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Abstract

We find strong evidence for a metal-insulator (MI) transition in macroscopic single wall carbon

nanotube conductors. This is revealed by systematic measurements of resistivity and transverse

magnetoresistance (MR) in the ranges 1.9–300 K and 0–9 Tesla, as a function of p-type redox dop-

ing. Strongly H2SO4-doped samples exhibit small negative MR, and the resistivity is low and only

weakly temperature dependent. Stepwise de-doping by annealing in vacuum induces a MI transi-

tion. Critical behavior is observed near the transition, with ρ(T ) obeying power-law temperature

dependence, ρ(T ) ∝ T −β. In the insulating regime (high annealing temperatures) the ρ(T ) behavior

ranges from Mott-like 3-dimensional (3D) variable-range hopping (VRH), ρ(T ) ∝ exp[(T0/T )−1/4],

to Coulomb-gap (CGVRH) behavior, ρ(T ) ∝ exp[(−T0/T )−1/2]. Concurrently, MR(B) becomes

positive for large B, exhibiting a minimum at magnetic field Bmin. The temperature dependence

of Bmin can be characterized by Bmin(T ) = Bc(1 − T/Tc) for a large number of samples prepared

by different methods. Below a sample-dependent crossover temperature Tc, MR(B) is positive

for all B. The observed changes in transport properties are explained by the effect of doping on

semiconducting SWNTs and tube-tube coupling.

PACS numbers: 71.23.-k, 71.30.+h, 73.22.-f, 73.63.-b, 73.63.Fg, 75.47.-m, 81.07.-b, 81.07.De
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I. INTRODUCTION

Single-wall carbon nanotubes (SWNT)1 have attracted considerable interest due to their

one-dimensional (1D) character. Bulk SWNT can be viewed as a unique form of granu-

lar or nanoporous material composed of 1D objects. This system is inhomogeneous since

it contains a random distribution of metallic and semiconducting elements. Studying its

transport properties may give information about properties of ropes and tubes, and finding

how transport properties depend on the structure of SWNT material can make transport

measurements a useful characterization tool. Transport phenomena in bulk SWNT were

studied by many authors.2–7 Results were usually interpreted in terms of Mott-like 3D and

2D VRH or 2D weak localization (WL). Our work suggests that macroscopic samples of

SWNT are essentially 3D despite the 1D character of SWNTs and 2D character of the rope

lattice. We present a comprehensive study of resistivity vs. temperature and magnetic field

for SWNT bulk samples of widely different morphologies as a function of the degree of H2SO4

doping. Strong doping produces metallic behavior with finite zero-temperature conductivity

and negative magnetoresistance MR(B) = ρ(T,B)/ρ(T, 0) − 1, indicative of weak disorder.

In weakly-doped samples a power-law ρ(T ) dependence is observed, as predicted by scaling

theory for the critical regime near a MI transition.8 The samples annealed at 600◦C and

above are insulating with VRH being the conduction mechanism. We find that the resis-

tivity ratio α = ρ(1.9 K)/ρ(40 K) ≈ 1.5–2.0 serves to demarcate metallic and nonmetallic

regimes. Consistent behavior is seen when comparing materials that were H2SO4-doped

during synthesis and then vacuum annealed at successively higher temperatures to samples

that were doped after acid-free assembly.

A MI transition occurs when disorder is strong enough that the Fermi energy EF lies

away from the extended states, and all states within a few kBT of EF are localized. This

behavior has been observed in many carbonaceous materials. A. W. P. Fung et al.9 induced

a MI transition in carbon fibers by controlling the nanopores in the system. High temper-

ature annealing led to partial graphitization, enlargement of graphite platelets and collapse

of the interplanar pores. Heat treated carbon fibers exhibit two-dimensional (2D) metal-

lic behavior.9 The effect of fluorine-intercalation on transport properties of graphite fibers

(CxF) was studied by S. L. di Vittorio,10,11 who found that increasing fluorine concentration

causes a transition from metallic (x > 3.6) to insulating (x < 3.0) regime. A MI transition
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was observed also in conducting polymer systems, e.g. MI transition in ion implanted p-

phenylenebenzobisoxale,12 aging induced MI transition in H2SO4 doped polyphenyleneviny-

lene,13 and disorder-induced MI transition in polyaniline doped with camphor sulfonic acid.14

In our experiments a MI transition is initiated by heat treatment of doped samples. At

high doping levels, a sufficiently large number of semiconducting nanotubes is conducting

and the coupling between nearest-neighbor (NN) nanotubes increases. Consequently, the

electron wavefunction ψ ∝ exp(−χr) extends over many nanotubes, i.e. the effective decay

length 1/χ is large. In this low resistivity regime, SWNT transport properties resemble those

of doped conjugated polymers. In both cases 3D behavior is observed although the building

blocks are of 1D nature. The 1D character of the electronic structure (i.e., the existence

of van Hove singularities) and the resulting anisotropy was probed in both metallic and

insulating regimes of partially aligned fibers by polarized Raman spectroscopy.15

For undoped samples, the charge carriers are localized predominantly on metallic nano-

tubes, and the typical energy separation between NN localized states ∆ξ depends on the

dimensionality of the wave function, the localization length ξ, and the density of states at

the Fermi energy, N(EF ). In the case of short tubes and weak tube-tube coupling, another

important energy scale is the Coulomb charging energy, Ec, similar to the case of granular

and porous carbon structures.9,16 We observed CGVRH conductivity at low temperature for

HiPco samples annealed at 1150◦C.

