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Leader-to-Formation Stability
Herbert G. Tanner, Associate Member, IEEE, George J. Pappas, Member, IEEE, and Vijay Kumar, Senior Member, IEEE

Abstract—The paper investigates the stability properties of
mobile agent formations which are based on leader following.
We derive nonlinear gain estimates that capture how leader
behavior affects the interconnection errors observed in the
formation. Leader-to-formation stability (LFS) gains quantify
error amplification, relate interconnection topology to stability
and performance, and offer safety bounds for different formation
topologies. Analysis based on the LFS gains provides insight
to error propagation and suggests ways to improve the safety,
robustness, and performance characteristics of a formation.

Index Terms—Formation stability, graph theory, input-to-state
stability, interconnected systems.

I. INTRODUCTION

I NTERCONNECTED systems have lately received consid-
erable attention, motivated by recent advances in compu-

tation and communication, which provide the enabling tech-
nology for applications such as automated highway systems
[1], cooperative robot reconnaissance [2], [3] and manipula-
tion [4], [5], formation flight control [6], [7], satellite clustering
[8], and control of groups of unmanned vehicles [6], [9], [10].
Advantages of interconnected multiagent systems over conven-
tional systems include reduced cost, increased efficiency, per-
formance, reconfigurability, and robustness, and new capabili-
ties. A space radar based on satellite clusters [11] is estimated
to cost three times less than currently available systems, in-
crease geolocation accuracy by a factor of 500, offer two-or-
ders-of-magnitude smaller propulsion requirement, and be able
to track moving targets through formation flight.

Formations have been represented by means of virtual
structures or templates [7], [12]. Graphs have also been used to
capture the interconnection topology in a formation [13], [14]
and reflect control structure [15], constraint feasibility [16],
information flow [17], and error propagation [18]. These graphs
can have undirected edges, when the latter model position
constraints [13], [14], or directed for the case of information
flow [17] or leader following interagent control specifications
[19]–[21].
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Formation control and interconnected systems’ stability have
been analyzed recently from many different perspectives. In be-
havior-based approaches [2], the group behavior emerges as a
combination of group member behaviors, selected from a set of
primitive actions. Lyapunov-based techniques have been used
extensively to establish asymptotic stability in multiagent for-
mations. Formation-control specifications are usually encoded
in a formation constraint function [22] or in some artificial po-
tential functions [13], [23] that usually play the role of Lyapunov
function candidates. Another approach that applies to linear spa-
tially interconnected systems is a distributed control scheme
[24] that is based on -norm performance measures. Local co-
ordination control schemes that aim at stabilizing agents around
some desired configurations have also been successfully applied
[7], [19], [25]. String stability has proved to be an important
tool in analyzing the stability of platoons of vehicles [26]–[29].
System cascading is made stable by ensuring that the error atten-
uates as it propagates from one system to the next downstream.
The string-stability property is given an elegant state-space for-
mulation, and it was shown to be robust with respect to structural
perturbations [1]. Mesh stability, which can be thought of as a
generalization to multiple dimensions [30], also enjoys similar
properties.

In the new generation of interconnected systems that are now
being developed, safety, robustness, and performance are going
to be critical properties, and distinguish such systems from all
their predecessors. Most previous approaches to formation con-
trol aim at establishing convergence properties for formation er-
rors, which is necessary to make such a system operational. To
address issues related to safety and performance, we need new
tools that allow us to quantify, bound, and estimate the error am-
plitudes in the worst case [31] for different types of formation
interconnection structures.

In this paper, we introduce leader-to-formation stability
(LFS) in an effort to address these issues. The notion is based on
input-to-state stability [32] and its invariance properties under
cascading [33], [34]. LFS quantifies error amplification during
signal propagation in leader-following formations. The notion
of LFS has recently found application in obstacle avoidance
of leader-follower vehicle formations [35]. In this paper, we
establish nonlinear gain estimates between the errors of the
formation leaders and the interconnection errors observed
inside the formation. In this way, we can characterize how
leader inputs and disturbances affect the stability of the group.
We are also able to assess the stability of particular subgroups
inside the formation, and thus, guide analysis. In the case
where the gain estimates can be expressed as linear functions of
the formation errors, gain propagation can be done efficiently
through an algorithm based on algebraic matrix formulas, in
which the interconnection topology of the formation appears

1042-296X/04$20.00 © 2004 IEEE
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explicitly in the form of the adjacency matrix of the underlying
graph.

