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Symmetries, inversion formulas, and image reconstruction for optical

tomography

Abstract

We consider the image reconstruction problem for optical tomography with diffuse light. The associated
inverse scattering problem is analyzed by making use of particular symmetries of the scattering data. The
effects of sampling and limited data are analyzed for several different experimental modalities, and
computationally efficient reconstruction algorithms are obtained. These algorithms are suitable for the
reconstruction of images from very large data sets.
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We consider the image recostruction problem for optical tomography with diffuse light. The associated
inverse scattering problem is analyzed by making use of particular symmetries of the scattering data. The
effects of sampling and limited data are analyzed for several different experimental modalities, and computa-
tionally efficient reconstruction algorithms are obtained. These algorithms are suitable for the reconstruction of
images from very large data sets.
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I. INTRODUCTION source is located at the poing and produces a narrow col-
limated incident beam in the directich and the detector
measures the specific intensity at the paipflowing in the
There has been considerable recent interest in the devetirection,, the measurable quantityip to a multiplicative
opment of optical methods for biomedical imagifi-5].  constant proportional to the total power of the source and the
The near-IR spectral region is of particular importance forefficiency of the detector is the Green's function
such applications in view of the presence of a “window ofG(r,5;r4,8;). Reconstructing the optical properties of the
transparency” in the absorption spectrum of biological tiS-medium from measurements @(rq,5;rq,8) constitutes
sues between 700 and 900 nm. However, the propagation @he inverse problem of ODT.
near-IR light in tissue is characterized by strong multiple  The formulation of the inverse problem of ODT is based
scattering which renders traditional imaging methods basegp, the fact thats may be related to the optical properties of
on ray optics invalid. Imaging modalities which utilize mul- the medium. This dependence is nonling&jr which signifi-
tiply scattered light in the diffusion regime are referred to ascantly complicates the inverse problem. Indeed, the Dyson

A. Review of the problem

optical diffusion tomographyODT). S equation forG can be written in operator form as
The propagation of electromagnetic radiation in strongly
scattering media can be described by the radiative transport G =Gy GyVG, 2

equation(RTE) or by the diffusion equatioiDE) [6,7]. In . , . .
both approaches, information about the phase of the electrt\)'\-/r'er‘a(.z'O is the Green's fu_nct|on for_ a homogene_ogs medium
! . S andV is the operator which describes the deviations of the
magnetic wave is lost and the transport of light is character- - ) . -
ized by the specific intensiti(r ,3) at the pointr flowing in optical properties of the medium from their background val-

T -2 . ues. From the relatio®=(1+GyV) G, it can be seen that
the directions. This description relies on a fundamental as- ~". : . ; : . .

. . . .G is a nonlinear functional 0¥. It is possible to linearize the
sumption — namely, that the intensity rather than the amp“'inverse roblem under the assumption tias small. as is
tude of the radiation field satisfies the superposition prin- P! . ump . '

the case in many physical applicatiof®§. The simplest ap-

ciple. An important consequence of this fact is that the roach is to use the first Born approximation which is given
specific intensity may be expressed in terms of the Green’ PP 9

function of an appropriate differential or integro-differential
equation according to G =Gy - GyVGy. (3)
1.3 :f Gr.&r &)e(r’ &) d, ) In this case the main equation of ODT can be formulated as
D =GyVGy, (4)
wheree(r,3) is an apprp_pri_ate source func_:tion ar_1d we havewhereCD:Go—
assumed that the specific intensity is stationary in time. tion. Note that other methods of linearization can also be

In a typical experiment, light is injected into an inhomo- used, leading to an equation of the fotd) with a modified
geneous medium by one or more optical fibers which act aﬁxpression forb (see Sec. Il below

point sources. Additional fibers are employed for collection Since the right-hand side of Eq4) contains only the

and subsequent detection of the transmitted light. Thus, if %nperturbed Green's functio®,, the properties o6, are of
primary importance. Although the functional form Gf, can

be quite complicated, as in the case of the RTE, some useful
*Electronic address: vmarkel@mail.med.upenn.edu relations may be obtained from the underlying symmetry of
"Electronic address: schotland@seas.upenn.edu the problem. In a recent series of papgt-14 we have

G is the experimentally measurable data func-
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exploited the translational invariance of the unperturbed methe usual factor eXpiwt), and the RTE in the frequency

dium in the slab measurement geometry within the diffusionrdomain can be written as

approximation. Several reconstruction algorithms have been

proposed and numerically simulated. It was shown that tak- ) R L o

ing into account translational invariance can result in a dra- [S+ V + (4a+ s~ iw/0)JI(r,5) ‘:U«sf AGE)I(r,8)d%

matic improvement of computational performance. In par-

ticular, it allows the reconstruction of data sets with a very  =&(r,9), (5)

large number of source detector pairs, a situation in which

numerical reconstruction methods cannot be used due tohere u, and us are the absorption and scattering coeffi-

their high computational complexity. In Refd2,13 the ef-  cients,c is the average speed of light in the medium, and

fects of sampling and limited data were studied and it wasA(S,8') is the scattering kernefalso known as the phase

shown that the fundamental limit of transverse resolution idunction) with the properties A(§,8')=A(8',5) and

given by the step size of the lattice on which sources orfA(§,8')d?s' =1 for all .

detectors are placed. Therefore, a large number of source- In radiative transport theory, it is customary to distinguish

detector pairs is required to achieve the highest possible spée diffuse and reduced specific intensitigsand |,. The

tial resolution. latter can be defined in several different ways, which, in turn,
Although the methods discussed in Ref$0-14 may influences the definition df;. The DE is obtained most natu-

appear to be distinctly different, they are, in fact, specialrally if the reduced intensity is chosen so that

cases of a general family of inversion formulas which are

based on certain symmetries of the unperturbed medium. The [8-V +(u —iwlo)]l, =&(r,9), (6)

derivation of these results is, in some sense, independent of

the use of the diffusion approximation. Indeed, the only im-whereu' = u,+(1-g)us, 9=J(5-8')A(3-8')d’s is the scatter-

portant property of the Green's functi@y which is used is  ing asymmetry parameter, and the boundary conditions at the

translational or rotational invariance. In a general curvilinearsyrfacedQ) where the incident radiation with specific inten-

system of orthogonal coordinates,x,,x; invariance with sity |, . enters the scattering medium ig|; . so=1inc. Then
respect to translation of one of the coordinates—sgy;can  the diffuse intensityl 4 satisfies

be mathematically expressed aSy(Xy,Xa,X3;X1,X5,X3)
=f(x—X1;%2,X3;%5,%5) for some functionf. Geometries in .
which translational invariance exists with respect to two co- [S+ V +(u —iw/c)]l4(r,5) —MéfA'(é.g')ld(fyé')dzé’
ordinates are of particular interest. For example, in the slab
measurement geometry discussed in SecQjljs invariant =g,(r,9), (7)
with respect to translations parallel to the measurement
plane; in the cylindrical measurement geometry which is diswhereu,=(1-g)us is the reduced scattering coefficient and
cussed in Sec. M3 is invariant with respect to rotations A’(S,5')=[A(S§,5')-gd(5-5')]/(1—-g), and the source term
about and translations parallel to the cylinder axis. due to the reduced intensity,(r ,S), is given by
Apart from generalizations of previously obtained results
and placing them in a unified theoretical framework, this
paper contains the following new developments. &(r,9) = ug f A'(3,8)1,(r,8)d%' . (8)
(i) We have shown that symmetry-based image recon-

struction methods are applicable not only to the DE but to o . P
the more general RTE. An example of an integral kernelNote that the modified scattering kerr®l(s,s’) is still nor-

. S )
derived from the RTE has been given. malized by the COI’\dItIOIfAA(SA,,S )(,jf A/l, 2but th_e flrs_t mo

(i) A novel method(applicable to both DE and RTf ~ Ment (asymmetry factor f(5-8')A'(S,8')d%s is identically
linearization of the inverse problem has been proposed. Z€ro. We will assume everywhere below that the ballistic

(i) The case when the sources and detectors are plac&@mponent of the intensity given by at the location of
on different lattices or when only the sources are placed on §etectors is negligibly small and will focus on the diffuse
lattice is consistently treated. component descried by E@l). .

(iv) A multiprojection imaging scheme is proposed in _ Aq mhomogeneous medium is characterized by the spa-
which data from multiple rotations of a slab are usedti@! distribution u,(r)=uag+ ua(r) and pg(r) = pep* ous(r).
self-consistently. Alternatively, we can consider the variables (r)=pu,

+8u'(r) and pl(r) = uly+ Sul(r) as mathematically indepen-

dent. In particular, if onlyu, varies(the case of absorbing
B. Green’s functions in radiative transport inhomogeneities the quantityx” is also varying whilew. is
and diffusion theory constant. The Green’s function for the RT&(r,S;r’,s'),

We assume that all sources are harmonically modulated g@tisfies the Dyson equati¢®) with the operatol given by
a frequencyw, typically in the radio-frequency rangeot to ~ V=3Ju —duA’. The operatorA’ with matrix elements
be confused with the electromagnetic frequendhis in-  (rS|A’[r’'8)=48(r—r')A'(S,8') is assumed to be position in-
cludes continuous-wavécw) experiments witho=0 as a  dependent. The unperturbed Green’s funci@r ,s;r’,s’)
special case. In general, all time-dependent quantities acquisatisfies
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5V + (up—iwlc)]Gy(r,5;r",8 L cuil” " o
[ (o = 1/0) JGof ) G(r,&r',8)= ‘f (1+€'5-V,)1-€'8 -V,)G(r,r"),
v
—,ugofA’(é,é”)GO(r,é”;r’,§’)d2§”: Sr-r"8s-9). (16)
(9) where
The DE is obtained by expandirg(r ,3) to first order in ¢ =1/u" =3Dyc. a7

S (for nonzero modulation frequencies, an additional c:ondi-N te that Ea(16) satisfies th | . it relati
tion w< u'c must be fulfilled: ote that Eq.(16) satisfies the general reciprocity relation

G(r,s;r’,8)=G(r',=8';r,-S) [15].

