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Abstract

Our goal is to develop a compositional real-time
scheduling framevork so that global (system-leel) tim-
ing propertiescan be establishedby composingindepen-
dently(specifiecand)analyzedocal (component-leel)tim-
ing properties. The two essentialproblemsin developing
sud a framevork are (1) to abstmact the collective real-
timerequirrmentsf a componenas a singlereal-timere-
guirementand (2) to composehe componentiemandab-
stractionresultsinto thesystem-leelreal-timerequirement.
In our earlier work, we addressedhe problemsusing the
Liu and Laylandperiodicmodel. In this paper we address
the problemsusinganotherwell-knownmodel,a bounded-
delayresouce partition model,as a solutionmodelto the
problems. To extendour framevork to this model,we de-
velop an exact feasibility conditionfor a setof bounded-
delaytasksovera bounded-delayesoucepartition. In ad-
dition, we presentsimulationresultsto evaluatethe over-
headsthatthe componentiemandabstractionresultsincur
in termsof utilization increase We also presentnew uti-
lization boundresultson a bounded-delayesouce model.

1 Intr oduction

Componenttechnologyhasbeenwidely acceptedas a
methodologyfor designinglarge complec systemshrough
systemati@bstractiorandcomposition.Component-based
designprovides a meansfor decomposinga systeminto
componentsallowing thereductionof asinglecomple de-
sign probleminto multiple simpler designproblems,and
composingcomponentsnto a systemthroughcomponent
interfacesthat abstractand hide their internal complexity.
Component-basedesignalsofacilitatesthe reuseof com-
ponentsthat may have beendevelopedin different ervi-
ronments.A centralideain component-basedesignis to
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CCR-0086147NSFCCR-0209024andARO DAAD19-01-1-0473.

assemblecomponentsnto a systemwithout violating the
principle of compositionalitysuchthat propertiesghat have
beenrestablishe@tthecomponentevel alsohold atthe sys-
temlevel. To presere compositionality the propertiesat
the systemlevel needto abstracthe collective propertiesat
thecomponentevel.

Real-timesystemscould benefitfrom component-based
design,only if componentganbe assembledvithout vio-
lating compositionalityontiming properties Whenthetim-
ing propertief componentganbeanalyzecdcomposition-
ally, component-baseeal-timesystemsallow components
to be developedandvalidatedindependenthyandto be as-
sembledogethemwithout globalvalidation.In thereal-time
systemsresearchhowever, therehasbeenlittle attention
to the problemof supportingcompositionalitywith timing
properties. Therehasbeena growing attentionto hierar
chical schedulingramevorkswherecomponentgapplica-
tions)form ahierarchy{4, 7,10, 5, 15, 16, 11, 17, 1]. Many
studies[4, 7, 10, 5, 15, 16] introducedmethodsto analyze
theschedulabilityof acomponenin ahierarchicakchedul-
ing framawork, but did not addresghe issuesof synthesiz-
ing the timing propertiesof a component.Recently a few
studieg[11, 17, 1] beganto addresghe problemof analyz-
ing thetiming propertief componentgompositionally

Our primary goal is to develop a compositionalreal-
time schedulingframavork where global (system-leel)
timing propertiesare establishedby composingtogether
independently(specifiedand) analyzedocal (component-
level) timing properties. To develop such a framework,
the following two problemsneedto be addressed(1) The
schedulingcomponenabstractionproblemisto analyzethe
timing propertyof a componenindependently We define
this problemasabstractinghe collective real-timerequire-
mentsof a componentas a single real-time requirement,
calledschedulinginterface Ideally, the singlerequirement
is satisfied,if and only if, the collective requirementof
thecomponenaresatisfied.(2) The schedulingcomponent
compositiorproblemis to composendependentlanalyzed
localtiming propertiesnto aglobaltiming property We de-
fine this problemascomposinghe schedulingnterfacesof



componentssa singlereal-timerequirement.ldeally, the
singlereal-timerequirements satisfied,if andonly if, the
setof componentss satisfied.

In a compositionareal-timeschedulingframework, the
major issueis how to definea schedulinginterfacemodel
in orderto specifythe collective real-timerequirementof
a component.In our earlierwork [17], we shaved thata
compositionalreal-time schedulingframework canbe de-
velopedby usingthe Liu andLaylandperiodicmodel[12]
asaschedulingnterfacemodel. We addressethe schedul-
ing componengbstractiorproblemby abstractinga setof
periodictasksunderEDF or RM schedulingasasingleperi-
odic task. Whena componengexportsits periodicschedul-
ing interfaceto the system,the systemcan thus treat the
componenisa single periodictask. Using the sametech-
nigue, we addressedhe schedulingcomponentcomposi-
tion problem by composinga set of periodic scheduling
interfacesunderEDF or RM schedulingassingle periodic
schedulingnterface.

