4-10-2009

Extremal Black Hole/CFT Correspondence in (Guaged) Supergravities

David D.K. Chow
Texas A & M University - College Station

Mirjam Cvetić
University of Pennsylvania, cvetic@cvetic.hep.upenn.edu

H. Lü
Texas A & M University - College Station; Central University of Finance and Economics

C. N. Pope
Texas A & M University - College Station; University of Cambridge

Follow this and additional works at: http://repository.upenn.edu/physics_papers

Part of the [Physics Commons](http://repository.upenn.edu/physics_papers)

Recommended Citation
Chow, D. D., Cvetić, M., Lü, H., & Pope, C. N. (2009). Extremal Black Hole/CFT Correspondence in (Guaged) Supergravities. Retrieved from http://repository.upenn.edu/physics_papers/73

Suggested Citation:

© 2009 The American Physical Society
http://dx.doi.org/10.1103/PhysRevD.79.084018

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/physics_papers/73
For more information, please contact repository@pobox.upenn.edu.
Extremal Black Hole/CFT Correspondence in (Guaged) Supergravities

Abstract
We extend the investigation of the recently proposed Kerr/conformal field theory correspondence to large classes of rotating black hole solutions in gauged and ungauged supergravities. The correspondence, proposed originally for four-dimensional Kerr black holes, asserts that the quantum states in the near-horizon region of an extremal rotating black hole are holographically dual to a two-dimensional chiral theory whose Virasoro algebra arises as an asymptotic symmetry of the near-horizon geometry. In fact, in dimension D there are $[(D - 1)/2]$ commuting Virasoro algebras. We consider a general canonical class of near-horizon geometries in arbitrary dimension D, and show that in any such metric the $[(D - 1)/2]$ central charges each imply, via the Cardy formula, a microscopic entropy that agrees with the Bekenstein- Hawking entropy of the associated extremal black hole. In the remainder of the paper we show for most of the known rotating black hole solutions of gauged supergravity, and for the ungauged supergravity solutions with four charges in $D = 4$ and three charges in $D = 5$, that their extremal near-horizon geometries indeed lie within the canonical form. This establishes that, in all these examples, the microscopic entropies of the dual conformal field theories agree with the Bekenstein-Hawking entropies of the extremal rotating black holes.

Disciplines
Physical Sciences and Mathematics | Physics

Comments
Suggested Citation:

© 2009 The American Physical Society
http://dx.doi.org/10.1103/PhysRevD.79.084018

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/physics_papers/73
Extremal black hole/CFT correspondence in (gauged) supergravities

David D. K. Chow,1 M. Cvetic,2 H. Lü,1,3 and C. N. Pope1,4

1George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242, USA
2Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA
3Division of Applied Mathematics and Theoretical Physics, China Institute for Advanced Study, Central University of Finance and Economics, Beijing, 100081, China
4DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 OWA, United Kingdom

(Received 26 February 2009; published 10 April 2009)

We extend the investigation of the recently proposed Kerr/conformal field theory correspondence to large classes of rotating black hole solutions in gauged and ungauged supergravities. The correspondence, proposed originally for four-dimensional Kerr black holes, asserts that the quantum states in the near-horizon region of an extremal rotating black hole are holographically dual to a two-dimensional chiral theory whose Virasoro algebra arises as an asymptotic symmetry of the near-horizon geometry. In fact, in dimension D there are $[(D-1)/2]$ commuting Virasoro algebras. We consider a general canonical class of near-horizon geometries in arbitrary dimension D, and show that in any such metric the $[(D-1)/2]$ central charges each imply, via the Cardy formula, a microscopic entropy that agrees with the Bekenstein-Hawking entropy of the associated extremal black hole. In the remainder of the paper we show for most of the known rotating black hole solutions of gauged supergravity, and for the ungauged supergravity solutions with four charges in $D = 4$ and three charges in $D = 5$, that their extremal near-horizon geometries indeed lie within the canonical form. This establishes that, in all these examples, the microscopic entropies of the dual conformal field theories agree with the Bekenstein-Hawking entropies of the extremal rotating black holes.

DOI: 10.1103/PhysRevD.79.084018 PACS numbers: 04.50.Gh, 04.60.-m

I. INTRODUCTION

A recent paper [1] proposed a new holographic duality symmetry in quantum gravity, in which the quantum states in the near-horizon region of a four-dimensional extremal Kerr black hole are identified with a certain two-dimensional chiral conformal field theory (CFT). This CFT arises by examining the asymptotic symmetry generators associated with a class of diffeomorphisms of the near-horizon Kerr geometry that obey suitably chosen boundary conditions at infinity. The Lie brackets of the infinitesimal diffeomorphism transformations close on a centerless Virasoro algebra. By defining charges associated with the transformations, and evaluating the Dirac brackets of the charges, one obtains a Virasoro algebra with a central charge that is related to the angular momentum of the black hole. By using the Cardy formula, the microscopic entropy of the chiral CFT can be computed. This calculation requires that one invoke the ideas of Frolov and Thorne [2] in order to define a quantum theory in the extremal black hole geometry, and to associate a nonzero temperature T_{FT} with the vacuum state. It was shown in [1] that the microscopic entropy so calculated agrees precisely with the Bekenstein-Hawking entropy of the extremal Kerr black hole. (See [3–9] for some earlier related work, and [10–15] for recent follow-ups.)

The proposed Kerr/CFT correspondence was extended to a wider class of rotating black hole backgrounds in [11]. It was shown that the microscopic entropy of the dual CFT again agrees with the Bekenstein-Hawking entropy in the case of extremal Kerr-anti-de Sitter (AdS) black holes, both in four dimensions and also in all higher dimensions. A new feature that arises in more than four dimensions is that there is a Virasoro algebra, and a corresponding chiral CFT, associated with each of the orthogonal 2-planes in which the black hole is rotating. Curiously, although the central charges are different for the different CFTs, their Frolov-Thorne temperatures differ too, in precisely such a way that the Cardy formula leads to an identical microscopic entropy for each of the CFTs. Furthermore, each one of these entropies agrees precisely with the Bekenstein-Hawking entropy of the extremal rotating Kerr-AdS black hole [11].

It is perhaps useful at this point to elaborate a little on the role of the Frolov-Thorne temperature in the calculation of microscopic entropy via the Cardy formula. The Cardy formula gives the entropy of the two-dimensional CFT as

$$S = 2\pi \sqrt{cL/6},$$

(1.1)

where c is the central charge and L is the energy. The temperature of the CFT is then given by $dS = TdS$, and so from (1.1) we have $dS = \pi \sqrt{c/(6L)}TdS$ and hence

$$\sqrt{L} = \pi \sqrt{c/T}.$$

(1.2)
It is in this form, with c being the central charge of the Virasoro algebra, and T being the Frolov-Thorne expression for the temperature of the near-horizon metric, that the Cardy formula delivers an expression for the microscopic entropy of the CFT that can be compared with the Bekenstein-Hawking entropy of the extremal black hole.

Another extension of the original proposal in [1] has also recently been given, in which it was shown that the microscopic entropy of the dual CFT agrees with the Bekenstein-Hawking entropy in the case of the Kerr-Newman-(A)dS charged rotating extremal black hole in four dimensions [13]. It was also noted in [13] that if one makes an assumption about the Frolov-Thorne temperature for black hole solutions to a class of four-dimensional theories involving the coupling of gravity to electromagnetic and scalar fields, one could establish an equality of the microscopic CFT entropy and the Bekenstein-Hawking entropy for a wide class of higher-dimensional extremal black holes that are related by dimensional reduction.

In this paper, we shall probe the Kerr/CFT correspondence for a large class of extremal higher-dimensional rotating charged black holes. Our strategy will be first to establish, for a general ansatz for near-horizon geometries, a result that demonstrates the equality of the microscopic entropy derived via the Cardy formula and the Bekenstein-Hawking entropy for a wide class of higher-dimensional extremal black holes that are related by dimensional reduction.

The charged rotating black hole examples that we shall consider in this paper include: the solution in four-dimensional extremal rotating black holes that the entropy of the black hole can be obtained from the Cardy formula of the two-dimensional conformal field theory in the boundary of the black hole near-horizon geometry. Here, we shall present a general argument for higher-dimensional black holes.

We consider first $D = 5$ black holes that are asymptotic to flat or AdS spacetimes, with the asymptotic metric given by

$$ds^2 = -(1 + \hat{r}^2 \ell^{-2})dt^2 + \frac{d\hat{r}^2}{1 + \hat{r}^2 \ell^{-2}} + \hat{r}^2(d\theta^2 + \cos^2 \theta d\hat{\phi}_1^2 + \sin^2 \theta d\hat{\phi}_2^2).$$ (2.1)

The discussion that follows is applicable for both vanishing and nonvanishing cosmological constant ℓ^{-2}. In the extremal limit, it is possible to extract the near-horizon geometry as an exact solution in its own right, by first making the coordinate transformations

$$\hat{r} = r_0(1 + \lambda \rho), \quad \hat{\phi}_1 = \phi_1 + \Omega_i^{0}\hat{t},$$
$$\hat{\phi}_2 = \phi_2 + \Omega_i^{0}\hat{t}, \quad \hat{t} = \frac{t}{2\pi r_0^0 \lambda}.$$ (2.2)

Here r_0 is defined to be the horizon radius in the extremal limit. The quantities Ω_i^{0} are the angular velocities on the horizon for the two azimuthal angles $\hat{\phi}_i$, with the superscript 0 indicating that they are evaluated in the extremal limit. Let r_+ be the outer horizon radius of the general nonextremal black hole, which we regard as one of the parameters of the general nonextremal family of solutions, and $T_H(r_+)$ be the corresponding Hawking temperature. The quantity T_H^{0} is defined to be

$$T_H^{0} := \left. \frac{\partial T_H}{\partial r_+} \right|_{r_+ = r_0}.$$ (2.3)

For later purposes, we also define

$$\Omega_i := \left. \frac{\partial \Omega_i^{0}}{\partial r_+} \right|_{r_+ = r_0},$$ (2.4)

where $\Omega_i(r_+)$ are the angular velocities for the general nonextremal black hole.