_c R The DE(12) must be supplemented with boundary condi-
l4(r,9) = 2972 (100 tions which, in the general case, have the form
(U+€A- VU cm=0, (19

where
. where{ is the extrapolation distanc¢l16] andi is an out-
== | 14(r 3d% = | a1 3ds (11 ward unit normal to the surface(}, at the pointr. If we
u(r) cf o, 9, () fsd(r,s)d s (4 assume thatg,rqye 2, expression(16) can be simplified
) ) o with the use of Eq(18), which G(r,r’) must satisfy with
Then the density of electromagnetic energgatisfies respect to both of its arguments. Namely, if the source and
_ . _ detector optical fibers are oriented perpendicular to the mea-
vV -[D(r) Vu(r)]+[a(r) —ie]u(r) =Sr) -~ (12) surement surface, we haven=-1 for the source and

and the currend is given by §'-n'=1 for the detector. Consequently, E4.6) takes the
form
J=-DVu, (13 e _C,Udég* 1+£ ZG , .
whereD=c/3u" anda=cpu, are the diffusion and absorption (88l 0= 4 ¢ (r,r). (19

coefficients, and . .
Thus, the Green'’s function for the RTE has been expressed in

o terms of the Green’s function for the DE and the parameters
S(f)=f8r(f,8)d25 (14 ¢ and ¢*. Note that in the limit¢—0 (purely absorbing
boundariey the quantity on the right-hand side of EG9) is
is the source for the DE. Note that the specific choice of thdinite sinceG(r,r’) goes to zero ag® for r,r’ e 4Q.
reduced intensity6) has resulted in a simple form for the ~ Inhomogeneities of the medium are described in the DE
source functiorS which does not contain higher moments of by spatial fluctuations of the absorption and diffusion coef-
g, (compare with the analogous formulas[8). ficients: a(r)=ap+ da(r) and D(r)=Dy+D(r). The unper-
The Green's function for the DE does not depend on thdurbed Green’s function satisfies
directionsS and &', and we denote its matrix elements by . N ,
G(r,r’). The Green’s function of the RTE for the diffuse (=DoV2+ ag=iw)Go(r,r') = &lr = 1), (20
component of specific intensity can be related(@,r’) by  and the full Green’s functio® satisfies the Dyson equation
applying the formulg10) to the electromagnetic energy den- (2) with the interaction operator given by
sity u(r)=/G(r,r')Sr")d*’. For a point unidirectional
sources(r,9)=48(r —rq) 8(5—-) and homogeneous boundary V=6a(r)=V D) V. (21)
conditionsl;,.=0 one can easily find that The remainder of this paper is organized as follows. In
N . A Sec. Il several methods for the linearization of the integral
S(r) = ps®(So - (r —ro))exp~ u So- (r —ro)]or — (S -1) equations of ODT are discussed. The formalism for the slab
1o+ %&10), (15) ~ Measurement geometry is developed in Sec. Ill. Various par-
ticular cases are also consdidered, some of which have been
where®(x) is the step function and we have used the conimplemented earlier, such as Fourier and paraxial tomogra-
dition w<<u'c. phy. In Sec. IV we suggest a novel multiprojection imaging
Note that the same expression 8fr) is obtained by modality and derive related inversion formulas. In Sec. V the
assuming that there are no internal sour@es0) and using  cylindrical measurement geometry is considered. In Sec. VI
the inhomogeneous boundary conditioh$ _,0=1;,c where ~ We give examples of calculating the kernels for the integral
l,nc is the intensity of a collimated narrow beam entering theequations considered in this paper. Finally, Sec. VII contains
medium at the point,e dQ in the incident directior§,, @ summary of the results of this paper.
By expanding the diffuse Green’s function near the point
r'=ro according to G(r,r')=G(r,ro)+(r'=rg)-V,
XG(r,r")|r"=rq and using Eq(10) the RTE Green’s func-
tion for the diffuse component can be expressed in terms of In this section we review several methods for linearization
the DE Green'’s function as of integral equations for the operat¥r The first Born and

II. LINEAR INTEGRAL EQUATIONS
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first Rytov approximations are often used in ODT. In addi- (a)

tion to these two methods we introduce a new approact %

based on an analogy with the mean-field approximation. For .4

simplicity, we consider thé&-independent Green’s function

for the DE,G(r,r’)=(r|G|r’) and use Eq(19) to relate it to

the measurable signal, but the same perturbative analysis aj °; 10 100 1 0 100

plies to the Green’s functio®s(r,s;r’,s’). 006
In the coordinate representation, the first Born approxima- o4

tion (3) is of the form

0.02

G(rgrg) = Go(rs,rg) = (rdGoVGolry), (22) 0
where
0.01
(rdGoVGylrg) = f ol V(NG Td® . (23 oom} /7 { oo
. ) RPN L 0
Consequently, the data function defined by 1 10 100
0.01 3 0.01
\?
¢(r51rd) = (1 + ?) [GO(rS!rd) - G(r51rd)] (24) 0.005 0.005
- . . . a/ky
satisfies the linear integral equation . m ™

*

_ 3 FIG. 1. The relative shadow® of a sphere of radiuR=0.4L
Brsrag) ={1 +7 Golr s MV(N)Go(r,r)dr . (25) with its center at the origin, as a function &§/k, for a source
located at(—-L/2,0,z) and a detector located ét/2,0,z) and dif-
Here the factor(1+¢"/€)? is retained for the reasons dis- ferent values of; kiL=1 (a) andk;L=2 (b).
cussed in Sec. | B and the constapt,¢" /47 omitted. Equa-
tion (24) is used to calculaté from G, while in Eq.(25), ¢
must be regarded as given a¥icas unknown. Note that Eq. P(rsra) :< [Go(rsra) = G(rsra)l.

(25) has the same form as E@).
The first Rytov approximation is also frequently used. In (29
this approximatiorG is given by The application of different forms of perturbation theory, as
discussed above, to calculating the Green’s function for the
G(rgry) = Go(rs,rd)eXp{— M] (26) ~ DEis illustrated in Fig. 1. We have considered a model situ-
Go(rsrg) ation of a spherical inhomogeneity of radiBscharacterized
) . by the diffuse wave numbek,=va,/D, embedded in an
Equation(26) can be brought to the fori®5) by using the  jnfinite medium with the diffuse wave numbkg=1a,/Ds,
following definition for the data function: where a; , and D, , are the absorption and diffusion coeffi-
0\2 Glrary) cients in the background medium and inside the sphere, re-
Drery) =-— <1+—> GO(rsyrd)ln[Ld] (27)  spectively. The Green’s function can be found in this case
¢ Go(rsrg) analytically from the scalar wave Mie solution for imaginary

wave numbers. Placing the origin at the center of the sphere,
Here the term inside the logarithm can be identified as thg 0btainG(r o, r g) =Gy(r s, o) — (2Kky/ 7D1)S(r o, T ). Here the

ﬁ)ZGO(rs-rd)
G(rgrq

transmission coefficient.
dimensionless relative shadar,r ) is given b
Another possible approach which is proposed in this pa- Wil is 9 y
per is analogous to the mean-field approximation as applied > 2l + 1)a,
in Ref. [17]. The mean-field approximation is obtained from S(rerg) = E Pi(fs-Tq), (30

the Dyson equatioii2) by fixing the position of source and =

making the ansatG(r,rg)=a(rs,rg)Go(r,rg). Substituting with & being the Mie coefficients:
this expression into Eq(2) we can formally solve for

a(rg,ry) and obtain: _ mii(kR)i] (kR) —ij(kR)i{ (k1R) (31)
S % i (R (kiR — i (koRK (G R)
G G 1+ (rgGoVGolr o) 28
(rs7) = Gol(rs o) Gyl lq) (28 \here m=k,/k;, P,(x) are the Legendre polynomials,

i1(x),k(x) are the modified spherical Bessel and Hankel
Equation(28) can be brought to the forii25) by defining the  functions of the first kind, the prime denotes differentiation
data function according to of functions with respect to the argument in the parentheses,

056616-4



SYMMETRIES, INVERSION FORMULAS, AND IMAGE... PHYSICAL REVIEW E 70, 056616(2004)

3

y Ps P4, and w. Then, with use of one of the linearization
methods discussed in Sec. Il, we obtain the integral equation

d(w,ps,pg) = f I(w,pspg;1) n(r)dr. (32

A few remarks concerning the above equation are necessary.
First, the functiong is the experimentally measurable data
function. To determinep, it is necessary to know the full
Green’s functionG(xs, ps,Ss; X4, Pa, Sg) as well as the unper-
turbed Green’s functiorGy(xs, ps,Ss; X4, Pd,S¢). The latter

