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Abstract
Polymersomes are self-assembled polymer shells composed of block copolymer am-
phiphiles. These synthetic amphiphiles have amphiphilicity similar to lipids, but they
have much larger molecular weights, so for this reason—along with others reviewed
here—comparisons of polymersomes with viral capsids composed of large polypep-
tide chains are highly appropriate. We summarize the wide range of polymers used to
make polymersomes along with descriptions of physical properties such as stability
and permeability. We also elaborate on emerging studies of in vivo stealthiness, pro-
grammed disassembly for controlled release, targeting in vitro, and tumor-shrinkage
in vivo. Comparisons of polymersomes with viral capsids are shown to encompass
and inspire many aspects of current designs.
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INTRODUCTION

Viral capsids self-assemble from viral polypeptides to protect the viral genome within
a robust shell and also to integrate mechanisms for viral targeting and controlled
release. Polymersomes are self-assembled from synthetic polymers—rather than nat-
ural polymers—and are now being engineered to perform some of the same functions
as robust viral capsids, i.e., carry, target, and release actives (drugs and dyes). Since
their inception less than a decade ago, polymersomes have been compared more with
lipid vesicles than with viral capsids, but viral capsids increasingly make a better com-
parison on the basis of what has been learned about the properties achievable with
polymersomes. As reviewed here, the choice of synthetic polymer(s) as well as the
choice of molecular weight (MW) of the polymer is important as these are particularly
distinctive molecular features that impart polymersomes with a broad range of tun-
able carrier properties. Additionally, a range of relevant polymers, such as polyethy-
lene glycol-polylactic acid (PEG-PLA) and PEG-polycaprolactone (PEG-PCL), are
commercially available off-the-shelf or custom synthesized (from Polymer Source
Inc., Montreal, and Sigma Chemicals, St. Louis); therefore, broadened accessibility
to material motivates an up-to-date review.

The polymers used to make polymersomes are similar to lipids in that they are
amphiphiles: At least one fraction or “block” of each molecule is water loving or
hydrophilic, whereas the other fraction or block is hydrophobic. Either type of am-
phiphile, if made with suitable amphiphilic proportions, can self-assemble into vesi-
cles when hydrated. The hydrophobic blocks of each molecule tend to associate with
each other to minimize direct exposure to water, whereas the more hydrophilic blocks
face inner and outer hydrating solutions and thereby delimit the two interfaces of a
typical bilayer membrane. Lipids are of course derived from nature and tend to be
biocompatible—a fact that has partially motivated their development into liposomal
drug carriers. Such efforts have often been synergistic with a host of studies aimed
at more basic understanding of the nature of cell membranes. Although liposomes
lack controlled release mechanisms and possess a number of other limitations, includ-
ing major pharmacokinetic shortcomings, liposomes are often cited as the dominant
nanocarriers today [estimated at $0.5 billion per year (P. Cullis, personal communi-
cation)]. One should keep in mind that, similar to viral capsids, carriers are intended
to merely influence delivery and not be active in and of themselves. It is therefore
perhaps revealing in the present context that one of the major chemotherapeutic for-
mulations with liposomes, DOXIL® (from Alza Co.), which encapsulates the water-
soluble drug doxorubicin, attaches biocompatible PEG to a significant fraction of its
lipids.

Lipids typically have a total MW of less than 1 kDa, whereas natural polypeptides
or proteins have an order of magnitude MW of 10 kDa, corresponding to approxi-
mately 100 amino acids. The low MW of lipids imparts biomembranes with a lateral
fluidity and additional “soft” properties (1) that appear conducive to various cellular
processes (endocytosis, cell division, receptor clustering, etc.). In contrast, polymer-
somes are composed of synthetic polymers of MWs more typical of polypeptides,
which again suggests closer analogies between polymersomes and viral capsids. One
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goal of this brief review is to elaborate on the current repertoire of synthetic poly-
mers making up polymersomes, illustrating the wide range of possible chemistries—
especially biocompatible chains. A second goal is to describe the influence of polymer
choice, especially MW, on membrane thickness and properties. The results to date
suggest fertile ground for mimickry of viral capsids as well as some promise for a wide
variety of tailored applications.

