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Abstract
Using the quasistatic Tomlinson model as a simple representation of an atomic force microscope, conditions
for transitions in atomic-scale friction behavior from smooth sliding to single slips and then multiple slip
regimes are derived based on energy minimization. The calculations predict and give a general explanation for
transitions between different stick-slip regimes in the limit of low damping. The predictions are consistent
with experimental observations of these transitions.
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Using the quasistatic Tomlinson model as a simple representation of an atomic force microscope,
conditions for transitions in atomic-scale friction behavior from smooth sliding to single slips and then
multiple slip regimes are derived based on energy minimization. The calculations predict and give a
general explanation for transitions between different stick-slip regimes in the limit of low damping. The
predictions are consistent with experimental observations of these transitions.
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Experimental studies of atomic-scale friction became
possible with the invention of the atomic force microscope
(AFM). AFM allows scanning of atomically flat surfaces
with a nanoscale tip. One of the most striking features in
AFM experiments is the observation of atomic lattice stick-
slip behavior, where the lateral force exhibits a sawtooth
form due to the sticking and subsequent rapid slip of the tip
at repeated intervals corresponding to the lattice spacing of
the crystalline sample [1].

Recently, Socoliuc et al. [2] observed with AFM the
existence of smooth sliding with no stick-slip when the
load was sufficiently low, and this corresponded with ex-
tremely low energy dissipation. As the load increased, a
transition occurred to stick-slip behavior. In this and almost
every other study, the periodicity is equal to one lattice
spacing of the sample, and so we identify this regime as
‘‘single slip.’’ However, Johnson and Woodhouse have
predicted that under certain conditions, slip may occur
over an integer number of lattice spacings [3]. This is
called a ‘‘multiple slip.’’ In fact, multiple slip was observed
in the original Letter reporting atomic lattice stick-slip by
Mate et al. [4], but has barely been discussed since.

Understanding transitions between different regimes of
atomic-scale friction provides insight into the origins of
friction, and may lead to the ability to control it. For
example, it would be desirable to reliably maintain the
ultralow dissipation observed in [2] to reduce energy dis-
sipation and wear in micro- and nanoelectromechanical
systems. Conversely, predictable stick-slip could be desir-
able for nanopositioning applications.

Idealized models have been extensively used by re-
searchers to study stick-slip friction behavior [2,5–7]. It
has long been established that the one-dimensional
Tomlinson model for sliding of an elastically compliant
system in a periodic potential [8] predicts an analytical
condition for transition between smooth sliding and single-
slip regimes [7]. However, there have been few attempts to
specifically address the multiple slip regime, or the con-
ditions that govern the transitions between different re-
gimes of multiple slip. The notable study by Woodhouse

and Johnson [3] identified the relationships between the
lateral (i.e., torsional) cantilever stiffness, the lateral stiff-
ness of the elastically deformed contact itself, and the
corrugation of the lateral force interaction, as the key
parameters controlling the transition to multiple slips. An
adjustable damping factor is included which represents the
dynamic energy dissipation in the tip or sample materials,
or in the cantilever itself. The transition from single-to-
double slips occurs when high-frequency fluctuations in
the lateral force triggered by the slip instability overshoot
the corrugated lateral tip-sample interaction force. The
possibility of overshoot reduces with increased damping.
Recently, two further studies addressed the issue of mul-
tiple slips in atomic-scale friction. The first [9] investigated
transitions between single and double slip modes and its
dependence on damping, sliding velocity, and finite tem-
perature by means of dynamical simulations. The other
[10] dealt with the issues of the complex dynamics in
atomic-scale friction, but also considered a quasistatic
limit and transitions between multiple slip modes by solv-
ing the equation of motion numerically. However, despite
this recent progress, a general analytical solution and
experimental verification of transitions between the differ-
ent slip regimes, especially for multiple slips, is still lack-
ing, even for the simple case of the one-dimensional
Tomlinson model in the quasistatic limit. We present this
solution here, and compare with the first systematic ex-
perimental observations of the transition to multiple slips.

In this work, we examine the quasistatic energy land-
scape to develop a picture that describes the necessary
conditions for various stick-slip mode transitions to occur.
This governs not only the possibility of smooth-to-single
[2,7] or the single-to-double [3,9] slip transitions, but
transitions between all the possible modes, including the
multiple slips of arbitrary integer slip values. The analysis
is performed for the one-dimensional Tomlinson model.
Conditions for the existence of different regimes of slip are
derived based on the number of metastable states of the
system. A transition from smooth sliding to stick-slip
friction is intrinsic to this general solution as a special
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case. Since we are examining the system statically, the
transitions we discuss represent possible transitions. The
behavior in a dynamic system will depend on the damping,
the cantilever resonance frequency, the sliding speed, and
the characteristic elastic velocity of the materials. The
point of our analysis is to show that even before such
dynamic aspects are considered, the energy landscape
itself forbids specific regimes of slip in a manner that
depends upon the load, cantilever stiffness, and the corru-
gation of the interfacial potential.