II. SAMPLE DESCRIPTIONS

All samples have been exposed to air and are thus presumably p-doped to some extent

by atmospheric oxygen.17–19 We will use the term ‘undoped’ in the sense ‘air exposed but

otherwise undoped’.

Samples include 1) partially-aligned fibers HPR15 made from purified HiPco20 SWNT; 2)

buckypaper PLV-H of pulsed laser vaporization21 (PLV) SWNT aligned in 26 T magnetic

field;22,23 3) buckypaper PLV of random PLV SWNT and 4) buckypaper HPG of random

HiPco SWNT. Groups 1) and 2) are from R. E. Smalley’s group at Rice University; 3)

is synthesized by H. Kataura at Tokyo Metropolitan University,24 and 4) is from T. V.

Sreekumar at Georgia Institute of Technology.25

HPR fiber has been extruded from nanotubes suspended in oleum (100% sulfuric acid
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saturated with SO3 to eliminate trace water). Consequently, as-received air-exposed fiber is

strongly acid-doped, confirmed by thermopower26 and Raman measurements,15 and referred

to as HPR Neat. The fibers exhibit axial preferred orientation with mosaic full width at

half-maximum (FWHM) 44◦.15 To study the effect of different doping levels, samples of neat

fibers are annealed in vacuum at 300, 600, 900 and 1150◦C. We refer to these as HPR T300,

T600, T900 and T1150. Annealing at 1150◦C leads to 34–38% weight loss, equivalent to

21-24 carbons per acid formula unit in HPR Neat.

As-received PLV buckypaper is undoped, and is doped by immersion in 95% H2SO4 or

70% HNO3, or by exposure to Br2, all for several hours at 295K. Acid doped samples are

dried at 100◦C in air. Raman scattering,27 thermopower,26 resistivity and reflectivity27 all

show that under these conditions H2SO4 gives the strongest p-doping effect, compared to

HNO3 and Br2. The tubes in this material are randomly oriented in the film plane, but they

exhibit 62◦ FWHM out-of-plane preferred orientation as a consequence of filter deposition.28

The as-received PLV-H buckypaper is annealed at 1150◦C before measurement. We

have not performed doping experiments on this material. Out-of-plane preferred orienta-

tion from the combined effects of magnetic field and filter deposition is quite pronounced,

FWHM = 27◦, while the in-plane value characteristic of field alignment alone is 34◦.28

As-received HPG buckypaper is prepared from oleum suspension similar to HPR fiber,

but is washed with acetone in the final preparation step25 which removes some of the residual

acid (henceforth HPG Raw). This is confirmed by the smaller 17% weight loss upon 1150◦C

vacuum annealing (HPG T1150), corresponding to ∼ 40 carbons per acid formula unit in

HPG Raw. Doping is restored by immersion of the sample in sulfuric acid (HPG Doped).

The out-of-plane FWHM was 44◦.28

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Resistivity

Controlling the free carrier concentration by doping and annealing allows us to study

the resistivity ρ(T ) in metallic, critical and insulating regimes. The temperature depen-

dence ρ(T ) for samples with varying doping levels is shown in Fig. 1. Due to the absence

of long range order, the temperature coefficient of resistivity (TCR), dρ/dT , is negative at
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low T for all samples. Strongly doped samples exhibit finite zero-temperature conductiv-

ity, σ(T ) = σ0 + ∆σ(T ), indicating metallic transport. Disorder is less important at high

temperature, and we observe a positive TCR above 100 K for samples with the lowest re-

sistance. With increasing annealing temperature, the low-temperature upturn in ρ becomes

more pronounced; for HPR T1150 and HPG T1150 (samples 1 and 2), ρ(1.9K) increases

by more than four decades after annealing at 1150◦C. The TCR for these high ρ samples is

negative in the whole range 1.9–300 K.

Resistivity results for all 13 samples studied are summarized in Table I and are rank-

ordered by decreasing resistivity ratio α = ρ(1.9 K)/ρ(40 K). This parameter serves to

classify samples with different microstructures and carrier concentrations, and is a qualitative

indicator of the extent of disorder. In the metallic state we find α . 1.5–2. The critical

regime is characterized by 2 < α < 4, and samples with α > 4 exhibit VRH transport.

To obtain quantitative insight into ρ(T ), the reduced activation energy14,29

W (T ) = −d ln ρ(T )

d lnT
, (1)

is also shown (Fig. 2). The low T behavior of W can be used to identify transport regimes.13

In the metallic regime, W ≈ ∆σ(T )/σ0 → 0 as the temperature approaches zero, and

the sign of dW/dT is opposite to that of TCR. Near the critical regime, W is positive

and temperature independent at low T . In the insulating regime with VRH transport, W

exhibits a power-law T -dependence.

1. Metallic Regime

The reduced activation energy W of all strongly doped samples (9-13) decreases with

decreasing T , shown in Fig. 2. Figure 3 is a linear-linear plot of W vs. T down to 1.4

- 1.8 K for the most conductive samples 11-13 (see lower panel of Fig. 2 and Table I).