POLYMERSOME STRUCTURE AND PROPERTIES

Self-Directed Assembly of Polymer Vesicles

Principles underlying self-directed assembly of natural amphiphiles are general and
revealing (2). Lipids and many small amphiphiles differ considerably in their hy-
drophilic fraction or “head group,” but they often contain one or more strongly
hydrophobic chains composed of multiple ethylene units (-CH2-CH2-)n (with n = 5
to 18 typically). A simple solution thermodynamic measure of aggregate stability is
provided in terms of n by the critical micelle concentration

CCMC ∼ exp(−nεh/kbT), (1)

where kbT is the thermal energy, and εh is the monomer’s effective interaction energy
with the bulk solution (related to χ in polymer physics). Only at surfactant concen-
trations above CCMC do aggregates such as vesicles form. For ethylene groups and
biological temperatures εh ∼ 1–2 kbTbiol (∼4–8 pN nm) so that values of CCMC for
natural lipids and related amphiphiles in aqueous solutions range from micromo-
lar to picomolar (i.e., aggregates are stable in high dilution). Amphiphile exchange
rates between aggregates are also generally proportional to CCMC, with characteris-
tic exchange times for phospholipids estimated in hours. Owing to the exponential
dependence on n or hydrophobic MW in Equation 1, polymer-based amphiphiles
with large hydrophobic MWh (compared with lipids) generally lead to highly stable
aggregates, as well as some degree of kinetic trapping.

Block copolymers have the same amphiphilic character as lipids but consist of
polymer chains covalently linked as a series of two or more blocks (Figure 1a). In
the absence of any solvent, block copolymers are known to display a wide range of
ordered morphologies, including lamellar phases (with the same symmetry as a stack
of paper). Hydration, even in the presence of a block-selective solvent such as dioxane,
will swell initially dry lamellae and fluidize the layers, even if a glassy polymer such as
polystyrene is used in the diblock copolymer such as with polystyrene-polyacrylic acid
(PS-PAA); the end result of hydration into a volume is a stable dispersion of vesicles
(3). Most of the polymer vesicles reviewed below exploit less glassy copolymers than
PS and largely eliminate the need for fluidizing cosolvent even though polymer MWs
are still far greater than those of natural lipids.

One of the earliest examples of a diblock that self-assembles directly under solvent-
free aqueous conditions is a dipeptide construct PS40-poly (isocyano-l-alanine-l-
alanine)m (4). It is semisynthetic in the sense that it contains naturally occurring
peptide moieties. Under acidic conditions and for m = 10, collapsed vesicular shells
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Figure 1
(a) Natural lipid versus synthetic polymer assemblies. (b) Self-directed assembly of
polymersomes from hydrated films. (c) Fluoro-polymersome. (d) Cryogenic transmission
electron microscopy of ∼100-nm polymersomes. The two arrows point to spherical and
rod-like micelles that sometimes coexist with polymersomes.

with diameters ranging from tens to hundreds of nanometers were observed coex-
isting with rod-like filaments and chiral superhelices. With the use of fully synthetic
diblock copolymers of PEOm–PBDn (PEO, polyethylene oxide; PBD, polybutadiene)
and the hydrogenated homologue of PBD, poly(ethylethylene) (yielding PEO-PEE),
unilamellar polymer vesicles first referred to as polymersomes were made under a
variety of aqueous conditions (5). Figure 1b–d shows how the addition of water to a
microns-thick lamellar film of PEO-PBD generates micron-diameter polymersomes
that can be (a) labeled with fluorescent dyes as fluoro-polymersomes, as first used in
studies of lateral mobility (6), or (b) sonicated, film-squeezed, or extruded to make
100-nm (virus-size) vesicles, as used in cell-culture and in vivo studies (7, 8).
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f Dictates Aggregate Morphology Whereas MW
Dictates Thickness