Taking the scaling parameter λ to zero, we obtain the near-horizon geometry of the extremal black hole, whose metric has the form

$$ds^2 = A(\theta)(-\rho^2 d\theta^2 + \frac{d\rho^2}{\rho^2}) + F(\theta) d\theta^2 + B_1(\theta) \hat{\epsilon}_1^2$$
$$+ B_2(\theta) \hat{\epsilon}_2 + C(\theta) \hat{\epsilon}_1 \hat{\epsilon}_2,$$ (2.5)

$$\hat{\epsilon}_1 = d\phi_1 + k_1 \rho dt, \quad \hat{\epsilon}_2 = d\phi_2 + k_2 \rho dt,$$

where A, B_i, C and F are functions of the latitude coor-
The central charges c_i in these Virasoro algebras, at the level of Dirac brackets of the associated charges $Q_i^{(n)} = 1/(8\pi) \int_{S^2} k_i^{(n)}$, can be calculated in the manner described in [30,31] and applied in [1], namely, from the m^3 terms in the expressions

$$
\frac{1}{8\pi} \int_{S^2} k_i^{(n)} \{ L_i^{(n)}, g \} g = - \frac{i}{12} (m^3 + \alpha m) c_i,
$$

where

$$
k_i^{(n)}[h, g] = \frac{1}{2}(\xi^\mu \nabla_\mu h - \xi^\nu \nabla_\nu h^\mu + \xi^\sigma \nabla_\sigma h^\nu) + \frac{1}{2} \nabla_\nu \xi^\nu h^\mu + \frac{1}{2} h_{\nu\sigma} (\nabla_\nu \xi^\sigma + \nabla_\sigma \xi^\nu) \ast (dx^\mu \wedge dx^\nu),
$$

Taking $g_{\mu\nu}$ to be given by (2.8), we find that the central charges are

$$
c_i = \frac{3}{2\pi} k_i \int d\theta \sqrt{B_1 B_2} F \int d\phi_1 d\phi_2 \frac{6k_i S_{BH}}{\pi},
$$

for $i = 1$ and $i = 2$. Thus we have

$$
S_{BH} = \frac{\pi^2}{3} c_1 T_1 = \frac{\pi^2}{3} c_2 T_2,
$$

in precise agreement with the microscopic entropy given by the Cardy formula (1.3).

The arguments above can be straightforwardly generalized to higher dimensions. The near-horizon geometry of extremal rotating black holes in $D = 2n + \epsilon$ dimensions, with $\epsilon = 0, 1$, can be written, using Poincaré AdS$_2$ coordinates, as

$$
ds^2 = A(-\rho^2 dt^2 + \frac{dr^2}{1 + \rho^2}) + \sum_{\alpha = 1}^{n-1} F_\alpha dy_\alpha^2 + \sum_{i,j=1}^{n-1+\epsilon} \tilde{g}_{ij} \tilde{e}_i \tilde{e}_j,
$$

$$
\tilde{e}_i = d\phi_i + k_i \rho dt, \quad k_i = \frac{1}{2\pi T_i}, \quad T_i = - \frac{T_0^H}{\Omega_i^0},
$$

or alternatively, using global AdS$_2$ coordinates, as

$$
ds^2 = A(-\rho^2 dt^2 + \frac{dr^2}{1 + \rho^2}) + \sum_{\alpha = 1}^{n-1} F_\alpha dy_\alpha^2 + \sum_{i,j=1}^{n-1+\epsilon} \tilde{g}_{ij} \tilde{e}_i \tilde{e}_j,
$$

$$
\tilde{e}_i = d\phi_i + k_i r dt, \quad k_i = \frac{1}{2\pi T_i}, \quad T_i = - \frac{T_0^H}{\Omega_i^0}.
$$

Here we follow [32] and use a set of unconstrained latitudinal coordinates y^a, rather than the direction cosines μ^a subject to $\sum_{a=1}^{n+1} \mu^a = 1$ that were used in the original formulation of the higher-dimensional Ricci-flat [33] or asymptotically AdS [27,28] rotating black holes. The functions A, F_α, and \tilde{g}_{ij} depend only on these latitudinal coordinates. The metric has $n + 1 + \epsilon$ copies of the Virasoro algebra. It has been shown that near-horizon geometries are generally of this form for classes of theories that are of interest in four and five dimensions [34], and also for cohomogeneity-1 horizons in arbitrary dimension [35]. We have verified for dimensions $D \leq 7$ that the central charges are given by

$$
S_{BH} = \frac{\pi^2}{3} c_1 T_1 = \frac{\pi^2}{3} c_2 T_2,
$$
\[c_i = \frac{3}{2\pi k_i} \int d^{n-1}y_\alpha \left(\det \bar{g}_{ij} \prod_{a=1}^{n-1} F_a \right)^{1/2} \times \int d\phi_1 \ldots d\phi_{n-1+\epsilon} = 6k_i S_{BH} \pi. \] (2.19)

Since this relation does not have any features relying on a particular dimension, it is very likely to hold in arbitrary dimension. It follows that

\[S_{BH} = \frac{1}{3} \pi^2 c_i T_i, \quad \text{for each } i, \] (2.20)

holds in general, in complete agreement with the microscopic entropy given by the Cardy formula (1.3).

In the next few sections, we shall examine a large class of charged rotating black holes in diverse dimensions. We obtain the near-horizon geometries of these black holes in the extremal limit. We demonstrate that the metrics can all be cast into the form (2.17), and hence that the Cardy formulae are all satisfied.

III. EINSTEIN-MAXWELL ADS SUPERGRAVITIES IN FOUR AND FIVE DIMENSIONS

We shall start our main discussion with two relatively simple examples, namely, the charged rotating black holes in Einstein-Maxwell AdS supergravities in four and five dimensions.

A. Four-dimensional Einstein-Maxwell AdS supergravity

This example, the Kerr-Newman-AdS solution, was discussed in detail in [13]; we include it here for completeness. The metric is given by

\[ds^2 = \rho^2 \left(\frac{d\tilde{t}^2}{\Delta} + \frac{d\theta^2}{\Delta_{\phi}} + \frac{\Delta_{\phi} \sin^2 \theta}{\rho^2} \left(d\tilde{t} - \frac{\tilde{r}^2 + a^2}{\Xi} d\phi \right)^2 \right) \]
\[- \Delta \left(d\tilde{t} - \frac{\sin^2 \theta}{\Xi} d\phi \right)^2, \]
\[\rho^2 = \tilde{r}^2 + a^2 \cos^2 \theta, \]
\[\Delta = (\tilde{r}^2 + a^2)(1 + \tilde{r}^2 \ell^{-2}) - 2M \tilde{r}, \]
\[\Delta_{\phi} = 1 - a^2 \ell^{-2} \cos^2 \theta, \quad \Xi = 1 - a^2 \ell^2. \] (3.1)

Here \(Q^2 = p^2 + q^2 \), with \((q, p)\) being the electric and magnetic charges. The solution describes a charged black hole with the outer horizon at \(\tilde{r} = r_+ \), where \(r_+ \) is the largest root of the function \(\Delta(\tilde{r}) \). The metric is asymptotically AdS\(_4\) in global coordinates, but with nonvanishing angular velocity \(\Omega_{\phi} = -a^2 \ell^{-2} \). The Hawking temperature, entropy and angular velocity on the horizon are given by

\[T_H = \frac{r_+^2 - a^2 - Q^2 + r_+^2 \ell^{-2}(3r_+^2 + a^2)}{4\pi r_+ (r_+^2 + a^2)}, \] (3.2)
\[\Omega_{\phi} = \frac{\Xi a}{r_+^2 + a^2}, \quad S = \frac{\pi (r_+^2 + a^2)}{\Xi}. \]

The extremal limit is achieved when the parameters \(M \) and \(Q \) take the following values:

\[M = r_0 + r_0(2r_0^2 + a^2) \ell^{-2}, \]
\[Q^2 = r_0^2 - a^2 + r_0^2(3r_0^2 + a^2) \ell^{-2}. \] (3.3)

The horizon of the metric is at \(\tilde{r} = r_0 \), with the function \(\Delta \) near the horizon given by

\[\Delta = V(\tilde{r} - r_0)^2 + O(\tilde{r} - r_0)^3, \quad \text{with} \]
\[V = 1 + (6r_0^2 + a^2) \ell^{-2}. \] (3.4)

To obtain the near-horizon geometry, we make the coordinate transformation

\[\hat{r} = r_0(1 + \lambda \rho), \quad \hat{\phi} = \phi + \Omega_{\phi}^0 \hat{r}, \] (3.5)

where \(\Omega_{\phi}^0 = \Omega_{\phi} |_{r = r_0} \). We then scale the time coordinate \(\tilde{t} \) by

\[\hat{t} = \frac{r_0^2 + a^2}{r_0 V \lambda} \tilde{t}, \] (3.6)

and send \(\lambda \to 0 \). We obtain the metric

\[ds^2 = \rho_0^2 \left(-\rho_0^2 d\tilde{t}^2 + d\rho^2 + V d\theta^2 + \rho_0^2 \sin^2 \theta d\phi \right) \left(d\tilde{t} - \frac{r_0^2 + a^2}{\Xi} d\phi \right)^2 \]
\[\rho_0^2 = r_0^2 + a^2 \cos^2 \theta, \]
\[\rho_0^2 = r_0^2 + a^2 \cos^2 \theta, \] (3.7)

where the Frolov-Thorne temperature \(T_{\phi} \) is given by

\[T_{\phi} = -\frac{\partial_{\rho_0} T_H}{\partial_{\rho_0} \Omega_{\phi}} \bigg|_{r_0} \frac{V(r_0^2 + a^2)}{4\pi \Xi a r_0}. \] (3.8)

The entropy in the extremal limit is

\[S = \frac{\pi (r_0^2 + a^2)}{\Xi}. \] (3.9)

The central charge can be easily obtained, given by

\[c = \frac{12 a r_0}{V}. \] (3.10)

B. Five-dimensional minimal gauged supergravity

The general nonextremal rotating black hole in five-dimensional minimal gauged supergravity with two arbitrary angular momenta was obtained in [17]. Here we shall adopt the notation given in [36]. The metric is given by
\[ds^2 = -e^0 e^0 + \sum_{i=1}^{4} e^i e^i, \quad (3.11) \]

where
\[e^0 = \sqrt{\frac{R}{\tilde{r}^2 + y^2}} A, \quad e^i = \sqrt{\frac{\tilde{r}^2 + y^2}{R}} dr, \]
\[e^2 = \frac{Y}{\tilde{r}^2 + y^2}(dt' - \tilde{r}^2 d\psi_1), \quad e^3 = \sqrt{\frac{\tilde{r}^2 + y^2}{Y}} dy, \]
\[e^4 = \frac{ab}{\tilde{r}Y} \left(dt' + (y^2 - \tilde{r}^2) d\psi_1 - \tilde{r}^2 y^2 d\psi_2 \right. \]
\[+ \left. \frac{y^2}{ab(\tilde{r}^2 + y^2)} A \right) \quad (3.12) \]

and
\[R = \frac{(1 + \tilde{r}^2 \ell^{-2})(\tilde{r}^2 + a^2)(\tilde{r}^2 + b^2) + 2abq + q^2}{\tilde{r}^2} - 2M, \]
\[Y = -(1 - y^2 \ell^{-2})(a^2 - y^2)(b^2 - y^2), \quad (3.13) \]
\[\mathcal{A} = dt' + y^2 d\psi_1. \]