The monatomic tip scanning over the one-dimensional
atomic chain [Fig. 1(a)] experiences a force due to the
displacement applied to the spring base, which is coupled
to the tip through the elastic spring of stiffness k. The
spring represents the torsional stiffness of the AFM canti-
lever, and could also include the lateral stiffness of the tip
structure and of the contact itself. The system is charac-
terized by the following potential energy:

 V � Vlat � Vspr � �
E0

2
cos

�
2�
a
xtip

�
�

1

2
k�xtip � xspr�

2;

(1)

where E0 is the amplitude, a is the periodicity, xtip is the
position of the tip, and xspr is the equilibrium position of
the spring. In (1), the total potential energy consists of two
parts: Vlat represents the tip-substrate interaction, and Vspr

is the linear elastic interaction between the tip and the
spring. The equation of force equilibrium for the tip is
@V=@xtip � 0, thus:

 

E0�
a

sin
�
2�
a
xtip

�
� �k�xtip � xspr�: (2)

In (2), the left-hand side represents the lateral force, Flat,
acting on the tip due to the tip-substrate interaction, and the
right-hand side represents the force due to the spring, Fspr.
Thus, (2) can be rewritten as Flat � Fspr.

As shown in Fig. 1(b), slip occurs when Fspr is tangent to
Flat. This corresponds to the changeover from locally
stable (@2V=@x2

tip > 0) to unstable (@2V=@x2
tip � 0) states.

The whole process can be described as follows: as the
spring base is moved in the �x direction, the intersection
point between Flat and Fspr moves smoothly along the Flat

curve, which corresponds to the ‘‘sticking’’ stage. The
system is in a local energy minimum. However, smooth
movement cannot continue when Fspr becomes tangent to
Flat. The local equilibrium point changes to a point of
unstable equilibrium. At this moment, the second deriva-
tive of the total energy is equal to zero (inflection point),
and the tip slips to another available locally stable position.
However, since a whole range of metastable states may be
available, the ‘‘slipping’’ tip may skip one or several stable
positions before it finally ‘‘sticks’’ to one particular equi-
librium state. If the latter happens, we say that a multiple
slip occurs. Where it comes to rest will be a function of the
dynamics of the system, including the dissipation during
sliding (with no dissipation, the tip would vibrate about the
central spring position indefinitely). Depending on the
number of possible metastable states, sliding may be clas-
sified into three categories: (1) smooth sliding (no stick-
slip), (2) single-slip stick-slip, and (3) multiple slips. In the
following, we investigate the number of possible meta-
stable states of the system and derive conditions for tran-
sitions between different regimes.

The state of the system at the slip point is illustrated in
Fig. 1(b), where several different positions of the spring
base, corresponding to different values of the spring stiff-
ness k, are considered. The number of intersection points
between Flat and Fspr depends on the inclination of the
spring force, k, and changes at critical values k � ki that
correspond to the spring forces Fi � ki�xspr � xtip�.
Obviously, the number of solutions to the equilibrium
equation changes only when the spring base is located in
two types of positions: xspr � an and xspr � a�n� 1=2�,
n � 0; 1; 2; . . . . We consider the two cases by fixing the
spring base at xspr � 0 and assuming the tip position is a
variable, xtip � x, as follows. For the case xspr � an, we
assume n � 0 and adopting notations A � E0�=a, � �
2�=a rewrite (2) as A sin��x� � �kx. For the case xspr �

a�n� 1=2� we assume n � 0 and shift the interaction
force by half a period, which first gives A sin���x� a

2�� �

�kx, and after simple algebraic manipulations, we find that
A sin��x� � kx. The two cases can be combined into one
equation:

 A sin��x� � 	kx; (3)

where the spring stiffness k is assumed to be positive.
Depending on the values of A, �, and k, (3) can have

different numbers of solutions, which always include the
trivial solution, x � 0, corresponding to the global mini-
mum of potential energy in the case of a very stiff spring.

k displacement

X
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Vlat
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tangent at slip point
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FIG. 1. (a) System configuration and periodic potential field.
(b) Tip-substrate interaction force Flat and spring forces Fi (i �
1; . . . ; 4) corresponding to the critical stiffness values.
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Now we find nontrivial solutions of (3). Denoting k0 �
k=��A� and z � �x, we rewrite (3) as:

 

sin�z�
z
� 	k0: (4)