In this paper we consideranotherschedulinginterface
modelfor a compositionateal-timeschedulingramework.
Mok etal. [13] introducedabounded-delayresourceparti-
tion) model®(«, A) to specifya partition of atime-shared
resourceTo usethebounded-delaynodeltogethemwith the
periodicmodelas schedulinginterfacemodels,we should
be ableto addresshe problemof abstractinga setof pe-
riodic and bounded-delaytasksinto a single periodic or
bounded-delayask. With the known resultson periodic
tasks[17], we areableto addresghe problemof abstract-
ing a setof periodictasksunderEDF or RM schedulingas
a single periodicor bounded-delayask. For the problem
of abstractinga setof bounded-delayasksasa singleperi-
odic or bounded-delayask,a possibleapproachis to trans-
form a bounded-delayaskinto a periodictaskandthento
useknown resultson periodictasks. However, this trans-
formationinherentlyaddsmore resourcedemands.There
has beenno known resultson bounded-delaytasks that
canbe usedto addresssuchan abstractionproblemwith-
out transforminga bounded-delayaskinto a periodictask.
We thus develop an exact feasibility condition that deter
mineswhetheror not there exists a schedulingalgorithm
to schedulea setof bounded-delayasksover a bounded-
delayresourcepartition. With this new result,we show that
acompositionateal-timeschedulingrameavork canbede-
velopedusingthe bounded-delaynodel.

This paper also includes new results on utilization
boundsandabstractioroverheacevaluations.In our earlier
work [17], we proposed periodicresourcenodell'(I1, ©)
to specify a periodic behaior of a time-sharedresource
allocationand presentedts utilization boundsunderEDF
andRM scheduling.Therehave beenno known utilization
boundsof abounded-delayesourceartitionmodel. In this
paperwe presenutilization boundsof abounded-delaye-

sourceunderEDF and RM scheduling. For a solutionto
the schedulingcomponentabstractionproblem, we found
that the solutionrequiresa more resourceutilization than
theresourcautilizationsthatarerequiredby the tasksetof
a component.We evaluatethe overheadghat the solution
incursin termsof utilizationincreasehroughsimulation.

The rest of this paperis organizedas follows: Sec-
tion 2 provides an overview of our compositionalframe-
work, systemmodels,and problem statement. Section3
briefly reviews a bounded-delayesourcemodel,and Sec-
tion 4 presentgonditionsunderwhich theschedulabilityof
a componentan be exactly analyzed. Section5 presents
utilization boundsof the bounded-delayesourcemodel.
Section6 addressethe schedulingcomponentbstraction
problemandexploresthe abstractioroverheads Section7
presentgelatedwork. Finally, we concludein Section8
with discussioron futureresearch.

2. Compositional Framework and Problem
Statement

Ourgoalisto developacompositionafteal-timeschedul-
ing framework. In this section,we definea compositional
real-timeschedulingproblemandidentify issueshat need
be addressedby a solution. We also provide our system
modelsandproblemstatement.

2.1 Compositional Framework Overview

Schedulings to assigrresourcegccordingo aschedul-
ing algorithm in order to service workloads. We use
the term schedulingcomponento meanthe basicunit of
schedulinganddefinea schedulinggomponent asatriple
(W, R, A), whereW describegshe workloads(of applica-
tions) supportedin the schedulingcomponent,R is a re-
sourcemodelthat describeghe resourceallocationsavail-
ableto the schedulingcomponentand A is a scheduling
algorithmwhich describediow the workloadssharethe re-
sourcesatall times. A resourceR is saidto bededicatedf
it is exclusively availableto a singleschedulingcomponent,
or shared otherwise We describea hierarchical scheduling
framevork, whereschedulingcomponent$orm a hierarchy
andaresourcss allocatedfrom a parentcomponento its
child componentsén the hierarchy

We definethe schedulabilityof a schedulingcomponent
C(W, R, A), afterdefiningsomenecessaryerms. There-
sourcedemandf aschedulinggomponent' (W, R, A) rep-
resentghe collective resourcerequirementghat its work-
load set W requestsunder its schedulingalgorithm A.
The demandboundfunctiondbf 4 (W, ¢,4) of acomponent
C(W, R, A) calculategshe maximumpossibleresourcede-
mandsthat W requestgo satisfy the timing requirements



of taski underA within atime interval of lengtht. There-
souice supplyof aresourcamodel R representtheamount
of resourceallocationsthat R provides. The supplybound
functionsbf g (¢) of R calculategheminimumpossiblere-
sourcesuppliesthat R provides during a time interval of

lengtht. A resourcemodel R is saidto satisfya resource
demandof W underA if dbf 4(W,t,1) < sbfg(t) for all

taski € W andfor all interval lengtht. We now define
the schedulabilityof a schedulingcomponengsfollows: a
schedulingcomponentC (W, R, A) is saidto be schedula-
ble, if andonly if, the minimum resourcesupplyof R can
satisfythe maximumresourcedlemandf W underA, i.e.,

Vie WVt dbfa(W,t,i) < sbfg(t). (1)

It shouldbe notedthat we considerthe schedulability
conditionin Eqg. (1) assufficient and necessary We be-
lieve this is a reasonablevay to extend the principle of
the traditional schedulabilitydefinition. The traditional
exact schedulabilityconditionssuch as the Liu and Lay-
land’s EDF schedulabilitycondition[12] have beendevel-
opedfor a situationwhereeachtaskwill requesthe maxi-
mum (worst-casejesourcalemandevery case(with acon-
stantresourcesupply), even thoughthere may be a task
thatactuallycompletesvithoutconsumingts maximumre-
sourcedemand.Following this reasoningwe statethe ex-
actschedulabilityconditionunderthe assumptiorthata re-
sourceprovidesits minimum (worst-casefesourcesupply
even thoughthe resourcemay actually provide more than
its minimumin somecases.

