 5.13
Avi = vj + v (5.16) and assume thdt < rank(B) < n. Then a nontrivial, strongly

consistent abstraction always exists.
Proof: If rank(B) > 0, then we can always find a linear
CAv; =C(vf +v7) = CoT mapC such that KefC') = Im[B]. O
Theorem 5.13 and Corollary 5.14 are important as they show

for somevs € Ker(C) anduv! € R(A, B). Thus

n—1
=C[BAB - A" Blg, (5-17) " thata consistent abstraction always exists as long as there are
for some vectors; of appropriate dimension. But then control inputs In addition, the notions of consistency are impor-
tant from a hierarchical perspective as they provide good design
[CAvy --- CAv]x? principles for constructing valid hierarchies. For example, the
=C[BAB --- A" 'Bllg1 --- q]a? cond_ition for strong consisten_cy Ker) < R(A, B) suggests
_ C[B AB --- A" 'B|X? (5.18) that in order to ignore dynamics at a higher level [captured by

Ker(C)], one would have to ensure the ignored dynamics can
and thusR(G) € CR(A, B). 1 be accommodated at the lower level.

As a result of the above theorem, if we use Proposition 5.1AS One imposes more restrictions on the matixfurther
to construct our abstracted models, then consistency (or strétigPerties can be propagated from one system to the other. The
consistency) is the only condition on the aggregation map tHflowing results show conditions under which full trajectories

is needed to propagate controllability. can be implemented by the lower level system. .
Theorem 513 (Consistency Implies  Controlla- Theorem 5.15 (Trajectory Implementation): Consider two
bility): Consider the linear system linear systems
(>1) Z = Az + Bu (1) Z =Ax+ Bu

and surjective mag = Cxz. Let (%) g=Fy+Gv

(s) §=Fy+Gu and the surjective map = Cz. Assumer € R"! y € R™ with
m < n,andu € R* with & < n. We assumé is of full rank.
be theC-related system where Let/C = Ker(C), B=Im[B], ¢ = Im[G], and letP denote the
N orthogonal projection froniR™ onto C AX 4+ CB. We make the
F=CACT, G=[CB CAv - CAu,] following two assumptions:
— 1
with O+ the pseudoinverse af and vy, - --, v, spanning 1) CAz = FCxz forall x € K-+ (the orthogonal comple-
mentof K).
Ker(C). If
2) C7Y((I - P)g) C B.
AKer(C) C Ker(C) + R(A, B) Then, for every trajectory(-) of 3, corresponding to a differ-

) . i entiable control, there exists a trajectogy-) of 2;, such that
then, is macrocontrollable ift2; is controllable. In particular, y(t) = Cx(t) for all £ in the domain ofj(-).

if Proof: Lety(-) be a trajectory ok corresponding to the
controlv. First we definer,(t) = CTy(t) whereC™ is the
Ker(€) & R(4, B) Moore—Penrose pseudo-inverse(aflf z € K, then
thenX; is controllable iff>, is controllable. T o I - I
Proof: Follows from Theorems 5.10 and 5.12. O # za(t) =2 C(CC ) "y(t) = (Cr)" (CC™) "y(t) = 0.
It is interesting to notice what happens to Conditions (5.615) N ) )
and (5.4) when the linear system is a linear vector field and thi§ereforez,(t) € K- for all . Moreover,i,(t) = C*y(t)

B = 0. In that case, Condition (5.4) reduces to wherey(t) = Fy(t) + Gu(t). o
Let P denote the orthogonal projection frd&it* ontoC AL+