The function sin�z�
z is equal to the spherical Bessel func-

tion of the first kind, j0�z�, which is shown in Fig. 2. It has
zeros at z � �l, l � 	1;	2; . . . and is equal to 1 at z � 0.
To investigate the number of solutions to (4), we have to
examine the extrema of j0�z�. No simple analytic relations
exist for the zeros of the derivatives of the functions jn�z�.
However, representation in the form of McMahon’s series
expansion can be derived for the sth positive zero of j00�z�
(z � 0 counted as the first zero):

 zs � �� ��1 �
2

3
��3 �

32

5
4438�8���5 � . . . ; (5)

where � � ��s� 1
2�. The first five values k0i � j0�zi�, i �

1; . . . ; 5 are 1.0, 0.2172, 0.1284, 0.0913, 0.0709.
Returning to our initial notation, we find:

 ki �
2E0�2

a2 k0i: (6)

Figure 3 illustrates the energy landscapes corresponding
to the first five critical stiffness values ki, i � 1; . . . ; 5. In
each case (except for k1), there are i� 1 local minima
corresponding to the stable equilibrium states of the system

and 2 inflection points corresponding to unstable equilib-
rium states. The system will slip from the unstable equi-
librium on the left and will have i possible destinations to
stick to. Thus, the spring stiffnesses ki correspond to the
critical values where the total number of possible slip
destinations changes from i� 1 to i.

Among the critical stiffness values determined by (6),
the first, k1 � 2E0�2=a2, is an important special case
where a transition occurs from only one energy minimum
at k > k1 (a global minimum) to two local minima at k <
k1. Physically this means a possible transition from smooth
sliding to a single-slip stick-slip regime. Introducing the
parameter � � 2E0�

2=ka2, the tip movement is smooth
when�< 1 and exhibits stick-slip when�> 1. This result
was presented previously [2,7]. However, here we demon-
strate that it is an integral part of a more general solution
(6) which describes possible transitions between all multi-
ples of slips. Introducing the parameter �i � 1=k0i, transi-
tions between stick-slip modes of different multiplicity can
occur at � � �i. This is a necessary but not sufficient
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condition to observe multiple slips, since the dynamics and
the damping will determine the observed slip multiplicity.

Figure 4 shows a ‘‘stick-slip opportunity map.’’ Here,
spring stiffness k and potential corrugation E0 are used as
coordinate axes. Lines k � ki�E0� given by (6) divide the
whole space into areas where different types of atomic-
scale friction have the possibility to exist: smooth sliding
(no stick-slip), regular stick-slip (single slip), and multiple
slips (double slips, triple slips, and so on). Figure 4 repre-
sents the maximum number of lattice sites that the tip can
slip by. If the amount of damping is high, then even in a
configuration where multiple slips are possible, the tip may
only slip to the next local minimum, because damping
prevents it from going further.

Figure 5 shows a similar map obtained from experimen-
tal observations using AFM, which are described in more
detail in [11]. Here, the abscissa corresponds to the applied
normal load instead of potential corrugation E0 (Fig. 4).
While the dependence of the potential corrugation on the
load has not been measured, they are expected to be
correlated and in fact were observed to be nearly linearly
related in one case [2]. Our analysis indicates that indeed,
for the data shown in Fig. 5, the potential corrugation
increases with load.

The experiments were performed in air on the (0001)
surface of a highly oriented pyrolitic graphite sample using
Si AFM tips (Mikromasch USA) with a range of lateral and
normal stiffnesses. These stiffnesses [12] and the friction
calibration factor [13] were obtained experimentally. For
each cantilever, friction was measured at different loads
and classified according to the friction regime observed
(Fig. 6). A close qualitative agreement between predictions
and experimental results is apparent. It is not obvious that
multiple slips should occur with increasing load. If con-
tinuum mechanics is valid at this scale, then increased load
increases the lateral contact stiffness [14]. This increases
the total stiffness of the system, k, moving the system

vertically on the map of Fig. 4, inhibiting multiple slips.
The fact that transitions to more slips with increasing load
are repeatedly observed demonstrates that any increase in
total lateral stiffness is more than compensated for by the
increased corrugation of the potential that occurs with
increasing load.

The observation of multiple slips in the experiment
indicates that we are not in a regime of high damping,
which would restrict the stick-slip motion to the single-slip
regime. A detailed examination of the damping present
will be discussed separately [11].

The dynamic effects ignored in our theoretical analysis
and the complex, uncertain atomic structure of the tip
make quantitative comparison with experiments difficult.
However, the strong qualitative agreement suggests that
despite the model’s simplicity, conclusions drawn here
may be applicable to other real systems.
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