(04} i can be calculated analytically or, in some cases, measured
Dy D experimentally using a homogeneous medium. The exact ex-
pression for¢ in terms of G and G, depends on the linear-
ization method used. Secong(r) is a vector representing
FIG. 2. Sketch of the experimental setup in the planar geometryhe deviations of optical coefficients from their background

(transmission measurements values. Thus,
and the points,r4 are outside of the sphefe,ry>R). _ <5M*(f)> _ (5a(f) )

In Fig. 1, S is plotted as a function of the ratig/k, for r) Spa(r) (for RTE),  »(r) oD(r) (for DE).
different source detector pairs. The locations of the sources (33)

and detectors are specified in a Cartesian reference frame

(x,y,2) with the origin in the center of the sphere by  Correspondinglyl'(w,ps,pq;r) is a vector of functions that
=(-L/2,0,2) andry=(L/2,0,2) wherez can take different multiply the respective coefficients. The specific formIof

values. The sphere radius was chosen tdRb®.4L. It can  can be found G, is known; we will give examples of such
be seen that, in most cases, the mean-field approximation glculations in Sec. VI. Here we define

superior to the first Rytov, and the first Rytov is, in turn,

superior to the Born. It should be kept in mind that to obtain  I'(w, ps,pqg;r)
the contrast of the absorption or diffusion coefficient, the . . , .
value ofk,/k; must be squared. Thus a tenfold increase of = (T (w’ps'pd’r)’F”s(w’ps’pd’r)) (for RTB),
the absorption coefficient inside the sphere corresponds to (T (w,p5p4;7),I'p(w,ps,pq;r)) (for DE).

A fundamental property of the kernElis its translational

Ill. PLANAR GEOMETRY invariance. Mathematically, this means thatw, ps,pg;r)
depends only omps—p and py—p rather than on the three
parameterg,, pq, andp separately, so that the simultaneous

The planar geometry is illustrated in Fig. 2. The mediumtransformationpsy— psq+a, p— p+a leaves the kernel in-
to be imaged is located between two parallel measuremewariant. Thereforel (w, ps, pq;r) can be written as the Fou-
planes separated by the distaricelntensity measurements rier integral
are taken with multiple source-detector pairs denoted “S”

A. Integral equations in the planar geometry

and “D.” We denote the coordinates of the sources and de- ) d?qq0?qy _

tectors asr<=(xs,p) and rq=(xq,pq), respectively. Here I'(@,ps pq;) :f 2m)* «(®,95,Gg; %)
Psa=(Ysd,Zsq) are two-dimensional vectors parallel to the , ,

measurement planes. Without loss of generality, we assume Xexdids- (p=pd +ida-(pa=p)],
that “transmission” measurements are performed with (35

-L/2 andx4=L/2, while “reflection” measurements with ,

=xg=-L/2. A point inside the medium will be denoted Where « is the vector:x=(x,+,«,) for the RTE and«

=(x,p), wherep=(y,2) is a two-dimensional vector parallel =(x,,p) for the DE. Note that the isotropy of space re-

to the measurement planghg]. Further, it is assumed that quires that« depend only on the absolute values of the two-

the source and detector optical fibers are oriented perpelimensional vectorsgg.

dicular to the measurement surfaces and that their diameters By introducing the new variablesp, g, andp according

are small compared to all other physically relevant scalesio ps=ps*+Ap andgs=q+p, gq=p, we find that

Therefore, the measured specific intensity is given, up to a

multiplicative constant, by the Green’s functi@(x. S d’q ;

multiplicative cq » Dy s:Ps:Ss F(w,Ap,pS;r):f 5K(w,Ap,q;x)exdiq - (p - ps],

=%;Xq, Pg, 4= £X), Where plus corresponds to the transmis- (2m)

sion geometry and minus to the reflection geometry. (36)
In each experiment, the parametetsxy,S,, and s, are

fixed. Therefore, we focus on the dependence of the data onhere

056616-5
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d2
Wr;zk(w,q +p,p;x)explip - Ap) d(p,ps) = f (g, psi 1) n(r)dr. (43)

K(w,Ap,q;X) =J 2

37 The integral operator’ defines a map between two different
and the integral Eq32) takes the form Hilbert spacesH, and H,. Equation(43) can be written in
Dirac notation as

P(w,Ap,py) = f [(w,Ap,ps;r) n(r)dr. (39 () =T1n). (44)
Note that in Eqs(36)—<38) the list of formal arguments of The pseudoinverse solution to E@4) is given by
I and ¢ has been changed. Thus, for example, the data func- |7 =T ). (45)
tion ¢(w, ps, ps+Ap) is replaced byp(w,Ap, ps). . o

We now discuss the sampling of data. First, we assum&'€'® the pseudoinverse operaldris given by
that Fhe sources are Igcateg on a square lattice wi_th lattice =T =), (46)
spacingh so thatps=h(yn,+2zn,) wheren, andn, are inte-
gers. Second, the vectorsp, which specify the source- Where “ *” denotes Hermitian conjugation and the expres-
detector transverse separation, are assumed to belong to tiens(I'"I")~* and(I'T")~* must be appropriately regularized.
setX, Ap 3. In particular,X, can be a square lattice, com- The regularized singular-value decomposit{&@VD) of the
mensurate with the lattice of sources, with a spadihgh.  pseudoinverse operator is given by
Another case arises when the detectors continuously occupy
the vv_hple plane. _Finally, the modulation frequencies belong r=> @(UWE)M, (47)
to a finite sefw;;j=1,2,... N} N o

We also consider an approach in whidhdifferent linear ) i .
combinationgwith complex coefficients;;) of detector out- where®(x, ) is an appropriate regularizeris a small regu-
puts are directly measured, allowing for the possibility of alarization parameter, and the singular functiof$ and |gy)
phased-array measurement scheme. In this case, (86)s. are el*genfunctlor_\s with elgenvalueﬁ of the operatord T’
and(37) must be modified according to andI"T', respectively:

f) = 0'§|fn>, rr

n

g, , rr On) = 05190 (49)
J,q:x)exdiq - (p - , N _ _
(2m)? (wl.aixexdia- (p=p)] In addition, the following relations hold:

F(w,i,ps:r)=f

i=1,... Ng, (39) I‘*|fn>:0'n|gn>v l_‘|gn>:‘7'|fn>- (49

To obtain the SVD for the pseudoinverse operator, we first
d’p consider the eigenfunctions and eigenvalues of the operator

K(w,i,q;%) :f (zw)zk(w'q +p,piX) 2 Ecij explip-Ap)),  TT". Its matrix elements in the basigps) are given by
Aij

oo d2q ’
i=1,... Ny (40) <MPS|FF K pg) :f W(MMl(q)LU« )
and the integral equation for phased-array measurements be- xexd-iq - (ps— pd)], (50)
comes
where
d(w,i,ps :fl“(w,i,p Dp)dd, i=1,... Ng, , L2 o
) (uMy(@)|u") = K(u,q; K (,q;x)dx.  (51)
(41) -L/2
where From Eq.(50), it can be seen that the effective dimensional-
ity of the eigenproblem can be reduced. That is, the
Hw,i,pd= 2 CidlwAp,p), i=1 Ny (42) ps-dependent part of the eigenfunctions can be found analyti-
v Apes A v cally. Indeed, the ansatz

Note that the matrixc; does not need to be square; in the (updf o) = —expl(= iU - p(|C.())
case of a continuous s& the summation must be replaced mpsf) = S—exp=iu - pg)(u|C, (W),
by integration andt;; by a vector of functiong;(Ap).

(52)

wherev andu are the indexes that label the eigenfunctions
with w,ve A andu is a two-dimensional vector in the first
Brillouin zone (FBZ) of the lattice on which the sources are

It is convenient to define a new three-dimensional vari-placed, -w/h<uy,u,</h. It can be verified thatf,,) are
able u=(w,Ap) or u=(w,i), with A the set of suchu, and  eigenfunctions of T" if |C,(u)) are eigenvectors of the ma-
rewrite Eq.(42) as trix M(u) defined by

B. Inversion formulas
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M(u) = 2 My(u+v), (53)
\"

where thev’s are reciprocal lattice vectors,=(27/h)(ny

+n,2). We denote the eigenvalues of the non-negative defi-
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d2 *
n(r)=h2f 2 uzexp(-iu -p) > P (p,u;r)
FBz (£

!
ol

XM W)y bl ), (63)

nite matrix M(u) by M,":(u) and the singular values of the which is our main result pertaining to the planar geometry.

problem(the eigenvalues dfl™") by ozvu. Then the following
relations hold:

M(u)|C,(u)) = M2(u)|C,(w)), (54)
TI|f ) = 0%l f ), (55)
o, =h"M (u). (56)

Note that the singular function$,,), Eq. (52), are normal-
ized according tdf,,|f,,/)=46,,8u-u’).

The second set of singular functiors,,), can be ob-
tained from the relation§49):

1 *
(xplgu) = 5 —exp(=iu - p)> P (%, p) (| C (1)),
mho,, P

(57)

where

P(,u,u;X,p):E K(u,u +v;x)expiv - p). (58)

To obtain an inversion formula, according to E¢5) and
(47), we need to evaluate the scalar prod(fct,| ¢). It can
be shown by direct calculation that

h -
(fLuld) = 2—2 (C,(u)|w)(p,u), (59
T

where $(u,u) is the lattice Fourier transform ob(u,py)
with respect tgpg:

Bu,u) =2, du,pdexpiu - py). (60)

Ps

Finally, we arrive at the following inversion formula:

_ du 1 _
7(r) —EV . (ZW)ZgUQ@(UVU,E)eXF(— iu-p)
X2 P (U5 1)/ CL()XC, ()| Yblp ).