II. DEFINITIONS AND PRELIMINARY REMARKS

In the context of this paper, a formation is defined as a net-
work of vehicles interconnected via their controller specifica-
tions. These specifications dictate that each agent must main-
tain a certain relative state vector with respect to its leaders.
Agent interconnections are modeled as edges in a directed (for-
mation) graph [36], labeled by the respective control specifica-
tions. Graphs have become a standard way of representing inter-
connections between systems [37], [38]. This section introduces
the material needed for describing formally the formation, and
defines the stability notions that are going to be used in the sub-
sequent analysis.

A. Graph-Theory Preliminaries

A directed graph consists of a vertex set and a directed
edge set , where a directed edge is an ordered pair of dis-
tinct vertices. An edge in a directed graph is said to be
incoming with respect to and outgoing with respect to . Such
an edge has vertex as a tail and vertex as a head. The inde-
gree of a vertex in a directed graph is defined as the number of
edges that have this vertex as a head. If is an edge, then

and are adjacent. A subgraph of a graph is a graph
such that and . A subgraph
of is an induced subgraph when any two adjacent vertices in

are also adjacent in . A path of length in a directed
graph is a sequence of distinct vertices, such that for
every , . A weak path is a sequence

of distinct vertices, such that for each ,
either or is an edge in . A directed graph
is weakly connected or simply connected if any two vertices can
be joined with a weak path. The distance between two vertices
and in a graph is the length of the shortest path from to .
The diameter of a graph is the maximum distance between two
distinct vertices. A (directed) cycle is a connected graph where
every vertex is incident with one incoming and one outgoing
edge. An acyclic graph is a graph with no cycles.

B. Formation Graphs

We consider formations that can be represented by acyclic1

directed graphs. In these graphs, the agents involved are identi-
fied by vertices, and the leader-following relationships by (di-
rected) edges. The orientation of each edge distinguishes the
leader from the follower. Follower controllers implement static
state feedback-control laws that depend on the state of the par-
ticular follower and the states of its leaders.

Definition II.1 (Formation Control Graph): A formation
control graph is a directed acyclic graph
consisting of the following.

• A finite set of vertices and
a map assigning to each vertex a control system

where and .

1The case of cycles in a formation graph is treated in [18].

• An edge set encoding leader-follower rela-
tionships between agents. The ordered pair
belongs to if depends on the state of agent , .

• A collection of edge specifications, defining
control objectives (setpoints) for each : for
some .

For agent , the tails of all incoming edges to vertex repre-
sent leaders of , and their set is denoted by . Vertices

of indegree zero represent formation leaders with
. Since there are no incoming edges for the vertices in , no

formation specifications can be defined for formation leaders;
instead, these agents regulate their behavior so that the forma-
tion may achieve some group objectives, such as navigation in
obstacle environments or tracking reference paths.

Given a specification on edge , a setpoint
for agent can be expressed as . For agents with
multiple leaders, the specification redundancy can be resolved
by projecting the incoming edges specifications into orthogonal
components

(1)

where are projection matrices with .
Then the error for the closed-loop system of agent is defined
to be the deviation from the prescribed setpoint ,
and the formation error vector is constructed by stacking the
errors of all followers

Formation leaders are supposed to pursue some group objec-
tives (missions). Consider a formation leader associated with a
vertex . If these objectives are known a priori, then
they can be encoded in some nominal trajectory, , in which
case, we can define the error for agent as . Now
consider the input transformation , and assume
a feedback control law , which makes the origin of the
closed-loop system

with asymptotically stable. Similarly, if the mission ob-
jectives are unspecified, we can set , and assume the
existence of an asymptotically stabilizing control law, , that
makes asymptotically stable. Then, the mis-
sion objectives can be realized by means of the input term .