The coordinates \(t', \psi_1 \) and \(\psi_2 \) are not proper canonical time and azimuthal coordinates. The proper coordinates \((i, \hat{\phi}_1, \hat{\phi}_2) \) are given by
\[t' = i - (a^2 + b^2)\psi_1 - a^2 b^2 \psi_2, \]
\[\psi_1 = \frac{a \hat{\phi}_1}{\Xi_a(a^2 - b^2) + \Xi_b(b^2 - a^2)}, \]
\[\psi_2 = \frac{b \hat{\phi}_2}{a(b^2 - a^2)\Xi_a + b(a^2 - b^2)\Xi_b}, \quad (3.14) \]
where \(\Xi_a = 1 - a^2 \ell^{-2} \) and \(\Xi_b = 1 - b^2 \ell^{-2} \). Then the coordinates \(\hat{\phi}_1 \) and \(\hat{\phi}_2 \) have period \(2\pi \). The metric is \(AdS_4 \) asymptotically, but in a rotating coordinate frame with angular velocities \(\Omega_1 = -a\ell^{-2} \) and \(\Omega_2 = -b\ell^{-2} \). The thermodynamic quantities for this black hole were obtained in [17]. Here we shall present the temperature, entropy and the angular velocities of the horizon. These are given by
\[T_H = \frac{r_+^2}{4\pi[r_+^4 + (a^2 + b^2)r_+^2 + ab(ab + q)]}, \]
\[S = \frac{\pi^2[r_+^4 + (a^2 + b^2)r_+^2 + ab(ab + q)]}{2r_+\Xi_a\Xi_b} \quad (3.15) \]
\[\Omega_1 = \frac{\Xi_a(a^2 - b^2) + \Xi_b(b^2 - a^2)}{2r_+\Xi_a\Xi_b}, \]
\[\Omega_2 = \frac{a(b^2 - a^2)\Xi_a + b(a^2 - b^2)\Xi_b}{2r_+\Xi_a\Xi_b}. \]

We now consider the extremal limit, given by the following conditions:
\[M = \frac{(1 + r_0^2 \ell^{-2})(r_0^2 + a^2)(r_0^2 + b^2) + q^2 + 2abq}{2r_0^4}, \quad (3.16) \]
\[\ell^{-2} = \frac{(ab + q)^2 - a^2}{r_0^2(a^2 + b^2 + 2r_0^2)}. \]

Near the horizon, we have
\[R = V(\hat{r} - r_0)^2 + O(\hat{r} - r_0)^3, \]
\[V = \frac{1}{2}\mathcal{H}(r_0). \quad (3.17) \]

To extract the near-horizon geometry, we make the following coordinate transformation:
\[\hat{r} = r_0(1 + \lambda \rho), \quad \hat{\phi}_1 = \phi_1 + \Omega_1^0 \hat{r}, \]
\[\hat{\phi}_2 = \phi_2 + \Omega_2^0 \hat{r}, \quad (3.18) \]
where \(\Omega_i^0 = \Omega_i |_{r=r_0} \). We then scale the time coordinate \(\hat{r} \) as
\[\hat{r} = \beta t, \quad \beta = \frac{1}{2\pi r_0 T_H^0 \lambda} = \frac{r_0^2 + (a^2 + b^2)r_0^2 + ab(ab + q)}{Vr_0^2 \lambda}. \quad (3.19) \]

Taking the limit of \(\lambda \to 0 \), the vielbeins become
\[e^0 = \sqrt{\frac{\tilde{r}^2 + y^2}{V}} \rho dt, \quad e^1 = \sqrt{\frac{\tilde{r}^2 + y^2}{V}} \frac{d\rho}{\rho}, \]
\[e^2 = \sqrt{\frac{\tilde{r}^2 + y^2}{V}} \frac{dy}{\rho}, \quad e^3 = \sqrt{\frac{\tilde{r}^2 + y^2}{V}} \frac{d\psi_1}{\rho}, \]
\[e^4 = \frac{ab}{r_0 \rho} \left(\frac{(a^2 - y^2)(aqy^2 + ba^2 + r_0^2)(r_0^2 + y^2)}{ab(a^2 - b^2)\Xi_a(r_0^2 + y^2)} \hat{\epsilon}_1 \right. \]
\[+ \left. \frac{(b^2 - y^2)(bg^2 + ab^2 + r_0^2)(r_0^2 + y^2)}{ab(b^2 - a^2)\Xi_b(r_0^2 + y^2)} \hat{\epsilon}_2 \right) \quad (3.20) \]
where
\[\hat{\epsilon}_i = d\phi_i + k_i \rho dt, \quad k_i = \frac{1}{2\pi T_i}. \quad (3.21) \]

and \(T_i \)’s are the Frolov-Thorne temperatures defined in (2.10). Thus we see that the near-horizon geometry of the extremal black hole can be put in the general form (2.17) discussed in Sec. II, and hence the Cardy formulas (2.20) are satisfied. To be specific, we have
\[T_1 = \frac{r_0 V[(r_0^2 + a^2)(r_0^2 + b^2) + qab]}{4\pi \Xi_a[a(r_0^2 + b^2)^2 + qb(b^2 + 2r_0^2)]}, \]
\[T_2 = \frac{r_0 V[(r_0^2 + a^2)(r_0^2 + b^2) + qab]}{4\pi \Xi_b[b(r_0^2 + a^2)^2 + qa(a^2 + 2r_0^2)]}. \quad (3.22) \]
was first obtained in [18], and the explicit form of the supergravity coupled to three vector multiplets. The metric gauge potentials was given in [19].

IV. FOUR DIMENSIONS

In this and the following sections, we consider a variety of rotating black holes involving multiple charges in various dimensions. We start here with four dimensions, and then later proceed to increase the dimensionality.

A. Ungauged supergravity with four unequal charges

Black holes with four unequal charges arise from the bosonic sector of the four-dimensional \(\mathcal{N} = 2 \) ungauged supergravity coupled to three vector multiplets. The metric was first obtained in [18], and the explicit form of the gauge potentials was given in [19].

The solution is specified by mass, angular momentum, and two electric and two magnetic charges. The metric takes the form

\[
d s_4^2 = -\frac{\rho^2 - 2m\dot{\rho}}{W} (d\tilde{t} + Bd\phi)^2 + W\left(\frac{d\Omega^2}{\Delta} + d\theta^2 + \frac{\Delta \sin^2 \theta d\phi^2}{\rho^2 - 2m\dot{\rho}}\right). \tag{4.1}\]

where

\[
\Delta = \rho^2 - 2m\dot{\rho} + a^2, \quad \rho^2 = \dot{\rho}^2 + a^2 \cos^2 \theta,
\]

\[
B = \frac{2m(a^2 - u^2)[(\rho a_{1234} - (\dot{\rho} - 2m)s_{1234}]}{a(\rho^2 - 2m\dot{\rho})},
\]

\[
W^2 = r_1 r_{234} u^4 + \rho^2 \left(2\dot{\rho}^2 + 2m\dot{\rho}(s_{12}^2 + s_{13}^2 + s_{14}^2) + 8m^2 c_{1234} s_{1234} - 4m^2 (s_{12}^2 + s_{13}^2 + s_{14}^2)
ight)
+ s_{234}^2 + 2s_{1234}^2),
\]

\[
r_i = \dot{\rho} + 2ms_i^2, \quad u = a \cos \theta,
\]

\[
c_{i_1...i_n} = \cos \delta_{i_1}...\cos \delta_{i_n},
\]

\[
s_{i_1...i_n} = \sin \delta_{i_1}...\sin \delta_{i_n}.
\]

The outer and inner horizons are at \(\dot{\rho} = r_\pm \), with

\[
r_\pm = m \pm \sqrt{m^2 - a^2}. \tag{4.3}\]

The entropy \(S \), Hawking temperature \(T_H \) and the angular velocity \(\Omega \) have the explicit form

\[
S = 2\pi m [c_{1234} + s_{1234}] + m \sqrt{m^2 - a^2} (c_{1234} - s_{1234}),
\]

\[
T_H = \frac{1}{4\pi m [c_{1234} - s_{1234} + (c_{1234} + s_{1234})m/\sqrt{m^2 - a^2}]},
\]

\[
\Omega = 2\pi T_H \frac{a}{\sqrt{m^2 - a^2}}. \tag{4.4}\]

The extreme black hole corresponds to

\[
m = a \quad \text{and} \quad r_+ = a. \tag{4.5}\]

The near-horizon geometry of the extreme black hole is obtained by taking

\[
\dot{\rho} = a(1 + \lambda \rho), \quad \dot{\phi} = \phi + \Omega \hat{t}, \quad \hat{t} = \frac{t}{\lambda}, \tag{4.6}\]

with \(\lambda \to 0 \). The near-horizon metric is then

\[
d s_4^2 = W_0 \left(-\rho^2 dt^2 + \frac{d\rho^2}{\rho^2} + d\theta^2 + \frac{a^2 \sin^2 \theta B_0^2}{W_0} (d\phi + k\rho dt)^2, \tag{4.7}\]

where

\[
B_0 = B|_{\dot{\rho} = a, m = a} = -2a(c_{1234} - s_{1234}),
\]

\[
k = \frac{1}{2\pi T_\phi} = -\frac{\partial_{r_+} \Omega}{2\pi \partial_{r_+} T_H} \bigg|_{r_+ = 0} = \frac{c_{1234} - s_{1234}}{c_{1234} + s_{1234}},
\]

\[
W_0 = W|_{\dot{\rho} = a, m = a}. \tag{4.8}\]

Thus, we see that the form of the near-horizon geometry of the extremal black hole fits into the general pattern discussed in Sec. II, and hence the Cardy formula is satisfied.