AKer(C) C Ker(C) CB. Let D be the restriction of” on AKX + B and let D™
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be its pseudoinverse. Defingt) = DT P(Gu(t)), and there-  After a consistentC matrix is determined, the construction
fore, by construction we have thétz(t) = P(Gu(t)) and of Theorem 5.13 is used in order to obtain a system of smaller
Z(t) € AK + B. Thus, there exist,(t) € K andb(t) € B, dimension with equivalent controllability properties. We
such thate(t) = Az, (¢) + b(¢). Sincez(t) is differentiable, we recursively apply the same procedure to this new abstracted
may choosex,(¢) andb(¢) to be differentiable as well (using system. Eventually, by dimension count, either there will be no
a suitable pseudoinverse). Lett) = xz,(t) + z,(¢). Then inputs left and the system will be trivially uncontrollable, or
Cx(t) = Clza(t) + 21(t)) = Cuxo(t) = y(t), and in addi- there should be as many linearly independent inputs as number

tion of states in which case controllability follows trivially. Since at
each step, the abstractions that are constructed are consistent,
Ci =Cliq+dp) =Cio =19 =Fy+Gu then by Theorem 5.13, the outcome of the algorithm at the
— FCxy + Gv = CAz, + Gv coarsest level will propagate along this sequence of consistent

abstractions to the original complex model.

where the last equality holds by Assumption 1. Sef) — Algorithm 6.1 (Hierarchical Controllability Algorithm):

2(t) — Axo(t) — T(t). Then for allt, C=(t) = C(z,(t) +

() — CAzo(t) — CT(t) = CAzo(t) + Gu(t) —CAz,(t)— 1. Given & =Ax+ Bu, A€R"™™, 0<k<n-1

P(Gu(t)) = (I — P)Gu(t). By Assumption 2, for eachthere 2. If  rank(B) is

is u(t) € RF, such thatz(t) = Bu(t). In fact, we can take e 0: System is uncontrollable. Stop

u(t) = Bt2(t) (hereBT = (BT B)~'BT sincek < n). Then e n: System is controllable. Stop

if we let z(t) = z,(t) + x4(t) we geti(t) = Ax(t) + Bu(t) 3. Find C such that Ker (C)=Im[B AB --- A*B]

andCz(t) = Cx,(t) = y(¢) for all £. O 4. Obtain new system matrices A, B of the

Corollary 5.16: LetX;, 35, andC be as in Proposition 5.1.  abstracted system using Theorem 5.13

If Ker(C') C Im[B], then for every trajectory(-) of ¥, corre- 5. Return to 2

sponding to a differentiable control there exists a trajectofy)

of 2; such thaty(t) = Cxz(¢) for all ¢ in the domain of(-).
Proof: SetK = Ker(C), B = Im[B], andG = Im[G].

SinceCtCxz = z for x € K+, Assumption 1 of Theorem

The largerk is, the fewer steps the algorithm will need to ter-
minate. On the other hand, &dncreases, the amount of com-
putation per step will be higher. Before we discuss computa-

5.15 is satisfied. Now? = [CB CAwv; --- CAw.],and X : )
] . . tional and implementation aspects of the above algorithm, we
since P is the orthogonal projection ontG AKX + CI5, we get . L .
will demonstrate its application on various examples.

(I — P)G = 0. Then Assumption 2 of Theorem 5.15 reduces to Examole 6.2: Consider the linear svstem
C~1(0) = Ker(C) C Im[B], which is our assumption. O ple .2 Y

.’i’l 0 0 1 X1 0
VI. HIERARCHICAL CONTROLLABILITY ALGORITHM z=|a2| =10 =1 0] -|z2|+|1|n
I3 1 1 0 T3 0

In this section, we will take advantage of the results of Section
V in order to analyze the controllability of large scale linear sys- = Az + Bu. (6.1)
tems. Theorem 5.13 enables us to have a hierarchical controla- . . . . ) )
bility criterion, which decomposes the controllability problerr%mce t.here IS one Im_early mdependent input field, we can find
into a sequence of smaller problems. Such an approach is ﬁlj:_onsstent abstraction satisfying
merically more efficient and robust than the standard Kalman
rank and PBH eigenvalue tests.