C. Leader-to-Formation Stability

In this section, we investigate the stability properties of the
formation with respect to all leader inputs or errors (in the
case where leader control specs have been encoded in .) We
obtain nonlinear gain estimates that quantify the transient effects
of initial errors and the steady-state effects of leader inputs

, on the amplitude of the formation error .
Definition II.2 (LFS): A formation is called LFS if there is a

class function and a class function such that for any
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initial formation error and for any bounded inputs of the
formation leaders, the formation error satisfies

(2)

The functions and are called transient and asymp-
totic LFS gains for the formation.

LFS builds on the notion of input-to-state stability, and it is a
“robustness”property[39],[40].Inthisapproach,theformationis
viewed as a nonlinear operator from the space of leader input/dis-
turbances to the space of the formation internal state. Functions

and in (2)are“nonlineargainestimates”quantifying
theeffectofinitialconditionsandleaderinputonformationerrors.
Inequality(2)providesasafetyboundontheformationerror.Thus,
given a safety specification, and a set of initial conditions, one can
estimate an upper bound on the admissible input that can keep the
system safe; conversely, given a safety specification and under a
particular input regime, a set of initial conditions from which sys-
tems trajectories remain safe at all times can be determined.

Based on alternative characterizations of input-to-state sta-
bility [39], Definition II.2 implies the following.

Corollary II.3: If a formation is LFS, in the sense of Defini-
tion II.2, then the formation error satisfies

Corollary II.3 establishes the asymptotic LFS gain
as an ultimate bound for the formation error. This

motivates the definition of the following LFS stability measure.
Definition II.4: Consider a formation that is LFS. Then the

scalar quantity

is called the LFS stability measure of the formation.
As defined, varies in [0, 1]. The sum in the denominator

of the defining equation for the LFS measure gives an estimate
of the region in which the steady-state formation error will re-
main, when the inputs to the formation leaders are bounded in-
side unit balls. The larger the error region grows, the smaller
the LFS measure becomes. On the other hand, as the size of the
error region shrinks, the performance measure tends to one.

III. LFS PROPAGATION

In the formation graphs we consider in this paper, all induced
subgraphs with vertices have the form of Fig. 1. This means
that all cycles in the underlying undirected graph are of order 3.
This is done to simplify the analysis, which can be extended
to more general interconnection topologies at the expense of
added analytical complexity. Assume an enumeration on the in-
duced formation control graph of Fig. 1, where the vertices in
the first row are assigned the numbers , the vertices in
the second are assigned the numbers , and the rest
are assigned the numbers . Let the dynamics of
the agents be expressed as follows:

(3a)

(3b)

(3c)

Fig. 1. Generic formation control graph.

The agents are driven by control laws of the form

(4a)

(4b)

(4c)

resulting in closed-loop error dynamics which can be written as

(5a)

(5b)

(5c)

The main result of the paper is based on the invariance of the
LFS property under a broad class of interconnections.

Proposition III.1: Consider the formation of Fig. 1 with
closed-loop error dynamics given by (5). If (5b) is LFS with
respect to

and (5c) is LFS with respect to

then the induced formation control graph is LFS with respect to

with and

(6a)
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(6b)

Proof: See Appendix.
In the case where the agent dynamics are linear, then the

conditions for LFS are automatically satisfied. The following
proposition takes into account the linearity of the gain functions
and provides less conservative bounds than those obtained by
applying (6) to the linear case. The linear version of (3) has the
following form:

along with the feedback-control laws

(7a)

(7b)

(7c)

where , , and are such that ,
are Hurwitz, and , , and satisfy

These ensure that the control inputs of each follower can pro-
vide the appropriate feedforward action to track the leader. Ap-
plication of (7) results in closed-loop error dynamics that can be
written as

(8a)

(8b)

(8c)

This model is equivalent to the one used for a string of linear
time-invariant (LTI) systems in [41]. In this case, the LFS gains
are as follows.