B. U(1)\(^4\) gauged supergravity with pairwise equal charges

The most general charged rotating black hole solution known in four-dimensional U(1)\(^4\) gauged supergravity has the four U(1) charges pairwise equal [19].

The metric is

\[
d s_4^2 = H \left[-\frac{R}{H^2(\dot{\rho} + \rho)} \left(d\tilde{t} - \frac{a^2 - y^2}{\Xi a} d\phi\right)^2 + \frac{\dot{\rho}^2 + y^2}{R} d\rho^2 + \frac{\dot{\rho}^2 + y^2}{Y} dy^2 + \frac{Y}{H^2(\dot{\rho} + \rho)^2} \times \left(d\tilde{t} - \frac{(\dot{\rho} + q_1)(\dot{\rho} + q_2) + a^2}{\Xi a} d\phi\right)^2\right]. \tag{4.9}\]

where

\[
R = \dot{\rho}^2 + a^2 + g^2 (\dot{\rho} + q_1)(\dot{\rho} + q_2)((\dot{\rho} + q_1)(\dot{\rho} + q_2) + a^2) - 2m\dot{\rho},
\]

\[
Y = (1 - g^2 y^2)(a^2 - y^2), \quad \Xi = 1 - a^2 g^2,
\]

\[
H = \frac{(\dot{\rho} + q_1)(\dot{\rho} + q_2) + y^2}{\dot{\rho}^2 + y^2}, \quad q_1 = 2ms_i^2.
\]

\[
s_i = \sin \delta_i. \tag{4.10}\]

Note that, as is standard in the gauged supergravity literature, we are using \(g \) to denote the gauge-coupling constant,
which is related to the AdS length scale ℓ by $g = \ell^{-1}$. We have used a shifted azimuthal coordinate $\hat{\phi}$ that gives an asymptotically rotating coordinate frame; the coordinate change $\dot{\phi} \to \dot{\phi} - ag^2 \dot{t}$ would give an asymptotically non-rotating coordinate frame. This shifted azimuthal coordinate is used merely to make the metrics more convenient to write, and is not otherwise significant. The Hawking temperature and entropy are

$$T_H = \frac{R'|_{r=r_+}}{4\pi[(r_+ + q_1)(r_+ + q_2) + a^2]} = \frac{r_+^2 - a^2 + a^2 g^2(r_+^2 - q_1 q_2) + g^2(r_+ + q_1)(r_+ + q_2)(3 r_+^2 + q_1 r_+ + q_2 r_+ - q_1 q_2)}{4\pi r_+[(r_+ + q_1)(r_+ + q_2) + a^2]},$$

$$S = \frac{\pi[(r_+ + q_1)(r_+ + q_2) + a^2]}{E}.$$

In our asymptotically rotating coordinate frame, the angular velocity of the horizon is

$$\dot{\Omega} = \frac{\Xi a}{(r_+ + q_1)(r_+ + q_2) + a^2}. \quad (4.12)$$

For an extremal solution, with a horizon at $\hat{r} = r_0$, we have $R'|_{r=r_0} = 0$ and $R'|_{r=r_0} = 0$, and so

$$r_0^2 - a^2 + a^2 g^2(r_0^2 - q_1 q_2) + g^2(r_0 + q_1)(r_0 + q_2) \times (3 r_0^2 + q_1 r_0 + q_2 r_0 - q_1 q_2) = 0. \quad (4.13)$$

Then we have the near-horizon expansion

$$R = V(\hat{r} - r_0)^2 + O(\hat{r} - r_0)^3, \quad (4.14)$$

where

$$V = 1 + g^2(6r_0^2 + 6q_1 r_0 + 6q_2 r_0 + a^2 + q_1^2$$

$$+ q_2^2 + 4q_1 q_2). \quad (4.15)$$

To obtain the near-horizon geometry, we make the coordinate changes

$$\hat{r} = r_0(1 + \lambda \rho), \quad \hat{\phi} = \phi + \Omega_0 \hat{r}, \quad \hat{t} = \frac{t}{2\pi T_H r_0 \lambda}, \quad (4.16)$$

and then take the limit $\lambda \to 0$. The near-horizon geometry is

$$ds^2 = H_0 \left[(r_0^2 + y^2) \left(-\rho^2 dt^2 + \frac{d\rho^2}{\rho^2} \right) + \frac{r_0^2 + y^2}{Y} dy^2 \right.$$

$$+ \frac{Y}{H_0(r_0^2 + y^2)} \left(2 r_0 + q_1 + q_2 \rho dt \right.$$

$$+ (r_0 + q_1)(r_0 + q_2) + a^2 d\phi \right)^2] \quad (4.17)$$

where $H_0 = H|_{r=r_0}$. This can be cast in the form of (2.17), so the Cardy formulas are satisfied.

For the extremal solution, the Frolov-Thorne temperatures are

$$T_0 = 0, \quad T_1 = \frac{V[(r_0 + q_1)(r_0 + q_2) + a^2]}{2\pi \Xi a(2r_0 + q_1 + q_2)}. \quad (4.18)$$

The central charge is

$$c_1 = \frac{6a(2r_0 + q_1 + q_2)}{V}. \quad (4.19)$$

V. FIVE DIMENSIONS

A. Ungauged supergravity with three unequal charges

The U(1)3 charged black hole in $D = 5$ ungauged supergravity was obtained in [20]. The solution was expressed in a simpler form in [22], in which the metric is given by

$$ds^2 = (H_1 H_2 H_3)^{1/3}(x + y)$$

$$\times \left(-\frac{G}{(x + y)^3} H_1 H_2 H_3 (d\rho + \mathcal{A})^2 \right) + ds_5^2 \quad (5.1)$$

$$ds_5^2 = \frac{dx^2}{4X} + \frac{dy^2}{4Y} + \frac{U}{G} \left(dx - \frac{Z}{U} d\sigma \right)^2 + \frac{XY}{U} d\sigma^2,$$

where

$$X = (x + a^2)(x + b^2) - 2M x,$$

$$Y = -(a^2 - y)(b^2 - y),$$

$$G = (x + y)(x + y - 2M),$$

$$U = y X - x Y, \quad Z = ab(X + Y),$$

$$\mathcal{A} = \frac{2MC_1 C_2 C_3}{x + y - 2M} \left[(a^2 + b^2 - y) d\sigma - ab d\chi \right]$$

$$- \frac{2M s_1 s_2 s_3}{x + y} (d\sigma d\chi),$$

$$H_i = 1 + 2M s_i^2, \quad s_i = \sinh \delta_i, \quad c_i = \cosh \delta_i.$$

Here, x is the radial coordinate with the asymptotic flat region at $x = \infty$. The horizon is at $x = x_+$, where x_+ is the largest root of X. The latitude coordinate y runs from α to b. The U(1) coordinates σ and χ are related to the canoni-
The entropy, Hawking temperature, and angular velocities on the horizon are given by
\[S = \frac{\pi^2 (x_+ + a^2)(x_+ + b^2)(c_1c_2c_3x_+ + s_1s_2s_3ab)}{2x_+^{3/2}}, \]
\[T_H = \frac{\sqrt{x_+ (x_+^2 - a^2b^2)}}{2\pi (x_+ + a^2)(x_+ + b^2)(c_1c_2c_3x_+ + s_1s_2s_3ab)}, \]
\[\Omega_1 = \frac{bx_+}{(x_+ + a^2)(c_1c_2c_3x_+ + s_1s_2s_3ab)}, \]
\[\Omega_2 = \frac{b}{x_+ + b^2}(c_1c_2c_3x_+ + s_1s_2s_3ab). \] (5.4)

The extremal limit of the solution is achieved with the condition \(M = \frac{1}{2} (a + b)^2 \), in which case the horizon is at \(x = x_0 \), where \(x_0 = ab \). As in the previous case, the extremal limit can be extracted by the following coordinate transformation:
\[x = x_0 (1 + \lambda \rho), \quad \hat{\phi}_i = \phi + \Omega_0 i, \quad \hat{i} = \frac{t}{2\pi x_0 T_H(x_0)\lambda}. \] (5.5)

We then take the limit \(\lambda \to 0 \). The near-horizon geometry then has the following form:
\[ds^2 = \frac{ab + y}{4} \prod_{i=1}^{3} \left(1 + \frac{(a + b)^2s_i^2}{ab + y} \right)^{1/3}, \]
\[\times \left(-\rho^2 d\tau^2 + \frac{d\rho^2}{\rho^2} + \frac{dy^2}{(a^2 - y)(b^2 - y)} + \sum_{i,j=1}^{2} \tilde{g}_{ij}(y)\tilde{e}_i \tilde{e}_j \right). \] (5.6)

where \(\tilde{e}_i = d\phi_i + k_i \rho dt \), with \(k_i = 1/(2\pi T_i) \). This is precisely the same form as in (2.17), and so the Cardy formulas are satisfied. Here we present the entropy, the Frolov-Thorne temperatures and central charges:
\[S = \frac{1}{2} \pi^2 (a + b)^2 \sqrt{ab}(c_1c_2c_3 + s_1s_2s_3), \]
\[T_1 = \frac{\sqrt{ab}(c_1c_2c_3 + s_1s_2s_3)}{\pi (bc_1c_2c_3 - as_1s_2s_3)}, \]
\[T_2 = \frac{\sqrt{ab}(c_1c_2c_3 + s_1s_2s_3)}{\pi (ac_1c_2c_3 - bs_1s_2s_3)}, \] (5.7)
\[c_{\phi_1} = \frac{3}{2} \pi (a + b^2)(bc_1c_2c_3 - as_1s_2s_3), \]
\[c_{\phi_2} = \frac{3}{2} \pi (a + b^2)(ac_1c_2c_3 - bs_1s_2s_3). \]