Confidence in extrapolating to T = 0 relies on comparisons of these temperatures (kBTmin ∼
0.15 meV) to energy scales of gapping perturbations. Inter-tube tunnelling30–33, elastic

deformations33–38 and intrinsic curvature38,39 can all open gaps smaller than 0.15 meV under

some circumstances. But since these gaps all form around the band crossing energy, E0, the

associated insulating behavior would be experimentally unresolved only when |EF − E0| <
kBTmin, which is clearly not the case in our heavily doped samples.26 In practice, however,
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one can never rule out insulating behavior below the temperature floor of the experiment,

and lower temperature data is always desirable. Based on the temperature range studied

here, the data do extrapolate to W . 0 as T → 0 for samples 12 and 13, and the behavior

for samples 9-11 is not as clear-cut. Since we cannot confidently extrapolate a positive zero-

temperature value of W for samples 9-11, we proceed by grouping together all samples with

dW/dT < 0 as ‘metallic’ to distinguish borderline samples (9-11) from ‘critical’ samples

where W vs. T is nearly constant and W has an unambiguously positive zero temperature

limit. We note that samples 9-13 all exhibit sublogarithmic behavior (e.g.-Fig. 10), which

is often used to identify metallic behavior, and also satisfy the Mott criterion for minimum

metallic conductivity, ρ(metal)<∼ 0.005 Ω−cm.

The low-temperature behavior of the electrical resistivity ρ(T ) and of the magnetore-

sistance MR(B) in the metallic regime can be explained in terms of WL.40 According to

scaling theory,8 the dimensionless interblock conductance g ≡ G/(e2/π~) scales with the

block size, L, for the appropriate range of L. In the WL regime the phase coherence length

Lφ is smaller than the localization length ξ, and Lφ determines the relevant scale for the

temperature dependence of g. The macroscopic conductivity can be written as

σ ∼= e2

π~
g(L)Ld−2

∣

∣

L=Lφ
, (2)

where d is the dimension and
d ln g

d lnL
= (d− 2) − C

g
, (3)

C being a constant. Note that Eq. 2 is valid when Lφ . ξ and is not valid in the insulating

regime where ξ and the phase scattering rate 1/τφ determine the relevant scale for the

temperature dependence of g.8

WL originates from the quantum interference of time-reversed paths in electron transport.

Due to elastic scattering, paths from r to r′ generally contribute random phases. In the

special case of self-crossing paths, however, the closed loop can be circumscribed in opposite

directions. Time-reversed paths interfere constructively at B = 0,40 which leads to enhanced

backscattering. Inelastic events at finite T in the interfering paths reduce the effect and σ

increases with increasing T . This leads to a zero-field temperature dependence in 3D of the

form

σ3DWL = σ0(1 + (T/T0)
s/2) , (4)
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where we have taken τφ ∝ T−s and L2
φ ∝ τφ. This behavior leads to finite conductivity σ0

as T → 0, in contrast to 2D and 1D, which is consistent with the observed behavior of our

heavily-doped samples.

Despite the aforementioned differences in the limiting behavior of W as T → 0, the

inverse of Eq. 4 fits the resistivity data for strongly doped samples 9 and 10 (HPR Neat and

HPG Doped, respectively) very well for T < 40 K. However, for doped PLV samples 11-13,

the addition of a residual resistivity ρ0 is necessary:

ρ(T ) =
1

σ0(1 + (T/T0)s/2)
+ ρ0 . (5)

Values of the fit parameters are shown in Table II. The residual resistivity ρ0 forms a

large fraction of the total resistivity of doped PLV samples, but is negligible for HiPco

samples. This different behavior is likely due to different microstructures. While the length

of nanotubes in PLV samples is of order 10 µm,41 tubes in our HiPco samples are about

0.5 µm long. Assuming that WL results from NN tunneling, we would conclude that in

PLV the intrinsic tube resistance and NN tunneling make comparable contributions to the

macroscopic ρ, while in HiPco material NN tunneling is dominant.

2. Critical Regime

A MI transition in 3D is associated with the fact that d ln g/d lnL vanishes at some g = gc

and can be approximated by
d ln g

d lnL
= h ln(g/gc) , (6)

where h is a constant of order unity.8 By integrating Eq. 6 one can find

g(L) ≈ gc

(

1 + δ(L/L0)
h
)

, (7)

where δ ≡ (ln g0 − ln gc) ∼= (g0 − gc)/gc � 1 is the ‘control parameter’ and g0 is the

conductance on some microscopic scale L0. The system remains in the critical regime as

long as L is smaller than the correlation length Lc ∝ L0δ
−1/h. For L � Lc the system is

metallic if g0 > gc, and Eqs. 3 and 4 apply. If g0 < gc the system is insulating for L � Lc,

g ∝ exp(−L/Lc), and the physical meaning of Lc in the insulating phase is the localization

length ξ.8
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In the critical regime g ≈ gc and according to Eq. 2 the large-sample resistivity follows a

power law behavior8

ρ(T ) = aT−β . (8)

This behavior leads to constant reduced activation energy W (T ) = β, as is the case for low

T behavior of HPR T300 and HPG Raw (samples 7 and 8), shown in Fig. 2.

The power-law dependence of ρ(T ) is universal and requires only that the disordered

system be close to a MI transition, i.e. in the critical region where δ � 1.14 We obtain good

fits to Eq. 8 below 40 K for both samples in the critical regime with β = 0.38 and 0.31, in

agreement with the theoretical prediction 1/3 . β . 1.14,42 The resistivity ratios α for these

samples are 2 . α . 4, shown in Table I.

