
University of Pennsylvania
ScholarlyCommons

Lab Papers (GRASP) General Robotics, Automation, Sensing and
Perception Laboratory

4-1-2005

Temporal Logic Motion Planning for Mobile
Robots
Geogios E. Fainekos
University of Pennsylvania, fainekos@grasp.upenn.edu

Hadas Kress-Gazit
University of Pennsylvania, hadaskg@grasp.upenn.edu

George J. Pappas
University of Pennsylvania, pappasg@seas.upenn.edu

Suggested Citation:
Fainekos, G., H. Kress-Gazit and G.J. Pappas. (2005). "Temporal Logic Motion Planning for Mobile Robts." Proceedings of the 2005 IEEE International
Conference on Robotics and Automation. Barcelona, Spain. April 2005.

©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/grasp_papers/63
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/grasp_papers
http://repository.upenn.edu/grasp
http://repository.upenn.edu/grasp
http://repository.upenn.edu/grasp_papers/63
mailto:repository@pobox.upenn.edu

Temporal Logic Motion Planning for Mobile Robots

Abstract
In this paper, we consider the problem of robot motion planning in order to satisfy formulas expressible in
temporal logics. Temporal logics naturally express traditional robot specifications such as reaching a goal or
avoiding an obstacle, but also more sophisticated specifications such as sequencing, coverage, or temporal
ordering of different tasks. In order to provide computational solutions to this problem, we first construct
discrete abstractions of robot motion based on some environmental decomposition. We then generate
discrete plans satisfying the temporal logic formula using powerful model checking tools, and finally translate
the discrete plans to continuous trajectories using hybrid control. Critical to our approach is providing formal
guarantees ensuring that if the discrete plan satisfies the temporal logic formula, then the continuous motion
also satisfies the exact same formula.

Keywords
Motion planning, temporal logics, model checking, discrete abstrations, hybrid control

Disciplines
Engineering | Physical Sciences and Mathematics

Comments
Suggested Citation:
Fainekos, G., H. Kress-Gazit and G.J. Pappas. (2005). "Temporal Logic Motion Planning for Mobile Robts."
Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain. April
2005.

©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/grasp_papers/63

http://repository.upenn.edu/grasp_papers/63

Temporal Logic Motion Planning for Mobile Robots∗

Georgios E. Fainekos, Hadas Kress-Gazit and George J. Pappas
GRASP Laboratory, Departments of ESE and CIS

University of Pennsylvania
Philadelphia, PA 19104, USA

{fainekos,hadaskg,pappasg}@grasp.upenn.edu

Abstract— In this paper, we consider the problem of robot
motion planning in order to satisfy formulas expressible in
temporal logics. Temporal logics naturally express traditional
robot specifications such as reaching a goal or avoiding
an obstacle, but also more sophisticated specifications such
as sequencing, coverage, or temporal ordering of different
tasks. In order to provide computational solutions to this
problem, we first construct discrete abstractions of robot
motion based on some environmental decomposition. We then
generate discrete plans satisfying the temporal logic formula
using powerful model checking tools, and finally translate the
discrete plans to continuous trajectories using hybrid control.
Critical to our approach is providing formal guarantees
ensuring that if the discrete plan satisfies the temporal logic
formula, then the continuous motion also satisfies the exact
same formula.

Index Terms— Motion planning, temporal logics, model check-
ing, discrete abstractions, hybrid control.

I. INTRODUCTION

Robot motion planning problem has historically focused
on generating trajectories which reach a goal configuration
while avoiding obstacles [1], [2]. Mathematically formu-
lating specifications such as motion sequencing, synchro-
nization, or temporal ordering of different motions present
new challenges for motion planning, as they require not
only novel formulations, but also powerful computational
approaches due to the inherent problem complexity.

Formally defining such specifications can be achieved using
temporal logics, such as linear temporal logic (LTL) and
computation tree logic (CTL), developed in concurrency
theory. The applicability of temporal logics in robotics
was advocated as far back as [3]. Over the years, the for-
mal methods community has developed very sophisticated
model checking tools such as SPIN [4] and NUSMV [5],
which verify whether a discrete transition system satisfies
a temporal logic formula. More recently, model checking
approaches have been used for discrete planning in order
to satisfy temporal logic specifications. This research has
led to planning algorithms and tools such as MBP [6],
TLPLAN [7] and UMOP [8]. These tools generate high-
level, discrete plans that do not take into consideration
the dynamic model of the robot, resulting in potentially
infeasible plans.

