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ABSTRACT

Research analyst forecast accuracy has been the focus of many studies, but only Brown and

Mohammad (2001) consider different ways of weighting individual forecasts to create consensus

estimates of earnings per share. I add to the existing literature by suggesting a technique to

reduce forecast errors by 29%, which is 13% more accurate than the method employed by Brown

and Mohammad.

1. INTRODUCTION

Earnings per share, or net income divided by outstanding shares, is a widely used measure of

firm profitability. Research analysts1 employed by brokerages such as Goldman Sachs or

Morgan Stanley forecast earnings per share for thousands of companies. Investment bankers use

these forecasts as inputs into valuation models. Portfolio managers use these forecasts as criteria

for security selection. Academics use these forecasts to write papers. Small changes in forecasts

often result in significant changes in valuation. Data services such as Thomson Financial or

Zack’s aggregate individual analyst forecasts to create consensus forecasts. Typically, they

publish the mean and median of analyst forecasts. Are these the best estimates of future earnings

per share? The basic premise of my paper is that there are better ways of combining forecasts to

estimate future earnings per share.

Studies of market association assert that the stock market puts little importance on published

consensus forecasts2. However, little research has been done on creating more accurate

consensus forecasts from analyst forecasts3. Two questions arise: How can we predict analyst

accuracy? And if we can predict analyst accuracy, what weight do we place on each forecast?

Brown and Mohammad (2001) predict individual analyst accuracy using characteristics such as

forecast recency, forecast frequency, brokerage reputation, experience, and the number of

1 Alternatively called “security analysts” or simply “analysts”.
2 Brown and Kim (1991) find that recent forecasts, such as the average of the last three forecasts, are more
correlated with market returns than published consensus forecasts.
3 Research has been done on improving forecast accuracy, though these studies typically rely on stochastic models.
For example, Conroy and Harris (1987) find that the combination of a random walk model and the consensus of
analyst forecasts improves forecast accuracy over using just a random walk model or consensus forecast.
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companies and industries covered. They then combine forecasts using a weight based on each

analyst’s projected accuracy ranked relative to their peers. I improve on their methodology with

two steps. First, I use past accuracy (in addition to their six factors) to predict individual analyst

accuracy, which reduces forecast error by 1%. Second, my forecast weight accounts for the

magnitude of analyst accuracy, whereas Brown and Mohammad use only ordinal rankings,

which reduces forecast error by an additional 12%. Overall, my technique creates consensus

forecasts 13% more accurate than Brown and Mohammad and 29% more accurate than current

consensus forecasts.

Section 2 discusses prior research, identifying seven analyst characteristics that affect accuracy.

Section 3 describes the data and sample selection. Section 4 explains the measurement of

variables, showing descriptive statistics and correlations. Section 5 reports the results, showing

regressions and consensus forecast errors. Section 6 summarizes and concludes the study.
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2. PRIOR RESEARCH

Brown (1993) wrote 26 pages and referenced 174 academic papers (including 16 of his own) in

his Magnus opus overview of prior research. I promise mine will be shorter. He concluded that

research on forecasted earnings per share can be divided into association and accuracy.

Association focuses on market reactions to changes in forecasts; for example, Chen, Chan and

Steiner (2002) find that analysts at national brokerage firms are more influential than analysts at

regional brokerage firms. Accuracy focuses on examining forecast errors and differences in

analyst accuracy. O’Brien (1990) found that there are no systematic differences between

analysts. However, Stickel (1992) discovered that All-American analysts (who are recognized by

Institutional Investor as superior analysts) are more accurate than other forecasters. Sinha,

Brown and Das (1997) conclude that O’Brien incorrectly accounted for differences in forecast

recency. It is now widely accepted that analyst characteristics affect forecast accuracy. There are

seven common characteristics recognized by the literature:

2.1. FORECAST RECENCY

Recent forecasts are more accurate than older forecasts. Recent forecasts have the advantage of

incorporating additional information. For example, a forecast of annual earnings per share issued

after a firm announces third quarter earnings would know with certainty three-quarters of actual

annual earnings per share. Brown (1991) finds that using the most recent forecast, the average of

the three most recent forecasts, or the average of all forecasts in the last month results in lower

forecast errors than taking the average of all forecasts. Clement (1999) quantifies this

relationship by claiming that each day a forecast ages reduces its relative accuracy by 0.35%, or

10.5% per month.

2.2. FORECAST FREQUENCY

Analysts who revise their forecasts frequently are more accurate than other forecasters. Jacob,

Lys and Neale (1999) suggest that analysts only revise their forecasts when they have access to

new information, making forecast frequency a proxy for information.
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2.3. NUMBER OF COMPANIES COVERED

Analysts who follow many companies are less accurate than other forecasters. Clement (1999)

suggests the number of companies followed is a proxy for portfolio complexity. Jacob, Lys and

Neale (1999) support Clement, proposing that “the fewer the number of companies analysts

follow, the more time per company they can spend refining their forecasts and the more accurate

the forecasts should be.”

2.4. BROKERAGE REPUTATION

Analysts who work for prestigious brokerages are more accurate than other forecasters. Clement

(1999) hypothesizes that premier brokerages provide superior resources to analysts in the form of

better data sets and administrative support. Analysts at these brokerages may also have better

access to private information from managers at the companies they follow. Finally, analysts at

reputed brokerages are typically better compensated; consequently, working for a prestigious

brokerage may indicate ability. While it is unclear which effect dominates, it is widely accepted

that brokerage reputation effects forecast accuracy.

2.5. EXPERIENCE

Analysts who have more experience are more accurate than other forecasters. Mikhail, Walther

and Willis (1997) suggest that analysts “learn by doing”, gaining basic skills with repetition and

feedback, improving knowledge of idiosyncratic company operations and bettering their

relationship with corporate management. Jacob, Lys and Neale (1999) and Clement (1999)

disagree with “learning by doing”, arguing instead that experience is a proxy for ability since

experience is an indicator that the analyst has not been fired due to poor performance. In either

case, more experience leads to more accurate forecasts.
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2.6. NUMBER OF INDUSTRIES COVERED

Analysts who follow many industries are less accurate than other forecasters. Clement (1999)

suggests that there are economies of scale to following firms in a particular industry. Jacob, Lys

and Neale (1999) agree, suggesting that “industry specialization may allow the analyst to

develop a depth of understanding that can provide considerable synergies in forecasting

companies within that industry.”

2.7. PAST ACCURACY

Analysts who were more accurate in the past are more accurate than other forecasters.