The effective interaction energy ε between hydrophobic monomers in polymer blocks
is key to aggregate stability (Equation 1), whereas the relative mass or volume fraction
of each block is key to morphology. Vesicles are closely related to rod-like and spheri-
cal micelle morphologies (Figure 2a) in that they are solvent-dependent, self-directed
assemblies. Micelles have been widely reported for many lipid-size surfactants (2), as
well as much larger polymeric superamphiphiles (9, 10). However, micelles lack a
shell-like character and will not encapsulate a bulk solution phase—including hy-
drophilic drugs, proteins, nucleic acids—as a vesicle or a virus can.

For a simple amphiphile in aqueous solution, a time-average molecular shape
in the form of a cylinder, wedge, or cone (Figure 2a) dictates whether membrane,
cylindrical, or spherical morphologies will respectively form (2, 14). This average
molecular shape is most simply a reflection of the hydrophilic fraction f. Illustrative
of such geometric forces at work is the behavior of lipids when conjugated at the hy-
drophilic head group with PEG chains (equivalent to PEO). With DOXIL and many
related liposomes, the typical PEG chain used [MW ∼ 2000–5000 Da (11)] leads to a
conically shaped amphiphile distinct in form from cylindrically shaped phospholipids
and with f � 50%. Consequently, phospholipid membranes mixed with PEG-lipid at
more than 5%–10% mole fraction tend to generate highly curved micelles. Despite
this membrane-disruptive tendency of PEG-lipid at high concentrations, low con-
centrations appear compatible with vesicle morphology and technologically useful.
Upon injection into the circulation, these so-called stealth pegylated liposomes are
cleared more slowly from the blood than conventional liposomes (12, 13). As a result
of the extended circulation time, stealth vesicles loaded with anticancer drugs such as
doxorubicin circulate long enough to find their way into well-hidden but permeable
tumors.

Polymers such as PEG are clearly useful for biomedical application and raise the
question as to whether a vesicle-type system composed entirely of polymer will work
as well. Although we discuss below that polymersomes can indeed circulate as long
or longer than stealth liposomes, the systematics of making polymer vesicles in water
needs to be studied first. On the basis of the examples above, along with others, one
unifying rule (or at least a starting point) for generating polymersomes in water is a
phospholipid-like ratio of hydrophilic to total mass: f ≈ 35% ± 10%. A cylindrically
shaped molecule that is asymmetric with f < 50% presumably reflects the ability of
hydration to balance a disproportionately large hydrophobic fraction. Molecules with
f > 45% can be expected to form micelles, whereas molecules with f < 25% can be
expected to form inverted microstructures.

Sensitivities of the rules above for chain chemistry and MW have not been exhaus-
tively probed. However, copolymers following these rules and yielding polymersomes
have thus far had average MWs ranging from ∼2000–20,000 Da. Cryogenic transmis-
sion electron microscopy of 100–200-nm vesicles further shows that the membrane
core d increases with MW from d ≈ 8–21 nm (Figure 2b) (15, 16). Lipid membranes
have a far more limited range of d ≈ 3–5 nm, which is clearly compatible with the
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Figure 2
(a) Schematics of block copolymer fractions with respective cryogenic transmission electron
microscopy images showing vesicles or worm micelles and spherical micelles. (b) Schematic
scaling of polymersome membrane thickness with copolymer molecular weight (MW). PEG,
polyethylene glycol.
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many integral membrane proteins in cells. Scaling of copolymer membrane thick-
ness with copolymer MW was experimentally documented and confirmed by a novel
coarse-grained molecular dynamics simulation that faithfully captures atomistics (17)
leading to

d ∼ MW b
h (b ∼= 0.55). (2)

Perhaps most revealing from simulation has been that, for low MW systems, the
polymer bilayers have a clear midplane of low density, whereas high MW copolymers
show two bilayers that interdigitate or “melt” together into a single thick shell of
homogeneous density. Polymersome membranes thus present a novel opportunity to
study membrane properties as a function of membrane thickness d.