Proposition III.2: Consider the formation of Fig. 1, where
the closed-loop error dynamics of the agents are given by (8).
Then, (8) is LFS with respect to

where is a parameter,
, , and are the largest and smallest

eigenvalues of a matrix, respectively

(9a)

(9b)

with , for ,
, and each

satisfying

Proof: See Appendix.

IV. GRAPH PROPAGATION MATRIX EQUATIONS

For linear systems, the LFS gain propagation (9) can be en-
coded in recursive matrix equations, in which the formation
graph structure appears explicitly in the form of the graph ad-
jacency matrix. The recursion is based on the property of the
powers of the adjacency matrix to give the number of paths of
length equal to the exponent between two vertices in the graph
[36]. By labeling the edges of the graph with the LFS gains as-
sociated with the particular edge, we are able to propagate the
gains through the graph and obtain a sequence of matrices that
express the LFS gains of all paths inside the formation graph.

Consider the adjacency matrix of

where
if
otherwise

and define the matrices , as follows:

where
if
otherwise

(10)

where
if
otherwise. (11)

Obviously, matrices and provide the transient and
asymptotic LFS gains of all paths of length one (edges) in the
formation graph. Thus we define

respectively, where the subscript denotes the length of the path.
Then the LFS gains of all longer paths in the formation graph
can be computed through the recursive procedure described in
the following proposition.

Proposition IV.1: Consider a formation control graph with
adjacency matrix and matrices and defined by (10) and
(11), respectively. Then, the asymptotic and transient LFS gains
of paths of length between two vertices , are
given recursively as the elements of matrices

(12a)

(12b)

respectively, where denotes the Schur (elementwise) matrix
product. Moreover, the recursion terminates after
steps, where is the diameter of the formation graph .

Proof: See Appendix.

V. RELATION TO ALTERNATIVE METHODOLOGIES

The framework of string and mesh stability provides an al-
ternative way of analyzing the stability of interconnected sys-
tems. Mesh stability guarantees error attenuation and establishes
stability properties which are preserved when the group is aug-
mented. LFS, on the other hand, models the effect of leader in-
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puts and can be used to address issues related to safety and per-
formance.

Although both notions reflect some robustness properties of
the system, due to structural perturbations in the former case
and input disturbances in the latter, the similarities seem to end
here:

• mesh stability ensures scalable stability properties which
are independent of system size, whereas LFS relates
stability properties with initial conditions, input and
error specifications, and system size and interconnection
topology;

• there is no notion of input in mesh stability;
• mesh stability establishes the convergence of interconnec-

tion errors to zero, while LFS provides ultimate bounds
that depend on initial conditions and inputs;

• in a mesh stable system errors attenuate due to “weak in-
teraction” conditions, while in an LFS system, errors can
increase but their amplification is quantified via nonlinear
gain estimates;

• LFS nonlinear systems are generally not mesh stable.

Although LFS and mesh stability are generally incomparable,
one can establish a link between them, in the sense that mesh sta-
bility of the unforced system may, under some sector conditions
on the input vector fields, imply local LFS. In this respect, it is
possible to introduce inputs in a mesh stable system and analyze
their effect on the size of the errors observed.

Proposition V.1: For a look-ahead system, affine in control

(13a)

(13b)
...

(13c)

If for , , (13) is asymptotically mesh stable
at the origin , and there are class-
functions such that

then there is a neighborhood of the origin, ,
where (13) is LFS.

Proof: See Appendix.
The converse, however, is not true. If (13) is LFS, setting

does not necessarily mean that ,
which is required for mesh stability [30]. Sufficient conditions
for mesh stability include global Lipschitz continuity of the
system vector fields with respect to coupling terms and expo-
nential stability of the unforced dynamics [30]. These conditions
may not necessarily be satisfied in LFS systems [21].

VI. APPLICATIONS

A. LFS in Mobile Robot Formations

The results of Section III can be applied to formations of non-
holonomic mobile robots. We borrow the application example
of [15], and we show that the resulting edge-error dynamics are

Fig. 2. Leader following using a separation-bearing controller.