!
Bt

(61)

The above result can be simplified by noting the relation

> @(crw,e)m”(“:;#(”)' =MYu). (62)

vu

Using the above relation, the inversion formyél) can be
rewritten as

Several comments on the above result are necessary.

(i) The pseudoinverse solutiof®3) was derived under
the assumption that the sources occupy an infinite lattice. In
practice, however, they must be restricted to a finite spatial
window. In this case, the inversion formul@3) is no longer
exact. However, if the edges of the window are sufficiently
far from the inhomogeneities of the medium, a good approxi-
mation to the pseudoinverse solution may be obtained. This
is due to the exponential decay of the Green'’s functions in an
absorbing mediungfor both the RTE and DE

(i) The variableu is continuous, but, in practice, must be
discretized. The number of discrete vectarshould roughly
correspond to the number of different sources used in the
experiment. As discussed above, this is a finite number
which we denote byN;. We will refer toN; as the number of
external degrees of freedom. Next, let the variakkerun
over N, discrete points. HerBl, is the number of the “inter-
nal” degrees of freedom. A purely numerical SVD inversion
requires diagonalizing a matrix of sidg§ N, which has com-
putational complexityO((N;N,)3). However, the inversion
formula (63) requires onlyN; diagonalizations of the matrix
M(u) whose size i, (hence the terms “external” and “in-
ternal” degrees of freedgmThe computational complexity
of this procedure i©(N;N3), which isN? times smaller than
that for the purely numerical method. For lafgg this is an
enormous advantage. Note that one should add to the above
estimate the number of operations necessary to Fourier-
transform the data function and to sum over the variables
m,p' andu in Eqg. (63). The computational cost of the first
task scales a®(N; log N;) with the use of the fast Fourier
transform and, if log\N; < Ng, can be neglected. The second
task requiresO(NlNg) operations, which is also negligible.

(i) It can be seen from the inversion formuid3) that
the transverse resolution of the reconstruction is at most the
lattice steph. Therefore, it is necessary to evaluate the func-
tion 7(r)=x(x,p) only at those pointp which lie in the
source lattice. In this case, the factor é@xpp) in the defi-
nition of P(w,u;x,p), Eq. (58), is equal to unity. Conse-
quently, P becomes independent gb and is denoted
P(u,u;x). Then the double sum in E¢6J) is a function of
u andx only. This fact significantly improves the computa-
tional performance of the algorithm.

(iv) So far we have placed no restrictions gtx,p) ex-
cept for square integrability. In some cases it is knoavn
priori that 7(x, p) is smooth. In particular, consider the case
when it is known that the Fourier transforiy(x,q) of the
function # vanishes ifiq,| > a/h or |q,| > 7/h:

7(x,q) =f n(x,p)expliq - p)d®p=0, if q ¢ FBZ.

(64)

Functions which satisfy Eq64) are said to be transversely
band limited to the FBZ of the source lattice. The oper&tor

056616-7



V. A. MARKEL AND J. C. SCHOTLAND

maps the Hilbert space of such functioh‘é’,, to the Hilbert
space of the datdij,, and can be written as

d?u

oK maexiu- (b= p))

F(/.L,ps;l') =

(65)

Note that integration in Eq65) over d?u is limited to the
FBZ, in contrast to the analogous equati@®) where inte-

PHYSICAL REVIEW E70, 056616(2004)

d2
" > kl(w,q+wW+vy,

K(w,Ap,q;X) =
FBZ(hy (277)2 vy

W+ Vg X)expliw - Ap). (69)

Here integration is carried out over the first Brillouin zone of
the lattice with spacindyy [FBZ(hy)] and v4=(27/hg)(yn,
+2n,) is a reciprocal lattice vector of the same lattice. Sub-
stituting Eq.(69) into Egs.(51) and(53), we obtain the fol-

gration overd?q is carried out over the entire Fourier space.lowing expression for the elements of the matvXu):

However, the two operator®5) and (36) are equivalent if

they act on the spaddﬁ’. This fact can be used to show that
the SVD pseudoinverse solution on the space of transversely

band-limited functionsy has the form

d2 *
n(r)=h2f (Z:ZeXp(—iu p) 2 K (p,u;%)
FBZ

’
o

XM U) Y (' u), (66)

whereM; is given by Eq(51). Thus, the summation over the

d?wdPw’
FBZ(hg) (2m)*

xXexgi(w-Ap—-w'-Ap")],

(M (U)|py = (WM (U)|ow'w’)

(70)

where

(WMU)]'W) =3 3 (0, +VgMy(U + Voo, W' +vj)

Vs vg.vy

(71)

reciprocal lattice vectors that is required for the calculation

of P andM in the inversion formulg63) is avoided if it is
known that# is transversely band limited.

(v) Consider the limith— 0, which corresponds to the
case of continuous data. In this case the reciprocal lattice

vectors become infinite, except far0. Since the functions
K(x,q;x) decay exponentially withg|, we have in this limit

M(u)=M4(u) and P(u,u;x,p)=K(w,u;x). We also use the
relation lim, .o(h?¢)= ¢, where ¢ is the continuous Fourier
transform of the data function defined by

B = f Fpblupexpiv-p). (67

to show that, in the limith— 0, the inversion formuld63)
becomes

d’q _ .
n(r)zf(z zexp(-iq - p) 2 K'(1,0:%)
T

o
X{(uIMTHQ) 1) dlp' ). (68)
This reconstruction formula was implemented 19,11,14.

C. Special cases

1. Fourier tomography

In this section we consider the case when the source and
detector lattices are commensurate and, further, that the lat-
tice of sources is a sublattice of the lattice of detectors. More

specifically, let p;=h(yns,+2zns) and py=hy(yng,+2zny,)
wherengy, Ng, Ngy, Ny andhg/hy is an integerths=hy). We

and

L2

<wp|l\7ll(q)|w’p’>:f K(w,q+P,p;X)

-L/2

XK (o0',q+p/,p/;xdx. (72

Herevg is a reciprocal lattice vector for the lattice with spac-
ing hg, u lies in the FBZhy), and (ww|M(u)|w’w’) can be
viewed as the Fourier transform @bAp|M(u)| o’ Ap’) with
respect to the variablesp andAp’.

It can be easily verified that the inverse of the matrix
M(u) is given in terms of the inverse <I>~1I(u) by the follow-
ing formula:

dPwcdw’(ww|M~(u)]o'w’)

(M W'y = hﬁf

FBZ(hy)
xexdi(w-Ap-w’-Ap")]. (73
Next we substitute Eq.73) into the inversion formuld63)
and obtain the following result:

2

. expi—iu-p)

= (hshy)?
7(r) = (hdhg) ozt (2m)?

x> dzwj AW P’ (w,w,u;r)
w0’ FBZ(hy) FBZ(hy)

X (WM™ (U)|0' W ) (o' u+w',—w'),  (74)

will show that the reconstruction formulas in the case conwhere
sidered here contain a double Fourier transform of the data

function ¢(w, ps, pg) With respect to the variablgs, and py.

First, consider the expressi@a7) for K(w,Ap,q;x). For
commensurate lattices aihg< h, it can be seen thatp lies
in the same lattice ggy. Therefore, Eq(37) can be rewritten
as

Plw,w,u;r) = > k(w,U+Vg+ W + Vg W + Vg, X)eXp(ivs - p)
VsiVd

(75)

and
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&(‘Uvngd) = E d(w,ps,pg)€XAI(0s* ps+ g - Pa)]- Qe =/he =g ']

PsPd
(76) E B he C

Note that here we use the original notatig®F ¢(w, ps, pg)
whereps and py are the coordinates of the source and detec-
tor, respectively.

An important feature of this inversion formula is that it
avoids numerical evaluation of the two-dimensional integral G e a0
(37) which must be performed for every value ®p, g, and - H
x used in the inversion formulas. Note that the functions

P(w,w,u;r) and M(u) appearing in the inversion formula
(74) are expressed directly in terms of the functionsThe
price of this simplification is that the operatbt is continu-
ous (unlike the matrixM). This problem is, however, easily
avoided by replacing the integral ovéfwd®w’ by a double
sum over a finite set of discrete vectavg I=1, ... N,: aa=—n/hy -

2

A —h F

7(r) = (hdhg)? 2exp( iu-p) FIG. 3. lllustration of integration regions in reconstruction for-
FBZ(hy (2m) mula (74) with and without the blocking functions for the calsg

. ~ . =2h4. Only z components of vectorgs=u+w’ and qq=-w’ are

X > > P (w,w,u;r ) ow| M~ (u)|w'w’) shown.

w,0’w,w’

~ must be employed in this case to provide an additional de-
X(o' u+w',-w'), (77)  gree of freedom and make the inverse problem well deter-
, mined. In general, one can expect the transverse resolution to
be somewhere in the interviiy, hy].