Polymersome Fluidity, Stability, and Other Properties

Micron-size “giant” polymersomes allow for detailed characterization of membrane
properties by single-vesicle micromanipulation methods (5). Measurements of lateral
diffusivity (6) as well as apparent membrane viscosity (18, 19) have shown that mem-
brane fluidity generally decreases with increasing MW (Figure 3), and the fluidity
decreases most drastically when the chains are sufficiently long to entangle. Area
elasticity measurements for PEO-PBD membranes provide an indirect measure of εh

as γ(∼30 mN/m), which appear independent of MW as expected. This indicates that
opposition to interface dilation is dictated by polymer chemistry and solvent alone.
Electromechanical stability also increases with membrane thickness up to a limit set
by γ (15). Phospholipid membranes rupture well below such limits (e.g., rupture ten-
sion scaled by γ) simply because their small d makes them more susceptible to defects.
Lastly, permeation of water through the polymersome membranes shows, in com-
parison with phospholipid membranes, a considerably reduced transport rate. This
is consistent with early measurements on liposomes by Bangham (20), the pioneer of
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Figure 3
Schematic plot of typical physical properties of vesicles versus molecular weight of the
constituent amphiphiles.
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liposomes, on a relatively narrow MW series of lipids. What appears most suggestive
from the physicochemical studies to date is that lipid membranes have evolved in
nature to be optimized more for fluidity than for stability. Conversely, robustness,
solidity, and low permeability are all hallmarks of viral capsids, which also possess
additional intrinsic features such as programmed disassembly for controlled release.

POLYMERSOMES FOR DRUG DELIVERY

Viruses have evolved over millenia (and continue to evolve) to release their nucleic
acid at a suitable time and suitable place. Disassembly of a viral capsid is sometimes
triggered at low pH and is often sensitive to environmental variables such as tempera-
ture. In comparison, many if not all conventional liposome systems have proven to be
both inherently leaky (11) and short-lived in the circulation (21). To integrate mecha-
nisms of controlled release, PEG-lipids have been made to play dual roles as liposome
stabilizers that also, upon exposure to an environmental stimulus, effectively desta-
bilize the carrier membrane via thiolytic (22) or hydrolytic (23, 24) cleavage. Block
copolymers seem to broaden the possibilities and perhaps sharpen the transitions.

Hydrolysis and Other Triggers of Release from Polymersomes

Block copolymers of PEO-polylactide (PEO-PLA is equivalent to PEG-PLA) have
been known in the past to make micelles and nanoparticles (25, 26) and have been of
great interest because PLA is susceptible to hydrolytic biodegradation, which should
foster drug release (27). However, vesicles made from PEG-PLA had not been re-
ported years ago probably because of the narrow range of f required for a stable vesicle
phase (Figure 2a). Indeed, the molecular-scale force balance outlined in the sections
above allows the design of PEG-block-based copolymers that—in the absence of
degradation—form membranes in preference to other structures. Solid-like particles
of PEG-PLA had been reported with diblock copolymers having small hydrophilic
PEG fractions of f < 20% and large MW hydrophobic blocks (25, 28), whereas for
f > 42%, both worm micelles (up to f ∼ 50%) (29, 30) and spherical micelles of
PEG-PLA (31) and poly(ethylene glycol)-poly(caprolactone) (PEG-PCL) (32) had
been reported. With f ∼= 20%–42% for these two types of block copolymers, “loose”
micellar architectures have been reported (31), but such a description seems apt for
the degraded remnants of vesicles first shown on the cover of the August 9, 2002,
issue of Science and soon thereafter characterized (33, 34).