LFS. For each nonholonomic mobile robot, we consider the fol-
lowing kinematic model:

(14)

where ( , , ) is the position and orientation of mobile robot
, and , are the translational and rotational velocity control

inputs. For a triplet of robots , , and , where is supposed
to follow and is supposed to follow , the specification for
the leader-follower relationship can be expressed in terms of the
separation distance and the relative bearing (Fig. 2), which,
for the - pair, e.g., can be written as

where and are constant specification parameters. Taking
as an output, the dynamics of the - leader-follower pair

can be expressed in new coordinates as

where is a modeling parameter and . Using
input–output feedback linearization

(15a)

(15b)

the interconnection error dynamics can take the form shown
in (16) at the bottom of the next page. The internal dy-
namics of can be shown to be stable [15]. Then, using

as a Lyapunov function
for (16), and denoting by , we can arrive at

which yields for
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Fig. 3. String of 10 vehicles tracking a sinusoidal trajectory.

Then it follows that ,
where

(17a)

(17b)

establishing the LFS property of the leader-follower pair.
The simulated response of a string of ten mobile robots, with

dynamics described by (14), is steered using the leader-follower
controllers (15) depicted in Figs. 3 and 4. Fig. 3 shows the paths
of the first and the last robots in the string, in an effort to follow
a sinusoidal reference trajectory while maintaining the shape
of a straight line. Error propagation causes large overshoot for
the last follower. Since larger formation errors inevitably result
in increased control effort, if the vehicles are subject to input
constraints, the control objective may be rendered infeasible for
large strings. Fig. 4 presents the time evolution of the formation
errors related to separation and bearing. After an initial transient
period, the errors remain bounded inside a certain region that
depends on the magnitude of the velocity along the reference
trajectory.

B. Architecture Comparison

In this section, we will first turn our attention to a formation of
three mobile robots (Fig. 5). We will use LFS to assess and nu-
merically verify the stability properties of three different forma-
tion architectures, based on (16). We compare the three architec-

Fig. 4. Formation errors for the string of 10 vehicles.

Fig. 5. Three mobile robots using separation-bearing controllers.

Fig. 6. Cascade formation.

tures depicted in Figs. 6 and 8. In the simulation runs, the forma-
tion leader, robot 1, has to follow a circular reference trajectory,
while the other robots have to remain in a straight line behind the
leader. The parameter values selected are m
rad, m, rad, m, m, and
the controller gains are set to , for all robots.

The cascade formation of Fig. 6 has an LFS asymptotic gain

, and an LFS performance measure
. For the parallel formation of Fig. 8, we have

(16)
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Fig. 7. Robot paths for the cascade formation.

Fig. 8. Parallel formation.

Fig. 9. Robot paths for the parallel formation.

and , which indicate a signifi-
cant qualitative difference in performance. This difference is de-
picted in Figs. 7 and 9, where it is obvious that in parallel forma-
tion, the robots are able to move in alignment more accurately.
Although the gain estimates calculated are crude, having to ac-
count for the worst case, they are still indicative of the stability
properties of the system. Indeed, as it can be seen in Fig. 10, the
parallel formation clearly outperforms the cascade architecture.

Consider now the formation depicted in Fig. 11. All robots
are thought to use the controllers (15), with only the difference

Fig. 10. Formation-error evolution for the two formation architectures.

Fig. 11. Nearest neighbor following.

that vehicle 3 uses higher feedback gains compared with all
the others. In view of the increased performance capabilities of
robot 3, one may consider assigning robots 5, 6, and 7 to follow
3. However, an LFS analysis reveals that such a change will, in
fact, increase the magnitude of the formation errors: assume that

, for and .
Suppose that collision avoidance imposes a maximum allow-
able error bound, . Then the LFS gains of (17) can be
overapproximated as follows:

(18a)

(18b)

With , , and , from (18) we derive

Nearest neighbor following Following

Since , robots 5 and 7 will exhibit larger errors in the
interconnection of Fig. 12, compared with those expected in
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Fig. 12. Following the fastest robot.

the interconnection of Fig. 11. This is because higher feedback
gains for robot 3 result in larger control inputs which propagate
into robots 5 and 7, increasing their formation errors.

