
University of Pennsylvania
ScholarlyCommons

Scholarship at Penn Libraries Penn Libraries

7-1-2009

Architectural Mismatch: Why Reuse is Still So
Hard
David Garlan
Carnegie Mellon University, garlan@cs.cmu.edu

Robert Allen
IBM, roballen@us.ibm.com

John Mark Ockerbloom
University of Pennsylvania, ockerblo@pobox.upenn.edu

Appeared in IEEE Software 26:4, July/August 2009, pp. 66-69. Copyright 2009 IEEE. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/library_papers/68
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/library_papers
http://repository.upenn.edu/library
http://repository.upenn.edu/library_papers/68
mailto:repository@pobox.upenn.edu

© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/software

Architectural Mismatch: Why Reuse Is Still So Hard

David Garlan, Robert Allen, and John Ockerbloom

Vol. 26, No. 4

July/August 2009

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

66 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

update

Why had things gone so awry? The usual ex-
planations for reuse failure did not seem to apply.
The parts had been engineered for reuse. We were
reasonably skilled implementers. We had the source
code and were familiar with all the parts’ imple-
mentation languages. We knew what we wanted,
and we used the parts in accordance with their ad-
vertised purposes.

In searching for answers, we realized that virtu-
ally all our problems had resulted from incompat-
ible assumptions that each part had made about its
operating environment. We termed this phenome-
non “architectural mismatch,” and our article tried
to explore in more depth how and why it occurs.

The Problem
Specifically, we examined four general catego-
ries for assumptions that can lead to architectural
mismatch:

the nature of the components (including the ■

control model),
the nature of the connectors (protocols and ■

data),
the global architectural structure, and ■

the construction process (development environ- ■

ment and build).

We also noted three facets of component interac-
tion in which assumptions can lead to mismatch:

the infrastructure on which the component ■

relies,
application software that uses the component ■

(including user interfaces), and
interactions between peer components. ■

Figure 1 illustrates these facets.
Finally, we argued that to make progress,

I n 1995, when we published “Architectural Mismatch: Why Reuse Is So Hard”1 (an
earlier version of which had appeared elsewhere2), we had just lived through the so-
bering experience of trying to build a system from reusable parts but failing misera-
bly. Although the system had the required functionality, developing it took far longer

than we had anticipated. More important, the resulting system was sluggish, huge, brittle,
and difficult to maintain.

David Garlan, Carnegie Mellon University

Robert Allen, IBM

John Ockerbloom, University of Pennsylvania

Architectural Mismatch:
Why Reuse Is Still So Hard

2 5 t h - ann iver s ar y t op p i c k s

In January 2009, I asked for follow-up pieces from several sets of authors
whose insightful and influential Software classics made the magazine’s
25th-anniversary top-picks list (Jan./Feb. 2009, pp. 9–11). Here, David
Garlan, Robert Allen, and John Ockerbloom provide fresh perspectives on
their winning article, addressing how their thinking has evolved over the
years, what has changed, and what has remained constant.
 —Hakan Erdogmus, Editor in Chief

 July/August 2009 I E E E S o f t w a r E 67

two things would be necessary. First, design-
ers must change how they build components
intended to be part of a larger system. Second,
the software community must provide new no-
tations, mechanisms, and tools that let designers
accomplish this.

The World Has Changed
In the decade and a half since that publication, the
state of the practice in component-based reuse has
changed dramatically. The problems we identified
might seem behind us. Today’s software systems
routinely build on many layers of reusable infra-
structure (for example, for distributed communi-
cation and remote data access), interact with us-
ers through standard interfaces (for example, Web
browsers), and use large corpuses of open source
software (for example, Apache Tomcat). They
also have sophisticated development environments
that provide direct access to reuse libraries (for ex-
ample, Eclipse and NetBeans), and they exploit
services created in a global virtual operating en-
vironment. Indeed, for every line of code that de-
velopers write, they reuse thousands of lines writ-
ten by someone else.

But has the problem gone away, or has it simply
found a new home in a more modern setting?

The State of Architectural
Mismatch Today
Three basic techniques exist for dealing with ar-
chitectural mismatch. One is to prevent it. An-
other is to detect it when it does occur, hopefully
early in the development life cycle, when you can
easily consider alternatives. The third is to repair it
when it is unavoidable. Modern software develop-
ment methods have made advancements in each of
these techniques.

Preventing architectural Mismatch
This technique has benefited from developments
in a number of areas, including architectural spe-

cialization, open source practices, and virtualiza-
tion and common user interfaces.

Architectural specialization. One way to help pre-
vent architectural mismatch is to work in an archi-
tecturally specialized design domain. Specializa-
tion restricts the range of permissible components
and the interactions between them, thereby elimi-
nating some of the variability that contributes to
mismatch.

Figure 2 illustrates common points in the spe-
cialization space. At the far left are completely un-
constrained architectures. (This would arguably
include the system we described in our original
article.) Moving to the right, architectures must
fit in a narrower design context—for example, ge-
neric styles, such as data flow and call-return.3,4
More specific still are specializations of those
styles, such as pipes and filters. Further to the
right are component integration standards, which
typically dictate the kinds of connectors you can
use, the kinds of interfaces that components must
have, and the global control structures. Next are
domain-specific integration standards, and to the
far right are product lines.