We definea (scheduling) componentabstaction prob-
lem as abstractingthe collective real-time requirements
of a componentas a single real-timerequirement,called
schedulinginterface without revealing the internal struc-
ture of the component,e.g., the numberof tasksand its
schedulingalgorithm. We formulate the problem as fol-
lows: givena workloadsetW anda schedulingalgorithm
A suchthat C(W, Rp, A) is schedulablewhere Rp is a
dedicatedresource,the problemis to find an “optimal”
sharedresourcemodel R suchthat a schedulingcompo-
nentC(W, R, A) is schedulable.Here, the solution R is
calledtheschedulingnterfaceof theschedulingcomponent
C. Theoptimality overaresourcenodelcanbedetermined
with respecto variouscriteriasuchasminimizing resource
capacityrequirementsndminimizing context switch over-
headslt is desirablghattheresourcecapacityrequirement
Ur of aschedulingnterfaceR is equalto thetotal resource
utilization Uy, of aworkloadsetW. However, Uy canbe
largerthanUy,. We definea (scheduling)componentb-
stractionoverheadasUg /Uy — 1 to represenanormalized
resourcadtilizationincrease.

In a hierarchyof schedulingcomponentsa parentcom-
ponentprovides resourceallocationsto its child compo-
nents. Oncea child componentC; finds a schedulingin-

terface Ry, it exportsthe schedulingnterfaceto its parent
componentTheparentcomponentreatsthe schedulingn-
terface R, asasingleworkloadmodelT;. As long asthe
parentcomponentsatisfiesthe resourcerequirementsm-
posedby the singleworkloadmodelT}, the parentcompo-
nentis ableto satisfythe resourcedemandof a child com-
ponentC;. Thisschemenakesit possiblefor aparentcom-
ponentto supplyresourceso its child componentsvithout
controlling (or even knowing) how the child components
schedulaesourcegor their own tasks.

We definea (scheduling)componentompositionprob-
lem ascombiningmultiple schedulingnterfacesinto a sin-
gle schedulinginterfacewithout revealing the information
of the multiple schedulinginterfaces,e.g., the numberof
schedulinginterfacesand a schedulingalgorithm for the
multiple interfaces. We formulate the componentcom-
position problemas follows: given two schedulingcom-
ponentsC (W1, Ry, A;) and C(Ws, Ry, Ay) suchthat a
schedulingcomponentC (W, Rp, A) is schedulablewhere
W = {R;, R;} and Rp is adedicatedesourcethe prob-
lemistofind a“optimal” sharedesourcanodel R suchthat
aschedulingcomponenC (W, R, A) is schedulablewhere
W = {Ri,R>}. Sincewe formulatethe componentab-
stractionandcompositionproblemsthe sameway; it is de-
sirablethata solutionto thecomponengabstractiorproblem
be usedto solve the componentompositionproblem.

We definea compositionalreal-time schedulingframe-
work asa hierarchicalschedulingframework that supports
the schedulingcomponentabstractionsand compositions,
i.e., supportsabstractingthe collective real-time require-
mentsof a componentasa schedulinginterfaceand com-
posingindependenthanalyzedocal timing propertiesinto
aglobaltiming property

2.2 Compositional Framework Models

As a workloadmodelin our framework, we considera
periodictaskmodelT (p, e), wherep is aperiodande is an
executiontime requiremente < p). A taskutilization Ur
isdefinedase/p. ForaworkloadsetW = {T;}, aworkload
utilization Uy is definedasznew Ur,. Let Pp,;, denote
the smallestperiod in the workload setW, i.e., Py =
ming,ew {p; }. We assumehatall tasksin acomponenare
synchronousi.e., they releaseheir initial jobs atthe same
time. We also assumethat eachtaskis independentnd
preemptve.

As aschedulingalgorithm,we considettheearliestdead-
line first (EDF) algorithm, which is an optimal dynamic
schedulingalgorithm[12], andtheratemonotonic(RM) al-
gorithm,whichis anoptimalfixed-priorityschedulingalgo-
rithm [12].

As aresourcenodel,we considemtime-sharedesource
model. A resourcads saidto be partitionedif it is available
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Figure 1. Bounded-dela y model: example .

to aschedulingcomponengatsometimesatits full capacity
but not available at all at the othertimes. Thereare two
partitionedresourcemodels: a bounded-delayartitioned
model[13] anda periodicresourcanodel[17]. Ourgoalto
investigatehow to develop a compositionaframenork for
an arbitrarypartitionedmodel. Sofar, we have considered
thesetwo partitionedresourcemodels:the periodicmodel
in [17] andthe bounded-delaynodelin this paper

In summarythe problemsthatwe addressn this paper
areasfollows:

e We extendour compositionalframework by addinga
bounded-delaymodel ®(«, A)[13]. For this exten-
sion, we develop an exact feasibility conditionto de-
termineif a setof bounded-delayvorkload modelsis
feasibleoverabounded-delayesource.

e In our earlierwork [17], we presentedhe utilization
boundsof a periodic resourcemodel I'(II, ©) under
EDFandRM schedulingln thispaperwedeveloputi-
lization boundsof a bounded-delayesource®(a, A)
underEDF andRM scheduling.

e Weevaluatethroughsimulationgheoverheadshatthe
solutionincursin termsof utilization increase.