Polyester-based degradable polymersomes (Figure 4a) have thus far been made
from PEG-PLA or PEG-PCL and while they do make stable vesicles (34), they
have been studied most thoroughly as blends with inert PEO-PBD to protract the
degradation and release times. Indeed, the release rates of encapsulated molecules
increase linearly with the mole ratio of PEG-PLA (34), and it is visibly clear that
the membranes are homogenous, as verified by fluorescence microscopy of mixed
PEG-PLA/PEO-PBD membranes (33). Blends with lipids are also possible, in prin-
ciple: A moderate MW triblock copolymer will mix homogenously with lipids in
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Figure 4
Typical time series of breakdown structures of PEG-PLA nanopolymersomes, starting with
vesicles and ending in worm micelles. Scale bars are 100 nm.

polymer-lipid composites (35). This is surprising to some extent because even slight
differences in lipid chain length can cause microphase separation.

Polyester hydrolysis occurs preferentially at the chain end (30), so the resultant
curvature preference of PEG-polyester chains in the membrane of a vesicle trans-
forms the stable bilayer-forming chain into a detergent-like copolymer. Such de-
graded chains with comparatively short hydrophobic blocks will tend to segregate,
congregate, and ultimately induce hydrophilic (i.e., PEG-lined) pores (Figure 4b).
Encapsulant release is controlled through blends on timescales ranging from hours
to weeks. These molecular scale transitions are evident in various physical obser-
vations, such as encapsulant release that decreases with increasing MW. Eventually,
these vesicle carriers disintegrate into mixed micellar assemblies—as is evident by
both fluorescence microscopy and cryogenic transmission electron microscopy mea-
surements (Figure 4c,d ). Block polyester participation in the bilayer morphology
appears strongly dependent on the rate of hydrolysis of the hydrophobic block (e.g.,
PCL versus PLA), as well as the hydrophilic block ratio, f. Parallel studies with varied
polyester hydrophilic/hydrophobic block ratios, hydrophobic chemistry, and different
mole-percent blends indicate that polyester chain hydrolysis is indeed the molecu-
lar trigger controlling encapsulant release and polymersome carrier destabilization
kinetics. Ongoing studies demonstrate a strong dependence of degradation rate on
pH, as recently reported for degradation of worm micelles composed of PEO-PCL
(30).

Instead of hydrolyzing one polymer block, Hubbell and coworkers (36) have de-
veloped oxidation-responsive polymersomes from PEO-(propylene sulphide)-PEO
triblock copolymers. The idea is to exploit the oxidative environment present in sites
of inflammation as well as within endolysosomes. Studies to date show that exposure
to either aqueous H2O2 or H2O2 from a glucose-oxidase/glucose/oxygen system will
oxidize the hydrophobic propylene sulphide core and transform it to poly(sulfoxides)
and poly(sulfones), which are hydrophilic. Oxidation thus increases f of the
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macroamphiphile and thereby destabilizes the vesicle morphology, eventually leading
to soluble oxidized copolymer.

