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Abstract—We present our recent results in the area of dis-
tributed control over wireless networks. In our previous work,
we introduced the concept of a Wireless Control Network (WCN),
where the network acts as a decentralized structured controller.
In this case, the network is not used only as a communication
medium (as in traditional control paradigms), but instead as
a fully distributed computational substrate. We show that the
dynamics of the plant dictate the types of network topologies
that can be used to stabilize the system. Finally, we describe
how to obtain a stabilizing configuration for the WCN if the
topological conditions are satisfied.

I. INTRODUCTION

With recent advancements in wireless technology, multi-
hop wireless networks have emerged as a cost-effective way
to monitor the performance of large-scale industrial control
systems. Wireless sensor networks are used to route sensor
measurements to gateways and data centers to enable efficient
plant management. In recent years, Wireless Networked Con-
trol Systems (WNCSs) – that employ wireless networks to
close the loop – have started to find their place in industrial
automation. These systems primarily use multi-hop wireless
networks as a communication medium. In this case the nodes
simply route information to and from a dedicated controller
(as shown in Fig. 1(a)).

In [1] we introduced the concept of the Wireless Control
Network (WCN), where each node in the network implements
a simple distributed algorithm (based on a linear iterative
procedure). This causes the entire network to behave as a
linear dynamical system, with sparsity constraints imposed by
the network topology (Fig. 1(b)). In this paper we present an
overview of our recent results from [1], [2], [3]. We show that
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the linear iterative strategy allows us to incorporate dynamics
into the network, which enables us to simultaneously analyze
the interaction between the network and the plant. In this case,
the plant and the network can be considered as a structured
linear system, thus allowing us to reason about the effects
that the plant’s structure and the network topology have on
the ability to stabilize the system. Unlike standard procedures
for WNCS synthesis, which are usually only focused on
minimization of network induced delays, the WCN synthesis
procedure explicitly takes into account the plant’s dynamics
(see Fig. 2).

This paper is organized as follows: In Section II we describe
an extended WCN scheme that allows us to frame the network
synthesis problem as a decentralized feedback control prob-
lem. In Section III we present sufficient topological conditions
that guarantee stabilizability of the plant with a WCN. Finally,
in Section IV we show the procedure that can be used to obtain
link weights for which the closed-loop system is stable.

A. Notation and Terminology

We use ei to denote the column vector (of appropriate size)
with a 1 in its i-th position and 0’s elsewhere. The symbol I
denotes the identity matrix of the appropriate dimensions, and
A′ indicates the transpose of matrix A.

1) Graph Theory: A graph is an ordered pair G = {V, E},
where V = {v1, v2, . . . , vN} is a set of vertices (or nodes),
and E is a set of ordered pairs of vertices, called directed
edges. The vertices in the set Nvi = {vj |(vj , vi) ∈ E} are the
neighbors of vertex vi. A path P from vertex vi0 to vertex vit
is a sequence of vertices vi0vi1 · · ·vit such that (vij , vij+1) ∈ E
for 0 ≤ j ≤ t− 1. The nonnegative integer t is the length of
the path. A path is called a cycle if its start vertex and end
vertex are the same, and no other vertex appears more than
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Figure 1. (a) Standard architectures for Wireless Networked Control Systems; Red links/nodes - routing data from the plant’s sensors to the
controller; Blue links/nodes - routing data from the controller to the plant’s actuators; (b) A multi-hop Wireless Control Network, where the
network acts as a distributed controller.
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Figure 2. Diagram of the WCN synthesis procedure. The procedure takes
into account dynamics of the plant while designing the network.

once in the path. We will call a graph disconnected if there
exists at least one pair of vertices vi, vj ∈ V such that there is
no path from vj to vi. A graph is said to be strongly connected
if there is a path from every vertex to every other vertex.