We have used shifted azimuthal coordinates \(\hat{\phi}_i \) that give an asymptotically rotating coordinate frame; the coordinate changes \(\hat{\phi}_1 \to \hat{\phi}_1 - ag_1^2\tilde{\tau} \) and \(\hat{\phi}_2 \to \hat{\phi}_2 - bg_2^2\tilde{\tau} \) would give an asymptotically nonrotating coordinate frame. The Hawking temperature and entropy are
The extremal limit is achieved when \(\hat{r} = r_0 \). As in the previous cases, we make the following coordinate transformation:

\[
\hat{r} = r_0(1 + \lambda \rho), \quad \hat{\phi}_i = \phi_i + \frac{f_2(r_0)}{f_1(r_0)} \dot{\lambda},
\]

where \(V = \frac{1}{2} Y''(r_0) \). Taking the \(\lambda \to 0 \) limit, it is straightforward to obtain the near-horizon geometry, given by
ds^2 = \frac{r_0^2 R(r_0)}{V} \left(-\rho^2 d\tau^2 + \frac{d\rho^2}{\rho^2} \right) \\
+ \frac{1}{4} R(r_0)^3 \left[(d\theta^2 + \sin^2 \theta (d\bar{\theta}_1 + d\bar{\theta}_2)^2) \right] \\
+ \frac{f_1(r_0)}{4R(r_0)^2} (\bar{\theta}_1 + \bar{\theta}_2 + \cos \theta (\bar{\theta}_1 - \bar{\theta}_2))^2. \tag{5.22}

where \(\bar{\theta}_i = d\phi_i + k_i \rho dt \). This is exactly the same form discussed in Sec. II, and hence the Cardy formula is satisfied.

\[
\begin{align*}
\text{ds}^2 &= H^{1/2} \left[-\frac{R}{H^2U} A^2 + \frac{U}{R} d\hat{r}^2 + \frac{(\hat{r}^2 + y^2)(y^2 - z^2)}{V} dy^2 + \frac{(\hat{r}^2 + z^2)(z^2 - y^2)}{V} dz^2 \\
&\quad + \frac{Y}{(\hat{r}^2 + y^2)(y^2 - z^2)} \left(d\hat{r} - (\hat{r}^2 + a^2)(a^2 - z^2) \frac{d\hat{\phi}_1}{\epsilon_1} - (\hat{r}^2 + b^2)(b^2 - z^2) \frac{d\hat{\phi}_2}{\epsilon_2} \right)^2 \\
&\quad + \frac{Z}{(\hat{r}^2 + z^2)(z^2 - y^2)} \left(d\hat{r} - (\hat{r}^2 + a^2)(a^2 - y^2) \frac{d\hat{\phi}_1}{\epsilon_1} - (\hat{r}^2 + b^2)(b^2 - y^2) \frac{d\hat{\phi}_2}{\epsilon_2} \right)^2 \right], \tag{6.1}
\end{align*}
\]

where
\[
\begin{align*}
R &= (\hat{r}^2 + a^2)(\hat{r}^2 + b^2) + g^2(\hat{r}^2 + a^2) + q \left[(\hat{r}^2 + b^2) + q \right] - 2m\hat{r}, \\
Y &= -(1 - g^2y^2)(a^2 - y^2)(b^2 - y^2), \\
Z &= -(1 - g^2z^2)(a^2 - z^2)(b^2 - z^2), \\
U &= (\hat{r}^2 + y^2)(\hat{r}^2 + z^2), \\
A &= \Xi_a a(a^2 - b^2), \\
B &= \Xi_b b(b^2 - a^2), \\
C &= \Xi_c c(c^2 - a^2), \\
\Xi_a &= 1 - a^2 g^2, \\
\Xi_b &= 1 - b^2 g^2, \\
H &= 1 + \frac{q \hat{r}}{U}, \\
q &= 2m^2 s, \\
s &= \sinh \delta.
\end{align*}
\]

\[
\begin{align*}
\mathcal{A} &= d\hat{r} - (a^2 - y^2)(a^2 - z^2) \frac{d\hat{\phi}_1}{\epsilon_1} - (b^2 - y^2)(b^2 - z^2) \frac{d\hat{\phi}_2}{\epsilon_2}.
\end{align*}
\]

The coordinate changes \(\hat{\phi}_1 \to \hat{\phi}_1 - a g^2 \hat{r} \) and \(\hat{\phi}_2 \to \hat{\phi}_2 - b g^2 \hat{r} \) would give an asymptotically nonrotating coordinate frame. The Hawking temperature and entropy are

\[
\begin{align*}
T_H &= \frac{R|_{\hat{r}=r_+}}{4\pi[(r_+^2 + a^2)(r_+^2 + b^2) + qr_+]} \\
&= \frac{2(1 - g^2r_+^2)(2r_+^2 + a^2 + b^2) - (1 - g^2r_+^2)(r_+^2 + a^2)(r_+^2 + b^2) + 4aq^2r_+^3 - q^2g^2}{4\pi r_+[(r_+^2 + a^2)(r_+^2 + b^2) + qr_+]}, \\
S &= \frac{2\pi^2[(r_+^2 + a^2)(r_+^2 + b^2) + qr_+]}{3\Xi_a \Xi_b}.
\end{align*}
\]

In our asymptotically rotating coordinate frame, the angular velocities of the horizon are

\[
\begin{align*}
\hat{\Omega}_a &= \frac{\Xi_a a(r_+^2 + a^2)}{(r_+^2 + a^2)(r_+^2 + b^2) + qr_+}, \\
\hat{\Omega}_b &= \frac{\Xi_b b(r_+^2 + a^2)}{(r_+^2 + a^2)(r_+^2 + b^2) + qr_+}.
\end{align*}
\]

For an extremal solution, with a horizon at \(\hat{r} = r_0 \), we have \(R|_{\hat{r}=r_0} = 0 \) and \(R'|_{\hat{r}=r_0} = 0 \), and so

\[
\begin{align*}
3r_0^3 + (a^2 + b^2)r_0^2 - a^2 b^2 + g^2 r_0^2 [5r_0^2 + 3(a^2 + b^2)r_0^2 \\
+ a^2 b^2] + 4q^2 r_0^3 - q^2 g^2 = 0. \tag{6.5}
\end{align*}
\]

Then we have the near-horizon expansion

\[
\begin{align*}
\hat{r} &= r_0(1 + \lambda \rho), \\
\hat{\phi}_1 &= \phi_1 + \hat{\Omega}_a^0 \hat{r}, \\
\hat{\phi}_2 &= \phi_2 + \hat{\Omega}_b^0 \hat{r}, \\
\hat{\rho} &= \frac{\lambda}{2\pi T_H^0(r_0 \lambda)}.
\end{align*}
\]

VI. SIX AND SEVEN DIMENSIONS

A. Six-dimensional gauged supergravity

We consider here the black hole solution of six-dimensional SU(2) gauged supergravity [25], which has two independent angular momenta and a single U(1) charge in the Cartan subgroup of the gauge group.

The metric is

\[
\begin{align*}
R &= V(\hat{r} - r_0)^2 + O(\hat{r} - r_0)^3, \tag{6.6}
\end{align*}
\]

where

\[
\begin{align*}
V &= 6r_0^2 + a^2 + b^2 + g^2[15r_0^4 + 6(a^2 + b^2)r_0^2 \\
&\quad + 6qr_0 + a^2 b^2]. \tag{6.7}
\end{align*}
\]

To obtain the near-horizon geometry, we make the coordinate changes

\[
\begin{align*}
\hat{\rho} &= \rho, \quad \hat{\phi}_1 = \phi_1 + \hat{\Omega}_a^0 \hat{\rho}, \\
\hat{\phi}_2 &= \phi_2 + \hat{\Omega}_b^0 \hat{\rho}, \\
\hat{\rho} &= \frac{\lambda}{2\pi T_H^0(r_0 \lambda)}, \tag{6.8}
\end{align*}
\]

and then take the limit \(\lambda \to 0 \). The near-horizon geometry
is
\[ds^2 = H_0^{1/2} \left[\frac{\mathcal{U}}{V} \left(-\rho^2 dt^2 + \frac{d\rho^2}{\rho^2} \right) + \frac{(r_0^2 + y^2)(y^2 - z^2)}{Y} dy^2 + \frac{(r_0^2 + z^2)(z^2 - y^2)}{Z} dz^2 \right. \\
+ \left. \frac{Y}{(r_0^2 + y^2)(y^2 - z^2)} \left(2r_0(r_0^2 + z^2) \frac{\rho dt}{V} + (r_0^2 + a^2)(a^2 - z^2) \frac{d\phi_1}{\epsilon_1} + (r_0^2 + b^2)(b^2 - z^2) \frac{d\phi_2}{\epsilon_2} + \frac{q r_0}{H_0 \mathcal{U}} \tilde{\mathcal{A}} \right)^2 \right] \]
\[+ \frac{Z}{(r_0^2 + z^2)(z^2 - y^2)} \left(2r_0(r_0^2 + y^2) \frac{\rho dt}{V} + (r_0^2 + a^2)(a^2 - y^2) \frac{d\phi_1}{\epsilon_1} + (r_0^2 + b^2)(b^2 - y^2) \frac{d\phi_2}{\epsilon_2} + \frac{q r_0}{H_0 \mathcal{U}} \tilde{\mathcal{A}} \right)^2 \] (6.9)

where \(\mathcal{U} = U|_{r=r_0}, H_0 = H|_{r=r_0}, \) and
\[\tilde{\mathcal{A}} = -3r_0^4 + r_0^2 (y^2 + z^2) + y^2 z^2 \rho dt - (a^2 - y^2) (a^2 - z^2) \frac{d\phi_1}{\epsilon_1} - (b^2 - y^2) (b^2 - z^2) \frac{d\phi_2}{\epsilon_2}. \] (6.10)

This can be cast in the form of (2.17), so the Cardy formulas are satisfied.

For an extremal solution, the Frolov-Thorne temperatures are
\[T_1 = \frac{V[(r_0^2 + a^2)(r_0^2 + b^2) + qr_0]}{2\pi \Xi a [2r_0(r_0^2 + b^2)^2 + q(b^2 - r_0^2)]}, \quad T_2 = \frac{V[(r_0^2 + a^2)(r_0^2 + b^2) + qr_0]}{2\pi \Xi b [2r_0(r_0^2 + a^2)^2 + q(a^2 - r_0^2)]}, \] (6.11)
and \(T_0 = 0. \) The central charges are
\[c_1 = \frac{4\pi a [2r_0(r_0^2 + b^2)^2 + q(b^2 - r_0^2)]}{V \Xi a}, \quad c_2 = \frac{4\pi b [2r_0(r_0^2 + a^2)^2 + q(a^2 - r_0^2)]}{V \Xi a}. \] (6.12)

B. Seven-dimensional gauged supergravity

We consider here the black hole solution of [26] in seven-dimensional SO(5) gauged supergravity. It possesses three independent angular momenta and a single charge parameter, corresponding to two equal U(1) charges in the U(1)^2 Cartan subgroup of the full gauge group.