Abarbanell and Bernard (1992) found forecast errors have positive serial correlation. Ali, Klein

and Rosenfeld (1992) agree, contending that “analysts systematically underestimate the

permanence of past forecast errors when forecasting future earnings.” They find that adjusting

for past accuracy improves forecast accuracy by 12%. Markov and Tamayo (2006) suggest that

autocorrelation is consistent with rational analysts facing parameter uncertainty and gradually

learning about the true values of parameters over time.
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3. DATA AND SAMPLE SELECTION

3. 1. DATA

The data for this study were obtained from Thomson Financial’s Institutional Broker Estimate

System (I/B/E/S), available through Wharton Research Data Services. Each observation has

eight variables: (1) firm identifier; (2) date earnings were reported; (3) date forecast was made;

(4) forecasted earnings per share; (5) actual earnings per share; (6) brokerage identifier; (7)

analyst identifier4; and (8) industry identifier for the firm being covered. All earnings per share

figures represent “Fiscal Year 1”, I/B/E/S’s designation for the current fiscal year. The section on

data and sample selection that follows is highly technical and detailed; casual readers are advised

to skip to Section 4: Variables.

The years of note are 1989 – 2005, despite the data set beginning in 1983. There are three

considerations in choosing the date range:

(1) The data set is left censored. Since the data starts in 1983, it is unknown how much

experience analysts have in 1984. Clement (1999) and Hong and Kubik (2003) resolve this issue

by including only analysts who began their careers after 1983. Alternatively, Clement and Tse

(2005) restrict their data to 1989 – 1998. I have adopted Clement and Tse’s starting date of 1989,

with the acknowledgment that dispersion in experience will increase over time.

(2) Forecasts from the 1980s were less accurate than forecasts from the 1990s and 2000s.

Philbrick and Ricks (1991) observe that Value Line forecasts outperformed I/B/E/S in the 1980s.

However, Ramnath, Rock and Shane (2005) find that I/B/E/S estimates have improved over time

due to competition (from Zack’s and First Call). Likewise, Brown (1997) found that the accuracy

of forecasts have increased over time. Consequently, I use data beginning from 1989.

4 I was unable to obtain the I/B/E/S broker translation file used by Clement (1999), Lim (2001) and Herrmann and
Thomas (2005) to exclude teams of analysts. Thus, analyst code may refer to a group of analysts.
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(3) Including data from 2006 would lead to bias. For example, most financial institutions have

fiscal year ends in November and have submitted their 2006 earnings by February 2007 (the

month of my data collection); conversely, most retailers have fiscal year ends in January and

have not submitted their 2006 earnings by February 2007. Brown (1997) finds industry specific

differences in forecast errors. Consequently, I omit forecasts from 2006.

Table 1 displays the characteristics of the data over time, before sample selection. There were

81% more forecasts made by 70% more analysts working for 106% more brokerages in 2005

than in 1989.

Table 1
Characteristics of data over time

Year Forecasts Number of Number of Number of Forecast / Forecast / Analyst /
Firms Analysts Brokerages Firm Analyst Brokerage

1989 94,945 4,024 2,781 203 23.59 34.14 13.70
1990 99,486 4,006 2,767 205 24.83 35.95 13.50
1991 99,886 3,996 2,432 201 25.00 41.07 12.10
1992 100,851 4,219 2,325 220 23.90 43.38 10.57
1993 109,125 4,669 2,564 234 23.37 42.56 10.96
1994 110,259 5,198 2,972 239 21.21 37.10 12.44
1995 117,231 5,621 3,268 253 20.86 35.87 12.92
1996 127,509 6,334 3,633 280 20.13 35.10 12.98
1997 130,149 6,702 4,106 330 19.42 31.70 12.44
1998 142,282 6,535 4,467 356 21.77 31.85 12.55
1999 136,839 6,144 4,566 343 22.27 29.97 13.31
2000 130,056 5,701 4,696 332 22.81 27.70 14.14
2001 135,953 4,842 4,712 317 28.08 28.85 14.86
2002 135,553 4,772 4,987 287 28.41 27.18 17.38
2003 141,349 4,766 4,917 378 29.66 28.75 13.01
2004 158,900 5,280 4,689 423 30.09 33.89 11.09
2005 172,184 5,586 4,739 418 30.82 36.33 11.34
Total 2,142,557 17,479 15,006 923 24.48 34.20 12.90
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3.2. SAMPLE SELECTION

Table 2 details the selection of the data. There are nine reasons for eliminating observations:

(1) Eliminate observations with missing values or duplicate observations.

(2) Eliminate observations more recent than 30 days or older than 365 days. Forecasts more

recent than 30 days are typically extremely accurate and subsume all analyst-specific effects.

Forecasts older than 365 days are considered stale and uninformative. However, there is little

consensus on which cut-offs to use. For example, Hong, Kubik and Solomon (2000) use a range

of 180 to 365 days, Sinha, Brown and Das (1997) use 5 to 180 days, and Herrmann and Thomas

(2005) use 10 to 300 days. I have adopted the conventions of Clement (1999) and Clement and

Tse (2005) and use 30 to 365 days.

(3) Eliminate observations for which the forecasted and actual earnings per share were greater

than the 99th percentile or less than the 1st percentile of the distribution of earnings per share.

This is consistent with Brown and Mohammad (2001), who suggest that these observations are

the most likely to contain errors. However, this process also eliminates very large firms (such as

Berkshire Hathaway) and firms with negative earnings (such as technology firms during the

1990s).

(4) Use the most recent observation for analyst i’s forecast of firm j’s earnings per share during

time t. This is consistent with the extant literature5.

(5) Use observations only if firm j in time t had five or more analysts providing forecasts. In

order for aggregation to work, there must be several forecasts to aggregate. However, there is

little consensus on which cut-off to use. For example, Bonner, Walther and Young (2003) and

Clement and Tse (2005) require only two analysts. I use a cut-off of five analysts, consistent with

Mikhail, Walther and Willis (1999), Park and Stice (2000), and Brown and Mohammad (2001).

5 O’Brien (1990), Dugar and Nathan (1995), Mikhail, Walther and Willis (1997), Sinha, Brown and Das (1997),
Jacob, Lys and Neale (1999), Clement (1999), Hong, Kubik and Solomon (2000), Brown and Mohammad (2001),
Hong and Kubik (2003), Clement and Tse (2005), and Hermann and Thomas (2005).
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Note that this condition reduces forecast bias in the sample. According to Conroy and Harris

(1987), Elgers, Lo and Murray (1995), Brown (1997) and Lim (2001), bias is greater for small

companies, which typically have less analyst coverage. Smaller firms have more volatile

earnings which are difficult to predict – excluding them from the sample improves accuracy.