∗This work is partially supported by NSF EHS 0311123, NSF ITR
0324977, and ARO MURI DAAD 19-02-01-0383.

This paper addresses the novel problem of generating
continuous trajectories for mobile robots while satisfying
formulas in temporal logic. Our approach first lifts the
problem to the discrete level by partitioning the environ-
ment into a finite number of equivalence classes. A variety
of partitions are applicable, in particular the cellular de-
composition in [9] or the triangular decomposition in [10].
The partition results in a natural discrete abstraction for
robot motion which is used then for planning using model
checking tools, in particular SPIN and NUSMV.

In order to ensure that the discrete plan is feasible at the
continuous level, the decomposition must satisfy the so-
called bisimulation property [11]. Bisimulations allow us to
prove that if the abstract, discrete robot model satisfies the
LTL formula, then the continuous robot model also satisfies
the same formula. To ensure this critical property we utilize
the hybrid control framework of [10], even though the
framework of [9] is equally applicable but computationally
more demanding.

Related work can be found in the hybrid systems commu-
nity, and in particular the recent work of [12] which focuses
on designing controllers for discrete-time control systems
in order to satisfy temporal logic specifications. In [13],
controllers are designed for satisfying LTL formulas by
composing controllers using navigation functions [14]. In
[15], the UPPAAL model checking tool for timed automata
has been used for multi-robot motion planning using CTL
formulas, but without taking into account the dynamics of
the robots. This paper differentiates itself from all previous
approaches by building upon the framework proposed
in [10] which has, comparatively, the best computational
properties, is fully automated, and is ideally suited for
interfacing with model checking tools.

In addition to addressing this novel problem, we believe
that this direction of research is important for at least
three reasons. First, this work formally connects high-level
planning with low-level control, resulting in a mathemati-
cally precise interface between discrete AI planning and
continuous motion planning. Second, the mapping from
temporal logic to physical motion is the first important
step in the mapping from natural language to physical
motion in a compositional manner. Finally, this work can
be extended to multi-agent environments where formal
specifications and computational solutions will result in
verified coordination logic for cooperating robots.

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 2020

II. PROBLEM FORMULATION

We consider a fully actuated, planar model of robot motion
operating in a polygonal environment P . The motion of the
robot is expressed as

ẋ(t) = u(t) x(t) ∈ P ⊆ R
2 u(t) ∈ U ⊆ R

2 (1)

where x(t) is the position of the robot at time t, and u(t)
is the control input. The goal of this paper is to construct
a control input u(t) for system (1) so that the resulting
trajectory x(t) satisfies a formula in a temporal logic, such
as the temporal logic LTL [16]. The formulas are built
from a finite number of atomic propositions or observables
which label areas of interest in the environment such as
rooms or obstacles. Let Π = {π1, π2, . . . πn} be a set
of such propositions. For system (1) we then associate an
observation map

hC : P → Π (2)

which maps the continuous states of the robot to the finite
set of propositions.1 Proposition πi ∈ Π represents an area
of interest in the environment which can be characterized
by a convex set of the form:

Pi = {x ∈ R
2 |

∧

1≤k≤m

aT
k x + bk ≤ 0, ak ∈ R

2, bk ∈ R}

In other words, the observation map hC : P −→ Π has the
form hC(x) = πi iff x belongs in the associated set Pi.

We first give some informal examples of LTL formulas
and defer the formal syntax and semantics of LTL to
Section III. Propositional logic is the traditional logic of
conjunction (∧), disjunction (∨), negation (¬), implication
(⇒), and equivalence (⇔). LTL is obtained from standard
propositional logic by adding temporal operators such as
eventually (3), always (2), next (©) and until (U). Some
LTL examples that express interesting properties include:

• Reach goal while avoiding obstacles: The formula
¬(o1 ∨ o2 ∨ · · · ∨ on)Uπ expresses the property that
eventually π will be true, and until π is reached, we
must avoid all obstacles labeled as oi, i = 1, . . . , n.

• Sequencing: The requirement that we must first visit
π1, π2, and π3 in this order is naturally captured by
the formula 3(π1 ∧ 3(π2 ∧ 3π3)).