3 Bounded-DelayResource Model

To be able to analyzethe schedulabilityof a schedul-
ing componentindependendf its context, it is necessary
to calculatethe resourcesupplyprovidedto the scheduling
component.A resourcemodelis to specify suchresource
allocationsto a schedulingcomponengndto calculatethe
resourcesupplyto thecomponentin thissectionwe briefly
review a bounded-delayesourcamodel[13] andprovide a
new supplyboundfunctionfor an extendedbounded-delay
resourcanodel.

Mok etal.[13] introducedabounded-delayesourcepar
tition model ®(a, A), wherea is an available factor (re-
sourcecapacity)(0 < a < 1) and A is a partition delay

resource supply

kQt ~
sbfm(t)
- sbf (1)
(k-1)Q|
Q,,
L . i } time

GOA G GG GaQ f f (4
Figure 2. Extended bounded-dela y model
with scheduling quantum: supply bound
function.

bound(0 < A). Thisbounded-delaynodel®(a, A) is de-
finedto characterizeéhefollowing property:

Vi1 Vo>t Vd<A
(tg — 1 — d)a < supplyq) (t1,t2) < (t2 — 11 + d)a

Figurel shavs abounded-delayesourceexample.

For abounded-delaynodel®, its supplyboundfunction
sbfg(t) is definedto computethe minimum resourcesup-
ply for everyinterval lengtht asfollows:

| at—A) if(t>A),
sbfa(t) = { 0 otherwise (2)

In preemptve schedulingpreemptionsnay occurat ar
bitrary time values. However, in discrete-timecomputing
devices, preemptiongnay only occur at specifieddiscrete
intervals. Consideringhereis aminimumdiscreteschedul-
ing interval, Feng and Mok [5] introducedan extended
bounded-delaynodel®(a, A, Q), whereQ is theminimum
schedulingguantum.

The supply bound function of an extendedbounded-
delaymodel®(a, A, Q) hasnotyetbeenintroduced.Thus,
we develop its supply boundfunction sbfs(¢) that com-
putesits minimumresourcesupplyfor everyinterval length
t asfollows:

eaty = { L D0

where

if t € [tr,tr + Ql,
if ¢ € [tz + Q:tl:-i-l])
3)

th =t — [—JQ 4)
suchthat

Q

th=(k=1)=+A, k=12... (5)

Figure 2 illustrateshow we definethe supply boundfunc-
tion sbf 3 (t).
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Figure 3. Example of solution space of a bounded-dela y scheduling interface model ®(a,A) for a
workload set W = {73(100,11),7>(150,22)} under EDF and RM scheduling.

4 Schedulability Analysis

An essentiatechniqueto solve the componentbstrac-
tion andcompositionproblemsis to analyzethe schedula-
bility of schedulingcomponents.in our earlierwork [17],
we presentedxactconditionsunderwhich the schedulabil-
ity of a schedulingcomponentcanbe analyzedwhenthe
componentonsistof asetof periodicworkloadsandape-
riodic resourcewith the EDF or RM schedulingalgorithm.
In this section,we extend our initial resultsto include a
bounded-delayesourceanodelandaddressheissuedn in-
cludinga bounded-delayvorkloadmodel.

4.1 Periodic Workload Model

In our earlier work [17], we developedschedulability
conditionsfor a periodicworkloadmodelanda periodicre-
sourcemodel underEDF and RM scheduling. Now, we
generalizethe schedulabilityconditionsso that it can be
usedfor ary partitionedresourcanodel,suchasabounded-
delay resourcemodel, aslong as the resourcemodel can
calculateits supplyboundfunctionaccurately

For aperiodictasksetW underEDF schedulingBaruah
etal. [2] proposech demandboundfunctionthatcomputes
thetotal resourcedlemandibfepe (W, t) of W for everyin-
tenal lengtht:

dbfepr(W,t) = Z ([t — DZJ + 1) - €;. (6)

T;ew Di

We presenthefollowing corollaryto their resultto pro-
vide an exact conditionunderwhich the schedulabilityof
acomponenC (W, R, EDF) canbe analyzedor ary parti-
tionedresourcanmodelR.

Corollary 1 A componentC(W, R, A) is scedulable
whee A = EDF, if andonlyif
V0 <t<2-LCMw + Doy dbfepr(W,t) < sbfg(t),
whee LC My, is the leastcommonmultiple of p; for all

T; € W and D,,,,. is the maximumrelative deadlineD;
forall T; € W.

Proof. This corollary simply follows from Theoreml in
[17] andcanbe easily provenby generalizingthe proof of
Theoreml in [17]. |

As an example, let us considera workload setW =
{T1(100,11),T>(150,22)} and a scheduling algorithm
A = EDF. The workload utilization Uy is 0.26. With
a bounded-delayesourcemodel ®(a, A), we now con-
sideraschedulingcomponentC' (W, @, EDF). For theprob-
lem of guaranteeinghe schedulabilityof the component
C(W, &, EDF), asolutionspaceof ®(«a, A) is shovn asthe
grayareain Figure3(a). Thatis, for instancewhena = 0.4
andA = 60, the schedulingcomponentC(W, &, EDF) is
schedulable.We obtainsucha solutionspaceof ®(a, A)
by computingthe minimumresourcecapacitylU; whenthe
boundedielayA is 1,10, 20,..., 100,usingCorollary1.

For a periodic task set W under RM scheduling,
Lehoczky et al. [8] proposeda demandbound function
dbfrm(W, t, ) thatcomputeghe total resourcedemandof
ataskT; for aninterval of lengtht:

t

dbfrm(W,t,i) =e;+ D [—W - ex,
Ty, EHPwy (1) Pk

whereHPy (i) is asetof higherpriority tasksthanT; in W.