(6) Eliminate observations if the identity of the analyst could not be established.

(7) Eliminate observations if PMAFE is undefined due to the mean error for firm j in time t

equaling zero, as explained in Section 4.

(8) Eliminate observations for which analyst i did not make a forecast for firm j in time t-1. This

restriction is necessary to lag variables and is consistent with Brown and Mohammad (2001).

(9) Only forecasts between 1983 and 2005 were used, as explained in Section 3.1.

Table 2
Selection of data

Initial observations obtained from I/B/E/S 2,976,842
Missing values -268,961
Duplicates -837
Forecast more recent than 30 days -334,180
Forecast older than 365 days -32,329
Outside 1st and 99th percentiles of Forecast or Actual -60,110
Not most recent forecast by analyst i for firm j in time t -1,488,941
Covered by fewer than five analysts for firm j in time t -108,842
Analyst code does not uniquely identify analyst -13,802
PMAFE is undefined due to the mean error for firm j -149

in time t equaling 0
No observation for analyst i for firm j in time t-1 -282,116
Earnings before 1989 (1982 - 1988) or after 2005 (2006) -78,544

Final observations used for analysis 308,031
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4. VARIABLES

From the eight variables provided by I/B/E/S (see Section 3.1), we can create seven independent

variables and one dependent variable. All names are consistent with Brown and Mohammad

(2001). The theoretical justification for these variables can be found in Section 2.

AGE measures the number of calendar days between analyst i’s last forecast for firm j in time t

and firm j’s fiscal year end. For example, if an analyst released his last forecast on November

15th for a firm with a fiscal year end of December 31st, AGE would equal 46 days. FREQ, short

for frequency, measures the number of forecasts made by analyst i for firm j in time t. NCOS,

short for number of companies, measures the number of firms covered by analyst i in time t.

NTOP10 is a dummy variable equal to 1 if analyst i works for a top decile brokerage6, where

brokers are ranked by the number of analysts making forecasts in time t7. FEXP, short for firm

experience, measures the number of years analyst i has made a forecast for firm j. NIND

measures the number of industries – as defined by two-digit SIC codes – covered by analyst i in

time t. All variables are mean-adjusted per Clement (1999) to control for firm-year effects, such

as “voluntary management disclosures, mergers and strikes”. The suffix D, as in DAGE and

DFREQ, indicates mean-adjustment. For example, DAGE equals AGE for analyst i covering

firm j in time t minus the average AGE for all analysts (including i) covering firm j in time t.

Consistent with Brown and Mohammad (2001), DNCOS, DNTOP10, DFEXP and DNIND are

lagged one period. Thus, if an analyst is covering General Motors in 2005, we measure how

many companies the analyst covered in 2004.

While the literature is generally consistent in its treatment of the independent variables, there is

little consensus on creating error terms. I have adopted the technique used by Clement (1999),

Jacob, Lys and Neale (1999) and Brown and Mohammad (2001), who deflate absolute forecast

6 Clement (1999) finds that his results are robust to using a continuous measure of brokerage size as well.
7 Mikhail, Walther and Willis (1999) use three different proxies for the reputation of brokerage houses: (1) the size
of the brokerage house, measured by the number of analysts making forecasts; (2) the profitability of buy
recommendations issued by the brokerage house; and (3) the dollar magnitude of investment banking business. They
find all three measures provide qualitatively similar results. Hong and Kubik (2003) also use three different proxies
for the reputation of brokerage houses: (1) the size of brokerage houses; (2) the number of All-American forecasters;
and (3) Carter and Manaster’s (1990) ranking based on the prestige of firm name location in newspaper “tombstone”
advertisements. They find all three measures provide qualitatively similar results.
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error by average firm-year errors to allow comparison across companies and years independent

of differences in forecast difficulty8. FE, short for forecast error, measures the absolute

difference between forecasted and actual earnings per share. PMAFE, short for proportional

mean absolute forecast error, equals the forecast error for analyst i covering firm j in time t,

divided by the average forecast error of all analysts covering firm j in time t, minus 1. When the

average forecast error is equal to zero, PMAFE is undefined; Section 3.2 discusses eliminating

these observations. When an analyst has no forecast error, PMAFE is equal to -1. When the

average forecast error is small, PMAFE is extremely large. To control against outliers, all

PMAFE’s greater than 1 are set equal to 1, consistent with Brown (1991) and Sinha, Brown and

Das (1997). Thus, PMAFE ranges from -1 to 1, with negative values representing better than

average performance and positive values representing worse than average performance. PMAFE

has an attractive characteristic: a PMAFE of -0.50, for example, indicates a forecast 50% better

than average; a PMAFE of 0.25 indicates a forecast 25% worse than average. LMAFE is

PMAFE lagged one period.

8 Alternative treatments include: using simply forecast error as in Stickel (1992); deflating forecast error by
forecasted earnings per share as in Brown (1991), and Brown (1997); deflating forecast error by actual earnings per
share as in Conroy and Harris (1987), Brown and Kim (1991) and Sinha, Brown and Das (1997); deflating forecast
error by stock price as in Dugar and Nathan (1995), Park and Stice (2000), Lim (2001), Hong and Kubik (2003),
Clement and Tse (2005) and Ramnath, Rock and Shane (2005); using mean square error as in Abarbanell (1991),
and Lo and Elgers (1998); and deflating mean square error by actual earnings per share as in Lobo (1991) and Ali,
Klein and Rosenfeld (1992). However, Abarbanell (1991) and Stickel (1992) conclude that the choice of deflator
does not qualitatively affect results. In the literature, only the choice of forecast standard error as a deflator affects
conclusions, as in Alexander (1995).
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Table 3 provides descriptive statistics for unadjusted and adjusted variables, showing the median

and the 10th, 25th, 75th and 90th percentiles of the pooled distribution.