• Coverage: Formula 3π1 ∧3π2 ∧ · · · ∧3πm reads as
the robot will eventually reach π1 and eventually π2

and ... eventually πm, requiring the robot to eventually
visit all regions of interest in any order.

More complicated specifications can be composed from
more basic specifications using the logic operators. For
such temporal logic formulas, in this paper we provide
computational solution of the following problem.

1Uninteresting regions of the state space could be mapped to a dummy
proposition or no proposition (resulting in a partial observation map).
Furthermore, one can easily consider overlapping propositions resulting
in non-deterministic observation maps.

Problem 1: [Temporal logic motion planning] Given robot
model (1), observation map (2), initial condition x(0) ∈ P ,
and a LTL temporal logic formula ϕ, construct a control
input u(t) so that the resulting robot trajectory x(t) satisfies
the formula.

Example 1: In order to better explain the different steps
in this paper, we will consider throughout the paper the
following example. Consider a robot that is moving in
a square environment with four areas of interest denoted
by π1, π2, π3, π4. Initially, the robot is placed somewhere
in the region labeled π1 (see Figure 1). The desired
specification for the robot given in natural language is:
“Visit area π2 then area π3 then area π4 and, finally, return
to region π1 while avoiding areas π2 and π3”.

III. LINEAR TEMPORAL LOGIC

In this section, we formally describe linear temporal logic
(LTL) by giving its syntax and semantics.

Syntax: LTL formulas are interpreted over all trajectories
of the system starting from some initial state x(0) [16].
The atomic propositions of the logic are labels representing
areas of interest in the environment such as rooms or obsta-
cles. Let Π = {π1, π2, . . . } be a set of such propositions.
The LTL formulas are defined according to the following
grammar:

φ ::= π | ¬φ | φ ∨ φ | φ Uφ

As usual, the Boolean constants > and ⊥ are defined
as > = π ∨ ¬π and ⊥ = ¬> respectively. Given
negation (¬) and disjunction (∨), we can define conjunction
(∧), implication (⇒), and equivalence (⇔). Furthermore,
we can also derive additional temporal operators such as
eventuality 3φ = >Uφ and safety 2φ = ¬3¬φ. Note that
our syntax does not contain the so-called next operator ©φ.

Semantics: We define the continuous semantics of LTL
formulas over robot trajectories. Let x(t) for t ≥ 0 denote
the state of the robot at time t and let x[t] be a possible
robot trajectory starting at x(t). That is x[t] = {x(s) | s ≥
t and ẋ(t) = u(t)} or x[t] denotes the flow of x(s) under
the input u(s) for s ≥ t.

Fig. 1. Example 1. The 4 areas of interest and the initial position of the
robot marked with x.

2021

LTL formulas φ are interpreted over a trajectory x[t].
x[t] |=C φ denotes the satisfaction of the formula φ over
the trajectory x[t] starting at x(t). The semantics of any
formula can be recursively defined as:

• x[t] |=C π iff hC(x(t)) = π

• x[t] |=C ¬φ if x[t] 6|=C φ

• x[t] |=C φ1 ∨ φ2 if x[t] |=C φ1 or x[t] |=C φ2

• x[t] |=C φ1Uφ2 if there exists s ≥ t such that x[s] |=C

φ2 and for all s′ with t ≤ s′ < s we have x[s′] |=C φ1

Therefore, the formula φ1Uφ2 intuitively expresses the
property that over the trajectory x[t] φ1 is true until
φ2 becomes true. Formula 3φ indicates that over the
trajectory the formula φ becomes eventually true, whereas
2φ indicates that φ is true over the trajectory x[t] for all
time t′ ≥ t.

Example 2: Coming back to Example (1), we can now
formally define the specification using temporal logic for-
mulas. Let πi be the proposition that is true when the robot
is in area i. Using LTL the precise specification is:

φ = 3(π2 ∧ 3(π3 ∧ 3(π4 ∧ (¬π2 ∧ ¬π3)Uπ1)))

IV. TEMPORAL LOGIC MOTION PLANNING

Our solution to generating continuous robot trajectories
satisfying LTL formulas φ consists of the following three
steps:

1) Discrete Abstraction of Robot Motion: Decompose
the environment P into a finite number of equiva-
lence classes resulting in a finite state model of robot
motion.

2) Temporal Logic Planning using Model Checking:
Construct plans for the discrete robot motion satis-
fying desired specifications using model checkers.