3. Insulating Regime

When doping is sufficiently weak to reduce the tube-tube coupling, the charge carriers

at the Fermi energy become strongly localized, ξ � Lφ, and hops with R > ξ are favorable.

The low-temperature transport in the insulating regime is by variable-range hopping (VRH)

ρ(T ) = ρ0 exp ((T0/T )p) , (9)

where kBT0 = 21/p∆ξ/2p(1−p), ∆ξ is a characteristic energy separation between NN states,

and an average energy needed to make a hop of length r is equal to ∆ξ ·(ξ/r)
1−p

p . For

d-dimensional Mott43 VRH, p = 1/(d+ 1), and for Coulomb-gap44 (CG) VRH, p = 1/2.

To extract the exponent p in Eq. 9, we calculate W (T ) and plot it against logT (Fig. 2).

This procedure yields values of p which vary from sample to sample and with annealing

temperature. For moderately resistive samples we obtain p = 0.25 − 0.26, consistent with

3D VRH (p = 1/4). With increasing resistivity we observe increasing p.

For the most resistive samples HPR T1150 and HPG T1150 (1 and 2, respectlively),

logW (T ) vs log T changes slope from p < 0.4 to p = 0.5 with kBT0 ≈ 5.2 meV. This behavior

is similar to crossover from 3D VRH to CG VRH observed in various materials.45–47 Note that

the characteristic energy corresponding to kBT0, ∆ξ ≈ 7.6kB, agrees with the temperature

at which the change of VRH behavior takes place.

Both Mott-like VRH (1D) and CG VRH are consistent with p = 0.5. 1D VRH is unlikely

since the corresponding fit value T0 ≈ 60 K would imply ξ ≈ 350 nm if N(EF ) along the
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nanotube axis is 2.187 eV−1nm−1.48 The tube length in HPR and HPG samples is ∼ 500

nm, not much longer than the inferred ξ so that 1D hopping effects would seem unlikely.

The observed VRH exponent p ≈ 1/3 in some of our samples is consistent with 2D VRH.

However, there is no physical explanation for 2D localization and hopping in our samples,

and we rather interpret this value of VRH exponent as a transition between Mott-like 3D

VRH (p = 1/4) and CG VRH (p = 1/2).

Coulomb interactions and the charging energy Ec in granular systems open a Coulomb gap

∆c ∝ N0(EF )1/2 at EF with vanishing density of states at the Fermi level, N(E) ∝ (E−EF )2.

The quadratic behavior is universal and does not depend on the unperturbed density of states

N0(E).44 ρ(T ) follows the VRH form, with p = 1/2 and

kBT0 =
2.8e2

κξ
, (10)

where κ is the effective dielectric constant. It has been pointed out that in granular systems

ξ in Eq. 10 has to be replaced with an effective decay length 1/χ.9,16 Here, the decay occurs

over metallic and semiconducting nanotubes, and in the intervening gaps between nanotubes,

and is characterized by barrier heights Φm, Φs and Φg, respectively. The effective reciprocal

decay length χ is calculated as a weighted average of reciprocal lengths over tubes and gaps:

χ =
rm

r
χm +

rs

r
χs +

rg

r
χg , (11)

where r = rm + rs + rg is the hopping distance and ri, i = m, s, g, is the total span of region

i (m = metallic tube, s = semiconducting tube, g = gap between nanotubes).

Although the wave-function decay within the nanotube can be small, NN hopping is

not necessarily more likely than VRH due to the fluctuations in the nanotube energy. The

fluctuations make NN hops energetically less favorable then distant hops16 and, provided

that χ is small due to large energy fluctuations, the hopping distance R ∼ χ−1
√

T0/T

can be quite long. Φm and Φs exist due to nanotube energy fluctuations, of which there

are two types.16 The first is due to random disorder potential in the surroundings of each

nanotube (of length Ln). This fluctuating potential changes the charging energy Ec ∝ 1/Ln

by an amount not exceeding the original value, since discharge to the ground state would

result in an even larger change in Ec.
16,49 The perturbed energy is then distributed within

the range EF ± 2Ec.
49 The second type arises from quantum size effects which cause an

energy splitting Eq ∝ 1/Ln within an individual nanotube. Note that both Ec and Eq are

10



inversely proportional to tube length. This explains why we do not observe CG VRH in

undoped/annealed PLV SWNT samples since they consist of long tubes.

The effective barrier height for metallic SWNTs is comparable to the fluctuations,16

Φm ' 2Ec +Eq. For semiconducting tubes, the position of the Fermi energy with respect to

the bottom/top of conduction/valence band has to be taken into account.

The CG VRH mechanism was reported in random SWNT/polymer composites by

J. M. Benoit and coworkers.50 In their experiment, processing designed to isolate tubes in

the polymer matrix resulted in only weakly screened Coulomb interactions. In the present

work, we achieve an increase of charging energy by annealing, which makes the semicon-

ducting nanotubes very poor conductors. This results in weak g between metallic tubes, and

reduced mutual screening. Combining these effects with short tube lengths (Ln ∼ 0.5 µm)

leads to CG VRH at low T .