C. Safety Specifications

LFS gains can be used to check and implement safety speci-
fications that are related to formation errors. In the example of
this section, we consider a formation of three robots connected
in cascade via the separation-bearing controllers equation (15).
The group is supposed to maneuver maintaining a triangular
shape for which the faces must not exceed a certain distance.
This will ensure that the robots move in a tight formation, in the
same way as fighters, when flying in formation, have to main-
tain certain patterns to avoid detection by enemy radar.

The leader of the formation is to follow a reference trajectory.
The time parameterization of the reference trajectory defines a
desired velocity for the leader. This reference velocity can be
regarded as an input to the formation, and as such, it will affect
the size of the formation errors. If the magnitude of this velocity
were a design parameter, then a question that arises is whether
one can select an appropriate value to ensure that the formation
can track the reference trajectory without violating its safety
specification.

The formation motion is simulated first for the case where
the reference velocity is set to a constant value: . The
robot paths are given in Fig. 13. A circle of radius m
around the formation leader marks the boundary of the region in
which the followers should be for the group to satisfy the safety
specification. Due to the magnitude of the reference velocity for
the leader, the formation shape is distorted, and the last follower
in the string exhibits an unacceptable error, which forces it to
remain outside the safe region.

Based on the fact that the distance between the last follower
and the leader should not exceed 1.5 m, we can determine the
largest allowable formation error . Using the
LFS gain estimates (18), with , , and

, we derive a formation asymptotic gain .
This implies that in order for , it suffices to have

. Then the reference speed for the leader is

set to and the formation motion is simulated
again and depicted in Fig. 14, where it is clear that the safety
specification is now satisfied.

Fig. 13. Formation input not satisfying safety spec.

Fig. 14. Slowing down the formation to satisfy safety spec.

D. Gain Computation

One of the major considerations when dealing with
large-scale interconnected systems, such as large vehicle for-
mations, is the ability to compute the gain estimates efficiently,
regardless of the size of the system. For nonlinear systems,
due to their inherent complexity, LFS gain computation using
(6) is cumbersome and does not scale well. The conclusions
that can be drawn in the case of large-scale vehicle formations
are basically qualitative. One knows that the LFS property of
individual subsystems ensures the continuous dependence of
the size of the formation errors on the amplitude of the leader’s
excitation. Fig. 3 shows the vehicle paths in a string of ten,
with closed loop dynamics described by (16). Fig. 4 gives the
formation error evolution with respect to time in which, due
to the absence of an appropriate norm on SE(2), we chose
to plot the position and orientation errors separately. Figs. 3
and 4 show how LFS can ensure boundedness of errors and
continuous dependence of system trajectories on leader input.
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Fig. 15. Gain computation in large formations.

In the remainder of this section, we will demonstrate the use
of (12) to assess the stability properties of the formation de-
picted in Fig. 15. To apply (12), we consider a linear overap-
proximation of the LFS gains in the sense of (18), and assume

, for any pair of leader and follower
with , . In this formation graph, the largest
path is of length five. The computation process terminates after
six steps, yielding an LFS performance measure

VII. CONCLUSION

LFS is a stability property of formations that are based on
leader following, which quantifies the propagation of the input
of the formation leaders to the interconnection network of the
group and captures its effects on the magnitude of the errors ob-
served. It provides performance measures that can be calculated
analytically, and allows the calculation of worst-case ultimate
error bounds, which can be used to check the design against
safety specifications. The intuitive fact that performance dete-
riorates as the graph that represents the formation interconnec-
tions increases in diameter, can now be formally justified. LFS
can be used as an analysis tool to assess the performance and
robustness capabilities of different interconnection topologies,
and expose weaknesses in the design of the formation architec-
ture in the form of error-amplifying interconnections. Finally,
the worst-case ultimate error bounds obtained by LFS can be
used to check a particular formation design against error-related
safety specifications.