3) Continuous Implementation of Discrete Plan: Imple-
ment the discrete plan at the continuous level while
preserving the satisfaction of the temporal formula.

A. Discrete Abstraction of Robot Motion

We first partition the workspace P of the robot into a
finite number of equivalence classes (or cells). Clearly,
we can use many efficient cell decomposition methods for
polygonal environments [2]. In this paper, we chose to
triangulate P for two main reasons. First, there exist several
efficient triangulation algorithms which can partition very
complicated environments [17]. Second, the choice of
controllers used in Section IV-C is proven to exist and
be efficiently computable on triangles [10]. Despite this
choice, many of the results in this section can be easily
adapted to similar decompositions, such as the decompo-
sition described in [9].

Let T : P −→ Q denote the map which sends each state
x ∈ P to the finite set Q = {q1, . . . , qn} of all equivalence
classes (triangles in this paper). In other words, T−1(q)

Fig. 2. The triangulation of the workspace of Example 1 appears with
solid lines. The edges of the dual graph appear with dashes. The numbers
denote the nodes of the undirected graph.

contains all states x ∈ P which are contained in the triangle
labeled by q and {T−1(qi) | qi ∈ Q} is a partition of the
state space. Given such a partition of P , we can naturally
abstract the robot motion by defining a finite transition
system

D = (Q, q(0),→D, hD) (3)

where Q is the finite set of states, and q(0) ∈ Q is
the cell containing the initial robot state x(0) ∈ P , that
is q(0) = T (x(0)). The dynamics are captured by the
transition relation →D⊆ Q × Q, defined as qi →D qj

iff the cells labeled by qi, qj are topologically adjacent,
that is triangles T−1(qi) and T−1(qj) have a common
line segment. The transition relation →D is also known
as the dual graph of the triangulation and can be easily
computed. Having defined transitions →D for transition
system D, we can define trajectories p of D as sequences
of the form p[i] = pi →D pi+1 →D pi+2 →D . . . , where
pi = p(i) ∈ Q.

In addition to defining the transition relation, we also define
the observation map hD : Q −→ Π, as hD(q) = π,
if there exists x ∈ T−1(q) such that hC(x) = π. In
order to ensure that hD is well defined, we must impose
the requirement that the decomposition is proposition or
observation preserving, that is for all x1, x2 ∈ P and all
π ∈ Π, T (x1) = T (x2) ⇒ hC(x1) = hC(x2). In other
words, states that belong in the same equivalence class or
cell, map to the same observations.

Example 3: Revisiting Example 1, we can now triangulate
the environment (see [18] for the algorithm used) and
construct the dual graph of the triangulation (Figure 2). The
resulting undirected graph has 34 states and 49 transitions.

The transition system D will serve as an abstract model of
robot motion. We must now lift our problem formulation
from the continuous to the discrete domain. In the previous
section we defined the semantics of LTL formulas over
continuous trajectories. We keep the LTL syntax exactly

2022

the same, but we reformulate the semantics of the temporal
logic formula to be interpreted over the discrete trajectories
generated by transition system D.

Discrete LTL Semantics: Path formulas φ are interpreted
over an execution p[i], denoted as p[i] |=D φ. The seman-
tics of any path formula can be recursively defined as:

• p[i] |=D π iff hD(p(i)) = π

• p[i] |=D ¬φ if p[i] 6|=D φ

• p[i] |=D φ1 ∨ φ2 if p[i] |=D φ1 or p[i] |=D φ2

• p[i] |=D φ1Uφ2 if there exists j ≥ i s. t. p[j] |=D φ2,
and for all j′ with i ≤ j′ < j we have p[j′] |=D φ1

We are interested in understanding the relationship between
the continuous robot model satisfying formula x[0] |=C φ

with continuous LTL semantics and the transition system
D satisfying formula p[0] |=D φ, where p(0) = T (x(0)),
but with the discrete LTL semantics.

B. Temporal Logic Planning using Model Checking

In a nutshell, model checking is the algorithmic procedure
for testing whether a specification formula holds over some
semantic model [19]. The model of the system is usually
given in the form of a discrete transition system like the
one described in Section IV-A. The specification formula is
usually given in the form of temporal logics such as LTL.