Conceptually, the algorithm starts with the linear system i, example, we can choose
question, and determines the number of linearly independent
input vector fields. If this number is zero, then the system is 1 0 0
uncontrollable and the algorithm terminates. If the number of C1= [0 0 1} ’
linearly independent inputs is equal to the number of states, then
the system is trivially controllable and the algorithm terminateBhe construction of Theorem 5.13 then results in
as well. If the number of linearly independent vector fields is 0 1 0
less than the number of states but greater than zero, then by A, = C1A;CfF = [1 0} , By = [1} . (6.2)
Corollary 5.14 we can always find an aggregation mattjsat-
isfying the strong consistency condition K&f) C R(A, B).  since B, is nonzero and the number of linearly independent
Since IfjB AB --- A*B] C Im[B AB --- A" 'B] inputs is strictly less than the number of states, we can obtain
forany0 < k < = — 1, from a computational stand-another consistent abstraction by choosfilg= [1 0]. The
point, we can actually choose any matri satisfying resulting abstraction is
Ker(C) =Im[B AB --- A¥Blfor0<k<n-1.1f k=0,
then the abstracted system essentially ignores the directions Az = CrACF =0, By =1. (6.3)
spanned by the input vector fields (which are trivially control-
lable). If & = n — 1, then the matrixC will ignore the whole At this point, the number of inputs is equal to the number of
reachable space. states and thus the p&irls, Bs) is trivially controllable. By

Ker(Cy) = Im[By] C Im[B; A1 By AIB].
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Fig. 3. Comparison of Algorithm 6.4 and the Kalman rank condition.

consistency, the pairsi,, B,) and(A;, B;) are also control- Ker(C) = Im[B], but is also a projection to IpB]*. This re-

lable. duces some of the computations of Theorem 5.13 and results in
There is a much more intuitive explanation of the sequentiee following variation of Algorithm 6.1.

of steps taken above. Note that the system started with the paiAlgorithm 6.4 (Hierarchical Controllability Algorithm):

(A;, By) and in the first iteration, we essentially removed the

dynamics ofz. (second row) from equation (6.1) since theyl. Given =z = Az + Bu, A € R™*™,

have direct connection to the input This results in the pair 2. If  rank(B) is

(Az2, B2), wherexz, can now be thought of as an input. We e 0: System is uncontrollable. Stop

re-apply the above procedure by now removing the dynamicse n: System is controllable. Stop

of 23 [second row of (6.2)] since they can be directly controlled. Find matrix C such that Ker (C)=Im[B]
by the new controls. This results in the p@it;, B3) whichis 4. Let A := CACt, B:=CAB
trivially controllable. 5. Return to 2

Example 6.3: Consider the linear system
Intuitively, Algorithm 6.4 starts with the system in question
. a1 1 0 1 1 and, since | is in the controllable region, it chooses an ab-
t= L:J - {1 0} ) LcJ + {1} u= A+ Biu. (6.4) straction m;t[]rEii]C which essentially projects the system in a di-
rection which is orthogonal to the space spanne@&byhus the
A consistent abstraction results by choosing the aggregation meacroinputs of the first abstraction are spanned@B3, which
trix are the first order Lie brackets of the original systg@mojected
on the orthogonal complementiof [B]. Similarly, the second
Cr=[-1 1] abstraction will have as input vector fields the second-order Lie
brackets projected on the orthogonal complement of bof]m
resulting in and InTAB].2 Because of this selection of inputs at each ab-
straction layer, we simply have to add the dimension of the span
Ay = CLALCF =0, By = 0. (6.5) Of thg input vector fields at each abstrgction layer in order to
obtain the dimension of the controllability subspace. From the