For ataskT; over a resourcemodel R, the worst-case
respons¢imer;(R) of T; canbecomputedasfollows:

r;(R) = min{t} suchthat dbfrm(W,t,7) < sbfg(t).
We presentthe following corollary to provide an exact

condition underwhich the schedulabilityof a component

C(W, R,RM) canbeanalyzedor ary partitionedresource

modelR.

Corollary 2 A componentC(W, R, A) is scedulable
where A = RM, if andonly if

VT; €W 0<t<p; dbfrm(W,t,i) < sbfg(t).

Proof. This corollary simply follows from Theorem2 in
[17] andcanbe easily provenby generalizingthe proof of
Theorem2 in [17]. O

As an example, we considera schedulingcomponent
C(W, R, A), whereW = {T7(100,11),7>(150,22)}, R =
®(a,A), and A = RM. A solutionspaceof a bounded-
delayresourcemodel ®(a, A) to guaranteehe schedula-
bility of the componentC (W, R, A) is shavn asthe gray
areain Figure3(b). Thatis, for instancewhena = 0.4 and
A = 30, the componentC(W, R, A) is schedulable.We
obtainsucha solutionspaceof ®(a, A) by computingthe
minimumresourcecapacitylUz whentheboundeddelayA
is1,10,20,...,100,usingCorollary2.

4.2 Bounded-DelayWorkload Model

In this paper we considera compositionalreal-time
schedulingramework with a bounded-delaynodel. To de-
velopsuchaframeawork with thebounded-delaynodel,we
essentiallyneedto develop a schedulabilityconditionfor a
bounded-delayvorkload model asto addresghe compo-
nentabstractiomproblemwith the bounded-delayorkload
model. In this section,we considerthe issuesof analyzing
the schedulabilitywith the bounded-delayvorkloadmodel
and presentan exact feasibility condition for a schedul-
ing componenthatconsistof thebounded-delayorkload
modelanda partitionedresourcemodelsuchasa periodic
or bounded-delayesourcenodel.

Fengand Mok [5] presenteda condition underwhich
the schedulabilityof a componentanbe suficiently ana-
lyzedunderEDF andRM schedulingwhenthecomponent
hasa setof bounded-delayorkloadsanda bounded-delay
resource.Their schedulabilitytechniquesareto transform
eachbounded-delayvorkloadmodelinto a periodicwork-
load model and then to analyzethe schedulabilityunder
EDF and RM scheduling. Following this transformation,
we canuseCorollary1 and2 for the schedulabilityanalysis
of acomponenthat consistsof a bounded-delayvorkload
model. However, transforminga bounded-delayvorkload

periodic workload /

[o-)

............ bounded-delay workload

resource demand
EN

4 8 12 16 20

Figure 4. The resour ce demand compare of a
bounded-dela y workload ®(a,A), where a =
0.5and A = 4, and a periodic workload T'(p,e),
where p=_8and e = 4.

modelinto a periodicworkloadmodelessentiallyincreases
aresourcalemandwhichwe now explainin detail.

Feng and Mok [5] defined a bounded-delaymodel
®(a, A) to representesourceallocationsthat guarantees
atleasta - L unitsof resourceallocationsin ary interval of
lengthL + A for ary valueof L, i.e.,demands (L + A) >
a - L. Fromtheir definition, we cansimply obtainthe de-
mandboundfunction dbf(®, t) of ®(a, A) thatcalculates
the minimum acceptableesourcedemandfor an interval
lengtht asfollows:

dbf(®,t) = a(t — A) < demands(t). (7

For a periodic workload model T'(p,e), its demand
boundfunctiondbf(®, ¢t) canbedefinedasfollows:

dbt(T,t) = { ’ék— _k%)e— e)

if t € [kp — e, kp],
otherwise

wherek = max([t/p],1). To safelytransformabounded-
delay workload model ®(a, A) into a periodic workload
T(p, e) while preservingthe resourcedemandof ®(a, A),

we needto ensurethatdbf(®,t) < dbf(T,t) for all t. For

instancepneway to safelytransform®(a, A) to T'(p, e) is

givenin [13] asfollows:

Figure 4 shows that the resourcedemandof a periodic
workload modelcannotbe inherentlyidenticalto that of a
bounded-delaynodel, but is supposede higherto ensure
a safetransformation. Thus, we can seethat sucha safe
transformatioressentiallyincreases resourcedlemand.
We now considerthe issueof analyzingthe schedula-
bility of a schedulingcomponentwithout transforminga



bounded-delayworkload model into a periodic workload
model. There has beenno known schedulingalgorithm
that can directly handlebounded-delayvorkloads. Thus,
we hereconsiderthe problemof analyzingthe feasibility
of aschedulingcomponenthatconsistof abounded-delay
workloadmodel. Sincewe considerdiscrete-timecomput-
ing devices,we developanexactfeasibility conditionfor an
extendedbounded-delayvorkloadmodel ®(a, A, Q) with
schedulingquantumg@).

We notethatthe demandboundfunction dbf(®, t) of a
bounded-delayesourcanodel® in Eqg. (7) is equivalentto
its supplyboundfunctionsbfg(t) in Eq. (2). We applythe
sametechniquethat we usedin definingthe supply bound
function sbf z(t) of an extendedbounded-delayesource
model @, to defineits demandboundfunction dbf (®, ).
Then,we have the demandboundfunctiondbf (®, ¢) of an
extendedbounded-delayesourcenodel®(a, A, Q) asfol-
lows:

dbf((i),t):{ Zjéz+<k—1).c2

wheret}, is definedin Eq. (4) and(5).