II. WIRELESS CONTROL NETWORK

Consider the system presented in Fig. 1(b), where a wireless
network is used to control a discrete-time system Σ =
(A,B,C) (i.e., a plant)1 of the form:

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k],
(1)

where x ∈ Rn denotes the state vector, and A ∈ Rn×n,B ∈
Rn×m and C ∈ Rp×n. The sensors from the set S =
{s1, s2, . . . , sp} provide the measurements of the plant’s out-
put vector y[k] =

[
y1[k] y2[k] . . . yp[k]

]′
, while the input

vector u[k] =
[
u1[k] u2[k] . . . um[k]

]′
contains the input

signals applied to the plant by the actuators from the set
A = {a1, a2, . . . , am}.

The radio connectivity in the network is described by a
graph G = {V, E}, where V = {v1, v2, . . . , vN} is the set of N
nodes and E ⊆ V ×V represents the communication topology
(i.e., edge (vj , vi) ∈ E if node vi can receive information

1The use of WCNs for control of continuous-time linear time-invariant
plants is described in [3].

directly from node vj).2 In addition, we define VS ⊆ V as
the set of nodes that can receive information directly from
at least one sensor, and VA ⊆ V as the set of nodes whose
transmissions can be heard by at least one actuator. In this
paper we utilize the ‘extended’ graph Ḡ = {V ∪ S ∪ A, E ∪
Ein∪Eout} that includes the initial graph G, the plant’s sensors
and actuators, and the edge sets:

Eout =
{

(sl, vi)
sl ∈ S, vi ∈ VS ,

vi can receive values from sensor sl

}
, (2)

Ein =

{
(vi, al)

al ∈ A, vi ∈ VA,
actuator al can receive values from vi

}
. (3)

The basic WCN scheme is proposed in [1], [2], where
each node in the network maintains a (possibly vector) state.
In addition, each node implements a simple linear iterative
procedure, where at every time step (i.e., once every com-
munication frame) the node updates its state to be a linear
combination of its previous state and the states of its neighbors.
Furthermore, each node from the set VS (i.e., a neighbor of one
or more plant sensors) includes in its update procedure a linear
combination of measurements (i.e., plant outputs) provided by
the sensors in its neighborhood. Denoting node vi’s state at
time step k by zi[k], the update procedure is given by:

zi[k+ 1] = wiizi[k] +
∑

vj∈Nvi

wijzj [k] +
∑

sj∈Nvi

hijyj [k]. (4)

Note that in the above equation, the neighborhood Nvi of
vertex vi is with respect to the graph Ḡ.

In this work we employ a slightly modified approach
from [2], where we allow each actuator ai, (1 ≤ i ≤ m),
to maintain a (possibly vector) state zai

and to use the same
linear iterative procedure to update its state:3

zai [k + 1] = waizai [k] +
∑

vj∈Nai

gijzj [k] (5)

The proposed scheme is reminiscent to the consensus reach-
ing algorithms (e.g., [4], [5]) and algorithms used in linear
network coding [6]. With linear network coding, to increase
the rate of information transmission through a network, nodes

2We assume that each node can communicate with itself, i.e., for all vi,
(vi, vi) ∈ E .

3For simplicity, in this work we present the case when all nodes and
actuators maintain a scalar state. A more general formulation, where each
node and actuator maintains a vector state is described in [1], [2].



in the network mathematically combine incoming packets
before transmitting them. On the other hand, the focus of
consensus-reaching algorithms that use linear iterative updates
is to determine whether all nodes (i.e., agents) in the network
can agree (i.e., converge) on a specific value. The main
difference in our approach is that the WCN is used as a
feedback mechanism in order to stabilize a dynamical plant.
Thus, to achieve this, each actuator ai applies input ui, which
at step k is derived as:

ui[k] = tai
zai

[k] +
∑

vj∈Nai

kijzj [k], (6)

where tai and the kij’s are scalars to be chosen.
To specify the evolution of the states of all nodes and

actuators in the network, we define the node state vector
z[k] =

[
z1[k] z2[k] . . . zN [k]

]′
and the actuator state vector

za[k] =
[
za1

[k] za2
[k] . . . zam

[k]
]′

. Thus, these states
evolve as:

z[k + 1] = Wz[k] + Hy[k] , (7)
za[k + 1] = Waza[k] + Gz[k]. (8)