Therefore, by Theorem 5.13, the paitd,, B,) and(A;, By ) above discussion, it is also clear that if the system is uncontrol-

are both uncontrollable. lable, then the algorithm computes the uncontrollable part of
In the case where we selekt= 0 in Algorithm 6.1, then the system since at each iteration we are projecting on the space
we choose matrice§' satisfying KetC) = Im[B]. In this orthogonal to parts of the controllable space. The sequence of

particular case&®B = 0, and in addition, the columns g8 abstracting maps can then be used in a straightforward manner

span Ke(O)' From a computational St?‘ndpomt' it is a_dyanta— 3Clearly, macroinputs being projections of Lie brackets will be useful in de-
geous to actually choose a matri% which not only satisfies veloping a nonlinear version of this theory.
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Fig. 4. Comparison of Algorithm 6.4 and the PBH test.

in order to decompose the system into controllable and uncdability was checked using the Kalman rank condition, the PBH
trollable subsystems. test and Algorithm 6.4. Floating point operations were measured
We now focus on the implementation issues of Algorithmf®r each test, and the following ratios:
6.1 and 6.4. For simplicity, we consider Algorithm 6.4; Algo-
rithm 6.1 can be treated in a similar manner. From a compu-_ Floating Point Operations of Kalman or PBH Test
tational perspective, the two main problems for implementingRat'oz Floating Point Operations of Algorithm 6.4
Algorithm 6.4 are: first, the construction of a consistent aggre-
gation matrixC satisfying KefC') = Im[B], and second, given are plotted as a function on state and input dimension in Figs. 3
such a matrix, to perform the computations required for the cogind 4. The plane with ratio equal to one is also plotted. When-
struction of a consistent abstraction. In order to tackle the firsfer the unreliable Kalman rank test fails to recognize a con-
problem, we perform a singular value decomposition on the Mglable system, the ratio is set to zero. Note from Fig. 3, that
trix B. Thenxm (n = m) matrix B with rankr is decomposed the Kalman rank test is more efficient for very low dimensional

as systems but Algorithm 6.4 is up to 15 times faster for most sys-
. tems. In addition, the Kalman condition fails to be reliable for

B=UsVT = [U, Uy { } {VT} U, VI (6.6) systems with more th_an apprqximately 15 states. Fig. 4 com-
V; pares the PBH test with Algorithm 6.4. Even though the PBH

test is more reliable than the Kalman rank condition, it is sig-
whereY.,. is ther x r matrix of nonzero singular values. Fromnificantly slower than Algorithm 6.4 (up to 150 times for some
the above decomposition we immediately obtain tha{&@r=  systems). In addition, it is well known (see [26]) that the PBH
m[B] = Im[l/;1] and we can therefore choose the abstractirigst is very sensitive to parameter perturbations due to eigen-
mapC = U{'. In addition,C+ = Uy, and therefore the singularvalue calculations.
value decomposition gives us, for free, the pseudoinverse calThe computational and conceptual advantages of Algorithm
culation. Similar constructions are used in the implementati@¥ are verified by the fact that Algorithm 6.4 is identical to the
of Algorithm 6.1. Of course, singular value decompositions as®ntrollability algorithm of [11], derived from a purely numer-
computationally expensive. If speed of computation is of gre@tl analysis perspective. In [11], the above algorithm is shown
interest, therd) R-type decompositions could be used instead ¢d be numerically stable and is a stabilized version of the re-
singular value decompositions in order to accelerate the algdization algorithm of [32] (Matlab command CTRBF). Fig. 5
rithm. However, as is typical in such cases, this may result icampares Algorithm 6.4 with the more general Algorithm 6.1
less robust algorithm. The Matlab code that implements Algedth £ = 1. Fig. 5 clearly shows that it may be advantageous
rithms 6.1 and 6.4 can be found in the Appendix. to use Algorithm 6.1 with: = 1 only in cases where the state

Various experimental, comparative studies were performdimension is much larger than the input dimension.