Now, we presentthe following theoremto introduce
an exact feasibility condition for a componentthat has
a bounded-delayvorkload set and an extendedbounded-
delayresourcamodelwith schedulingquantume).

if t € [ty,tx + Q]
iftefty +Q,t5, ]
(8)

Theorem3 A componentC(W, R, A) is feasible whee
W ={®;(a;, A;, @)}, 1 <i<m,andR = ®(a, A, Q), if
andonlyif

vt >0 i dbf(®;,1) < sbfz(t). 9)

i=1

Proof. We first consider a real-time job J(o,e,d),
where o is an absolutereleasedtime, e is an execution
time requirement,and d is an absolutedeadline. We
then constructa mapping from an extended bounded-
delay workload éi(ai,Ai,Q) to a set of real-time jobs
{Ji.k(0i ks €ik,dik)} suchthatanindividualjob Ji 1, corre-
spondsto the k-th schedulingquantumof &;, k = 1,2, ...
Thatis, whena job J; ;, is scheduleda workload ®; re-
ceivesits k-th schedulingquantumallocation. Then, we
canconsiderthatthejob J; ,, hasareleasdime of 0, anex-
ecutiontime of (), andadeadlineof ¢t} , + @, Wheret*k is

the latesttime instantt suchthatdbf(@,,t) = (k-1)Q.
We definesucha mappingsystematicallyasfollows:
k=0, eir =Q, andd; x =t + Q,

where

suchthat

tik = (k — l)aQ

+A;, k=1,2,....

We considerW’ = {J;x}, 1 <i<n, k=1,2,...
Then, the problemof determiningwhetherC (W, R, A) is
feasibleor not is now equialentto the problemof deter
mining whetherC'(W', R, A') is feasibleor not.

ConsiderA’ = EDF. Thedemandooundfunctionof an
individualjob J; ;, canbegivenasfollows:

0 if (t<dzk Q)
dbf (S, t) =< t— (dip — Q) if (dip —Q <t <dip),
Q if (t>dig)

Then,the demandboundfunction of a workloadsetWW'’
underEDF schedulings simply

n K

=D dbf(Ji,t

i=1 k=1

dbf (W', ¢

whereK = min{k|d; > t}.

We can simply determinewhether C(W', R, A") is
schedulabl®r not, accordingo Corollary 1.

Finally, we have thefollowing equationby the definition
of themappingfrom &; to {J; . }:

Zdbf ik t

whereK = min{k|d; , > t}. O

dbf (®;,¢) =

Examplel Let us consider a workload set W =
{®:1(1/3,4), ®2(1/4,6)} and a bounded-delayresouce
®(7/12,4). Accoding to Theoem 3, this examplecom-
ponentC(W, ®, A) is feasible

OnecanseethatTheorenB is applicableto any resource
model R, if the resourcemodel R can calculateits sup-
ply boundfunction accuratelysuchasa periodicresource
model.

5 Utilization Bounds

In this section, we considera schedulableutilization
bound of partitioned resourcemodels. This utilization
boundis particularly suited for on-line acceptancedests.
Whencheckingwhethera new periodictaskcanbe sched-
uled with existing tasks,computingthe utilization bound
takes a constantamountof time, much lessthanthe time
requiredto do an exact schedulabilityanalysisbasedon
a demandboundfunction. In our earlierwork [17], we



introducedthe utilization boundsof a periodic resource
modelI'(II, ©) underEDF andRM scheduling.However,

therehasbeenno known utilization boundsof a bounded-
delay resourcemodel &(a, A). In this section,we intro-

duceutilizationboundsor abounded-delayesourcanodel
P(a, A).

We note that Mok and Feng[14] presentedutilization
boundsof a partitionedresourcethatis characterizedy a
tuple(a, k), whereq is acapacityandk is atemporalrreg-
ularity®. For instancethey providedthe following theorem
for anEDF utilization boundof apartitionedresourcespec-
ified by (a, k).

[Theoren6 in [14]] A componenC (W, R, A) is

schedulablewhereW = {T;(pi,e;)}, A = EDF,

and R is a partitionedresourcewith the capacity
of a andthetempoal irr egularity of &, if

€
pi—k

< a.

T; W

We note that the utilization boundspresentedn [14], in-
cludingtheaborveone,arenotfor abounded-delayesource
model ®(a, A), since the temporalirregularity k£ is not
equalto a partition delaybound A. In this paper we de-
rive utilization boundsof a bounded-delayesourcemodel
®(a, A) underEDF andRM scheduling.

We presenthefollowing theoremto introducea utiliza-
tion boundof abounded-delayesourcemodel ®(«, A) for
asetof periodictasksunderEDF scheduling.

Theorem4 A component C(W, R, A) is schedulable
whee W = {T;(p;,ei)}, R = ®(a,A), and A = EDF,
if

Uw < Ot(].— A ),WheEPmin:%_nei%{pi}'

min
Proof. Due to the spacelimit, we referto [18] for a full
proof. O

We presentanothertheoremto introducea utilization
boundof a bounded-delayesourcemodel ®(a, A) for a
setof periodictasksunderRM scheduling.