B. Magnetoresistance

The temperature and field dependence of MR depends on the transport regime. MR is

sensitive to disorder and electron interactions40 and, unlike resistivity, can provide not only

temperature dependence of relevant scattering mechnisms but also the corresponding length

scales. The sign of MR as a function of doping and/or annealing temperature can provide

an indicator for electronic MI transition.9 More specifically, by extrapolating low T data we

are able to determine the sign of the quadratic coefficient of magnetoresistance (QCMR),

dMR2/dB2|B=0, at zero temperature. Our data associate a negative sign with the metallic

regime, and a positive sign with the nonmetallic regime.

A sampling of the MR data is shown in Figs. 4 and 5. Above 10 K all samples exhibit

negative MR(B) which decreases monotonically with B. Below 10 K the magnitude and

B dependence are qualitatively different for different resistivity ratios α. In the metallic

regime (α < 2), MR is negative down to the lowest accessible temperature (Fig. 4b) and the

low field behavior is consistent with WL. Samples with diverging low-temperature resistivity

(α > 2) acquire a positive contribution to MR(B) at higher fields (Figs. 4a and 5). The

magnitude of this contribution increases with decreasing T , so MR(B) has a minimum at a

temperature- and sample-dependent field Bmin. Samples with the highest α exhibit positive

QCMR at accessible temperatures, Fig. 5a.
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1. Weak Localization

The negative MR in the metallic regime is quadratic at low B, flattening out at higher

B. With decreasing temperature, the loss of purely quadratic behavior occurs at lower

B. This is consistent with WL theory, which predicts negative MR in weakly disordered

systems and quadratic behavior below the inelastic-scattering equivalent magnetic field Bφ.

Time-reversal symmetry is not obeyed in finite magnetic field, which leads to dephasing of

the interference between two opposing paths around the loop of self-crossing paths, and to

negative MR. Bφ is equivalent to the field which induces a magnetic flux AφBφ of order

one flux quantum Φ0 = h/e through the area Aφ ∝ L2
φ of the interfering loop. Bφ is often

expressed in the form Bφ = Φ0/4πL
2
φ. Since Lφ ∝ T−s/2, Bφ increases with increasing

temperature.

In WL theory MR can be expressed in the form Af(B/Bφ), assuming only one relevant

phase-scattering mechanism. This property can be readily tested by scaling; for a given

sample we select one MR data set at some temperature T0 and consider this to be f(B).

Then we fit MR(B) data at different T to Af(B/Bφ) with A and Bφ as free parameters.

This procedure yields the T dependence of (normalized) proportionality constant A and

(normalized) phase-scattering equivalent magnetic field Bφ. The absolute values of these

parameters and the analytical form of f(x) remain undetermined.

We find that theMR is scalable in the range 0–9 T but only for metallic samples whereMR

is monotonically negative. Below the temperature at which MR(B) develops a minimum,

MR(B) can no longer be expressed as Af(B/Bφ), i.e. in the non-monotonic cases there is

clearly more than one scattering mechanism or contribution to MR.

Fig. 6 shows the scaling results as the temperature dependence of Bφ/B0 and A/A0

for metallic samples 9,10,12 and 13. HPR Neat and PLV+H2SO4, which show monotonic

MR(B) down to 1.9 K, can be fit with a power-law

Bφ ∝ T s , (12)

with s ≈ 0.66. For the other two metallic samples, Bφ deviates from power-law T dependence

above 7 K; fits to the low T data yield s ≈ 0.77. Note that in the case of diffusion transport

L2
φ ∝ τφ, both perpendicular and parallel to the rope axis, and the temperature dependence

of Bφ is identical to that of the phase scattering rate, Bφ ∝ 1/τφ. As a result, the exponent
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s in Eq. 12 should be identical with the exponent s in Eq. 4 and 5. However, only for doped

HiPco samples (fit to Eq. 4) are values of s close to those obtained from magnetoresistance

data. In the case of doped PLV samples (fit to Eq. 5) there is a large difference between

the two values, and the resistivity saturates to a constant value at low T much faster than

predicted from MR data.

The T -dependence of the negative second derivative of MR(B) at zero field, Kφ ≡
−d2MR/dB2|B=0, is shown in Fig. 7. In both insulating and metallic regimes, the low-

field MR is quadratic as shown in Fig 8 for sample 5. For samples in the metallic regime

Kφ(T ) approaches power law behavior at low T .

Kφ(T ) ∝ T−γ , (13)

with exponent γ ≈ 1.0 − 1.2; these are collected in Table III.

The low T behavior of Bφ and Kφ of samples in the metallic regime (α < 2) qualitatively

follow predictions of 3D WL which were used to analyze ρ(T ) (Table II). In 3D the WL

contribution to magnetoconductivity can be written in the form

∆σ3DWL(B)/σ = A

(

B

Bφ

)1/2

f3

(

B

Bφ

)

, (14)

where A = k1

√

Bφ, k1 is a positive constant coefficient, and f3(x) is the function given by

A. Kawabata,51 who found that f3(x) goes as x3/2 for x � 1 and is constant for x � 1.

Applying Eq. 14 to calculate Kφ(T ), we get Kφ ∝ B
−3/2
φ . Comparing γ from Eq. 13 with

exponent s from Eq. 12 we see that in the 3D WL regime γ = 1.5s. Experimentally obtained

values of s and γ, shown in Table III, agree approximately with this relation.