on a Matlab platform. Given the dimension of the state and inputThe hierarchical framework developed in this paper places
space, randomi, B matrices were generated, and their controk geometric and conceptual framework on the best known
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Fig. 5. Comparison of Algorithm 6.4 and Algorithm 6.1 with= 1

controllability algorithm from numerical linear algebra. Thisoth for linear and nonlinear control systems. For example,
is strong evidence that hierarchical decompositions of coobtaining consistent abstractions for nonlinear systems with
trol problems are indeed reducing the complexity of controéspect to stabilizability would essentially classify all back-
algorithms. It is therefore worthwhile pursuing this directiosteppable systems. Other properties of interest include tra-
of research for more general classes of systems (nhonlineggtory tracking, optimality and the proper propagation of
as well as for other properties of interest (stabilizabilitystate and input constraints. The framework presented in this

optimality, trajectory tracking). paper provides a suitable platform for such studies.
Finally, another direction which is of great interest from
VII. CONCLUSIONS ISSUES FORFURTHER RESEARCH a hybrid systems perspective, is to obtain consistent, dis-

In this paper, we considered a notion of control-system aBr_ete and hybrid abstractions of continuous systems. A very

stractions which are typically used in hierarchical and multi_la)y_jterestmg problem, however, remains the construction of fi-

ered systems. This was achieved by generalizing the notionnétFtaTd cotn5|stepr\1t Stﬁte .?r;])ac? partmoPs, tglver]l gtcont|nL:]ous
d-related vector fields to control systems. This notion is mo htrol system. An aigorithm for constructing Tinite reach-

general than the notion of projectable control systems [18],[2? llity-preserving quotients of vector fields is proposed in

and, in addition, mathematically formalizes the concept of vit- 9], [20], and [39].

tual inputs used in backstepping designs [14]. The notions of

implementability and consistency were then defined in order to

propagate controllability from the abstracted system to the more

detailed one. These notions were completely characterized for

linear systems, and the easily checkable conditions allowedfuaction [controllable]=HCA(A,B k,tol)

to construct a hierarchical controllability algorithm for linga@g******¥kitkkkikikitikkitikik

systems. % Controllability Algorithms 6.1 and 6.4
There are many directions for further future research. Thé

results of Section V enable the development of an opéh Required Inputs: System Matrices A, B,

loop backstepping methodology which, given a sequence of Integer 0<k<n-—1

consistent abstractions would recursively generate the actual (% = 0 is Algorithm 6.4)

control input, by first generating a control input for the ab% Optional Inputs: Tolerance threshold

stracted system, and then recursively refine it as one addsol (used for rank computation)

more modeling detail. Nonlinear analogs of the results @f*** i rrikkkkitiikkkitiikikkk

Section V, will provide a hierarchical controllability algo-n=size(A,1);

rithm for nonlinear systems which may be more efficient anfl nargin ==

robust from a symbolic computation point of view. Many tol = n*norm(A,1)*eps;

other properties are also of interest and will be investigatesd r = rank(B,tol);

APPENDIX
MATLAB IMPLEMETATION OF ALGORITHMS 6.1 AND 6.4
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%*** Dimension of input space

[13]

while (( n>7) & (> 0)),

%*** |f inputs exist and are less than

states [14]
I = min(k, n — 1);

%*** Ignore Lie brackets higher than n—1 |15
W = B;

%*** Compute [B AB ...A"kB] [16]
fOI’ j =1: l, [17]

W = [BAxW];

end
[U,S,V] = svd(W);

%*** QObtain consistent matrix C
m = rank(S,tol);

(18]

(19]

Ul = UG1m) ;
U2 = U(G,(m+1):n) ; [20]
C = U2,
B = C*A*UL,;

%***Qbtain consistent abstraction [21]
A = C*A*C’
n = size(A1)

%*** Dimension of abstracted system
r = rank(B,tol);
%*** Dimension of macroinputs

end

if (n==r) controllable=1,;
elseif (r==0) controllable=0;

end

(1
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(3]
(4]
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(6]
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