As mentioned earlier, we are looking for computation
paths p[i] that satisfy the temporal formula p[0] |=D φ.
In the model checking community, this is known as the
generation of witnesses. Unfortunately, the current versions
of the model checking software tools do not support
the construction of witnesses as they are mainly analysis
tools. Hence, we have to employ the algorithms that solve
the dual problem, i.e. the generation of counterexamples.
In this case, when the model checker determines that a
formula φ is false, it constructs a finite trace p[0] which
demonstrates that the negation of φ is true, i.e. p[0] |=D ¬φ.

Let φ be the formula that the system should satisfy. Assume
now that we give as input to our model checking algorithm
the LTL formula ¬φ, representing the negation of the
desired behavior. If the formula is false in our discrete
model of the environment, then the model checker will
return a finite trace p[0] that satisfies the formula ¬(¬φ) ≡
φ and, thus, we are done as we have found a finite path
that satisfies the original LTL formula φ.

Out of the variety of model checking tools that have been
developed over the years, we chose the most dominant
ones, that is, NUSMV [5] which is based on symbolic
model checking techniques and is mainly targeted for CTL
(but it can also handle LTL) model checking problems,
and SPIN [4] which uses an automaton approach to the
model checking problem and accepts only LTL formu-
las. Both toolboxes support hierarchy and composition,
multiple agents, generation of counterexamples in case
the temporal formula is invalidated and nondeterministic

environments. Of course, there are also several differences
between the two toolboxes mainly concerning the way they
deal with the model checking problem, the user interface
and the expressive power of the underlying logic. SPIN only
supports asynchronous communication among agents, but
it gives us the option for the generation of traces that are
optimal in the sense of minimum number of transitions
(trace length). The conversion of the discrete transition
system of Section IV-A to the input language of NUSMV
or to the input language of SPIN is straightforward and it
is automated.

Example 4: Using NUSMV for our example, we get the
following witness trace p = {33, 34, 24, 25, 27, 16, 15, 14,
3, 4, 5, 32, 23, 26, 29, 30, 3, 14, 33}, which satisfies our
specification.

C. Continuous Implementation of Discrete Trajectory

Our next task is to utilize the discrete trajectory p[0]
in order to construct a control input u(t) for t ≥ 0
and, therefore, a continuous trajectory x[0] that satisfies
exactly the same path formula. We achieve this desired
goal by simulating (or implementing) at the continuous
level each discrete transition of p[0]. This means that if
the discrete system D makes a transition pi →D pj , then
the continuous system must match this discrete step by
moving the robot from states in triangle T−1(pi) to states
in triangle T−1(pj).

We define a transition relation →C⊂ P × P between
continuous robot states in P . Formally, there is a transition
x →C x′ if x and x′ belong to adjacent triangles, and it is
possible to construct a trajectory x(t) for 0 ≤ t ≤ T with
x(0) = x and x(T) = x′, and, furthermore, for all 0 ≤ t ≤
T we have x(t) ∈ (T−1(T (x))∪T−1(T (x′))). Informally,
x →C x′ if we can steer the robot from x to x′ without
visiting any triangle other than the triangle containing x

or the neighboring triangle containing x′. Having defined
→C allows us to formally define a transition system C =
(P, x(0),→C , hC).

In order to ensure that the continuous system can imple-
ment any discrete plan obtained by the model checker, we
require that the decomposition of P satisfies the so called
bisimulation property [11].

Definition 1 (Bisimulations): A partition T : P −→ Q is
called a bisimulation if the following properties hold for
all x, y ∈ P :

• (Observation preserving) If T (x) = T (y), then
hC(x) = hC(y)

• (Reachability preserving) If T (x) = T (y), then if
x →C x′ then y →C y′ for some y′ with T (x′) =
T (y′).

In other words, the triangulation is a bisimulation if the
whole triangle is mapped to the same observation, and
furthermore, if one state x can move to the adjacent triangle

2023

Fig. 3. Example 1: Continuous trajectory implementation

to some state x′, then all states y in the same triangle with
x can also move to the same triangle with x′.

Assuming that this property is satisfied by the partition with
respect to transitions we just defined, it is straightforward
to show the following proposition.

Proposition 1: Let φ be an LTL path formula, and let T :
P −→ Q be a bisimulation. If p[0] |=D φ, then for every
x(0) ∈ T−1(p(0)) there exists a trajectory x[0] satisfying
x[0] |=C φ.