In the above equations, the matrix Wa ∈ Rm×m is a diagonal
matrix, and the matrices W ∈ RN×N , H ∈ RN×p and G ∈
Rm×N have sparsity constraints imposed by the underlying
WCN topology – the connections between the nodes in the
network (for matrix W), from the sensors to the nodes (for
H), and from the nodes to the actuators (for G). For example,
for all i ∈ {1, . . . , N}, wij = 0 if vj /∈ Nvi ∪ {vi}, hij = 0
if sj /∈ Nvi , and gij = 0 if vj /∈ Nai

.
Aggregating the node and actuator states into the network

state vector ẑ =
[
z[k]′ za[k]′

]′
, the behavior of the network

can be described as:

ẑ[k + 1] =

[
W 0
G Wa

]
︸ ︷︷ ︸

Wd

ẑ[k] +

[
H
0

]
︸ ︷︷ ︸

Hd

y[k]

u[k] = Taza[k] + Kz[k] =
[
K Ta

]︸ ︷︷ ︸
Gd

ẑ[k],

(9)

where Ta ∈ Rm×m is a diagonal matrix, and K ∈ Rm×N is
a structured matrix with sparsity constraints imposed by the
links from nodes in the network to the actuators. From (9)
we observe that the linear iterative strategy employed by all
nodes and actuators causes the entire network to behave as a
structured dynamical compensator.

To be able to describe the closed-loop system we denote
with x̂[k] =

[
x[k]′ z[k]′ za[k]′

]′
the overall system state

that contains the state of the plant and states of the nodes and
actuators. Using this notation, the overall closed-loop system
can be described as:

x̂[k + 1] =

[
A BGd

HdC Wd

] [
x[k]
ẑ[k]

]
, Âx̂[k]. (10)

with the matrices Wd,Hd,Gd defined in (9).
One of the goals of our work has been to determine

conditions on the network topology for which there exist a
set of link weights (i.e., the structured matrices Wd,Hd,Gd)
that results in a stable closed-loop system. We consider WCNs

where each wireless nodes maintains a scalar state, while
actuators are allowed to maintain vector states. This is inspired
by the fact that actuators are usually not power constrained,
which allows them to employ more powerful CPUs. On the
other hand, wireless nodes are usually battery-operated, and
thus utilize low-power resource constrained microcontrollers.

III. TOPOLOGICAL CONDITIONS FOR SYSTEM
STABILIZATION

In this section we present topological conditions on the
network topology for which there exists a set of links weights
that guarantees system stability. To extract these conditions we
use results from the structured system theory, which allows
us to employ graph-theoretic tools to analyze linear systems.
Thus, we start with an overview of structured system theory,
before showing that the WCN scheme allows us to exploit the
structural graph of the closed-loop system. Finally, we present
sufficient topological conditions that ensure the existence of a
stabilizing WCN configuration.

A. Structured Linear Systems
Consider a system Σ = (A,B,C) of the form:

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k],
(11)

where x[k] ∈ Rn,u[k] ∈ Rm,y[k] ∈ Rp and the matrices are
of the appropriate dimensions.

A linear system of the form Σ = (A,B,C) is said to be
structured if each element of the matrices A,B,C is either
a fixed zero or an independent free parameter [7]. Therefore,
two systems are structurally equivalent if they have the same
number of states, inputs and outputs, and their system matrices
(i.e., A,B,C) have fixed zeros in the same locations. A
structured system Σ can be represented via a directed graph
GΣ = {VΣ, EΣ}, which is sometimes referred to as a structural
graph. The vertex set VΣ = {X ∪ U ∪ Y} consists of the set
of state vertices X = {x1, ..., xn}, and sets of input vertices
U = {u1, ..., um} and output vertices Y = {y1, ..., yp}.
Furthermore, the edge set is defined as EΣ = EA ∪ EB ∪ EC,
where EA = {(xi, xj)|aji 6= 0}, EB = {(ui, xj)|bji 6= 0},
EC = {(xi, yj)|cji 6= 0}.