Although our low-field MR data follow Kawabata’s 3D WL model quite well, we do not

obtain good fits to Eq. 14 at higher fields, i.e. the function f(x) we use in the scaling

differs from
√
xf3(x) for large x. Eq. 14 predicts

√
B behavior for B � Bφ, but the

observed dependence is closer to lnB, similar to 2D WL.52,53 Possible explanations for

this discrepancy include contributions to the MR from carrier-carrier interactions and/or

anisotropic microstructure resulting from the 1D nature of SWNT. More detailed theoretical

analysis is needed to resolve this issue.

We use Eq. 14 and low-field MR data to estimate L2
φ = Φ0/4πBφ. For T = 1.9 K we obtain

L2
φ approximately 1000 nm2; a summary of the results is given in Table III. We calculate

L2
φ instead of Lφ because SWNT ropes are anisotropic and we expect different diffusion
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coefficients for propagation along (D‖) and perpendicular to the rope axis (D⊥). For the

phase coherence length along and normal to the rope axis we can write `2‖ ∝
√

D‖/D⊥L
2
φ

and `2⊥ ∝
√

D⊥/D‖L
2
φ, respectively. This can lead to long `‖ even for relatively small L2

φ.

The value of Lφ can serve as a lower limit for `‖ and an upper limit for `⊥. At 1.9 K

we obtain Lφ ≈ 30 nm for HiPco samples and Lφ ≈ 45 nm for PLV samples. Since bundle

diameters in our samples are about 40–70 nm and `⊥ < Lφ, the bundles can be considered

as anisotropic 3D objects in the whole temperature range 1.9–300 K.

Both transverse MR and L2
φ will depend on the degree of alignment of the anisotropic

ropes 28; only the normal component of the the area Aφ ∝ L2
φ of the interfering loop con-

tributes to MR. Experiments by McIntosh et al.54 on an individual rope indeed show that

the MR amplitude decreases as the field direction is varied from perpendicular to parallel

with respect to the rope axis. We expect a similar effect to occur in partially aligned bulk

SWNT samples such as our films and fibers 28, and MR vs. field direction should correlate

with degree of alignment.

2. Bmin vs. T and the MI Transition

In Fig. 9 we plot Bmin versus T for the subset of HiPco samples exhibiting non-monotonic

MR(B). We find Bmin(T ) remarkably linear, Bmin = Bc(1 − T/Tc) (true as well for PLV

samples, not shown). Tc is of particular interest; it is the crossover temperature below which

MR has positive QCMR. The extrapolated sign of QCMR at T = 0 K, which is the same as

the sign of Tc, depends on doping/annealing and provides a sensitive indicator for electronic

MI transition.9 We find negative zero-temperature QCMR and Tc for all samples in the

metallic regime (α < 2). Positive Tc is obtained for nonmetallic samples (α > 2).

The linear behavior of Bmin(T ) for all samples is unexpected. One would assume that the

negative and positive contributions to MR represent two distinct phenomena. For example,

if one wishes to explain the positive upturn in MR(B) as a sum of WL (negative) and some

other positive contribution, then both must have a common parameter or their parameters

have to correlate to ensure linearity of Bmin(T ) for all combinations of the two (i.e., for all

samples). Extrapolating the linear fits of Bmin(T ) also reveals that for HiPco-based samples

(HPR, HPG), all lines intersect at roughly the same point (−0.3 K, −2.7 T). Three datasets

of Bmin vs. T for PLV-derived samples (PLV Undoped, PLV+Br2, PLV-H) do not have this
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property, perhaps due to their different microscopic properties.

The correlation between Tc (derived fromMR) and α (derived from ρ) is shown in Fig. 10b.

The most complete data were obtained for HPR fibers; these show convincingly that the

crossover temperature Tc decreases slowly with decreasing α in the nonmetallic regime (large

α) and then faster as the metallic regime is approached. Samples in the metallic regime have

either negative Tc or monotonic MR(B) down to the lowest accessible temperatures. Both

ρ(T ) and MR(B) give similar α values which demarcate metallic and nonmetallic samples.

From the normalized resistivity ρr(T ) = ρ(T )/ρ(40 K) versus T shown in Fig. 10a, we

estimate that on the metallic side α < αc = 1.5. Since the plot is log-linear, the dotted

line represents logarithmic behavior - all ρr(T )’s above the line have nonmetallic (divergent

or superlogarithmic) temperature dependence while all ρr(T )’s below the line have metallic

(nondivergent or sublogarithmic) temperature dependence with finite conductivity at T =

0. The observed value of αc is consistent with the value at which the sign of Tc and QCMR

changes from negative to positive, as shown in Fig 10b.

3. Strong Localization

With increasing resistivity ratio α, all samples acquire an increasing positive contribu-

tion to MR. One possible origin is the field dependence of carrier-carrier scattering. This

correction is large only when the splitting between spin-up and spin-down bands is much

greater than the thermal energy kBT .11,40 Therefore, the MR associated with carrier-carrier

interaction is a high field effect, consistent with the observed positive upturn in MR(B) at

high fields and with the negative sign of Bc/Tc.

The positive MR(B) at very low T for samples dominated by CG VRH can be due to

spin polarization or wavefunction shrinkage effects. Both predict quadratic field dependence

at low B.9,56 Spin polarization reduces the hopping probability between two singly-occupied

states and between a doubly-occupied and an empty state, and MR saturates at high B.55

Saturation was not observed in our study, but a trend toward saturation in sample 5 (see data

at 2.0 K in Fig. 5b) suggests a higher field study of these samples is worthwhile. Regarding

wavefunction shrinkage, a positive MR has been predicted for this mechanism in 2D,56 and

the importance of similar effects in bulk SWNT materials needs closer investigation.