It remains to design controllers that satisfy the so-called
bisimulation property. There are several recent approaches
for generating such controllers, such as [9], [10] and [20].
We use the framework developed in [10] due to its com-
putational properties in triangular environments. In this
approach, an affine vector field is created in each triangle
that drives the robot to the desired adjacent triangle, while
taking into consideration any velocity bounds the robot
might have. For a description of this controller design, we
refer the reader to [10].

Note however, that by satisfying the bisimulation property
using feedback controllers, the temporal logic formula is
robustly satisfied not only by the initial state x(0), but
also by all other states in the same triangle. Furthermore,
the design of the controllers in [10] can guarantee the
continuity of the vector fields at the common edges of
adjacent triangles.

Example 5: Figure 3 shows the continuous trajectory cor-
responding to our example, which was created using the
triangulation from Example 3 and the discrete path gener-
ated by NUSMV in example 4.

V. SIMULATIONS

In order to test our approach to the problem of motion plan-
ning, we ran several simulations. We started with simple
environments and continued by increasing the complexity
of both the environment and the specification in order to
make sure our approach scales well. In this section, we
describe the process of creating a solution to the motion

Fig. 4. Example 6: Visit all the rooms

planning problem, and we show examples of non-trivial
behaviors in complex environments, which may include
holes and regions of interest.

The first step consists of specifying the environment. The
environment is described as a set of vertices which define
the outer contour, inner holes and inner regions of interest
(such as rooms). We specify these vertices either by using
a MATLAB based graphical user interface which allows
the user to select points on a grid or by writing MATLAB
functions that create vertices in a desired pattern. Next, we
triangulate the polygonal environment using the software
developed in [18] and we create the input code for the
model checker which we augment with the temporal logic
formula. The required path is generated as a counter
example trace using a model checker. The final step is
to create the control law u(t) for t ≥ 0 and to simulate
the robot path. This step is performed in MATLAB and the
control law is generated according to the method developed
in [10] using linear programming.

Example 6: Figure 4 is an example of a trajectory, gener-
ated by NUSMV, satisfying a coverage requirement. In this
example the desired behavior was to visit each of the rooms
(shaded areas) in no particular order. The LTL formula that
captures the specification is: 3r1 ∧ 3r2 ∧ 3r3 ∧ 3r4 ∧
3r5∧3r6. For problems of this size, the generation of the
discrete path is almost instant and the controller synthesis
in MATLAB takes less then 15 seconds.

Example 7: This is an example of a trajectory satisfying
a more complex requirement. In this example the desired
behavior is “Visit room r2, then room r1 and then cover
rooms r3, r4, r5 - all this while avoiding obstacles o1, o2,
o3”. Figure 5 depicts the path generated by SPIN.

Example 8: Figure 6 is an example of a very large envi-
ronment. This environment includes 1156 areas of interest
(rooms) and its discrete abstraction consists of 9250 tri-
angles. The specification for this example was “Start in
the white room and go to both black rooms”. Even though
this environment is very large, the computation time was a
few seconds for the triangulation, about 55 seconds for the
path generation in NUSMV and around 90 seconds for the

2024

Fig. 5. Example 7: While avoiding the obstacles go to room 2, then to
room 1 and then go to rooms 3, 4, 5 (in any order)

Fig. 6. Example 8: Complex environment - Visit the two square areas
in black color

controller synthesis of a path of 145 triangles in MATLAB.

VI. CONCLUSIONS - FUTURE WORK

In this paper, we have described our approach to the
problem of motion planning, which begins at a high level
of behavior specification, expressed in temporal logic, and
ends in creating continuous control inputs for the robot
that satisfy those requirements. We have shown that this
approach is computationally feasible, that complex envi-
ronments can be handled easily and that many complex
robot behaviors can be expressed and satisfied.

We find this approach to be very promising and there are
several directions in which we are planning to proceed,
such as, extending this framework to multiple robots,
incorporating natural language as a higher level specifica-
tion (which will be automatically translated into temporal
logic), and looking at different cell decomposition tech-
niques.

Currently, we are investigating the extension of the pre-
sented approach to the design of hybrid controllers that
would guarantee the satisfaction of a path formula φ in
the presence of localization and actuation errors, in the
presence of observable predicates (sensory input) and under

a set R of initial conditions (i.e. ∀x(0) ∈ R ⇒ x[0] |=C

φ). Furthermore, we plan to run experiments testing our
approach using ACTIVMEDIA mobile robots as a testbed.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their comments.