Charged Polymersomes

Although charged liposomes tend to be cleared quickly from the circulation (21, 37),
the addition of charge to polymer amphiphiles presents additional opportunities for
controlled release in response to external stimuli, such as pH [e.g., PAA-mediated
endolysosomal rupture (38)]. However, the shape and structure of charged diblock
copolymer aggregates in solution are governed by an especially delicate balance of
forces. Interfacial tension between the core and the bulk solvent continues to orient,
confine, and stretch the chains, but the interactions between solvated corona blocks
can be repulsive, through sterics and electrostatics, as well as attractive if multivalent
ions are involved (2). Eisenberg and coworkers (10) mapped out the first morpholog-
ical phase diagram of charged diblock copolymers in dilute solution for “crew-cut”
PAA-PS copolymers. The rich phase behavior and dynamics of a relatively symmetric
PAA-PBD diblock have now also been mapped out in water (39). Depending on the
concentration of added calcium or sodium salt as well as pH, these diblocks are seen
to self-assemble in water into stable vesicles, worms, and spheres. Furthermore, us-
ing fluorescence microscopy, researchers visualized transitions of vesicles into worms
and spheres within minutes with a sudden increase of pH or chelation of salt. Liu &
Eisenberg (40) have likewise shown rapid pH-triggered inversion of biamphiphilic
triblock copolymer vesicles of PAA-PS-poly(4-vinyl pyridine) in organic/aqueous
mixtures. With increasing bulk pH, the aggregate morphology changes from vesi-
cles, with poly(4-vinyl pyridine) outside, to solid aggregates and then inverts back into
a whole vesicle assembly, with PAA on the outside. Some of these design principles
seem likely to make their way into biocompatible polymersomes and certainly inform
us about the dramatic effects of charge in polymer systems.

Peptide-Based Vesicles

A rapidly emerging approach to polymer-based vesicles involves a return to biol-
ogy with peptide-based assemblies. In contrast to viral capsids with lock-and-key
assemblies of great precision, the peptide-based vesicle assemblies have amphiphilic-
ity as their foundation. Emerging results from several groups suggest there is no need
for nature’s lock-and-key approach, in principle. For example, PBD-(poly-L-glutamic
acid) diblock copolymers self-assemble in aqueous solution into vesicles (peptosomes)
(41) in which the hydrophilic polypeptide segment forms a well-defined secondary
structure of α-helix. In dilute aqueous solutions, the copolymers form either spheri-
cal micelles or larger vesicular aggregates. In addition, these systems exhibit pH- and
ionic-strength-dependent changes in hydrodynamic radius and in coil-helix tran-
sitions. In addition to providing the hydrophobic driving forces for self-assembly,
the PBD block can be laterally cross-linked (33, 42); this and related cross-linking
(43) covalently capture the aggregate in a shape-persistent nanoparticle (44). Such
nanoparticles may be suitable for applications such as encapsulation or release of
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hydrophilic and hydrophobic active species or in sensor nanodevices, where the lat-
ter systems could take advantage of protein channels that—perhaps surprisingly—will
integrate into the hyperthick block copolymer membranes (45, 46).

Hybrid block copolymers constructed from amphiphilic β-strand peptide se-
quences and PEG have recently been studied (47). In comparison with the native
peptide sequence, di- and triblock copolymers with PEG were shown to stabilize
the peptide’s secondary structure against pH variation and to self-assemble into
helical tapes that stack into fibrils. Vesicles have not been reported but seem fea-
sible by this approach. Conversely, diblock copolypeptides of {poly(Ne-2-(2-(2-
methoxyethoxy)ethoxy)acetyl-L-lysine}–(poly-L-leucine) have been shown to self-
assemble into bilayer vesicles whose size and structure are dictated primarily by the
ordered conformations of the peptide segments (48), in a manner similar to viral
capsid assembly. If 70% of the L-leucine in the hydrophobic domain is replaced in
a statistical manner with L-lysine, the system becomes pH sensitive. At pH 9, vesi-
cles form, but protonation of the lysine residues enhances their hydrophilicity and
destabilizes the α-helical structure of the leucine-rich domain owing to electrostatic
repulsion of the like charges. These helix-to-coil transitions destabilize the vesicular
assembly, leading to porous membranes or complete disassociation of the structures.
Recent extensions of polymer-peptide hybrids include the attachment of hydropho-
bic polymers such as PS to enzymes with the subsequent self-assembly into spherical
aggregates and vesicles that still retain biological activity (49, 50). Proteins are also,
of course, being encapsulated within polymer vesicles, and the latest work includes
polymersome-encapsulated hemoglobin, which yields oxygen affinities comparable
with that of human red blood cells (51).