Table 3
Descriptive statistics for unadjusted and adjusted variables

Percentiles
10 25 50 75 90

Panel A: Unadjusted Variables
AGE 47 60 76 162 258
FREQ 1 2 3 5 6
NCOS 8 11 16 22 33
NTOP10 0 0 0 0 1
FEXP 2 2 3 6 9
NIND 1 3 7 13 21
FE 0.01 0.02 0.05 0.15 0.41

Panel B: Adjusted Variables
DAGE -71.09 -47.74 -20.50 38.43 126.83
DFREQ -1.70 -0.86 0.13 1.20 2.35
DNCOS -10.60 -6.00 -1.27 4.00 11.82
DNTOP10 -0.20 -0.15 -0.10 0.00 0.76
DFEXP -2.77 -1.43 -0.14 1.08 3.33
DNIND -5.61 -2.25 -0.10 2.36 6.45
PMAFE -0.87 -0.58 -0.18 0.24 1.00

AGE = Report Date - Estimate Date DAGE = AGEi,j,t - AGEj,t

FREQ = Forecasts for firm j in time t by analyst i DFREQ = FREQi,j,t - FREQj,t

NCOS = Companies followed by analyst i DNCOS = NCOSi,j,t-1 - NCOSj,t-1

NTOP10 = 1 if analyst i works for top decile broker DNTOP10 = NTOP10i,j,t-1 - NTOP10j,t-1

FEXP = Years of forecasts for firm j by analyst i DFEXP = FEXPi,j,t-1 - FEXPj,t-1

NIND = Industries followed by analyst i DNIND = NINDi,j,t-1 - NINDj,t-1

FE = | Actual EPS - Forecasted EPS | PMAFE = ( FEi,j,t / FEj,t ) - 1
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Table 4 shows correlation coefficients for unadjusted and adjusted variables. All correlations are

statistically significant at 1%. As expected, DNCOS and DNIND are positively correlated

(0.636). When an analyst covers many industries (high DNIND), they also cover many firms

(DNCOS). Also as expected, DAGE and DFREQ are negatively correlated (-0.552). When an

analyst makes many forecasts for firm j in time t (high DFREQ), their forecasts are more recent

(low DAGE). While this high multi-collinearity may have statistical implications for the

coefficients of regression (see Section 5.1), it is advantageous to include all four variables for

predicting PMAFE.

Table 4
Correlation coefficients for unadjusted and adjusted variables

Panel A: Unadjusted Variables
AGE FREQ NCOS NTOP10 FEXP NIND FE

AGE 1.000
FREQ -0.545 1.000
NCOS -0.034 -0.051 1.000
NTOP10 -0.019 0.011 -0.012 1.000
FEXP -0.039 0.036 0.097 0.038 1.000
NIND -0.035 -0.003 0.630 0.020 0.077 1.000
FE 0.144 -0.060 -0.004 -0.001 -0.020 0.002 1.000

Panel B: Adjusted Variables
DAGE DFREQ DNCOS DNTOP10 DFEXP DNIND PMAFE LMAFE

DAGE 1.000
DFREQ -0.552 1.000
DNCOS 0.012 -0.031 1.000
DNTOP10 -0.016 0.006 -0.023 1.000
DFEXP -0.032 0.010 0.116 0.018 1.000
DNIND -0.017 0.024 0.636 0.024 0.116 1.000
PMAFE 0.418 -0.297 0.031 -0.021 -0.026 -0.002 1.000
LMAFE 0.034 -0.057 0.033 -0.017 -0.008 0.001 0.064 1.000

AGE = Report Date - Estimate Date DAGE = AGEi,j,t - AGEj,t

FREQ = Forecasts for firm j in time t by analyst i DFREQ = FREQi,j,t - FREQj,t

NCOS = Companies followed by analyst i DNCOS = NCOSi,j,t-1 - NCOSj,t-1

NTOP10 = 1 if analyst i works for top decile broker DNTOP10 = NTOP10i,j,t-1 - NTOP10j,t-1

FEXP = Years of forecasts for firm j by analyst i DFEXP = FEXPi,j,t-1 - FEXPj,t-1

NIND = Industries followed by analyst i DNIND = NINDi,j,t-1 - NINDj,t-1

FE = | Actual EPS - Forecasted EPS | PMAFE = ( FEi,j,t / FEj,t ) - 1
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5. RESULTS

5.1. REGRESSIONS

Table 5 shows regression coefficients (multiplied by 100) and t-statistics. Model A, displayed in

panel A, regresses PMAFE on DAGE, DFREQ, DNCOS, DNTOP10, DFEXP and DNIND per

Brown and Mohammad (2001). Model B, displayed in panel B, regresses PMAFE on LMAFE in

addition to the aforementioned six variables. Ordinary Least-Squares regressions are run for each

year in the sample, as well as cross-sectionally across the sample.

(A) PMAFE = β1DAGE + β2DFREQ + β3DNCOS + β4DNTOP10
+ β5DFEXP + β6DNIND + µ

DAGE is expected to have a positive sign: more recent forecasts (low DAGE) are more accurate

(low PMAFE). DAGE has a statistically significant positive sign in all 16 years. Its average

coefficient of 0.0025 is also economically significant: moving from the 90th percentile (126.8

days older than average) to the 10th percentile (71.1 more recent than average) increases forecast

accuracy by 50.1%.

DFREQ is expected to have a negative sign: issuing more forecasts (high DREQ) leads to more

accurate forecasts (low PMAFE). DFREQ has a statistically significant negative sign in all 16

years. Its average coefficient in regression B of -0.0477 is also economically significant: moving

from the 10th percentile (1.7 less forecasts than average) to the 90th percentile (2.3 more forecasts

than average) increases forecast accuracy by 19.3%.

DNCOS is expected to have a positive sign: covering fewer companies (low DNCOS) leads to

more accurate forecasts (low PMAFE). DNCOS has a statistically significant positive sign in 11

of the 16 years. It has a negative sign for two years, though neither is significant. Its average

coefficient of 0.0011 is not economically significant: moving from the 90th percentile (covering

11.8 more companies than average) to the 10th percentile (covering 10.6 less companies than

average) increases forecast accuracy by 2.4%. The relationship between DNCOS and PMAFE

weakens after 2000.
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DNTOP10 is expected to have a negative sign: working for a large brokerage (high DNTOP10)

leads to more accurate forecasts (low PMAFE). DNTOP10 has a statistically significant negative

sign in 9 of the 16 years. It has a positive sign for four years, though none are significant. Its

average coefficient of -0.0317 is not economically significant: moving from the 10th percentile to

the 90th percentile increases forecast accuracy by 3.0%.

DFEXP is expected to have a negative sign: having many years of experience (high DEXP)

leads to more accurate forecasts (low PMAFE). DEXP has a statistically significant negative sign

in 12 of the 16 years. It has a positive sign for one year, though it is not significant. Its average

coefficient of -0.0058 is not economically significant: moving from the 10th (having 2.7 fewer

years of experience than average) to the 90th percentile (having 3.3 more years of experience than

average) increases forecast accuracy by 3.5%. The relationship between DFEXP and PMAFE

weakens after 2001.