Theorem5 A component C(W, R, A) is schedulable
whee W = {T;(pi,€;),-.-,Tn(Pn,en)}, R = ®(a, A),
andA = RM, if

Uw Sa(n(\"/i—l)—m)’

min

whee Py, = ming,cw {p;i}-

1We refer interestedreaderso [14] for the definition of the temporal
irregularity of k.

Utilization Bounds
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Figure 5. Utilization bounds of a bounded-
delay resour ce model ®(a,A), where a = 0.5,
as a function of k, where k = P,;,/A, under
EDF and RM scheduling

Proof. Due to the spacelimit, we referto [18] for a full
proof. m|

Figure 5 shavs how the utilization bounds of the
bounded-delayesourcenodelgrow with respecto £ under
EDF andRM schedulingwherek representshe relation-
shipbetweerthe delayboundA andthe smallestperiodin
thetasksetPpin, k = Pnin/A. It is shawvn in thefigure
thatask increasesthe utilization boundscorvergeto their
limits which area underEDF schedulingn Theorem4 and
log 2 - - underRM schedulingn Theoremb.

6 ComponentAbstraction

We formulated the schedulingcomponentabstraction
problemin Section2 as follows: given a workload set
W and a schedulingalgorithm A suchthat a scheduling
componentC(W, Rp, A) is schedulablewhere Rp is a
dedicatedresource,the problemis to find an “optimal”
resourcemodel (schedulinginterface model) R suchthat
C(W, R, A) is schedulable. We now illustrate how to ad-
dressthis problem. As anexample,let us considera work-
load setW = {T7(100,11),7>(150,22)}. We consider
a bounded-delaynodel ®(a, A) asa schedulinginterface
modelin this example. In addressinghe schedulingcom-
ponentabstractionproblemfor a componentC(W, &, A),
we canfind a solution ®(«, A) to this example problem,
usingCorollary 1 if A = EDF or Corollary2if A = RM.
In Figure3, thesolutionspace®f this exampleproblemare
shavn asgrayareasdependingon A = EDF or RM.

In orderto derivean“optimal” solutionfrom thesolution
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Figure 6. Scheduling component abstraction
overheads as a function of k£ under EDF and
RM scheduling, where k = P /A.

spacewe now definethe optimality criterion as minimiz-
ing the resourcecapacityrequirementof a solutionwhen
aresourceperiod boundis given? Thatis, givena work-
load setW, a schedulingalgorithm A, anda boundedde-
lay rangesuchasA € [Apin, Amaz] Suchthata schedul-
ing componentC(W, Rp, A) is schedulablethe problem
is to find a boundeddelay resourcemodel ®(«, A) such
thatC (W, @, A) is schedulableandUs is minimizedwhile
Ae [AminaAmaz]-

For a schedulingcomponentC(W, ®, A), we defineits
componengbstractioroverheadasUs /Uw — 1. We per
formedsimulationsto evaluatethe schedulingandabstrac-
tion overheadsFor simulationruns,we have usedthefol-
lowing settings:

o Workload Size (]W]) : The numberof tasksin the
workload. W is 2,4, 8,16, 32, 64, and128.

o Workload Utilization (Uyw) : The utilization of the
workloadW is0.1,0.2,...,0.7.

e TaskModel T'(p, e) : EachtaskT hasa periodp ran-
domlygeneratedh therange[5, 100]andanexecution
time e generatedn therange[1, 40].

e SchedulingAlgorithm (A) : A is EDF or RM.

e DelayBound(A): ThedelayboundA is determined
suchthat k¥ = 2,4,8,16,32, and 64, wherek =
Prin/A and Py, is the smallesttask period of a
workloadsetV.

20necanextendthe optimality criteria by consideringsomepractical
issuessuchasminimizing contet switch overheadsHowever, in this pa-
per, we do not considersuchadditionalissuesto focuson the main point
of our framevork concisely

Abstraction Overhead (k=4, n=8)
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Figure 7. Scheduling component abstraction
overheads as a function of workload utiliza-
tion under EDF and RM scheduling.

Eachpoint shovn in Figure 6, 7, and 8 representshe
meanof 500 simulationresultsunlessspecifiedotherwise.
The 95% confidencentervals for dataare within 1-5% of
themeansshowvnin thegraphs.

Figure 6 plots the componentabstractionoverheadsas
a function of &, which representshe relationshipbetween
A andPin, i€,k = Py /A, wheren = 8 andUy =
0.4. We canseethatthe componentbstractioroverheads
significantlydependon .

Figure7 plotsthe componengbstractioroverheadsasa
functionof workloadutilization,wherek = 4 andn = 8. It
is shavnin thefigurethatthe abstractioroverheads lower
underEDF schedulinghanunderRM scheduling.We can
seethattheworkloadutilizationis notasignificantfactorto
affecttheabstractioroverheads.

We also evaluatethe componentabstractionoverheads
with respectio the numberof tasksn. Figure8 shows the
componengbstractioroverheadsisa function of the num-
berof taskswherek = 4 andUy, = 0.4. As statedearlier,
eachpointin the graphis theresultof 500 simulationruns,
exceptwe performed200 simulationruns for the caseof
n = 128 underEDF scheduling.We canseethatthe com-
ponentabstractioroverheadslo notincreaseasthenumber
of tasksincreaseshut begin to decreasat somepoint.