Finally, we discuss the use of blocking functions in the

numerical implementation of reconstruction formulgg?
It is important to note that the expressi@ty) is no longer and(77). The blocking functions were introduced 42,19

an SVD pseudoinverse solution with respect to all the avaulto avoid the use of redundant data. Indeed, the Fourier-

able datag(w, ps, pg). Instead, it can be shown that E7) transformed data functiong is periodic: ¢>(w Js,9q)

gives the pseudoinverse solution of the Fourier-transformeg $(w,qs+Vs,qg+Vg) Wherevg andvy is any of the discrete

data<~;/>(w u+w,-w) whereu e FBZ(hy) is continuous while reciprocal lattice vectors defined above. Thus, if data are

w e FBZ(hy) is discrete. taken in more than one Brillouin zone, there is a chance that
The drawback of the Fourier method is that in order tof€dundantequivalent data points will be used, which would

obtain $(w,u+w,-w), the data functiong(w, ps, py) must provide no additional information. It can be easily seen by

i ’ 1 'MPs, Pd

: : ‘ examining the limits of integration ovet’u and d®w’ that
be ex_perlmentally mea;ured for all p_OSS|bIe POIPESP, e argumengs=u+w’ of the data function can be in both
even if the number of discrete vectassis small. It can be s

raued therefore that not all of the experimentall lect he first and the second Brillouin zones of the reciprocal
argued theretore that not all of the experimentaily ColleCleq yice of sources, even in the calsg=hy. In order to force
data are well used by this method.

In general, the number of modulation frequencies used Ith|s variable to stay in the FBE,), blocking functions were

the Fourier method is arbitrary. However, two modulatlon"’]tmduced with the following properties(ds, da) =1 is gs
frequenciegone of which can be zeyare sufficient to si- e FBZ(hy andqq e FBZ(hy), and(as,q0) =0 otherwise. In
multaneously reconstruct both absorbing and scattering inhdiumerical implementations, the data functiétw, qs,qg) is
mogeneitieg10,14. If one can assume that only absorbing replaced by the produg{(w, qs,qd)gb(w Os,qq). The inver-
inhomogeneities are present in the medium, a single moduwion formula(77) remains the pseudoinverse solution of the
lation frequency is sufficient. Fourier-transformed data as discussed above. However, we
The region of the outermost integration in formul@¥)  show below that the use of blocking functions is unnecessary
and (77) over du is FBZ(hy). It can be formally concluded and no redundant data are used in any of the inversion for-
that the transverse resolution in the reconstructed images mulas discussed above. In fact, application of the blocking
determined by the step of the coarser latticethis casehs).  function method results in the use of only half of all avail-
However, the dependence of the functiddon p through able data points.
the exponential factors etips-p) in conjunction with sum- The region of integration in the inversion formulé&)
mation over discrete vectokg provides a possibility for su- and (77) is illustrated in Fig. 3, where we have made the
perresolution. In the limiting case,—  when, essentially, variable transformatiorgs=u+w’, q4=-w'. We note that
only one source is used, the transverse resolution should re-r/hs<uy ,<m/hs and -m/hg<w ,<m/hy. Thus, the area
main finite. However, multiple modulation frequencies of integration in Eq (74) is the f|gureBHFDGE while the

The discrete vectorss, can be referred to as the “internal
degrees of freedom, similar thp. The number and choice of
w’s used in the reconstruction algorithm will influence the
depth resolution.

056616-9



V. A. MARKEL AND J. C. SCHOTLAND PHYSICAL REVIEW E70, 056616(2004)

first Brillouin zone iSABCD (only z components of vectors

are shown for the specific cabg=2h,). The use of blocking I '
functions results in limiting the integration region BHDG Sm— D Sm D
which is completely within the first Brillouin zone. Note that l l

the area oBHDG is half that of ABCD, so that half of all

available data points are discarded due to the use of blocking

functions. But because of the periodicity azf mentioned
above, the data in the triangheBG are equivalent to the data (@ (®
in the triangleBCH, which does not have any common in-
ternal points withBHDG. Analogously, the data iDHF are
equivalent to the data iMDG. Thus, integration over the
figure BHFDGE is equivalent to integration oveABCD. i ) ) ) )
Therefore, the inversion formul@&4) and(77) do not utilize ~ However, there is a symmetry in the integral equations which
any redundant data. would result in the appearance of “twinning” artifacts in the
A reconstruction algorithm based on the inversion for-reconstructed images. Namely, the functi@w,0,q;x) de-
mula (77) was implemented ifi12]. In the limit hg, hy—0,  fined by Eq. (37) is symmetric in x: K(o,0,q;%)

FIG. 4. Measurements scheme in the coagaahnd paraxia(b)
cases.

this inversion formula takes the form =K(w,0,9;-x). Therefore, an inhomogeneity(x, p) and its
P mirror image with respect to the plang=0, 7'(x,p)
- q ; * : =7(-x,p) would result in the same data functigh In this
r)= exp-iq - ,q+p,p;X X P
) J (2m)? R-ig p)z > (o q+Pp.pix) situation, the SVD pseudoinverse solution would yicd-

o,0'p,p’ AP . T .
suming infinite numerical precision of computations and an

X(wp|M7Q)|0'p")plw',q+p’,—p"), (78)  infinite set of modulation frequenciethe functionz'’=(»

- . ) ) +7')/2. Thus, if a medium has an inhomogeneity at the
where ¢(w,0s,0g) is the continuous Fourier transform of point (Xo,Yo,2o), the pseudoinverse solution would show an
¢(w,ps, pg) With respect tops and pg. The continuous Ver- innomogeneity at this point and at its mirror image
sion of _the Fourier reconstruction algorithm was imple—(_xo,yo,zo). The problem is solved by using paraxial data
mented in[10,11. (with 0<|Ap|<L). As was shown in[13], small source-

detector separations of the order of one lattice dteare
2. Real-space tomography sufficient to break the symmetry and eliminate the false im-

This imaging modality is based on direct application of@ges. If both absorbing and diffusing inhomogeneities are
the inversion formula63), where the seb is assumed to Present, at least two detectors per source are required to
contain enough points to make the inverse problem at leaghake the problem well determined.
well determined. The main advantage of this method is thatit The paraxial methods are attractive due to their experi-
uses real-space measurements as the input data and thus giental simplicity. Indeed, instead of independently scanning
lizes all experimental measurements in the most efficienthe sources and detectors over the measurement planes, as is

way. However, numerical evaluation of the functionsrequired in both the Fourier and real-space methods, in the
K(w,Ap,q;x) according to the definition37) is compli-  Paraxial measurement scheme one only needs to scan a fixed
cated, especially for large values|afp| when the integral is ~ Source-detector “arm” as is illustrated in Fig. 4.
highly oscillatory.

4. Plane-wave illumination scheme

3. Coaxial and paraxial tomography An especially simple reconstruction algorithm is obtained

The coaxial and paraxial measurement schemes are vaii the case when for each location of the source the output of
ants of the real-space method with the requirement that thall possible detectors is summed. Experimentally, this can be
number of discrete vectosp which are used be small and achieved with the use of a lens to either collect the outgoing
the source-detector transverse displacements salfighy radiation or to illuminate the medium. Both approaches are
<L. This inequality makes the numerical evaluation of themathematically identical due to source-detector reciprocity.
oscillatory integrak37) much easier. The additional degrees Obviously, this method can be applied only in the transmis-
of freedom which are necessary to make the inverse problesion geometry, similar to the paraxial and coaxial methods.
well defined are obtained by considering many differentThe plane wave illumination scheme was first proposed in
modulation frequencies. Note that coaxial and paraxial to{20] for time-resolved diffuse tomography; here, we show
mography can be used only in the “transmission” geometrythat this method is a particular case of the phased-array mea-
when sources and detectors are placed on different planessurement scheme which is discussed in Sec. lll A.

In the coaxial measurement geometry only one value of We will consider a point source which is scanned over the
Ap is used—namelyAp=0. Thus, the source and detector measurement plane=-L/2 and an integrating detector at
are always on axis. If only absorbing inhomogeneities arex=L/2 which measures the quantifi?psé(w, ps, pg). Ac-
present, it can be seen by counting the degrees of freedonordingly, the summation in E¢40) over discrete values of
(two for source location plus one for modulation frequency Ap; must be replaced by an integration ow¥\p and the
that the inverse problem is well determined in this casecoefficientsc; replaced by unity. This results in a simple
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Here the medium is placed inside a cylinder of radiu®
whose axis coincides with the axis. As in the previous
section, the measurements are taken on the surface of two
parallel planes which touch the surface of the cylinder and
S gm can rotate around its axis. The space between the measure-
r) r=®2,R) ment planes is filled with a homogeneous matching medium
P while the inhomogeneities are located in the redgioalL/2.
& oD(r) 5 It is important to emphasize that the boundary conditions are
0 % imposed on the surface of the planes rather than on the sur-
z * face of the cylinder and that the inhomogeneities inside the
cylinder are assumed to not be disturbed as a result of the
P, rotation. We treat the measurements obtained for different
rotation angles as a single set of data and obtain an SVD
4 pseudoinverse solution for the unknown optical coefficients.
D We start with reformulating the integral E@3) in appro-
Ol priate coordinates. Namely, we use cylindrical coordinates
Do ¢,z,R such thatx=R cos¢ and y=R sin ¢. For a given
L fixed orientation of the measurement planes with respect to
the medium, one can write

system for the planar geometry with rotatiorfransmission

FIG. 5. Sketch of the experimental setup and the coordinate 27 ® L2
TR P
measuremenis 0 -0 0

. o . XRART (1, ps;¢,2R) (¢, R), (80
expression folK(w,q;X) which is now independent of the

variablei: where the kernel is given by
K(w,q;Xx) = k(w,q,0;X). (79 da,d
. . . . F(ﬂlpSl(Plle) = _qL(gZK(Many(th COS(P)
Similarly, the kernel" defined by Eq(39) becomes indepen- (2m)
dent ofi: I'=T'(w, pg;r). xexfigy(R sin ¢ - yslexfdig(z—-z)].