DNIND is expected to have a positive sign: covering fewer industries (low DNIND) leads to

more accurate forecasts (low PMAFE). Unexpectedly, DNIND has a statistically significant

negative sign in 9 of the 16 years. It has a positive sign for only one year, and it is not significant.

Its average coefficient of -0.0019 is not economically significant: moving from the 10th

percentile (covering 5.6 industries less than average) to the 90th percentile (covering 6.4 more

industries than average) increases forecast accuracy by 2.3%.

Brown and Mohammad (2001) find similar results. Indeed, their DAGE coefficient is 0.002 and

their DFEXP coefficient is -0.005. The biggest difference occurs with DNIND, where their

coefficient is 0.003 (and significant at 5%). Most likely, this arises because of the broker

translation file mentioned in Section 3.1. Brown and Mohammad eliminate teams of analysts

from their sample, which I am unable to do. Teams of analysts can cover more industries than

any individual analyst. Brown and Mohammad’s inter-quartile range for DNIND was -1.0 to 0.9,

and Clement (1999) has a range of -1.5 to 1.0, compared to -2.2 to 2.3 for my sample. The

unadjusted numbers in Table 3 clearly reflect the influence of teams: the 90th percentile of NIND

is 21, which means 10% of analysts covered more than 21 industries. This is quite unrealistic for
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an individual analyst. I attribute all inconsistencies between Brown and Mohammad, Clement

and my results to this sample selection attribute.

(B) PMAFE = β1DAGE + β2DFREQ + β3DNCOS + β4DNTOP10
+ β5DEXP + β6DNIND + β7LMAFE + µ

LMAFE is expected to have a positive sign: being more accurate in the past (low LMAFE) leads

to more accurate forecasts (low PMAFE). LMAFE has a statistically significant positive sign in

all 16 years. Its average coefficient of 0.1099 is economically significant: moving from the 90th

percentile (being 100% less accurate in the past than average) to the 10th percentile (being 87%

more accurate in the past than average) increases forecast accuracy by 20.5%.

Adding LMAFE to the regression does not appreciably increase the adjusted R2 of the

regression, as displayed in Panel C. (Note that the R2 refers to a mean-adjusted regression with

firm-year effects removed. In other words, it is equivalent to running a regression against the

residuals of the regression of error on firm-year effects. The relatively low R2s are not indicative

of a weak relationship between error and analyst-specific characteristics). Furthermore, adding

LMAFE to the regression has little effect on the sign, magnitude or significance of the six

variables. LMAFE changes the sign of NCOS in one year, though not significantly. Adding

LMAFE reduces the significance of DNTOP10 for three years, DFEXP for one year and DNIND

for one year. Overall, the effects of adding LMAFE to the regression are minor.

However, LMAFE itself is highly significant. This is consistent with Brown (2001), who finds

that a two-factor model with DAGE and LMAFE is as accurate as a six-factor model with

DAGE, DGEXP9, DFEXP, DNCOS, DNIND and DNTOP10. Brown suggests combining the

models, though he concludes, “Whether its slight predictive advantage justifies its additional

complexity depends on the decision context.”

9 DGEXP, general experience, was not used in order to be consistent with Brown and Mohammad (2001). Mikhail,
Walther and Willis (1997) and Clement (1999) use both general experience and firm experience.
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Table 5
Regression model estimates (with t-statistics in parenthesis)

Panel A: PMAFE = β 1 DAGE + β 2 DFREQ + β 3 DNCOS + β 4 DNTOP10

+ β 5 DFEXP + β 6 DNIND + µ
Year DAGE DFREQ DNCOS DNTOP10 DFEXP DNIND

1989 0.18 -4.24 0.07 -11.60 -1.22 0.00
(28.73) (-13.14) (1.88) (-7.92) (-4.37) (-0.06)

1990 0.22 -3.95 0.07 -6.65 -1.51 -0.11
(32.74) (-11.97) (2.97) (-4.56) (-5.79) (-2.05)

1991 0.24 -3.52 0.11 -4.30 -0.69 -0.17
(35.65) (-12.12) (5.16) (-3.33) (-3.32) (-3.43)

1992 0.20 -2.85 0.19 -4.40 -0.76 -0.20
(29.79) (-9.93) (7.01) (-3.45) (-3.85) (-3.52)

1993 0.21 -4.71 0.16 -1.68 -0.63 -0.14
(32.81) (-15.27) (4.30) (-1.33) (-3.28) (-2.52)

1994 0.20 -4.74 0.12 -1.89 -0.75 -0.11
(31.47) (-14.62) (3.50) (-1.48) (-4.17) (-1.88)

1995 0.22 -5.38 0.17 -2.75 -0.68 -0.03
(32.34) (-16.61) (4.56) (-2.15) (-4.10) (-0.50)

1996 0.24 -5.95 0.18 1.76 -0.70 -0.11
(37.19) (-19.99) (4.60) (1.30) (-4.60) (-1.69)

1997 0.21 -5.44 0.16 0.21 -0.43 -0.13
(33.82) (-18.20) (4.19) (0.16) (-3.05) (-1.94)

1998 0.27 -6.01 0.17 1.02 -0.53 -0.28
(43.26) (-22.41) (4.45) (0.87) (-3.91) (-3.91)

1999 0.26 -4.56 0.11 -5.38 -0.60 0.02
(42.40) (-16.53) (2.80) (-4.26) (-4.51) (0.25)

2000 0.29 -5.68 0.07 -8.31 -0.26 -0.16
(48.27) (-20.27) (1.44) (-6.75) (-2.00) (-1.84)

2001 0.36 -6.95 0.19 -3.46 0.03 -0.41
(57.10) (-25.96) (3.24) (-2.78) (0.18) (-3.72)

2002 0.34 -4.75 0.10 -3.83 -0.08 -0.59
(54.81) (-17.91) (1.17) (-3.13) (-0.54) (-4.45)

2003 0.32 -3.80 -0.04 -0.75 -0.23 -0.32
(52.29) (-15.40) (-0.41) (-0.60) (-1.55) (-2.49)

2004 0.29 -3.82 -0.12 1.32 -0.19 -0.25
(47.78) (-15.96) (-1.55) (1.04) (-1.39) (-2.08)

Average 0.25 -4.77 0.11 -3.17 -0.58 -0.19
(19.00) (-17.71) (4.99) (-3.46) (-5.80) (-4.83)