At low fields, VRH can also lead to negative MR.57,58 The mechanism is similar to WL,
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except the magnetic flux is enclosed by a loop formed by the hopping path, and the rele-

vant length scale is hopping distance R instead of Lφ. Two calculations predict linear57 or

quadratic58 magnetic field dependence for low fields. Our MR data for insulating samples

support the latter, but the temperature dependence does not follow the predicted power

law, T−3/(d+1), where d is the dimension.59 Instead, the low field quadratic curvature is non-

monotonic with temperature and changes sign (Fig. 7 inset), so in contrast to a prior study

of multiwalled carbon nanotubes,2 no simple correspondence between the data and these

theories can be made here.

In any event, any combination of possible MR contributions has to satisfy the condition

that at T > Tc the total MR exhibits a minimum at B = Bc(1 − T/Tc). This condi-

tion imposes an important constraint on the available parameter-space, and may lead to a

‘universal’ MR function for SWNT- based materials.

We do not expect that the observed MR behavior originates from orbital magnetism.60

The field scale for such effects is that which gives a flux quantum Φ0 through the nanotube

cross-section. The mean diameter d ≈ 1.2–1.4 nm in our samples15,24,25 leads to a maxi-

mum magnetic flux of order Φ0/100, which is too small to alter the band structure of the

nanotubes.

IV. SUMMARY

In this paper we investigate the transition from weak to strong localization as a function

of charge transfer doping in bulk SWNT samples of varying microstructure. This is done in

two ways: by estimating the resistivity ratio at which the crossover temperature Tc, which

characterizes the field dependence of the MR, changes from positive to negative; and the

change from ρ(T ) diverging to nondiverging as T → 0. In this manner, both ρ and MR

data can be interpreted consistently in terms of a MI transition. On the metallic side, the

resistivity ratio α < 1.5 and low-field MR is negative down to the lowest temperatures, with

T 0.66−0.8 temperature dependence of the phase scattering rate 1/τφ.

At α ≈ 1.5 − 2, Tc exhibits an increase from negative to positive while the zero-

temperature conductivity changes from finite to zero. In the critical regime 2 < α < 4,

ρ(T ) follows a power-law and MR is positive at high field. In the insulating regime we ob-

serve 3D VRH (p = 0.25) for moderately resistive samples. The exponent p increases with
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ρ, the most resistive samples exhibiting CG VRH (p = 0.5) and positive MR(B) at low T .

We attribute the MI transition to the annealing of doped SWNT samples. Upon de-

doping, semiconducting tubes become highly resistive, coupling between metallic tubes

weakens and reduced screening leads to stronger Coulomb interactions in the most resis-

tive samples.

An interesting feature of MR(B), and an important result of this experimental study, is

the existence of minima at Bmin, whose temperature dependence is linear for all measured

samples and regardless of the conduction regime, Bmin = Bc(1 − T/Tc). This demonstrates

that MR(B) cannot be interpreted as an arbitrary linear combination of WL contribution

and some positive effect. Instead, the observed behavior suggests that the parameters con-

trolling the behavior of relevant contributions to MR are not independent but they correlate

to ensure the linearity of Bmin vs. T .

Tc is the crossover temperature below which low-field MR(B) has positive zero-field

quadratic coefficients. For given sample Tc increases with α. Samples in the metallic regime

have negative Tc or their MR(B) is monotonic in the accessible temperature range. Zero Tc

was identified with an electronic MI transition.
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Figures

FIG. 1: Resistivity ρ vs. temperature of HPR fibers and HPG buckypaper samples at zero magnetic

field. Lightly doped or completely de-doped samples (1-4) show exponential ρ(T ) characteristic

of variable range hopping, while moderatly doped samples (7, 8) are well represented by a power

law divergence (see text). Finally, samples with the highest doping levels of H2SO4 (9,10) have

small and weakly T-dependent resistivities that satisfy the Mott criterion for minimum metallic

conductivity.
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FIG. 2: Reduced activation energy W = −d lnρ/d lnT vs temperature for (a) HPR fiber, (b) HPG

buckypaper and (c) PLV buckypaper. For metallic samples 9-13, we find dW/dT < 0. For samples

7 and 8, W (T ) is approximately constant and approaches a finite positive value as T → 0. Finally,

insulating samples 1-5 obey W (T ) = p(T0/T )p (solid lines). The conduction mechanism changes

from 3D VRH (p = 1/4) to CG VRH (p = 1/2) with increasing resistivity.
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FIG. 3: Linear-linear plots of W vs. T for the PLV samples 11, 12 and 13 doped with bromine,

nitric and sulfuric acid, respectively.
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FIG. 4: Transverse magnetoresistance MR of (a) HPR fiber annealed at 600◦C (sample 4), and