Polymersome Interactions with Lipid Membranes

Self-assembled polymer systems can, with prudent design, open new pathways for
the delivery of drugs, similar in principle to how viruses deliver their nucleic acid
within cells. Cationic aggregates are a popular, sometimes toxic, choice of carrier
that fosters intracellular delivery through a “proton sponge” effect on internaliz-
ing vesicles (52). However, these charged nanoparticles are cleared from circulation
within minutes (53). We have recently attempted to address the problem of endoso-
mal escape with neutral degradable polymersomes. We find that under mildly acidic
conditions found in endolysosomes, PEG-polyester polymersomes degrade, gener-
ating polymeric macrosurfactants that actively interact and disrupt model lipid mem-
branes (54). The results might resolve a controversy over escape mechanisms with
PEO-PCL micelles (55) because the accumulated data suggest that the lytic time con-
stant τlysis for PEG-polyester-mediated rupture of lipid membranes scales inversely
with hydrophilic fraction f while scaling directly with MW of the hydrophobic block
(Figure 5). Simulations (17) mentioned above in the context of membrane-thickness
scaling (Equation 2) have been extended to studies of lipid interactions and tend to
confirm a lytic tendency with increasing f. Thus, although self-assembled membranes
of copolymer and self-assembled membranes of lipid interact little, similar copoly-
mers assembled into spherical micelles will fuse, mix, and porate a lipid membrane.
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Figure 5
Polymer-lipid interactions. Plot (right panel) shows the relationship between polymer f ,
molecular weight (MW), and the time constant to the disruption of lipid membranes.
PEG-PCL, polyethylene glycol-polycaprolactone.

If the micelles are generated by polymersome degradation, the same process applies.
Given that the endosomal membrane is the cell’s last barrier to cytoplasmic entry,
the copolymer-mediated poration seen here clearly creates a new pathway for drug
escape and delivery to cellular targets.

Polymersomes In Vivo

Liposomes have, of course, been widely investigated as circulating drug carriers, and
PEG-lipid has been known for more than a decade to delay vesicle clearance (13).
However, stable anchorage of the massive, hydrophilic PEG chain can be limited:
Incubations in serum had shown that these liposomes immediately lose approxi-
mately one third of their PEG-lipids, presumably owing to facilitated micellization
(56). As summarized above, polymersome architectures are founded on more pro-
portional amphiphilic polymers and hence have more stable anchorage. Moreover,
the far greater hydrophilic PEG (100%) content confers resistance to plasma pro-
tein deposition (opsonization) and further extends vesicle circulation times. As a
result, the dense and stable PEG brush minimizes the deposition of plasma pro-
teins (opsonization) and prolongs in vivo circulation (8). The plot in Figure 6
documents the long circulation of first-generation polymersomes in rats, with half-
lives of 20–30 h that significantly exceed the circulation times of stealth liposomes
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Figure 6
Prolonged circulation in rats of fluoro-polymersomes (∼100-nm size) with details given in
Reference 8. Top images show that at short times in serum (left), polymersomes (P) avoid
clearance by phagocytic neutrophils (N) but are then engulfed (right) after many hours in
serum. R, red blood cell. The glass micropipette in the top left image is approximately
3 microns in diameter, and the scale bar on the lower image is approximately 100 nm. The
gray area of the graph is below the resolution of measurements.

in low-dose injections. The inset images in the figure further illustrate how the
PEG brush of polymersomes limits adhesive and stimulating interactions with white
blood cells for the first hours of suspension in blood; however, after 10 or more
hours, the PEG brush no longer prevents protein adsorption, so the white blood
cells are able to adhere and even engulf giant polymer vesicles. Similar cells in
the liver and spleen appear responsible for the clearance of polymersomes from the
circulation.