The metric is
\[ds^2 = H^{2/5} \left\{ -\frac{R}{H^2 \mathcal{U}} \mathcal{A}^2 + \frac{U}{R} d\tilde{t}^2 + \frac{(\tilde{r}^2 + y^2)(y^2 - z^2)}{Y} dy^2 + \frac{(\tilde{r}^2 + z^2)(z^2 - y^2)}{Z} dz^2 \right. \\
+ \left. \frac{Y}{(\tilde{r}^2 + y^2)(y^2 - z^2)} \left(d\tilde{t} - \sum_{i=1}^{3} \frac{(\tilde{r}^2 + a_i^2)\gamma_i}{a_i^2 - y^2} d\phi_i - \frac{q}{HU} \mathcal{A} \right)^2 \right] \]
\[+ \frac{Z}{(\tilde{r}^2 + z^2)(z^2 - y^2)} \left(d\tilde{t} - \sum_{i=1}^{3} \frac{(\tilde{r}^2 + a_i^2)\gamma_i}{a_i^2 - z^2} d\phi_i - \frac{q}{HU} \mathcal{A} \right)^2 \]
\[+ \frac{a_1^2 a_2^2 a_3^2}{\tilde{r}^2 y^2 z^2} \left[d\tilde{t} - \sum_{i=1}^{3} \frac{(\tilde{r}^2 + a_i^2)\gamma_i}{a_i^2} d\phi_i - \frac{q}{HU} \left(1 + \frac{g y^2 z^2}{a_1 a_2 a_3} \right) \mathcal{A} \right]^2 \] (6.13)

where
\[R = 1 + \frac{g^2 \tilde{r}^2}{\tilde{r}^2} \prod_{i=1}^{3} (\tilde{r}^2 + a_i^2) + q g^2 (2\tilde{r}^2 + a_1^2 + a_2^2 + a_3^2) - \frac{2 q a_1 a_2 a_3}{\tilde{r}^2} + \frac{q^2 g^2}{\tilde{r}^2} - 2m, \quad Y = 1 - \frac{g^2 y^2}{\tilde{r}^2} \prod_{i=1}^{3} (a_i^2 - y^2), \]
\[Z = 1 - \frac{g^2 z^2}{\tilde{r}^2} \prod_{i=1}^{3} (a_i^2 - z^2), \quad U = (\tilde{r}^2 + y^2)(\tilde{r}^2 + z^2), \quad \gamma_i = a_i^2 (a_i^2 - y^2)(a_i^2 - z^2), \quad \epsilon_i = \Xi_i a_i \prod_{j \neq i} (a_j^2 - a_i^2), \]
\[\Xi_i = 1 - a_i^2 g^2, \quad H = 1 + \frac{q}{(\tilde{r}^2 + y^2)(\tilde{r}^2 + z^2)}, \quad q = 2ms^2, \quad s = \sinh \delta, \quad \mathcal{A} = d\tilde{t} - \sum_{i=1}^{3} \gamma_i \frac{d\phi_i}{\epsilon_i}. \] (6.14)

The coordinate changes \(\phi_i \rightarrow \phi_i - a_i g^2 \tilde{t} \) would give an asymptotically nonrotating coordinate frame. The Hawking temperature and entropy are
\[T_H = \frac{(r^2 R')^\prime}{2\sinh(r^2 R')}, \]
\[(r^2 R')^\prime = \frac{4\pi}{2\sinh(r^2 R')} \left[4(r^2 + a_1^2)(r^2 + a_2^2)(r^2 + a_3^2) + q(r^2 - a_1 a_2 a_3 g) \right] \]
\[= \frac{(1 + g^2 r^2)r^2 \sum \prod_{j=1}^{3} (r_j^2 + a_j^2) \prod (r_j^2 + a_j^2) + 2q(g^2 r^4 + ga_1 a_2 a_3) - q^2 g^2}{2\pi r^4 \left[(r^2 + a_1^2)(r^2 + a_2^2)(r^2 + a_3^2) + q(r^2 - a_1 a_2 a_3 g) \right]}. \]
\[S = \frac{\pi^2 [(r^2 + a_1^2)(r^2 + a_2^2)(r^2 + a_3^2) + q(r^2 - a_1 a_2 a_3 g)]}{4\Xi_1 \Xi_2 \Xi_3 r^4}. \]

In our asymptotically rotating coordinate frame, the angular velocities of the horizon are
\[\Omega_i = \frac{\Xi_i [a_i \prod_{j=1}^{3} (r_j^2 + a_j^2) - q \prod_{j=1}^{3} a_j g]}{(r^2 + a_1^2)(r^2 + a_2^2)(r^2 + a_3^2) + q(r^2 - a_1 a_2 a_3 g)}. \]

For an extremal solution, with a horizon at \(r = r_0 \), we have \(R'|_{r=r_0} = 0 \), and so
\[\begin{align*}
2 \rho_0^2 + (a_1^2 + a_2^2 + a_3^2) \rho_0^2 - a_1^2 a_2^2 a_3^2 \\
+ g^2 [3 \rho_0^2 + 2(a_1^2 + a_2^2 + a_3^2) \rho_0^2 \\
+ (a_1^2 a_2^2 + a_2^2 a_3^2 + a_3^2 a_1^2 + 2a_1^2 a_2 a_3 + 2q) \rho_0^2 - q^2] \\
+ 2 q g a_1 a_2 a_3 = 0. \end{align*} \tag{6.17} \]

Then we have the near-horizon expansion
\[R = V(\hat{r} - r_0)^2 + O((\hat{r} - r_0)^3). \tag{6.18} \]

\[ds^2 = H_0^{2/5} \left\{ \frac{\bar{U}}{V} \left(-\frac{\rho^2}{\rho^2} dt^2 + \frac{d\rho^2}{\rho^2} \right) + \frac{(r_0^2 + \gamma^2)(y^2 - z^2)}{Y} dy^2 + \frac{(r_0^2 + \gamma^2)(z^2 - y^2)}{Z} dz^2 \right. \]
\[+ \frac{Y}{(r_0^2 + \gamma^2)(y^2 - z^2)} \left(\frac{2r_0(y_0^2 + \gamma^2)}{V} \rho dt + \sum_{i=1}^{3} \frac{\gamma \rho_0}{a_i^2 - \gamma^2} \frac{d\phi_i}{\epsilon_i} + \frac{q}{H_0} \bar{A} \right)^2 \]
\[+ \frac{Z}{(r_0^2 + \gamma^2)(z^2 - y^2)} \left(\frac{2r_0(y_0^2 + \gamma^2)}{V} \rho dt + \sum_{i=1}^{3} \frac{\gamma \rho_0}{a_i^2 - \gamma^2} \frac{d\phi_i}{\epsilon_i} + \frac{q}{H_0} \bar{A} \right)^2 \]
\[+ \frac{a_1^2 a_2^2 a_3^2}{r_0^2 \gamma^2 \rho_0^2} \left[\frac{2}{V_0} \left(-\frac{q g y^2 z^2}{a_1 a_2 a_3} \right) \rho dt + \sum_{i=1}^{3} \frac{(r_0^2 + \gamma^2)}{a_i} \frac{d\phi_i}{\epsilon_i} + \frac{q}{H_0} \left(1 + \frac{g \gamma^2 z^2}{a_1 a_2 a_3} \right) \bar{A} \right] \right\}. \tag{6.21} \]

where \(\bar{U} = U|_{r=r_0} \), \(H_0 = H|_{r=r_0} \), and
\[\bar{A} = -\frac{2r_0(2r_0^2 + \gamma^2 + z^2)}{V} \rho dt - \sum_{i=1}^{3} \frac{\gamma_i}{\epsilon_i} \frac{d\phi_i}{\epsilon_i}. \tag{6.22} \]

This can be cast in the form of \((2.17) \), and so the Cardy formulas are satisfied.

For an extremal solution, the Frolov-Thorne temperatures are
\[T_1 = \frac{V_{r_0}(1 + a_1^2)(1 + a_2^2)(1 + a_3^2) + q(r_0^2 - a_1 a_2 a_3 g)}{4\pi \Xi_1} \times \left[(1 + a_1^2)(1 + a_2^2)(1 + a_3^2) + q(a_2 a_3^2 - r_0^4) \\
- q a_1 a_2 a_3 (3r_0^4 + 2a_1^2 r_0^2 + 2a_2^2 r_0^2 + 2a_3^2 r_0^2) \right]^{-1}. \tag{6.23} \]
and also c_2 and c_3, obtained by cyclic permutation of a_i, $i = 1, 2, 3$.

VII. ARBITRARY DIMENSIONS

A. Higher-dimensional Kerr-AdS

The extremal black hole/CFT correspondence for the higher-dimensional Kerr-AdS solution [27,28] was previously considered in [11], where it was shown that the Cardy formulas are satisfied. We return to this example, showing directly that the near-horizon geometry of its extremal limit can be cast in the form of (2.17). (Note that the near-horizon geometry of the extremal Kerr-AdS black hole in $D = 5$ was obtained in [37], and that of the Myers-Perry solution in [35].)

1. Even dimensions $D = 2n$

The Kerr-AdS metric in even dimensions $D = 2n$ is

$$ds^2 = \frac{-R}{U} \mathcal{A}^2 + \frac{U}{R} dt^2 + \sum_{a=1}^{n-1} \frac{U_a}{X_a} \, dy_a^2 + \sum_{a=1}^{n-1} \frac{X_a}{U_a} \left(d\hat{t} - \sum_{i=1}^{n-1} \frac{(\hat{r}^2 + a_i^2) \gamma_i \, d\hat{\phi}_i}{\epsilon_i} \right)^2, \quad (7.1)$$

where

$$R = \prod_{k=1}^{n-1} (\hat{r}^2 + a_k^2) - 2m, \quad X_a = - \prod_{k=1}^{n-1} (a_k^2 - \gamma_a^2),$$

$$U = \prod_{a=1}^{n-1} (\hat{r}^2 + \gamma_a^2), \quad U_a = - (\hat{r}^2 + \gamma_a^2) \prod_{\beta=1}^{n-1} (\gamma_\beta^2 - \gamma_a^2),$$

$$\gamma_i = \prod_{a=1}^{n-1} (a_i^2 - \gamma_a^2), \quad \epsilon_i = \Xi_i a_i \prod_{k=1}^{n-1} (a_i^2 - a_k^2), \quad \Xi_i = 1 - a_i^2 \hat{g}^2, \quad \mathcal{A} = d\hat{t} - \sum_{i=1}^{n-1} \gamma_i \frac{d\hat{\phi}_i}{\epsilon_i}. \quad (7.2)$$

The notation \prod' means that we omit the factor that vanishes from a product.