To illustrate this consider the dynamical plant specified by:

A =


λ1 λ2 0 0
λ3 λ4 λ5 0
0 0 0 0
0 λ6 0 0

 , B =


λ7 0
0 0
0 λ8

0 0

 ,
C =

 λ9 0 0 0
0 0 0 λ10

0 λ11 0 0

 .
(12)

The structural graph for the plant is presented in Fig. 3.
The main focus of the structured system theory is on

the properties of a structured system that can be inferred
purely from the zero/nonzero structure of the system matrices.
These properties are generic, meaning that they hold almost
everywhere – for almost any choice of free parameters (i.e.,
the set of parameters for which the property does not hold has
Lebesgue measure zero [7]).
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B. Structural Graph of the Closed-loop System

As described in [2], to obtain a structural graph of the
closed-loop system we view the plant Σ = (A,B,C) and the
WCN as a linear system Σ̃. If we initially disregard the effects
of the actuators on the plant, the system Σ̃ can be described
as:

x̃[k + 1] =

[
x[k + 1]
z[k + 1]

]
=

[
A 0
HC W

]
︸ ︷︷ ︸

Ã

[
x[k]
z[k]

]
+

[
B
0

]
︸︷︷︸
B̃

u[k],

ỹ[k] =
[
0 EVA

]︸ ︷︷ ︸
C̃

[
x[k]
z[k]

]
, (13)

where EVA =
[
e′i1 e′i2 ... e′it

]
selects the states from the

nodes in the neighborhood of the actuators (i.e., the nodes
from the set VA = {vi1 , vi2 , ..., vit}, with t = |VA|). With this
representation of the interaction between the plant and the
WCN, the states of the nodes from the set VA are specified
as the output of the system Σ̃, and the system is described as
Σ̃ = (Ã, B̃, C̃).

For the system Σ̃ we obtain the structural graph GΣ̃ =
{VΣ̃, EΣ̃} from the structural graph of the initial plant Σ and
the network graph G = (V, E):

VΣ̃ = X ∪ U ∪ V, EΣ̃ = EA ∪ E ∪ EÕ
where (for Eout defined in (2))

EÕ = {(xi, vj) ∈ X×VS |∃yk, (xi, yk) ∈ EC, (yk, vj) ∈ Eout}.

is the edge set between the state vertices connected to a plant
output and all network nodes in the neighborhood of the
corresponding plant sensor.4 It is worth noting that although
G denotes the graph of the ‘physical’ network, when each of
the nodes maintains a scalar state we can also use G as the
structural graph of the WCN.

C. Topological Conditions

From the structural graph description of the plant and the
WCN, the problem of system stabilization using the WCN can
be framed as a decentralized control problem with feedback
constraints [8]. Using the concept of structural fixed modes [9],
[10], [11], from Theorem 3 from [2] we can state the following
theorem.

4More details about this mapping, including some limitations of this
approach, can be obtained from [2].

Theorem 1: Almost any system structurally equivalent to
system Σ = (A,B,C) can be stabilized with a WCN if for
each plant state vertex xi ∈ X in the structural graph GΣ̃ there
exists a cycle that contains the state vertex xi ∈ X and any
WCN vertex from V .

The following corollary introduces a straightforward suffi-
cient condition on the network topology.

Corollary 1: Almost every structurally controllable and de-
tectable system Σ = (A,B,C) can be stabilized with a
strongly connected WCN if all sensors and all actuators are
connected to the network.

However, the above results do not guarantee that any plant
with the specified structure can be stabilized using a WCN that
satisfies the sufficient conditions. In the general case, for any
given plant we can use the sufficient topological conditions
derived in [2].

Theorem 2 ([2]): Consider the detectable and stabilizable
system Σ = (A,B,C), along with a WCN. Let d denote the
largest geometric multiplicity of any unstable eigenvalue of
A. Suppose the connectivity of the network is at least d, and
each actuator has at least d WCN nodes in its neighborhood.
Then, for almost any choice of parameters in W and H such
that W is stable, the system Σ̃ can be stabilized via a dynamic
compensator at each actuator.