Active Targeting of Polymersomes

Although few if any drug carriers in clinical use today are targeted, viruses often
show preferential—although not exclusive—interactions with particular cell types
and cell entry pathways. Given that polymersomes exhibit minimal nonspecific ad-
hesion to cells (initially), that they can circulate for many tens of hours, and that
they can integrate controlled release mechanisms, targeted polymersomes should add
an additional level of viral mimickry. With PEG-based assemblies, much work has
been focused on attaching ligands or antibodies to the hydroxyl end-group (57, 58).
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Biotinylation of nondegradable PEG-PBD diblocks (59) has allowed block copoly-
mer assemblies to attach to (a) surfaces coated with the biotin receptor avidin as
well as to (b) cells where they successfully delivered the hydrophobic cytotoxic drug
Taxol®. Similar chemistry has been used to attach either an antihuman IgG or antihu-
man serum to PEG-carbonate- or PEG-polyester-assembled polymer vesicles (60).
Meier and coworkers (61) have modified their triblock copolymer polymersomes
with polyguancylic acid to target a macrophage scavenger receptor SRA1. This scav-
enger receptor is a pattern-recognition antigen upregulated only in activated tissue
macrophages, not in monocytes or monocyte precursor cells. Though promising,
these in vitro cell targeting studies have not been translated to in vivo conditions,
where opsonization by serum components and competitive interactions with other
cells often impede and complicate targeting efforts (58). Moreover, targeting via at-
tached chemical groups—even if it were to provide a major advantage and justify the
added complexity from a regulatory standpoint—does not act like a “magnet” with
action at a distance; convective and/or diffusive collisions of the carrier with a cell
must occur for targeted adhesion to take place. Retention of a multivalent adhesion
of the carrier on the cell surface can then foster uptake or localized release, but if a
carrier localizes within a tissue or tumor where convective and/or diffusive forces are
minimal, then such retention offers little additional advantage. This is the essence of
the enhanced permeation and retention (EPR) effect that is typical of solid tumors
and other tissues (62). The EPR effect thus motivates studies of passively targeted
carriers that localize at the intended site, enter cells perhaps, and release drug before
being transported away.

Putting Viral Mimics to Good Use: Shrinking Tumors
with Polymersomes

Based on many of the concepts above, loading, delivery, and cytosolic uptake of
drug mixtures from degradable polymersomes have recently been shown to exploit
both the thick membrane of block copolymer vesicles and their aqueous lumen, as
well as pH-triggered release within endolysosomes. Taxol is a hydrophobic drug that
has been loaded into the membrane (analogous to the dyes of Figure 1c), and—as
described in the first studies of degradable polymersomes (34)—doxorubicin has been
a main hydrophilic drug loaded into the vesicle lumen. These are two of the most
common anticancer drugs used in the clinic. The initial in vivo studies demonstrate
vesicle localization to tumors as well as growth arrest and shrinkage of rapidly growing
tumors in nude mice after a single intravenous injection of polymersomes composed
of (Polyethylene-glycol, PEG)-(Polyester) (54). The vesicles have also been shown
to break down in vitro into membrane-lytic micelles within hours at 37◦C and low
pH, although storage at 4◦C allows retention of drug for over a month. Cell entry
of the polymersomes into endolysosomes subsequently leads to copolymer-induced
endolysosomal rupture with release of cytotoxic drugs. The in vitro and in vivo data
all generally fit to a simple two-step model of localization followed by degradation-
coupled cytotoxicity. This first polymersome-based therapeutic may be just the first
of many more to come.
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CONCLUSIONS

Polymersomes broaden considerably the choice of vesicle chemistries and self-
assembled structures. Polymersome properties such as high stability and low fluidity
warrant analogies with viral capsids and provide further motivation for engineer-
ing in controlled release mechanisms as well as targeting groups. Incorporation of
biomolecules as well as a broad spectrum of functionality suggests these synthetic
carrier systems offer a truly generic approach for drug delivery.
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