REFERENCES

[1] S. M. LaValle, ”Planning Algorithms”, [Online, Available at
http://msl.cs.uiuc.edu/planning/], 2004

[2] H. Choset, K. M. Lynch, L. Kavraki, W. Burgard, S. A. Hutchinson,
G. Kantor, and S. Thrun. Robotic Motion Planning: Foundations and
Implementation. 2004. In preparation.

[3] M. Antoniotti and B. Mishra, ”Discrete Event Models + Temporal
logic = Supervisory Controller: Automatic Synthesis of Locomotion
Controllers”, IEEE International Conference on Robotics and Au-
tomation, 1995.

[4] G.J. Holzmann, ”The Spin Model Checker Primer and Reference
Manual”, Addison-Wesley, Reading Massachusetts, 2004.

[5] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pis-
tore, M. Roveri, R. Sebastiani and A. Tacchella, ”NuSMV 2: An
OpenSource Tool for Symbolic Model Checking”, In Proceeding
of International Conference on Computer-Aided Verification (CAV
2002), Copenhagen, Denmark, July 27-31, 2002.

[6] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso, ”MBP:
A Model Based Planner”, In Proc. IJCAI’01 Workshop on Planning
under Uncertainty and Incomplete Information, 2001.

[7] F. Bacchus and F. Kabanza, ”Using Temporal Logics to Express
Search Control Knowledge for Planning”, Artificial Intelligence, vol
116, 2000.

[8] R.M. Jensen and M. M. Veloso, ”OBDD-based Universal Planning
for Synchronized Agents in Non-Deterministic Domains”, Journal of
Artificial Intelligence Research, 2000, Volume 13, 189-226.

[9] D.C. Conner, A. Rizzi, and H. Choset, ”Composition of local potential
functions for global robot control and navigation”, Proceedings of
2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003), IEEE, Vol. 4, October, 2003, pp. 3546-3551.

[10] C. Belta and L.C.G.J.M. Habets, ”Constructing decidable hybrid
systems with velocity bounds”, 43rd IEEE Conference on Decision
and Control, Bahamas, Dec 2004.

[11] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. ”Discrete
abstractions of hybrid systems”, Proceedings of the IEEE, 88:971984,
2000.

[12] P. Tabuada and G. J. Pappas. Model checking LTL over controllable
linear systems is decidable. Hybrid Systems : Computation and
Control. volume 2623 of Lecture Notes in Computer Science.
Springer-Verlag, Prague, 2003.

[13] S. Loizou and K. Kyriakopoulos, ”Automatic Synthesis of Multi-
Agent Motion Tasks Based on LTL Specifications”, 43rd IEEE
Conference on Decision and Control, Bahamas, Dec 2004.

[14] E. Rimon and D. E. Kodischek, ”Exact robot navigation using
artificial potential functions”, IEEE Transactions on Robotics and
Automation, 8(5):501–518, 1992.

[15] M.M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, ”Multi-Robot
Planning: A Timed Automata Approach”, Proc. 2004 IEEE Int. Conf.
on Robotics and Automation, New Orleans, LA.

[16] A. E. Emerson, ”Temporal and Modal Logic”, in: Van Leeuwen (ed)
Handbook of Theoretical Computer Science, Vol. B, pp. 997-1072,
Elsevier Science Publishers, 1990.

[17] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf,
”Computational Geometry: Algorithms and Applications”, 2nd rev.
ed. 2000.

[18] A. Narkhede, and D. Manocha, ”Fast Polygon Tri-
angulation based on Seidel’s Algorithm”, [Online at
http://www.cs.unc.edu/ dm/CODE/GEM/chapter.html#Seidel91].

[19] E. M. Clarke, O. Grumberg and D. A. Peled, ”Model Checking”,
The MIT Press, Cambrige, MA, 1999.

[20] L.C.G.J.M. Habets and J.H. van Schuppen. A control problem for
affine dynamical systems on a full-dimensional polytope. Automatica,
40:21–35, 2004.

2025

	University of Pennsylvania
	ScholarlyCommons
	4-1-2005

	Temporal Logic Motion Planning for Mobile Robots
	Geogios E. Fainekos
	Hadas Kress-Gazit
	George J. Pappas
	Temporal Logic Motion Planning for Mobile Robots
	Abstract
	Keywords
	Disciplines
	Comments