Pooled 0.26 -4.85 0.12 -3.06 -0.45 -0.15
(167.60) (-70.96) (14.00) (-9.83) (-11.72) (-8.94)

Sign + - + - - +
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Table 5, continued
Panel B: PMAFE = β 1 DAGE + β 2 DFREQ + β 3 DNCOS + β 4 DNTOP10

+ β 5 DFEXP + β 6 DNIND + β 7 LMAFE + µ
Year DAGE DFREQ DNCOS DNTOP10 DFEXP DNIND LMAFE

1989 0.18 -3.99 0.06 -11.08 -1.12 -0.01 8.09
(29.00) (-12.38) (1.63) (-7.59) (-4.01) (-0.09) (10.51)

1990 0.22 -3.77 0.07 -6.10 -1.41 -0.10 8.05
(33.00) (-11.44) (2.80) (-4.19) (-5.42) (-1.86) (9.42)

1991 0.24 -3.28 0.10 -3.62 -0.63 -0.15 10.76
(35.59) (-11.32) (4.72) (-2.82) (-3.07) (-3.00) (14.32)

1992 0.20 -2.57 0.16 -4.17 -0.66 -0.15 10.14
(29.92) (-8.99) (6.06) (-3.29) (-3.37) (-2.71) (13.77)

1993 0.21 -4.48 0.13 -1.60 -0.56 -0.12 9.21
(32.76) (-14.55) (3.71) (-1.26) (-2.90) (-2.18) (12.28)

1994 0.20 -4.35 0.11 -1.55 -0.67 -0.08 10.92
(31.58) (-13.46) (3.01) (-1.22) (-3.76) (-1.46) (14.69)

1995 0.22 -4.92 0.14 -2.40 -0.59 0.00 11.51
(32.86) (-15.22) (3.72) (-1.88) (-3.55) (-0.02) (15.50)

1996 0.24 -5.45 0.15 1.79 -0.61 -0.08 12.13
(38.21) (-18.37) (3.85) (1.33) (-4.06) (-1.22) (17.40)

1997 0.21 -4.86 0.12 -0.01 -0.38 -0.08 11.59
(34.76) (-16.26) (3.31) (-0.01) (-2.68) (-1.22) (16.99)

1998 0.27 -5.59 0.15 1.00 -0.48 -0.25 10.34
(44.04) (-20.86) (3.95) (0.86) (-3.56) (-3.59) (15.08)

1999 0.27 -4.08 0.08 -4.79 -0.59 0.06 9.41
(43.42) (-14.76) (2.19) (-3.81) (-4.42) (0.88) (13.78)

2000 0.29 -5.28 0.04 -7.62 -0.23 -0.12 9.33
(49.22) (-18.85) (0.90) (-6.21) (-1.79) (-1.36) (13.39)

2001 0.37 -6.19 0.15 -2.34 0.03 -0.31 13.31
(59.16) (-23.05) (2.59) (-1.89) (0.20) (-2.87) (18.71)

2002 0.35 -3.77 0.05 -3.45 -0.14 -0.40 12.78
(57.62) (-14.13) (0.57) (-2.85) (-0.95) (-3.09) (19.70)

2003 0.33 -2.93 0.04 -0.74 -0.27 -0.29 14.41
(54.99) (-11.85) (0.45) (-0.60) (-1.84) (-2.30) (21.59)

2004 0.30 -3.06 -0.11 1.03 -0.18 -0.17 13.81
(49.87) (-12.78) (-1.37) (0.83) (-1.35) (-1.40) (21.53)

Average 0.26 -4.29 0.09 -2.85 -0.53 -0.14 10.99
(17.71) (-16.40) (5.38) (-3.34) (-5.91) (-4.61) (22.58)

Pooled 0.26 -4.36 0.11 -2.68 -0.41 -0.11 11.23
(171.66) (-63.77) (11.90) (-8.67) (-10.77) (-6.95) (65.41)

Sign + - + - - + +
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Table 5, continued
Panel C: Adjusted R 2

Year Obs. Model A Model B
1989 15,355 0.12 0.12
1990 13,331 0.15 0.16
1991 16,678 0.13 0.14
1992 17,393 0.09 0.10
1993 17,550 0.12 0.13
1994 17,510 0.12 0.13
1995 17,501 0.13 0.15
1996 18,376 0.17 0.18
1997 18,823 0.14 0.15
1998 19,290 0.20 0.21
1999 19,691 0.17 0.18
2000 18,849 0.23 0.24
2001 17,861 0.34 0.35
2002 17,615 0.29 0.30
2003 18,634 0.23 0.25
2004 20,712 0.19 0.21
Pooled 308,031 0.18 0.19

Note: Panels A and B display ordinary least squared regression estimates for two models. Model A,
displayed in Panel A, regresses PMAFE against DAGE, DFREQ, DNCOS, DNTOP10, DEXP and
DNIND. Model B, displayed in Panel B, adds a lagged term, LMAFE. All coefficients are multipled by

100. Panel C compares adjusted R2s for the two models.

5.2. AGGREGATION

Aggregating individual forecasts allows us to create consensus forecasts. Currently, I/B/E/S

publishes mean and median consensus forecasts for firm j in time t. A mean, or average,

consensus is equivalent to assigning a weight of 1 / N to each forecast, where N is the number of

analysts making forecasts for firm j in time t. Thus, if there are five analysts covering a firm in a

particular year, each forecast is given a weight of 20%. See Example 1 for an illustration of this

method. The forecast error (in this example, 0.12) is the absolute difference between the

consensus forecast (0.65) and the actual earnings per share (0.77).

Brown and Mohammad (2001) suggest a new weighting method, which I call Method 1. In the

“Best” case, named “Perfect” by Brown and Mohammad, they rank ex post realized PMAFEs for

firm j in time t, with the most accurate forecast (lowest PMAFE) receiving a rank of N and the

least accurate forecast (highest PMAFE) receiving a rank of 1. They assign a weight to each

forecast equal to RANK (PMAFE) / [ N x (N+1) / 2 ]. In Example 1, the most accurate forecast

is weighted 33% (= 5 / 15) while the least accurate forecast is weighted 7% (= 1 / 15). This leads
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to a consensus forecast of 0.69 and a forecast error of 0.08, which is an improvement on average

weighting. In the “Model” case, they create ex ante estimated PMAFEs (alternatively, PMAFE

hat) using regressions from Section 5.1. Estimated PMAFEs for time t are created using

regression results from time t-1. For example, the estimated PMAFE for an analyst covering

General Motors in 2005 uses analyst characteristics from 2005 (except for lagged variables

DNCOS, DNTOP10, DFEXP, DNIND and LMAFE) multiplied by regression coefficients from

2004. “Best”, as the name suggests, represents the best possible consensus forecast for the

weighting method. “Model” approaches “Best” as the regression explains more variation in

forecast errors. In Example 1, “Model” produces a forecast error of 0.10, which is 0.02 (or 20%)

worse than “Best”.