An interesting byproduct of the above result is that the
network diameter, and thus delays in the network, does not
affect stabilizability of the system. Thus, with appropriate
compensators at the actuators, if a network satisfies the topo-
logical conditions the system can be stabilized with the WCN
despite the path lengths in the network.

IV. EXTRACTING A STABILIZING CONFIGURATION

If the topological conditions from the previous section
are satisfied, a stabilizing configuration for the WCN with
dynamical compensators at actuators can be found using a
simple modification of the numerical procedure for the basic
WCN described in [1].

The closed-loop system described by (10) is stable if the
matrix Â = Â(Wd,Hd,Gd) has all eigenvalues inside the
unit circle. Since matrices Wd,Hd,Gd are structured, finding
a stabilizing configuration for the system described in (10)
is a problem equivalent to finding a stabilizing configuration
for the basic WCN. Therefore, a stabilizing configuration
can be obtained using the numerical procedure specified in
Algorithm 1, which is a simple extension of the algorithm
used for the basic WCN [1], [12]. In addition, a procedure
similar to the one from from [1] can be used to extract
a stabilizing configuration for the closed-loop system with
unreliable communication links. If the links can be modeled as
independent Bernoulli processes, the stabilizing configuration
guarantees mean square stability of the system.

For example, consider the system presented in Fig. 4 where
the plant is specified by:

A =

 1 1 0
0 1 1
0 0 2.1

 , B =

 0
0.5
1

 , C =
[
1 0.5 1

]
. (14)

If each node maintains a scalar state and the actuator (acting
as a dynamical compensator) maintains a state from R2,



Algorithm 1 Stabilizing closed-loop system with the WCN
1. Find feasible points X0,Y0,W0, H0, G0 that satisfy
the constraints[

X0 ÂT
0

Â0 Y0

]
� 0,

[
X0 I
I Y0

]
� 0,

Â0 =

[
A BG0

H0C W0

]
,

(W0,H0,G0) ∈ Ψ, X0,Y0 ∈ Sn+N
++ .

If a feasible point does not exist, then it is not possible to
stabilize the system with this network topology.
2. At iteration k (k ≥ 0), from Xk,Yk obtain the matrices
Xk+1,Yk+1,Wk+1,Hk+1,Gk+1 by solving the follow-
ing LMI problem

min tr(YkXk+1 + XkYk+1)[
Xk+1 ÂT

k+1

Âk+1 Yk+1

]
� 0,

[
Xk+1 I

I Yk+1

]
� 0,

Âk+1 =

[
A BGk+1

Hk+1C Wk+1

]
,

(Wk+1,Hk+1,Gk+1) ∈ Ψ, Xk+1,Yk+1 ∈ Sn+N
++ .

3. If the matrix

Âk+1 =

[
A BGk+1

Hk+1C Wk+1

]
is Schur, stop the algorithm. Otherwise, set k = k + 1 and
go to the step 2.

using the aforementioned algorithm we obtained the following
stabilizing configuration:

W =

[
1.94 −0.26
37.67 −3.35

]
, Wa =

[
−2.28 5.12
−1.83 3.75

]
,

H =

[
−1
0

]
, G =

[
0 1.0
0 0.54

]
, K =

[
0

0.12

]′
, Ta =

[
−0.39
0.61

]′
.

V. CONCLUSION

In this paper we have presented a high-level overview
of the concept of a Wireless Control Network, where the
network itself acts as a distributed structured controller. We
have described topological conditions for a WCN that ensure
that both structured and numerically specified plants can be
stabilized with the WCN, along with a procedure that can be
used to obtain a stabilizing set of link weights. However, in our
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Figure 4. (a) An example of a WCN where the plant is specified in (14);
(b) Graph description of the system.

work we did not investigate topological conditions for which
we can guarantee the existence of a robust WCN configuration
that maintains stability even in presence of node and link
failures. This will be an avenue for future work.
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