Assumptions about the
application domain

Assumptions
about components
at the same level

of abstraction

Assumptions
about infrastructure

Unconstrained

Increasing specialization

Generic
styles

Generic style
specializations

Generic
component
integration
standards

Domain-specific
component
integration
standards

Product
lines

Components
and connectors

Data flow
Call-return

Implicit
invocation

Pipes and filters
Multitier

Service-oriented
architecture

Unix pipes
Corba
.NET

Enterprise
service buses

Yahoo! pipes
Ruby on Rails

Java
Enterprise

Edition

Figure 2. The spectrum
of architectural
specialization.
The figure depicts
representative points
along a spectrum
that characterizes
the degrees of
specialization, or
domain specificity, of a
class of architectures.
Elements below the
axis are examples of
architectures in each
class.

Figure 1. Three facets of
component interaction.1
Each facet identifies a
set of assumptions that
a component may make
about its environment.

68 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

Open source. Many open source software
communities are developing and distribut-
ing software collaboratively over the Inter-
net. Widespread global collaboration, and
the social and informational infrastruc-
ture that arises with it, can prevent many
instances of architecture mismatch in two
ways. The first is by standardizing on
particular frameworks and architectural
styles. The second is by producing a body
of experience and examples that clarify
which architectural assumptions and ap-
plication domains go with a particular
collection of software.

Some open source communities have
also developed common build conventions
such as the standard four-step build pro-
cedure that many CPAN (Comprehensive
Perl Archive Network) modules use. The
scale of open source software development
means that there are now often multiple
implementations of similar functionality.
So, developers can more easily find appro-
priate software packages that are compat-
ible with a given architecture.

Virtualization and common user interfaces.
High-level communication protocols and
data standards, as well as common lan-
guage and browser environments such as
JVM (Java Virtual Machine) and Ajax,
make it easier to develop software that op-
erates in a common virtual environment
running on a variety of low-level infra-
structures. These advances help eliminate
some mismatch arising from platform in-
compatibilities and different user interface
requirements, two of the three dimensions
of Figure 1.

Continuing problems. Although the devel-
opments we just mentioned can help re-
duce architectural mismatch, they have
not eliminated the problem. Specialization
works well only if you can shoehorn your
application into that domain. Moreover,
combining systems and parts from mul-
tiple styles tends to be the norm, not the
exception. Open source can provide a re-
usable baseline, but such systems’ quality
(for example, their documentation and ex-
tensibility) varies considerably. Virtual en-
vironments are often implemented incon-
sistently on different platforms. This turns
the ideal of “write once, run anywhere”

into the reality of applications that must
include extensive code to ensure compat-
ibility with different browsers, languages,
and library implementations. Particular
frameworks go in and out of fashion, rais-
ing the possibility that a software applica-
tion can begin its life in a richly supported
environment that eventually becomes ob-
solete and incompatible with newer soft-
ware components.

Detecting architectural Mismatch
This technique has benefited from a num-
ber of developments in such areas as
documentation standards and process
guidance.

Documentation standards. One positive de-
velopment is guidance on how to docu-
ment architectures to make assumptions
explicit. Such documentation is often
based on multiple “views” because differ-
ent stakeholders might care about different
classes of assumptions.5,6

Taking this a step further, standard-
ized architecture description languages
now let you document certain assump-
tions. For example, you can use UML to
document a component’s provided and re-
quired resources, as well as various forms

of component behavior. Some of these lan-
guages can also document extrafunctional
attributes, such as timing behavior and
resource consumption. Similarly, service-
oriented architectures (SOAs) often use
standard interface description languages,
such as WSDL (Web Services Definition
Language), and let you document addi-
tional assumptions through service-level
agreements.

Unfortunately, standards do little to
combat architectural mismatch if few peo-
ple use them. In practice, today’s architec-
tural documentation remains impoverished
at best. Furthermore, commonly used doc-
umentation languages generally do not
support tool-assisted detection of architec-
tural mismatch, limiting these standards’
usefulness.

Process guidance. Software processes de-
rived from the spiral model and based on it-
erative, risk-driven development are seeing
increased acceptance. Many of these em-
phasize early “architectural” prototypes,
with the explicit purpose of exposing archi-
tectural issues such as mismatch early in a
system’s life cycle. Although these processes
do not provide specific techniques for de-
tecting mismatch, it is relatively easy for
developers to observe in a functioning sys-
tem, as we mentioned in our article. How-
ever, although process guidance might lead
to early detection, it unfortunately does not
provide diagnostic or corrective power.

repairing architectural Mismatch
In many cases, avoiding mismatch is im-
possible. Consequently, the past decade
has seen increased research on ways to re-
pair it. Examples include mechanisms such
as wrappers, adapters, mediators, and
bridges, many of which have been cata-
loged in software design and architecture
books. Additionally, some frameworks
provide built-in mechanisms such as pro-
tocol and data adaptors to integrate legacy
components and services that would not
otherwise work together.