I introduce two alternative weighting methods. Method 2 assigns a weight of PMAFE2 /

Σ(PMAFE2) for all PMAFEs less than zero. The weights are designed to sum to 100%. This

method should be superior to Method 1 as it considers only forecasts better (or expected to be

better) than average. Furthermore, it accounts for the magnitude of forecast accuracy. In

Example 1, Method 1 only gives a weight of 33% to the most accurate forecast, while Method 2

gives a weight of 83%. Likewise, Method 1 gives a weight of 7% to the least accurate forecast,

while Method 2 gives no weight. In Example 1, Method 2 produces a forecast error of 0.02 in the

“Best” case and 0.10 in the “Model” case.

Method 3 assigns a weight of [MAX(PMAFE) - PMAFE] / Σ[MAX(PMAFE - MAX(PMAFE)].

This method gives a weight of zero to the least accurate (highest PMAFE) forecast and linearly

gives larger weights to more accurate (lower PMAFE) forecasts. The weights are designed to

sum to 100%. Like Method 2, Method 3 is superior to Method 1 because it accounts for the

magnitude of forecast accuracy. Unlike Method 2, Method 3 puts less weight on the most

accurate forecasts by also considering forecasts less accurate than average. It is expected that

Method 3 has errors greater than Method 2. In Example 1, Method 3 produces a forecast error of

0.06 in the “Best” case and 0.09 in the “Model” case.
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Example 1
Aggregating forecast errors for one firm in one year

Analyst Forecast FE PMAFE PMAFE

1 0.54 0.23 0.98 0.83
2 0.60 0.17 0.47 2.10
3 0.67 0.10 -0.14 -0.90
4 0.70 0.07 -0.40 -0.35
5 0.76 0.01 -0.91 0.05

Actual 0.77

Average : wi = 1 / N

Analyst Forecast Weight
1 0.54 20.0%
2 0.60 20.0%
3 0.67 20.0%
4 0.70 20.0%
5 0.76 20.0%

Consensus 0.65
Error 0.12

Method 1 : wi = RANK(PMAFE) / [ N x (N+1) / 2 ]

Best Model

Analyst Forecast Numerator Weight Numerator Weight

1 0.54 1 7% 2 13%
2 0.60 2 13% 1 7%
3 0.67 3 20% 5 33%
4 0.70 4 27% 4 27%
5 0.76 5 33% 3 20%

Consensus 0.69 0.67
Error 0.08 0.10

Method 2 : wi = PMAFE2 / Σ(PMAFE2) for all PMAFE < 0

Best Model

Analyst Forecast Numerator Weight Numerator Weight
1 0.54 0.00 0% 0.00 0%
2 0.60 0.00 0% 0.00 0%
3 0.67 0.02 2% 0.81 87%
4 0.70 0.16 16% 0.12 13%
5 0.76 0.84 83% 0.00 0%

Consensus 0.75 0.67
Error 0.02 0.10

Method 3 : wi = [MAX(PMAFE) - PMAFE] / Σ[MAX(PMAFE) - PMAFE]

Best Model

Analyst Forecast Numerator Weight Numerator Weight
1 0.54 0.00 0% 1.27 14%
2 0.60 0.52 11% 0.00 0%
3 0.67 1.12 23% 3.00 34%
4 0.70 1.38 28% 2.45 28%
5 0.76 1.90 39% 2.05 23%

Consensus 0.71 0.68
Error 0.06 0.09
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Example 1 explained how to calculate consensus forecasts and consensus forecast errors for firm

j in time t. Table 6 shows median forecast errors across all firms in time t expressed in cents10.

Table 6
Aggregate forecast errors using median absolute error expressed in cents

Year Average Method 1 Method 2 Method 3
Best Model A Model B Best Model A Model B Best Model A Model B

1990 8.40 5.04 6.93 6.76 1.90 5.33 5.29 4.00 6.29 6.31
1991 5.48 3.29 4.80 4.75 1.43 4.65 4.65 2.83 4.54 4.57
1992 4.80 2.73 4.26 4.24 1.27 4.02 4.01 2.50 4.17 4.21
1993 4.30 2.62 3.83 3.83 1.18 3.52 3.52 2.18 3.71 3.70
1994 4.50 2.57 3.71 3.76 1.09 3.33 3.25 2.16 3.50 3.52
1995 4.27 2.56 3.71 3.76 1.10 3.49 3.23 2.00 3.50 3.50
1996 4.71 2.70 3.96 3.92 1.21 3.41 3.34 2.25 3.83 3.75
1997 4.39 2.67 3.72 3.69 1.29 3.33 3.26 2.33 3.53 3.52
1998 5.33 3.23 4.46 4.48 1.57 3.88 3.85 2.78 4.21 4.26
1999 5.34 3.20 4.15 4.10 1.62 3.68 3.77 2.67 4.00 4.00
2000 6.40 3.76 4.92 4.90 1.82 4.10 4.19 3.04 4.63 4.58
2001 6.10 2.91 4.13 4.07 1.38 3.05 3.05 2.23 3.65 3.59
2002 4.62 2.54 3.43 3.48 1.24 2.93 2.93 2.14 3.09 3.14
2003 4.00 2.36 3.14 3.12 1.16 2.84 2.83 2.06 3.00 3.00
2004 4.33 2.56 3.73 3.70 1.26 3.44 3.46 2.28 3.59 3.55
2005 5.00 3.00 4.32 4.26 1.55 4.04 3.98 2.65 4.24 4.23

Average 5.12 2.98 4.20 4.18 1.38 3.69 3.66 2.51 3.97 3.96
Pooled 4.97 2.87 4.04 4.02 1.35 3.59 3.54 2.43 3.84 3.84