It can be seen that the numerical evaluation of the func-
tions K which is required in both real-space and paraxial (81)
modalities is altogether avoided. Reconstructed images ai€ince the kernel is periodic in the variablep, we can
obtained by a straightforward application of the inversionexpand it into a Fourier series according to
formula (63) where u=w and, similarly to the coaxial and

paraxial imaging schemes, multiple modulation frequencies * dad
must be employed. T(m.ps0.ZR) = > (—(Z]WL)%a(M,qy,qz,m;R)
m=—w
IV. PLANAR GEOMETRY WITH ROTATIONS Xexdi(me - qyyy) +igz-z)],

82
The spatial resolution of images reconstructed in the pla- 82

nar geometry has been shown to be different in the directionghere
parallel and perpendicular to the measurement planes
[10-13. The transverse resolution is limited by the step size
of the lattice on which the sources are placed. However, the
depth resolution is, generally, lower and is much more
strongly influenced by noise. The low depth resolution is not xexdi(gRsing-mge)]de. (83)
a characteristic only of the planar measurement scheme. A
similar problem was observed in the cylindrical geometry
[14], and we expect that the depth resolution will remain low
for measurements taken on any closed surface. In this secti
we propose a method aimed at improving the depth resol
tion. The method involves rotating two parallel measuremen
planes around the inhomogenieties of the medium. Although 2m o
¢, ps, 6) =f d@f d
0 —

27
a(u,qy,q, M R) = J K(u,0y,d,; R cose)
0

Now we rotate the measurement planes by an amgle
(measured in the laboratory fragnaround the axis of the
cylinder. The data function obviously depends #®and we

nsider this variable as an additional degree of freedom.
—quation(80) is transformed according to

the reconstruction algorithm will be ultimately formulated in
cylindrical coordinates, the method discussed in this section
is not equivalent to taking measurements on the surface of a X 7(¢,z,R), (84)
cylinder (see Sec. V.

A sketch of the proposed experiment is shown in Fig. 5with

L/2
Zf RAR(u,ps 0 ¢,2,R)
0
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* dad dimensional reciprocal lattice vectors. We denote the eigen-
: - 40¢ : _ - ~
T(n,ps0;0,2R) = 2 2m)° a(u,qy,9,mR) values of the non-negative definite operatdi(u,,n) by
m=-—o 2 .
M3 (ug,n):

xexgdim(e - 0) —idyys+i0,(z—z)]. _
(85) M(uz,n)|Cx(uZ, n)) = M)Z\(Uzu n)|c}\(uz:n)>- (90

It can be seen from the structure of the kerhighat it is
translationally invariant in the variablesandz but not iny.
Therefore, the variablg; can be considered as an “internal
degree of freedom. I is sampled on an infinite lattice, we
can construct an analog of the Fourier method discussed in

The singular values of the problen, ,, are the eigenval-
. ues of the operatdrT™. It can be verified by direct calcula-
tion that

Sec. Il C 1 with the variablegy taking the place ofAp. In IT fuzm> - Ozuznk|fuzm>’ 01
this section such a pseudoinverse solution will be con-

structed. However, a more general case can be consider¥ere

wheny, does not lie on a lattice but takes a finite number of

discrete values. This approach corresponds to the real-space 2 = Ner(Uz, n) (92)
method(Sec. Ill C 2 and is discussed in the Appendix. U T (24rh)2

Here we assume that, as in the rest of the paper, yoth ) )
andz lie on a square lattice with step sizeWe also assume ~ The second set of singular functiong, ), can be found
that the rotation angles take the values,=2m(j-1)/N,, ~ from the relationoy |9y, =I"[fym). The result is given
j=1,2,...N,. However, no assumptions about the detectordy
are made at this point. The inversion formulas are derived

analogously to the case of a fixed geometry discussed in Sec. \s’WHexp{— i(Uz+ne)] mih
[l B. First, we calculate the matrix elements of the operator (@ZRGum) = 2o > duy
I'T". A straightforward calculation shows that Uz < =mh
- dg,dg/dg, ~ . where
=> M%qulMl(qz, m)|x’qy)
m=—wx (277) o
Xexf - i(ayys— ayYs) —i0,(zs— z) —im(6- 6')], P(u,u,n;@,zR) = > X alu,u+v,n+Nk;R)
k=—0o0
(86) .
Xexp(iN ke +iv,2). (949

where o )
Next, we apply the definitions of the pseudoinverse solu-

(,uqy|l\~/|1(qz, m)| ' qy) tion (45) and(47). Omitting intermediate steps, we obtain the
following inversion formula:

L/2
= f RAR du,0y,0,m;R)a (1',05,0,M;R).

0 h2 g 7/h
ry=— duexgd-i(uz+n
- W= 2| duel-iuzeng)]
The eigenfunctions of ", Eq. (86), are s mlh alh -
X d du/P"(u,u,n;¢,z,R
h exd—i(uz+no)] (™" , /J _ain v —mih WP ez R
oo = = du,exp(— iuyys) = )
’ - Xty MU )| Uy b WU, (95)
X(Muy|c)\(u21n)>! (88)

whereu, e [-7/h,m/h], n=1,2,... Ny, and|C,(u,,n)) are where

the eigenfunctions of the operat&n(uz,n) which has a

P ' = i . +
smaller dimensionality thaRT" and is defined by i) =2 ¢lu.ps Oexili(u-pstnd)]  (96)

Pt
(uu |\~/I(u lu'u)y = 2 2 E is the _Fourier-transformed da_tta fur_1ction. _ _
K y| 2l Y k==, 7 v As in Sec. Il C 1 we can discretize the variabig In this
i’ y caseM becomes a finite matrix which can be diagonalized
X, Uy + vy|M1(uz+ vN+ Nek)|M',U§ + U)’/), by the usual methods of linear algebra. The discrete variable

(89) uy is an ‘“internal” degree of freedom and it is logical to
include it in the composite variable: u=(w,Ap,u,). Then
Here uy,u§,uze [=m/h,m/h], vy,v)',, and v, are one- the inversion formula can be compactly written as
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h2 Ny r~aih Z

i A y
nr)=—2 duexp ~i(uz+ng)]
Ny n=1J -mn r=((w—-
X D P (14, Uy 05 0,2, R MU 1) 1) R X
o
X(p',Uyn). (97)
It may seem that the angular resolution of the recon- d =D

structed images is limited by N, since Eq.(97) contains
only factors exp-ing) with n=1,2, ... N,. However, this is Se

not so. In fact, the functions P(u,u,,n;e,z,R)
also depend on ¢ [see EqQ. (94]. The pro-
duct exg-ing)P*(u,u,,n;¢,z,R) contains the modes
exp(-ime) with arbitrarym. Therefore, at least theoretically,
the angular resolution of the inversion formuyl@r) is not

limited, even if only a small number of rotations is used. In
the limit Ny=1, Eq.(97) becomes equivalent to the recon-
struction formula(77) for the geometry without rotations.

The first nontrivial cas&l,=2 corresponds to the rotation of
the measurement planes by the angleSuch a rotation can,
in principle, provide additional datéexcept for purely co-

axial measuremenjtsbut is not expected to produce a sig- . . . .
nificant increase in the depth resolution. Indeed, in Kje The invariance of the unperturbed medium with respect to

=2 case thex axis is always perpendicular to the measure-translations along and rotations about #hexis requires that
ment planes. One can expect that the depth resolution wilf'€ kemell” have a Fourier expansion of the form
dramatlc_ally increase foN,=4. In this case, the axis is (@, 0o Ze 04 Z; 92, R)

perpendicular to the measurement planes dpr0 and 6,

=. However, it is parallel to the measurement planes for -3 dadgy
0,=/2 and6,=3m/2. Thus, thex andy directions become (2m)*
completely equivalent, and one can expect to achieve the ) . )
fundamental resolution limit of one lattice step in all three +iy(Zg = 2) +img(p = @) +imy(eg =~ ¢)]. (99

dimensions. ) . , As in the case of planar measurements, we introduce the new
To conclude this section, we note that the analysis of the . iopiasAZ Ag, g, p, m, andn according tozy=z.+Az

special cases discussed in Sec. Il C can be applied WItEL — _ - — —
g ) . g 4= @st A, 0s=q+Pp, gg=p, Ms=m+n, andmy=n. We also
rotations, with one exception. NamelyNf,> 2, the symme- —+5qy,ce the composite variable which in the case of the

try with respect to the plang:O that resulted in twinngd cylindrical geometry has the form=(w,A,AZ). Then the
images for the purely coaxial measurement scheme is Narnel T acquires the form
n

longer present. Therefore, the coaxial method can be used |
conjunction with rotations if only absorbing inhomogeneities dq

are present. However, if both absorbing and scattering inho- ~ 1'(4 5% 9,2R) = X f WK(u,q,m;R)
mogeneities are present, at least two detectors per source m

must be used. xexplim(e - ¢y +iq(z-2z)],

(100

FIG. 6. Sketch of the experimental setup in the cylindrical
geometry.