Although these techniques can help,
they address only a small part of the prob-
lem, and only in narrowly constrained sit-
uations. For example, developers trying to
integrate a legacy stand-alone application
into an SOA often find that to “wrap” the

Applications must
include extensive
code to ensure

compatibility with
different browsers,

languages, and library
implementations.

 July/August 2009 I E E E S o f t w a r E 69

component to have a service interface, they
must almost completely rewrite the appli-
cation—for example, to decouple applica-
tion code from its user interface.

New Challenges
Not only do the mismatch problems we
noted in our article persist, but today’s
computing landscape also introduces new
challenges.

trust
One crucial issue that Internet-scale soft-
ware raises is trust between components.
Numerous security breaches have resulted
from software that was not sufficiently
hardened for the variety of imperfect
or malicious software that could inter-
act with it in unanticipated ways. At the
same time, software components that are
fully hardened to deal with untrustworthy
software can have significantly higher
performance overhead and development
costs than components running in a more
trusted environment. So, finding appropri-
ate matches in trust between components
can be essential.

Dynamism
Our 1995 article portrayed mismatch as a
development-time problem, occurring be-
fore system deployment. Today, however,
systems must increasingly support dynamic
reconfiguration to cope with component
failure, variable resources, and changing
user needs. This requirement leads to a
new concern for ways to avoid, detect, and
repair mismatch dynamically. This prob-
lem is substantially more difficult because
composition must be achieved in the pres-
ence of ongoing computation.

architecture Evolution
The scenario in our article involved cre-
ating a new system from existing parts.
Today, a much more common situation
is an existing system that evolves over its
lifetime. From an architectural perspec-
tive, new components or connectors might
need to be introduced, old systems might
need to interoperate with others, and stan-
dards and frameworks might change. So,
we must consider how to evolve an archi-
tecture, factoring in the costs and risks of
architectural mismatch that might occur.

architecture Lock-In
Even supposing that you have appropri-
ately modeled evolution’s cost, the po-
tential for architectural mismatch might
eventually make changing an existing
system too expensive to allow effective in-
novation. Once you have successfully de-
veloped a system in an architectural style
using a given infrastructure, moving it to
a new setting without introducing crip-
pling mismatch might involve nearly as
much effort as its original development.
This problem might significantly affect
the economics of future computing and
software platforms such as Web services
or clouds, as inflexibilities and the high
cost of changing providers hinder free
competition.

A lthough the set of advancements
we have briefly touched on here
is hardly exhaustive, we believe

that architecture mismatch will be an
issue for some time to come. Indeed, as
the level of reuse and the complexity of
assumptions made by reusable parts in-
crease, architecture mismatch becomes
even more of an issue requiring the soft-
ware engineering community’s attention.
We hope that other people will continue
to report not only on successes and new

techniques but also on failures in this
area. As we saw with our original ar-
ticle and its reception, we often learn
more from frank discussion of what goes
wrong than from promotion of what we
hope will be right.

References
 1. D. Garlan, R. Allen, and J. Ockerbloom,

“Architectural Mismatch: Why Reuse Is So
Hard,” IEEE Software, Nov./Dec. 1995,
pp. 17–26.

 2. D. Garlan, R. Allen, and J. Ockerbloom,
“Architectural Mismatch, or, Why It’s Hard
to Build Systems Out of Existing Parts,” Proc.
17th Int’l Conf. Software Eng. (ICSE 95),
IEEE CS Press, 1995, pp. 179–185.

 3. M. Shaw and D. Garlan, Software Architec-
ture: Perspectives on an Emerging Discipline,
Prentice Hall, 1996.

 4. F. Buschman et al., Pattern-Oriented Soft-
ware Architecture: A System of Patterns,
Vol. 1, John Wiley & Sons, 1996.

 5. P. Clements et al., Documenting Software
Architectures: Views and Beyond, Addison-
Wesley, 2003.

 6. Recommended Practice for Architectural
Description of Software-Intensive Systems:
ANSI/IEEE Std 1471 :: ISO/IEC 42010,
IEEE, 2009; www.iso-architecture.org/
ieee-1471.

For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

About the Authors
David Garlan is a professor of computer science and the Director of Professional Programs in
Software Engineering at Carnegie Mellon University. His research interests include software architec-
ture, cyberphysical systems, autonomic systems, and software engineering education. Garlan has a PhD
in computer science from Carnegie Mellon University. He is a member of the ACM and IEEE. Contact him
at garlan@cs.cmu.edu.

John Ockerbloom is a digital-library planner and architect at the University of Pennsylvania. His research interests include
distributed software architectures supporting interoperability, information discovery and ontologies, and digital preservation.
Ockerbloom has a PhD in computer science from Carnegie Mellon University. Contact him at ockerblo@pobox.upenn.edu.

Robert Allen is a software engineer in IBM’s Systems and Technology Group. He received his PhD
in computer science from Carnegie Mellon University. Contact him at roballen@us.ibm.com.

	University of Pennsylvania
	ScholarlyCommons
	7-1-2009

	Architectural Mismatch: Why Reuse is Still So Hard
	David Garlan
	Robert Allen
	John Mark Ockerbloom