Average wi = 1 Best PMAFE = PMAFE

N
Method 1 wi = RANK(PMAFE) Model A PMAFE = β0 + β1DAGE + β2DFREQ

N x (N+1) / 2 + β3DNCOS + β4DNTOP10 + β5DEXP

+ β6DNIND + µ

Method 2 wi = PMAFE2
for all PMAFE < 0 Model B PMAFE = β0 + β1DAGE + β2DFREQ

Σ PMAFE2 + β3DNCOS + β4DNTOP10 + β5DEXP

+ β6DNIND + β7LMAFE + µ

Method 3 wi = MAX(PMAFE) - PMAFE

Σ [MAX(PMAFE) - PMAFE]

Note: This table displays median absolute forecast errors expressed in cents for different aggregation methods.
For example, the left column aggregates forecasts using simple averages. Each forecast by analyst i covering

firm j in time t is given a (1/N) weight, where N is the number of analysts covering firm j in time t. This leads to a
consensus forecast of Ci,j,t = Σwi,j,tFi,j,t, which is then compared to actual earnings, Ai,j,t. The error is expressed as
the absolute difference between Ci,j,t and Ai,j,t. The table shows the median absolute forecast error across firms j
for time t. For example, in 1990 there was a median absolute forecast error of 8.40 cents, or $0.084, for the
simple average method.

10 The analysis is robust to defining errors as mean, as opposed to median, forecast errors. However, the distribution
of errors is positively skewed, so mean errors are significantly larger than median errors.
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There are three ways to interpret Table 6: (1) compare errors across years; (2) compare errors

across models; and (3) compare errors across weighting methods.

5.2.1. COMPARE ERRORS ACROSS YEARS

Errors were greatest in 1990, 2000 and 2001. These were turbulent years for the equity markets,

with firms frequently reporting earnings dramatically below forecasts. Otherwise, forecast errors

have been remarkably consistent over the past 16 years.

5.2.2. COMPARE ERRORS ACROSS MODELS

Looking at Method 1, the “Best” case has an average forecast error of 2.98 cents. Using Model A

to estimate PMAFE generates an average forecast error of 4.20 cents, or 41% more error than the

“Best” case. Adding LMAFE to the regression in Model B leads to an average forecast error of

4.18 cents, or 40% more error than the “Best” case. Consequently, Model B has 1% less error

than Model A11, which is not economically significant. Thus, adding LMAFE to the regression,

as discussed in Section 5.1, does not significantly improve our ability to aggregate forecasts.

5.2.3. COMPARE ERRORS ACROSS WEIGHTING METHODS

The average weighting method, which is commonly used throughout the financial industry, has

a median forecast error of 5.12 cents ($0.00512) over the past 16 years12. Looking across Model

B cases, Method 1 has a median forecast error of 4.18 cents, which is an improvement of 0.95

cents, or 18%. Method 2 has a median forecast error of 3.66 cents, an improvement of 1.46 cents,

or 29%. Method 3 has a median forecast error of 3.96 cents, an improvement of 1.16 cents, or

23%. All three methods are superior to average weighting. Furthermore, as expected, Method 2

reduces error by 12% relative to Brown and Mohammad’s Method 1. Method 3 reduces error by

5% relative to Method 1. These results are very economically significant.

11 The results are robust to using Method 2 or Method 3 to compare Models A and B. In either case, Model B
reduces forecast error by 1% relative to Model A.
12 The results are robust to defining forecast error as (Actual – Forecast)2, as opposed to Abs(Actual – Forecast).
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6. CONCLUSIONS

Earnings per share forecasts made by research analysts can be combined in many ways. One of

the most common methods in practice is to equally weight each analyst’s forecast to create a

consensus forecast. Equal weighting produces a median forecast error of 5.12 cents. Brown and

Mohammad (2001), in the only study to date that examines forecast aggregation, are able to

improve forecast accuracy by weighting forecasts with analyst specific characteristics. There

have been a lot of numbers in this paper, but before I present more I would like you to step back

and think about that for a second: Brown and Mohammad know nothing about the firms they are

forecasting – they don’t know if General Motors will sell 5 or 5 million cars – yet by looking at

analyst characteristics (How any years of experience does the analyst have? How many

companies does the analyst cover?), they are more accurate than highly skilled experts. Back to

the numbers: Brown and Mohammad’s weighting method produces a median forecast error of

4.20 cents, 18% more accurate than equal weighting.

I employ Brown and Mohammad’s general methodology to further improve forecast accuracy.

The first step is to regress analyst accuracy against analyst characteristics, such as forecast

recency, forecast frequency, brokerage reputation, experience, and the number of companies and

industries covered. In addition to their six analyst characteristics, I consider past accuracy13.

Accuracy is predicted using the previous year’s regression coefficients. Brown and Mohammad

weight analysts using an ordinal system where the magnitude of predicted error is

inconsequential. I improve on their methodology by weighing analyst forecasts using squared

predicted accuracy. My weighting method produces a median forecast error of 3.66 cents, 29%

more accurate than equal weighting and 13% more accurate than Brown and Mohammad.

Brown and Mohammad found that a trading strategy of purchasing securities whose model-based

forecasts exceeded equal weighted forecasts by 5% resulted in abnormal returns of 1.87%. It

remains to be seen whether a 13% improvement in forecast accuracy translates into a 13%

improvement in abnormal returns.

13 A practitioner may be better off using forecast recency and past accuracy, as opposed to the full seven factor
model. These two characteristics are the easiest to obtain and explain the most variation in forecast error.
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6.1. FUTURE RESEARCH

Future research is needed on two parallel tracks. First, alternative weighting schemes should be

considered. Methods 2 and 3 were improvised and, though they have appealing economic

qualities, have little statistical justification. Second, additional analyst characteristics should be

considered in improving predictions of analyst accuracy. There are four characteristics in the

literature that deserve further study:

(1) Francis and Philbrick (1993) find that analysts issuing “Sell” recommendations are more

likely to have optimistic – and consequently, inaccurate – forecasts. They contend that analysts

attempt to compensate companies for negative recommendations in order to maintain manager

access.

(2) Dugar and Nathan (1995) find that analysts covering companies with whom their brokerage

has an investment banking relationship are likely to issue optimistic – and consequently,

inaccurate – forecasts. It is widely accepted that brokerages encourage optimistic forecasts to

generate remunerative underwriting business.

(3) Herrmann and Thomas (2005) find that forecasts rounded to the nearest nickel are less

accurate than other forecasts. Analysts who “heap” their forecasts tend to use ad hoc methods of

forecasting which are less accurate than detailed models.

(4) Clement and Tse (2005) find that analysts making bold forecasts revisions are more accurate

than herding analysts. A bold forecast revision, which moves away from the consensus forecast,

indicates that the analyst is using new information.
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