For the extremal solution, the Frolov-Thorne temperatures are

$$T_i = \frac{V(r_0^2 + a_i^2)}{4\pi \Xi_i a_i r_0 \prod_{j \neq i} (r_0^2 + a_j^2)}, \quad (7.3)$$

where $V = \frac{1}{2} R^2|_{r=r_0}$, and also $T_0 = 0$. The near-horizon geometry is [11]

$$\frac{1}{2}$$

2. Odd dimensions $D = 2n + 1$

The Kerr-AdS metric in odd dimensions $D = 2n + 1$ is

$$ds^2 = \frac{-R}{U} \mathcal{A}^2 + \frac{U}{R} dt^2 + \sum_{a=1}^{n-1} \frac{U_a}{X_a} \, dy_a^2 + \sum_{a=1}^{n-1} \frac{X_a}{U_a} \left(d\hat{t} - \sum_{i=1}^{n-1} \frac{(\hat{r}^2 + a_i^2) \gamma_i \, d\hat{\phi}_i}{\epsilon_i} \right)^2,$$

$$+ \frac{n-1}{r^2} \prod_{a=1}^{n-1} \frac{a_i^2}{\gamma_a^2} \left(d\hat{t} - \sum_{i=1}^{n-1} \frac{(\hat{r}^2 + a_i^2) \gamma_i \, d\hat{\phi}_i}{\epsilon_i} \right)^2, \quad (7.6)$$

where

$$R = \prod_{k=1}^{n-1} (\hat{r}^2 + a_k^2) - 2m, \quad X_a = \frac{1}{2} \prod_{k=1}^{n-1} (a_k^2 - \gamma_a^2),$$

$$U = \prod_{a=1}^{n-1} (\hat{r}^2 + \gamma_a^2), \quad U_a = - (\hat{r}^2 + \gamma_a^2) \prod_{\beta=1}^{n-1} (\gamma_\beta^2 - \gamma_a^2),$$

$$\gamma_i = \prod_{a=1}^{n-1} (a_i^2 - \gamma_a^2), \quad \epsilon_i = \Xi_i a_i \prod_{k=1}^{n-1} (a_i^2 - a_k^2), \quad \Xi_i = 1 - a_i^2 \hat{g}^2, \quad \mathcal{A} = d\hat{t} - \sum_{i=1}^{n-1} \gamma_i \frac{d\hat{\phi}_i}{\epsilon_i}. \quad (7.7)$$

For the extremal solution, the Frolov-Thorne temperatures are

$$T_i = \frac{V(r_0^2 + a_i^2)}{4\pi \Xi_i a_i r_0 \prod_{j \neq i} (r_0^2 + a_j^2)}, \quad (7.8)$$

where $V = \frac{1}{2} R^2|_{r=r_0}$, and also $T_0 = 0$. The near-horizon geometry is [11]
ds^2 = \frac{\tilde{U}}{V} \left(-\rho^2 dt^2 + \frac{d\rho^2}{\rho^2} + \sum_{a=1}^{n-1} \frac{U_a}{x_a} dy_a^2 \right) + \sum_{a=1}^{n-1} \frac{U_a}{x_a} \left(\frac{2r_0 \tilde{U}}{V(r_0^2 + y_a^2)} \rho dt + \sum_{i=1}^{n-1} \frac{(r_0^2 + y_a^2) \gamma_i \frac{d\phi_i}{\epsilon_i}}{a_i^2 - y_a^2} \right)^2 \\
+ \frac{\prod_{a=1}^{n-1} a_i^2}{r^2} \frac{\tilde{U}^2}{V(r_0^2 + y_a^2)} \rho dt + \sum_{i=1}^{n-1} \frac{(r_0^2 + y_a^2) \gamma_i \frac{d\phi_i}{\epsilon_i}}{a_i^2 - y_a^2} \right)^2, \\ (7.9)

where \(\tilde{U} = U|_{r=r_0} \) and \(\tilde{U}_a = U_a|_{r=r_0} \).

Analogously to the even-dimensional case, the near-horizon geometry can be cast in the form of (2.17). The analogous partial fraction decomposition used is

\[
\frac{r_0^2 \tilde{U}}{(r_0^2 + y_a^2) \prod_{k=1}^{n-1} (r_0^2 + a_k^2)} = \sum_{i=1}^{n-1} \frac{\Xi_i a_i \gamma_i}{\epsilon_i (a_i^2 - y_a^2)(r_0^2 + a_i^2)}. \\ (7.10)
\]

It again follows that the Cardy formulas are satisfied.

B. Charged rotating black holes in ungauged supergravity

The solution considered here is the two-charge Cvetic-Youm [29], with the simplification of [26] that both charges are equal. It can be regarded as a solution of toroidally compactified heterotic supergravity in dimension \(4 \leq D \leq 9 \), although the construction generalizes to arbitrary dimension as a solution of a low-energy effective action of bosonic strings. This solution underlies the ungauged limit of some of the gauged black hole solutions that we have considered above. We use the form of the metric in [26].

1. **Even dimensions** \(D = 2n \)

In even dimensions \(D = 2n \), the metric is

\[
ds^2 = H^{2/(D-2)} \left[-\frac{R}{H^2 U} d\mathcal{A}^2 + \frac{U}{R} \dot{r}^2 + \sum_{a=1}^{n-1} \frac{U_a}{x_a} dy_a^2 \right] + \sum_{a=1}^{n-1} \frac{U_a}{x_a} \left(d\dot{t} - \frac{n-1}{(r_0^2 + a_k^2) \gamma_i \frac{d\phi_i}{\epsilon_i}} - \frac{q \dot{\hat{r}}}{HU} \mathcal{A} \right)^2. \\ (7.11)
\]

where

\[
R = \prod_{k=1}^{n-1} (r_0^2 + a_k^2) - 2m, \quad X_a = -\prod_{k=1}^{n-1} (a_k^2 - y_a^2), \\
U = \prod_{a=1}^{n-1} (r_0^2 + a_k^2), \quad U_a = -\prod_{b=1}^{n-1} (y_b^2 - y_a^2), \\
\gamma_i = \prod_{a=1}^{n-1} (a_i^2 - y_a^2), \quad \epsilon_i = a_i \prod_{k=1}^{n-1} (a_i^2 - a_k^2), \\
H = 1 + \frac{q \dot{\hat{r}}}{U}, \quad q = 2m s^2, \\
S = \sinh \delta, \quad \mathcal{A} = d\hat{t} - \sum_{i=1}^{n-1} \gamma_i \frac{d\phi_i}{\epsilon_i}. \\ (7.12)
\]

The Hawking temperature and entropy are

\[
T_H = \frac{R'|_{\hat{r}=r_0}}{4 \pi \left[\prod_{k=1}^{n-1} (r_0^2 + a_k^2) + qr_0 \right]}, \\
S = \frac{\mathcal{A}_{D-2} \left[\prod_{k=1}^{n-1} (r_0^2 + a_k^2) + qr_0 \right]}{4 r_0}, \\
\]

where \(\mathcal{A}_{D-2} = 2 \pi^{(D-1)/2} / \Gamma((D-1)/2) \) is the volume of a unit \((D-2)\)-sphere, so for example \(\mathcal{A}_2 = 4 \pi \) and \(\mathcal{A}_4 = \frac{4}{3} \pi^2 \). The angular velocities of the horizon are

\[
\Omega_i = \frac{a_i \prod_{k=1}^{n-1} (r_0^2 + a_k^2)}{\prod_{k=1}^{n-1} (r_0^2 + a_k^2) + qr_0}. \\
\]

For an extremal solution, with a horizon at \(\hat{r} = r_0 \), we have \(R'|_{\hat{r}=r_0} = 0 \) and \(R'|_{\hat{r}=r_0} = 0 \), and so

\[
\sum_{i=1}^{n-1} \frac{1}{r_0^2 + a_i^2} = \frac{1}{2 r_0^2}. \\
(7.15)
\]

Then we have the near-horizon expansion

\[
R = V(r_0^2 - r_0^2) + O(r_0 - r_0)^3, \quad V = \frac{1}{2} R'|_{\hat{r}=r_0}. \\
(7.16)
\]

Since \(R'|_{\hat{r}=r_0} = 0 \) for an extremal solution, we have

\[
T_H^0 = \frac{V}{2 \pi \left[\prod_{k=1}^{n-1} (r_0^2 + a_k^2) + qr_0 \right]}, \\
(7.17)
\]

and, using (7.15), we obtain

\[
\Omega_i^0 = - \frac{2 a_i r_0 \prod_{k=1}^{n-1} (r_0^2 + a_k^2)}{(r_0^2 + a_i^2) \prod_{k=1}^{n-1} (r_0^2 + a_k^2) + qr_0}. \\
(7.18)
\]

Therefore the Frolov-Thorne temperatures are

\[
T_0 = 0, \quad T_i = \frac{V(r_0^2 + a_i^2)}{4 \pi a_i r_0 \prod_{k=1}^{n-1} (r_0^2 + a_i^2)}. \\
(7.19)
\]

To obtain the near-horizon geometry, we make the coordinate changes
\[
\dot{r} = r_0(1 + \lambda \rho), \quad \dot{\phi}_j = \phi_j + \Omega_j^0 \dot{t}, \quad \dot{t} = \frac{t}{2\pi T_0^0 r_0 \lambda},
\]
and then take the limit \(\lambda \to 0\). The near-horizon geometry is
\[
ds^2 = H_0^{2/(D-2)} \left[\frac{U}{V} \left(-\rho^2 dt^2 + \frac{dp^2}{\rho^2} \right) + \sum_{a=1}^{n-1} \frac{U_a}{\sqrt{r_a^2 + \gamma_a^2}} dy_a^2 \right.
+ \sum_{i=1}^{n-1} X_\alpha \left(2r_0 \frac{\partial U}{\partial V(r_0^2 + \gamma_a^2)} \rho dt + \sum_{j=1}^{n-1} \frac{r_0^2 + a_j^2}{a_j^2 - \gamma_a^2} \gamma_j d\phi_j \right.
\left. + \frac{q r_0}{H_0 U} \left(\mathcal{A} \right)^2 \right],
\]
where \(\mathcal{A} = H_0^{1/2} \sqrt{q r_0} dt - \sum_{j=1}^{n-1} \gamma_j d\phi_j \). (7.22)