(b) strongly doped neat HPR fiber (sample 9). In the doped state MR is negative, increasing

monotonically in magnitude with increasing field. After annealing MR goes through a miminimum

and becomes positive at high temperature. In both cases the low field behavior is quadratic.
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FIG. 5: MR of (a) HPG buckypaper annealed at 1150◦C (sample 2) and (b) undoped PLV bucky-

paper (sample 5). At low T , HiPco samples annealed at high temperature exhibit high resistance

and positive MR with strong temperature dependence at low T . The inset in (a) shows MR of

annealed HPR fiber above 10 K, which is similar to that of strongly doped samples. MR of un-

doped/annealed PLV samples is similar in magnitude to that in slightly doped HiPco samples.
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FIG. 6: Analysis of MR data for metallic samples 9,10,12 and 13. (a) Temperature dependence of

the weak localization parameter Bφ. Good linear fits with T 2/3 exponents are found for samples

with MR < 0 at all T (e.g. sample 9, Fig. 4b). (b) Proportionality constant A obtained by

scaling MR to Af(B/Bφ), which suggests that both positive and negative contributions to MR

arise from a single mechanism. Lines are guides to the eye. In both figures, normalizations at

different temperatures are made to offset the results for clarity.
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FIG. 7: Temperature dependence of the negative second derivative of MR(B) at zero magnetic

field, Kφ for metallic samples 9,10,12 and 13. Lines are guides to the eyes. At low T , Kφ exhibits

power law behavior (Eq. 13) with exponent γ ≈ 1.0 − 1.2 (Table III). Inset shows qualitatively

different behavior in the insulating regime, where the sign of Kφ(T ) changes at low temperature

(note linear inset y-axis scale) and a positive zero-field magnetoresistance is observed (see text and

Fig. 5a).
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FIG. 8: Low-field MR(B) and quadratic fits for sample 5 from T = 2 to 100 K.
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FIG. 9: Magnetic field of the MR(B) minima vs. T for HiPco samples. The fitted linear behaviors

all extrapolate approximately to the same point (-0.3 K, -2.7 T).
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FIG. 10: (a) Temperature dependence of normalized resistivity ρr = ρ(T )/ρ(40 K) for several low-

resistivity samples (ρr(1.9 K) ≡ α < 5). Dotted line marks crossover from metallic (sublogarithmic)

to nonmetallic (superlogarithmic) behavior and gives estimate for ‘critical’ resistivity ratio αc ≈ 1.5.

(b) Plot of crossover temperature Tc (Bmin(Tc) = 0, see Fig. 9) vs resistivity ratio α. The samples

exhibiting metallic behavior have either monotonic MR(B) or negative Tc; two short vertical arrows

at Tc = 0 axis mark α values for samples 9 and 13 with monotonic MR(B) (α = 1.35 and 1.09,

respectively). Vertical line at α = αc separates metallic and nonmetallic samples. Lines are guides

for eyes.
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Tables

TABLE I: Samples used in this study, listed with decreasing values of α = ρ(1.9 K)/ρ(40 K). The

table lists zero magnetic field resistivity ρ at T = 1.9 K, reduced activation energy W at 1.9 K,

resistivity ratio α = ρ(1.9 K)/ρ(40 K) and crossover temperature Tc for all samples studied.

ρ(1.9 K) W (1.9 K) α Tc (K)

(mΩcm)

(1) HPR T1150 1300 2.7 91.8 2.41

(2) HPG T1150 2750 2.92 89.8 1.90

(3) HPR T900 225 1.7 29.5 1.54

(4) HPR T600 38 1.08 10.5 1.06

(5) PLV Undoped 55.6 0.74 4.7 0.48

(6) PLV-H 10.1 0.47 3.2 1.06

(7) HPR T300 3.4 0.39 3.1 0.66

(8) HPG Raw 1.97 0.32 2.2 0.66

(9) HPR Neat 0.424 0.061 1.35 —a

(10) HPG Doped 0.996 0.057 1.32 -0.28

(11) PLV+Br2 1.87 0.044 1.29 —b

(12) PLV+HNO3 1.78 0.041 1.25 -0.42

(13) PLV+H2SO4 1.01 0.0074 1.09 —a

aMR(B) vs B monotonic in the accessible temperature range.
bMR not measured.
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TABLE II: Parameters obtained from fits of resistivity data to a model of 3D weak localization for

samples in the metallic regime. Data for HPR Neat and HPG Doped (9 and 10) are fit to Eq. 4

while the doped PLV data (11-13) are fit to Eq. 5.

σ0 (Scm−1) T0 (K) s ρ0 (mΩcm)

(9) HPR Neat 2012 118.9 0.78 ± 0.06 —

(10) HPG Doped 864 155.6 0.72 ± 0.04 —

(11) PLV+Br2 1393 12.0 1.82 ± 0.08 1.27

(12) PLV+HNO3 1654 11.1 1.85 ± 0.05 1.27

(13) PLV+H2SO4 7362 22.5 2.3 ± 0.10 0.88
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TABLE III: Values for the exponent s obtained from scaling of MR(B) data (Eq. 12, Fig. 6), the

exponent γ obtained from the fit of Kφ(T ) data (Eq. 13, Fig. 7), and the values of L2
φ obtained

from the fitting of low-field magnetoresistance data to 3D WL model (Eq. 14). (See also Table II.)

s γ L2
φ(1.9 K) L2

φ(4.0 K)

(nm2) (nm2)

(9) HPR Neat 0.66 ± 0.03 1.04 ± 0.02 1000 640

(10) HPG Doped 0.77 ± 0.04 1.06 ± 0.02 1000 650

(12) PLV+HNO3 0.77 ± 0.05 1.16 ± 0.02 1400 900

(13) PLV+H2SO4 0.66 ± 0.02 1.12 ± 0.02 1900 1200
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