The implicationsof our simulationresultsarethatfor a
bounded-delagchedulingnterfacemodel,its boundedde-
lay is mostcritical factorfor componentabstractionover-
heads,and the workload utilization doesnot have a rela-
tively considerablempacton the overheads.In addition,
we find thatthe bounded-delaynodelis a scalableschedul-
ing interfacemodelin termsof componenabstractiorover-
head.
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Figure 8. Scheduling component abstraction

overheads as a function of workload size un-
der EDF and RM scheduling.

7 RelatedWork

In thereal-timesystemgesearchthereis a growing at-
tentionto hierarchicalschedulingframeworks[4, 7, 10, 5,
15, 16, 11, 17, 1] thatsupporthierarchicakesourcesharing
underdifferentschedulingalgorithms.

Deng and Liu [4] introduceda two-level hierarchical
schedulingramework whereeachcomponentapplication)
canhave ary scheduleto scheduldts taskswhile the sys-
tem hasonly the EDF scheduletto schedulecomponents.
For sucha framework, Lipari and Baruah[10] presented
exactschedulabilityconditions assuminghesystensched-
uler hasknowledgeof thetask-level deadlineof eachcom-
ponent.Kuo andLi [7] shavedthatthe RM schedulercan
be usedas the systemscheduler only when all periodic
tasksacrosomponentsreharmonic.Noneof thesestudy
addressethe componentiemandabstractiorproblem.

Mok and Feng [13, 14, 5] proposeda partitioned
resource model for a hierarchical scheduling frame-
work.  Their bounded-delayresource partition model
Rp(Up, Dp) describesbehaior of apartitionedresource
with referenceto a fractional resourceRr(Up). Their
model can specify the real-time guaranteeghat a parent
componentprovides to its child componentswhile ary
schedulecanworkin theparenttomponenaswell asin the
child componentskor theirframeavork whereaparentcom-
ponentand their child componentsare cleanly separated,
they presented sufficient schedulabilitycondition. For a
casewherea child componenthasa fixed-priority sched-
uler, Saavongetal. [16] presentec schedulabilityanalysis
basedon the worst-caseesponsdime calculations.These
studiesdid not addresgshe componentdemandabstraction

problem.

Lipari andBini [11] andShinandLee[17] proposedn
parallela periodicresourcemodelfor a compositionahi-
erarchicalschedulingframawork. Their periodicresource
modeldescribesa behaior of a periodicresourceandcal-
culatesits minimum resourceallocations. For a hierarchi-
cal schedulingramevork whereeachcomponentanhave
ary schedulerthey presentedexact schedulabilitycondi-
tionssuchthata components schedulabléf andonly if its
maximumresourcelemands no greatethanthe minimum
resourcesupply given to the component Basedon this
schedulabilityanalysisthey bothconsideredheproblemof
composinghe collective real-timerequirement®f a com-
ponentinto a singlereal-timerequiremenby their periodic
resourcemodel. Almeida and Pedreiraq1] consideredan
issueof efficiently solvingthe componentbstractiorprob-
lem with a periodic schedulinginterfacemodel. This pa-
per extendstheseinitial studiesby clearly defininga com-
positionalschedulingframework, addinganotherschedul-
ing interfacemodel,andinvestigatingthe overheadgshata
schedulingnterfacemodelincursin termsof utilizationin-
crease.

RegehrandStanlovic [15] introducedanotherhierarchi-
cal schedulingframenork that considersvariouskinds of
real-timeguaranteesTheirwork focusedon corvertingone
kind of guarantego anotherkind of guaranteesuchthat
whenevertheformeris satisfiedthelatteris satisfied With
their corversionrules, the schedulabilityof the child com-
ponentis sufiiciently analyzedsuchthatit is schedulable
if its parentcomponenfprovidesreal-time guaranteeshat
canbe corvertedto the real-time guaranteehat the child
componentdemands. They assumedt is given the real-
time guaranteavhich a child componentdemandsnddid
notconsiderthe problemof deriving thereal-timedemands
from the child componentwhich we addressn this paper

8 Conclusion

In this paperwe definedthe problemsto developacom-
positional real-time schedulingframewnork and presented
our approachedo the problems. In addition to a peri-
odic model,we shavedthata bounded-delaynodelcanbe
usedas a schedulinginterfacemodel for a compositional
schedulingframework. We believe that a bounded-delay
workload modelcanbe usefulto modelnon-periodicreal-
time workloads whenwe have efficient schedulingnecha-
nismsto schedulghe bounded-delayorkloads.Thus,our
futurework is to developasimpleschedulingalgorithmthat
canefficiently scheduldoounded-delayvorkloads.

SLipari andBini presentedheir schedulabilityconditionasa sufficient
condition. However, we considerit as an exact condition basedon our
notionof schedulability



In this paper we considerschedulinginterface models
for hard real-time component-basedystems. Our future
work includesextendingour framework for soft real-time
component-basedystems. This raisesthe issuesof de-
velopingsoft real-timemodelsfor componentdemandab-
stractionproblems. Soft real-timetaskmodelssuchasthe
(m, k)-firm deadlinemodel [6] andthe weakly hard task
model[3] canbe usefulto developcomponentdemandab-
stractionmodelsfor compositionalsoft real-timeschedul-
ing framework. In this paper we assumehat eachtaskis
independentHowever, tasksmay interactwith eachother
through communicationsand synchronizations. We also
considerextendingour framework to dealwith thisissue.
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