k(w, M, s, My, qg; RIEXHi04(Z — Z4)
Mg, My

V. CYLINDRICAL GEOMETRY
where

The cylindrical geometry is illustrated in Fig. 6. The data
function is measured on an infinite surfdeL/2, where we K(u,q,m;R) =, f
have used cylindrical coordinates (¢,z,R). The data func- n
tion can be written ash=¢(w, ¢s, Z, ¢q4,23), Where(¢s,Z)
characterize the location of the source dndg,z,) the loca-
tion of the detector. The data function satisfies the integral Further derivations are very similar to those performed for

dp
(2m)?

k(w,m+n,q+p,n,p;R)

xexp[i(pAz+nAg)]. (101

equation the geometry in Sec. Ill B. The only difference is that the
o " Lz variabley which in the case of an infinite medium varies
_ from —o to o is replaced by which now varies from 0 to
’ ] i ] - d dz RdR . . .
H 0025 00 Za) fo (Pf_w JO 2. To construct an inversion formula, we assume tas

_ on an infinite one-dimensional lattice with stbpwhile ¢g
X (@, ¢ % 00,20 2, 2R (0,2, R). takes the values2j-1)/N,, j=1,2,... N,, and consider
(98) the eigenfunctions and eigenvalues of the operdtbr.
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Omitting intermediate calculations, we obtain the final resultcharacterized by different angleg+ ¢4 will result in a com-

(analogous to Eq63) for the planar geometjy plete loss ofz resolution.
N r~aih du
n(r)=h> sexd—i(uz+ne)] > P (unu;r) VI. EXAMPLES OF CALCULATING THE KERNELS
n=1J -m/h (27T) iy

., i~ In this section we present several examples of calculating
XM i, u) 1) p(u,n,u). (102 the kernell’ which appears in the integral equatiai3g) and
(98) and the related functiong appearing in the Fourier

Here expansions of" Egs.(35) and(99). In the case of the DE we
* use boundary conditions given by Ed8). We also provide
P(unu;r) = > 2 K(u,u+v,n+NK;R) an analytic expression fdf within the RTE forward model.
k= v In the case of the RTE, we assume free boundai@gsis
xexpli(vz+Nke)], (103 calculated inAan infinite mediuyrand assume that the phase
function A(S,s') is constan{isotropic scattering
* Note that, as discussed in Sec. Il, regardless of the linear-
M(n,u) = 2 E My(n+Ngku+v), (109 ization method used, the integral equation that relates the
k== v unknown operato¥ to the measurable data function is given
by Eg.(25). Thus, to obtain expressions far we must cal-
L2 R culate the unperturbed Green’s functions for the DE or RTE
(uMy(m,g)|u’) = Jo K(p,q.m;RK (p,q,mR)RAR in appropriate coordinates.
(105
A. Diffusion approximation: Planar geometry
Dlunu) = > dlu,eszdexpli(nes+uz)]. (106) In the planar geometry, the unperturbed Green’s function
052 can be written a$21]
The analysis which applies to the inversion formulas in , d’q , ) ,
the planar geometry is also applicable to E#02) . For Golr,r ):f (27)29(‘1?” Jexdiq - (p' = p)].

example, the inverse matridM~X(n,u) must be appropriately
regularized. The inversion formuld02) corresponds to the (107)

real-space method in the plane geometry. However, othesypstituting this expression into the integral equaii§),
special cases can be also considered. If eitheror Az or  where the operatoY is defined by Eq(21), and using the

both lie on a latticqwhich would require that the detectors definition of the functionsx Eq. (35), we find that «
are placed on a lattice which is a subset of the lattice of the-(_, «y) is expressed in terms of the functiogsis
sourcey the Fourier method discussed in Sec. Ill C 1 can be )
applied. The paraxial measurement sche8ec. IlIC 3 oy ) )
corresponds to the case when only a few valued of 7 Kol ®,05,0a:X) = (1 +7> 9(0s: % X)9(0la; X, X
+6¢ and Az are usedwhere o< and Az<L/2) in con-
junction with multiple modulation frequencies. In the coaxial
case a symmetry is present in £88) with respect to rota-
tion of #(r) by the angler around thez axis. This symmetry
would result in the appearance of artifacts in the recon-
ztgtj;ted images. The problem is solved by the use of off-axis . 9 9(Ge: % X) &g(qd;x,xd)} |

The only special case discussed in Sec. Il C that cannot Ix 2

be considered in the cylindrical geometry is the plane-wavgygre an implicit dependence of the functianen the modu-
detection-illumination(Sec. 1ll C 4 experiment. This fol- |ation frequencyw is implied.

lows from the fact that one can not integrate the detector Thus, it is sufficient to find the functiorg which satisfy
output over all values oA and Az (which will necessarily  the DE (20) and the boundary conditiond8). Substituting

include the location of the sourceln the planar geometry gq. (107) into Eq. (20), we find thatg(q;x,x’) must satisfy
the sources and detectors can be placed on different plangss one-dimensional equation

which do not intersect. This is not the case in the cylindrical

*

(108

*

€ 2
kp(®,0s,0g;X) = (1 + ?) [qs - 049(ds; X5, X) (g3 X, Xg)

(109

geometry. While it is possible to achieve similar mathemati- P, o OX=x") 110
cal simplifications by integrating the source and detector out- %2 Q@) |9(a;x.x") = Dy | (110
puts over angles, when# z, (physically, this corresponds to

ring rather than pointlike sources and detegtotbis will ~ Where

lead to a complete loss of angular resolution in the recon- Q(q) = (g + )12 (111)

structed images. Similarly, integration of the source and de-
tector outputs along lines parallel to the cylinder axis andand the diffuse wave numbéris given byk?=(ay—iw)/D,,.
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It follows from Eq. (110 that the functiong is a linear g(q;-L/2x")—¢g'(q;-L/2,x") =0, (114)
combination of exponentials egQx) with coefficients de-
pending onx’. It is continuous ak=x’ but its first derivative
experiences a discontinuity at this point:

g(g;x' +0x")—-g(g;x' —=0,x") =0, (112

g(q;L/2,x") +£g'(q;L/2,x") =0, (119

Vet N where the prime denotes differentiation with respectxto
9'(@:x +0x) =g'(a;x" ~0x) == 1/Do. (113 The conditiong112—(115) lead to the following expression
In addition, the boundary conditiorn48) at x=+L/2 read for g:

[1 +(Q€)*JcosHQ(L = [x = x')] = [1 = (Q€)*]cosHQ(x + x')] + 2Q¢sinHQ(L - [x - x')]
2DoQ[sinh(QL) + 2Q¢cosHQL) + (Q¢)?sinh(QL)] '
This expression can be simplified if we take into account that in(286). one of the arguments of the Green’s functions

(r orr’) must be on the boundary. Thus, it is enough to consider the above expression in the limit wher=eithé? or
x'=%xL/2. It can be seen that these two limits are given by the same expression—namely,

9(a;x,x") = (116)

¢
(A XX )y r2 = (A XX )y =22 = D—gb(q X.X'), (117
0

where

_sin{Q(L - [x=x'))] + Q¢ coshQ(L - [x=x'])]

X X) = : 118
Go(d:%X") sinh(QL) + 2Q¢ cosHQL) + (Q€)%sinh(QL) (118
Now the functions« can be expressed in terms of the functiggsas
*\ 2
Ka(waquqd;X):< D, )gb(qs:xs,X)gb(qd:x,xd). (119
"\ 9 Gb(Csi X6 X) I (Gt X, Xe)
KD(w,qs,qd;x):< S ){qs-ngb(qs;xs,X)gb(qd;x,xd)+ S TR : (120
0 X dX

The above expressions are well defined in the linfits 0 and ¢ —«. For example, for purely absorbing boundaries
(£=0) and in the transmission geomeirx,=-L/2 andxy=L/2), we obtain

o[ £ \?sinHQ(ge)(L/2 = x)]sinQ(qe) (L/2 +X)]
ol e B Qi) = <D0) SMQ@ILISNHQ( L] (121
(0000 .x):(ﬁ)z{_ Q49 Qdg)costQa) (L2 ~X)Jcosi Qg (L2 +X)]
PR D, sin{Q(gs)L]sin{Q(g)L]
L Os qgsin{Q(gy)(L/2 —x)]sinl Q(qg) (L/2 +X)] (122
sinlQ(gy)L]sinH Q(qg)L ]
In the opposite limit of purely reflecting boundaries, we obtain
coshQ(qy)(L/2 —x)]coshQ(qg)(L/2 +X)]
,0s, Qg X) = , : , 123
el 8 90X) = 20 ) QUGS QU LIS Q(GoL] (129
o (000 Qgi) = 5| - sinf{Q(qy)(L/2 =X)IsinHQ(A) (L/2 +X)] | g5~ daCosHQ(qy)(L/2 ~X)JcostiQ(g) (L/2 +X)]
RO ¥ sin{Q(qyL]sin{Q(gg)L ] Q(d9)Q(ag)sinHQ(gy)LIsinH Q(qg)L]
(124)
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B. Diffusion approximation: Cylindrical geometry whereR. andR_ are the greater and lesser®fandR’. On

In the cylindrical geometry we use the following expan- the measurement surface E@33) becomes

sion for the unperturbed Green’s functif2i]:

* ¢
d ) . - . -4 .
Gorr')= > J A exdim(e - ¢")] g(m.g;p,L/2) =g(m,q;L/2,R) Dogb(m.q,R), (134
e J (27)
xexfdid(z-z')Jgmg;RR"). (125
where
We can express the functions appearing in Eq(99) in
terms of the functiong defined above as
. 2 In(QR
)\ 9s(M,q;R) =~ wl® ), . (139
Kol .15, My, 09 R) = 1+ 77| 9(ms, 4 L/2,R) L 1n(QL/2) + Q€1(QL/2)
Xg(my,qq; R, L/2), (126

Now we can express the kernelin terms of the simpler

functionsg, as follows:
Kp (@, Mg, Gs, Mg, Gg; R) %

- (1 + ﬁ)z[ d9(m,qs;L/12,R) 9 9(mg,qq; R, L/2)

*

0+0\2
¢ IR IR Kol .My, G, My, g R) :< S ) 0b(My, Gs; RIG5(Me, G R
mymy °
+ (qsqd + ?>g(ms.qs: L/2,R)g(mg,q¢; R, LIZ)} : (136)
(127
Here we used the fact that for both sources and detectors,  xp(w,mg,qs, My, 0q;R)
R=Ry=L/2. . : -
Upon substitution of Eq(125) into the DE(20), we find _ (f’ +€ )Tagb(ms,qs,R) 9 gb(My,da; R)
thatg(m,q;R,R’) must satisfy the one-dimensional equation Dg JR JR
19 9 SR-R) +<qq+%) (M, 0t R)Gb( My, G R)
______ ‘RR)=- ——=. sHd 2 Ob{Ms, Qs; K)Gp My, g .
{Rm R 2 Q (q)]g(m.q, ,R") DR R
(128 (137

. L L ) Again, the above expression is well defined in the limits
The solution to Eq(125) is given by a combination of modi- , . § and¢ — . Thus, for example, for absorbing bound-
fied Bessel and Hankel functions of the first kifd{QR)  gries we have

andK,(QR), and is subject to the following conditions:

g(m,q;0,R") <, (129

20 )2 [ QAR 1 [Q(GQIR]
DoL/ 1 QA2 [Q(Ag)LI2]’
(138

Kq(@, Mg, 05, My, dg; R) = (
gimq;R"+0,R")-g(mq;R"-0,R")=0, (130

g'(mq;R"+0,R")-g'(mq;R'-0,R") =-1/DyR’,
(131
Kp(@, Mg, 05, My, g; R)

g(m.g;L/2,R) +€g'(mq;L/2R)=0. (132 ~ ( 20 )2[ Q(0ds)Q(qg)! [ Q(AIR]I fy [Q(A)R]
\DoL [ Q(AL/2]1 1 [Q(G)L/2]
1 .\ ( .\ msmd> Im[Q(as)R]Im [QAg)R]
9(Ma:RR) = 5| Kn(QR-)Im(QRY) R /1m[QagL/2]1;m [Q(ap)L/2] |

_ Kn(QL/2) + QUK1(QL/2) (139
I (QL/2) + QLI (QL/2)

The solution that satisfies the above conditions is

In the case of reflecting boundariéé— ), the analogous
XIn(QRIN(QR) |, (133 expressions are
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Ko @, Mg, 05, Mg, s R) Go(r, 51’ §')
:( 2 )2 | Q@RI [QG4)R] f P -5
Dol Qa9 Q(a) i [Q(agL/2]1 1, [Q(d)L/2]’ (2m) —ik-
(140
. pd4m _
(e =ik -8)(u; — ik -é’)(l —&Sarctanh)
. k Mt
KD(wimquSrndquvR) (142)
I RJI! R
= <i>2 - [Q(qS) | ; [Q(qd) ] The first term in the square brackets corresponds to “bal-
Dol / | 13 [Q(as)L/2]1f, [Q(ag)L/2] listic” photons and decays exponentially on the scale of

1/p:. We will ignore this term below. The second term ac-

R20g0g + Mgy Im[ QA R]Im [Q(ag)R] counts for diffusemultiply scatteregi photons.

+ (142 . .
R2 | L/211 L/2 We consider the slab geometry with the measurement
QA In[QAIL/2]Im [ QAGa)L/2] planes located at=x;=-L/2 andx=x4=L/2. By expanding
the three-dimensional vectdr as k=k,X+q wherex-q=0,
we can rewrite Eq(142) as
C. Beyond the diffusion approximation oy d’q N . ,
Gol(r,S;r ,S)=f (Zw)zg(q;x,s;x ,8)exdiq - (p" - p)],
Consider Eq(9) in an infinite medium with isotropic scat- (143
tering. In this case the unperturbed Green’s function can be
obtained[22] as a three-dimensional Fourier integral: where
|
. © dk, exd ik (x’ —x
9(a; 85X, =f o kO X) e (144
— Ms X
—i(g+kX) -Sllu—i(g+kX) -s']| 1- arctar
[ i(q LX) © ][:Uft (q WX) - ]\‘ \/— s
[
Now recall that in Sec. | B the perturbation was defined d?s
by V=6u" - su.A’. However, the above expressions solution 2 i 2
depends Omaéﬂt_ﬂs and u directly. Therefore, it is more (e =10y - S) (e =102 9)
convenient to considet, and ug as independent. For sim- _ A7
plicity, we assume thadu,=0 andw=0 (cw casg. ThenV T A X a2 + 10— d.)2
=&u’ = Su,, and the integral equation relating the measurable V(@1 X Q)"+ ias ~ a2
data tosu, takes the forn{32) wherel'(ps, pq;r) is given by \,(ql X Q)%+ 2(g, - qp)?
Eq. (35). In tum, «, (qs,0q; X) is expressed in terms of the x| arctan U1 G+ 2
functionsg(q;x,S;x’,s'), Eq.(144), as
+7T®(‘Q1'Q2‘Mt2)], (146
. — . v & v A S\A2
ACELUT ‘f 905X X;X,5)9(0la; %,5: X X) s where®(x) is the step function.
14
(149 VIl. SUMMARY

The angular integral in Eq145) can be evaluated with the We have presented a general theoretical framework for
use of image reconstruction methods in optical diffusion tomogra-
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phy. These methods require that the data are measured @xPPENDIX: INVERSION FORMULAS FOR THE PLANAR
surfaces with translational or rorational invariance with re- GEOMETRY WITH ROTATIONS WHEN THE s
spect to one or more generalized coordinates. This approach VARIABLE IS NOT ON A LATTICE

can have the effect of dramatically improving computational 5, approach to treating the variabje alternative to the

efficiency, allowing the use of extremely large data sets. o used in Sec. IV can be adopted. Namely, assume/ghat

It should be noted that the family of image reconstruction;g ot sampled on a lattice, but is in some finite set. Then we
methods described in th|s paper is only appllcable_ to regulag,, viewy, as another “internal variable” and perform inte-
measurement geometries, such as the slab or cylinder. Profz-+ overdg, in Eq. (85) to obtain

lems involving irregular boundaries or boundaries with com-

plicated shape cannot be treated using these methods. Such F(w,Ys 2 0,0,2R)

problems should be solved by means of humerical methods. o0 q

Unfortunately, these methods preclude the treatment of large = > J —%}A(M,ys,qz,m;R)
data setgmore than 18-10* data points due to high com- Z (2m)

putational complexity.

If, however, the boundaries are relatively simple, taking
account of translational invariance leads to a reduction irwhere
computational complexity. In particular, it allows the re-
placement of the problem of diagonalizing a matrix of size  A(y,y, q,,m;R) :f d—%a(u,qy,qz,m;R)exp(— idlyYs)-
N;N, whereN; is the number of “external” degrees of free- 2m
dom andN, the number of “internal” degrees of freedom to (A2)
the problem of diagonalizing,; matrices of sizeN, each. . . ) . ) o
The computational complexity of the second problem isSince no translational invariance in the directiois present,
smaller by a factor oN2. In many problems; is the num-  itis logical to includeys in the list of “internal” variables and
ber of sources used to illuminate the medium. For example/tite u=(w,Ap,ys). Then Eq(A1) can be compactly rewrit-
if the sources are located on a 20Q00 lattice, the compu- t€n as

xexdim(e - ) +iq,z- z) ], (A1)

tational complexity is smaller by a factor of 40rhe possi- o d

b?lity of utilizi_ng extremely Iargg data sets suggests 'thaF the ',z 6;0,2R) = —qu(M,q,m:R)
highest possible spatial resolution can be achieved in simple e J (27)

measurement geometries. xexdim(g - 6) +iq(z-2)]. (A3)

We have also presented the theory of multiprojection
ODT where all data are treated self-consistently. An SVDBut this expansion has exactly the same form as the expan-
pseudoinverse is obtained with all symmetries intrinsic to thesion of the kernel’, Eq. (100) , which was obtained in cy-
multiprojection measurement scheme. It is expected thdindrical geometry with the only distinction that
multiple projections can further improve image quality dueA(u,q,m;R) in Eqg. (A3) is replaced byK(ux,q,m;R) in Eq.
to the mutual interchange of the “depth” and “transverse’(100) and the list of “internal” variables collected in is
directions. different in these two cases. Nevertheless, it is straightfor-
ward to show that the reconstruction formuld®©2—(106)
obtained in cylindrical geometry apply in the case of a ro-
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