APPENDIX

PROOF OF PROPOSITION III.1

For the generic formation of Fig. 1, note that LFS of each fol-
lower with respect to , , for the time interval

and yields

(19)

(20)

In case agent does not follow agent , the corresponding term
is zero. Similarly, the LFS property of with respect to

is equivalent to

(21)

and implies

(22a)

(22b)

Substituting (19), (21), and (22) into (20) yields a new bound

(23)

and recalling that for any class- function ,
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Summing over all and ,
and denoting for brevity, we obtain for

PROOF OF PROPOSITION III.2

The proof follows the same lines as that of Proposition III.1.
Note that every follower is a perturbed system with exponen-
tially stable nominal error dynamics having as a Lyapunov func-
tion . This implies that for

(24)

Expressing (24) for the time intervals and and
substituting, we obtain

(25)

Similarly, the error for agent satisfies

By (1), , which allows us to obtain
the bound

(26)

Equation (26) now yields the following bounds for the error of
an agent :

(27a)

(27b)

which are then combined with (25) to produce

using the fact that for a linear -class function , it holds
. Using once again (26)

for , we finally arrive at
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Combining the above with (26) and summing over

where .

PROOF OF PROPOSITION IV.1

By definition, the LFS gains of the paths of length one are
given in matrix form by and

(28a)

The gains in paths of length two ending at an agent can be
derived using (9)

(29a)

(29b)

where denotes vertex adjacency. Equations (29) can be
written in matrix form

(30a)

(30b)

where denotes the Schur matrix product (also known as Har-
ramand product) [42]. The Schur product is used to generate
the terms and for an arbitrary . The rightmost term
in (29a) is related to the existence of paths of length two be-
tween two vertices in Fig. 1, which are already connected with
an edge. These are identified by the term as stated
in the following lemma.

Lemma 1: The elements of the matrix give the number
of paths of length two between any two adjacent vertices.

Proof: Matrix has as elements the number of paths of
length two between two vertices. On the other hand, the nonzero
elements of the adjacency matrix, , are in positions that cor-
respond to edges in the graph. The Schur product will,

therefore, have nonzero elements only at positions that corre-
spond to a pair of vertices that are connected both by an edge
and by a path of length two. Further, since a nonzero element of

is given by and the first term, ,
then necessarily .

Multiplication by the adjacency matrix of the formation
graph, , shifts the gains of paths of length one from positions
at rows to the corresponding positions of
their leaders at positions in rows , based on the fact
that powers of the adjacency matrix provide the number of
paths between two vertices of length equal to the exponent [36].

Equations (29) and (30) are based on combining the gains
of agents , that is, , , and , with
those of their leaders, and . The idea now is to apply (30)
recursively, starting from the agents at the end of the longest
paths and moving toward the formation leaders. In each step,
one needs to update the gains of the followers that correspond
to positions in the graph of Fig. 1, as the
latter shifts up toward the formation leader’s position. In (30),
the gains of agents are provided by and , whereas
the gains of were computed in previous steps.

This is formalized with an induction argument. The induction
step is as follows. Assume that for some , where

denotes the formation graph diameter, the gains of paths of
length are given by matrices and . Since all
paths of length ending at an agent have as a suffix a path of
length ending at , the former will be represented as paths
of length two. Then, by (30), the gain matrices of paths of length

will be

(31)

(32)

In this way, one can compute recursively all paths of length at
most . Since this is the maximal path length in any graph
with vertices, the procedure is guaranteed to terminate.

PROOF OF PROPOSITION V.1

Let the (13) be denoted for brevity as follows:

(33)

where the special “look-ahead” structure of and is
assumed. By definition, since the unforced (33) is asymptot-
ically mesh stable, there exists a class- function
such that , . A converse Lyapunov
argument for the unforced (33) establishes the existence of a
Lyapunov function , such that for some class- functions

, , , and , it holds
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Then for (33) with , the Lyapunov function will satisfy

From stability of a perturbed system, it follows that

where , .
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