By checking \(dt\) coefficients within the vielbeins, we can directly see that this near-horizon geometry may be cast in the form of (2.17). Some terms follow in the same way as for the higher-dimensional Kerr-AdS solution. There are also extra terms when charge is included; these extra terms are within \(\mathcal{A}\). To check these extra terms, we use the identity
\[
1 - \frac{1}{U} \sum_{i=1}^{n-1} a_i \gamma_i \prod_{j<i} (r_0^2 + a_j^2) = \sum_{a=1}^{n-1} \frac{1}{r_0^2 + \gamma_a^2} - \sum_{i=1}^{n-1} \frac{1}{r_0^2 + a_i^2},
\]
which is seen to hold by a partial fraction decomposition of the entire left-hand side. On the right-hand side, the coefficients of \(1/(r_0^2 + a_i^2)\) are trivial, and the coefficients of \(1/(r_0^2 + \gamma_a^2)\) in turn follow from the partial fraction decomposition
\[
\frac{U_a}{(r_0^2 + \gamma_a^2) X_\alpha} = \sum_{i=1}^{n-1} \frac{a_i \gamma_i}{\epsilon_i (a_i^2 - \gamma_a^2)}. (7.24)
\]

Now using the extremality condition (7.15), we see that
\[
2r_0 \frac{1}{U} \sum_{i=1}^{n-1} a_i \gamma_i \prod_{j<i} (r_0^2 + a_j^2) = \left(\frac{1}{r_0 - \sum_{i=1}^{n-1} r_0^2 + \gamma_a^2} \right) = -\frac{H_0^0 \dot{U}}{q r_0}, \quad (7.25)
\]
completing the verification. It follows that the Cardy formulas are satisfied. The central charges are
\[
c_i = \frac{3 \mathcal{A}_{D-2} a_i r_0 \prod_{j>i} (r_0^2 + a_j^2) \prod_{k<i} (r_0^2 + a_k^2) + qr_0}{\pi V(r_0^2 + a_i^2)}. (7.26)
\]

2. Odd dimensions \(D = 2n + 1\)

In odd dimensions \(D = 2n + 1\), the metric is
\[
ds^2 = H_0^{2/(D-2)} \left[-\frac{R}{H^{2U}}\mathcal{A}^2 + \frac{U}{r} d\tau^2 + \sum_{a=1}^{n} \frac{U_a}{\sqrt{r_0^2 + a_i^2} + \gamma_a^2} dy_a^2 \right.
\left. + \frac{q r_0}{H U} \left(\mathcal{A} \right)^2 \right], (7.27)
\]
where
\[
R = \frac{1}{r^2} \prod_{k=1}^{n} (r_0^2 + a_k^2) - 2m, \quad X_a = \frac{1}{r^2} \prod_{k=1}^{n} (a_k^2 - \gamma_a^2),
\]
\[
U = \prod_{a=1}^{n-1} (r_0^2 + \gamma_a^2), \quad U_a = -(r_0^2 + \gamma_a^2) \prod_{a=1}^{n-1} (r_0^2 + \gamma_a^2).
\]
\[
\gamma_i = a_i^2 \prod_{a=1}^{n-1} (a_i^2 - \gamma_a^2), \quad \epsilon_i = a_i \prod_{k=1}^{n-1} (a_k^2 - a_i^2),
\]
\[
H = 1 + \frac{q}{U}, \quad q = 2m s^2, \quad s = \sinh \delta.
\]

The Hawking temperature and entropy are
\[
T_H = \frac{(r^2 R)^{1/2}}{4 \pi \prod_{k=1}^{n-1} (r_0^2 + a_k^2) + qr_0^2}}, \quad (7.29)
\]
\[
S = \frac{\mathcal{A}_{D-2} \prod_{k=1}^{n-1} (r_0^2 + a_k^2) + qr_0^2}{4r_0^2},
\]
where \(\mathcal{A}_{D-2} = 2\pi^{(D-1)/2}/\Gamma((D - 1)/2)\) is the volume of a unit \((D - 2)\)-sphere, so for example \(\mathcal{A}_3 = 2\pi^2\) and \(\mathcal{A}_5 = \pi^3\). The angular velocities of the horizon are
\[
\Omega_i = \frac{a_i \prod_{j<i} (r_0^2 + a_j^2) \prod_{k<i} (r_0^2 + a_k^2) + qr_0^2}{4 r_0^2}.
\]

For an extremal solution, with a horizon at \(\dot{r} = r_0\), we have \(R\mid_{\dot{r} = r_0} = 0\), and so
\[
\sum_{i=1}^{n} \frac{1}{r_0 + a_i^2} = \frac{1}{r_0^2}. \quad (7.31)
\]
Then we have the near-horizon expansion
\[
R = V(\dot{r} - r_0)^2 + O(\dot{r} - r_0)^3, \quad V = \frac{1}{2} R^2\mid_{\dot{r} = r_0}. \quad (7.32)
\]
Since $R'|_{r=r_0} = 0$ for an extremal solution, we have

$$T^0_H = \frac{r_0^2 V}{2\pi \prod_{i=1}^{n-1} (r_0^2 + a_i^2) + q r_0^2},$$

(7.33)

and, using (7.31), we obtain

$$\Omega^0_i = -\frac{2a_i r_0 \prod_{j\neq i} (r_0^2 + a_j^2)}{\prod_{i=1}^{n-1} (r_0^2 + a_i^2 + q r_0^2)},$$

(7.34)

Therefore the Frolov-Thorne temperatures are

$$T_0 = 0, \quad T_i = \frac{V r_0 (r_0^2 + a_i^2)}{4\pi a_i \prod_{j\neq i} (r_0^2 + a_j^2)}.$$

(7.35)

To obtain the near-horizon geometry, we make the coordinate changes

$$r = r_0 (1 + \lambda \rho), \quad \hat{\phi}_i = \phi_i + \Omega^0_i t,$$

and then take the limit $\lambda \to 0$. The near-horizon geometry is

$$ds^2 = H_0^2/(D-2) \left[\frac{\hat{U}}{V} \left(-\rho^2 dt^2 + \frac{d\rho^2}{\rho^2} + \sum_{i=1}^{n-1} X_{a_i} \frac{2r_0 \hat{U}}{V (r_0^2 + a_i^2)} \rho dt + \frac{\prod_{i=1}^{n-1} a_i^2}{\prod_{i=1}^{n-1} a_i^2} \sum_{i=1}^{n-1} (r_0^2 + a_i^2) \gamma_i \frac{d\phi_i}{\epsilon_i} + \frac{q}{H_0 \hat{U}} \hat{A} \right)^2 \right].$$

(7.37)

where $\hat{U} = U|_{r=r_0}, \hat{U}_a = U_a|_{r=r_0}, H_0 = H|_{r=r_0}$, and

$$H'_0 = \frac{\partial H_0}{\partial r_0} = -q \frac{r_0}{\hat{U}} \sum_{i=1}^{n-1} \frac{2r_0}{r_0^2 + a_i^2},$$

$$\hat{A} = \frac{H'_0 \hat{U}^2}{V q} \rho dt - \sum_{i=1}^{n-1} \gamma_i \frac{d\phi_i}{\epsilon_i}.$$

(7.38)

As in the even-dimensional case, we can directly see that this near-horizon geometry can be cast in the form of (2.17) by checking dt coefficients. The analogous identities needed are

$$1 \frac{1}{r_0^2} \sum_{i=1}^{n-1} a_i \gamma_i \prod_{j\neq i} (r_0^2 + a_j^2) \frac{1}{\epsilon_i (r_0^2 + a_i^2)} = \sum_{i=1}^{n-1} \frac{1}{r_0^2 + a_i^2} - \sum_{i=1}^{n-1} \frac{1}{r_0^2 + a_i^2},$$

(7.39)

$$\frac{U_a}{(r_0^2 + a_i^2) X_a} = \sum_{i=1}^{n-1} a_i \epsilon_i (a_i^2 - \gamma_a).$$

(7.40)

The $1/r_0^2$ coefficient on the right-hand side of (7.39) follows from the identity

$$\sum_{i=1}^{n} a_i \gamma_i \prod_{j\neq i} (r_0^2 + a_j^2) = \sum_{i=1}^{n-1} \frac{2r_0}{r_0^2 + a_i^2} - \frac{H'_0 \hat{U}}{q}.$$

(7.41)

hence completing the verification. It again follows that the Cardy formulas are satisfied. The central charges are

$$c_i = \frac{3\mathcal{A}_{D-2} a_i \prod_{j\neq i} (r_0^2 + a_j^2) \prod_{i=1}^{n-1} (r_0^2 + a_i^2 + q r_0^2)}{\pi V r_0 (r_0^2 + a_i^2)}.$$

(7.44)

VIII. CONCLUSIONS

In this paper, we have generalized the recently proposed extremal black hole/CFT correspondence to large classes of charged rotating black holes in a variety of dimensions. For extremal black holes, the near-horizon geometry can be obtained by a limiting (or decoupling) procedure that implies that the near-horizon geometry is a solution in its own right. We started with a general argument that the near-horizon geometry of extremal rotating black holes is of the form of a sphere bundle over AdS$_2$, with the connection potentials proportional to the inverse of the Frolov-Thorne temperatures. It is then straightforward to demonstrate that the Cardy formulas for these near-horizon geometries are satisfied, which we have verified in low dimensions. Since the formulas do not rely on any special features of a particular dimension, they are very likely to be satisfied in arbitrary dimension. With this general argument, to show that the Cardy formulas are satisfied for a particular black hole solution, it suffices to show that its near-horizon geometry may be cast in a canonical form.

We then obtained the near-horizon geometries for a variety of charged rotating black holes in gauged and ungauged supergravities in a variety of dimensions, and in gravity theories that are low-energy effective actions of bosonic strings in arbitrary dimension. In all of these examples, the near-horizon geometry has the form established in the general argument. Consequently the Cardy formulas are satisfied and the microscopic entropies of the
dual CFTs agree with the Bekenstein-Hawking entropies of the extremal rotating black holes.

ACKNOWLEDGMENTS

The research of D. D. K. C., H. L. and C. N. P. is supported in part by DOE Grant No. DE-FG03-95ER40917; M. C. is supported in part by DOE Grant No. DOE-EY-76-02-3071 and the Fay R. and Eugene L. Langberg Endowed Chair. M. C. is grateful to the George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University for hospitality during the course of this work.