
School of Engineering and Applied Science

Real-Time and Embedded Systems Lab

(mLAB)

University of Pennsylvania Year 2011

AutoPlug: An Automotive Test-bed for

Electronic Controller Unit Testing and

Verification

Utsav Drolia∗ Zhenyan Wang†

Yash Pant‡ Rahul Mangharam∗∗

∗University of Pennsylvania, utsav@seas.upenn.edu
†University of Pennsylvania, zhenyan@seas.upenn.edu
‡University of Pennsylvania, yashpant@seas.upenn.edu
∗∗University of Pennsylvania, rahulm@seas.upenn.edu

This paper is posted at ScholarlyCommons.

http://repository.upenn.edu/mlab papers/37

AutoPlug: An Automotive Test-bed
for Electronic Controller Unit Testing and Verification

Utsav Drolia Zhenyan Wang Yash Pant Rahul Mangharam
Department of Electrical & System Engineering

University of Pennsylvania
{utsav, zhenyan, yashpant, rahulm}@seas.upenn.edu

Abstract— In 2010, over 20.3 million vehicles were recalled.
Software issues related to automotive controls such as cruise
control, anti-lock braking system, traction control and stability
control, account for an increasingly large percentage of the
overall vehicles recalled. There is a need for new and scalable
methods to evaluate automotive controls in a realistic and open
setting. We have developed AutoPlug, an automotive Electronic
Controller Unit (ECU) test-bed to diagnose, test, update and
verify controls software. AutoPlug consists of multiple ECUs
interconnected by a CAN bus, a race car driving simulator
which behaves as the plant model and a vehicle controls monitor
in Matlab. As the ECUs drive the simulated vehicle, the physics-
based simulation provides feedback to the controllers in terms
of acceleration, yaw, friction and vehicle stability. This closed-
loop platform is then used to evaluate multiple vehicle control
software modules such as traction, stability and cruise control.
With this test-bed we highlight approaches for runtime ECU
software diagnosis and testing of the stability and performance
of the vehicle. Code updates can be executed via a smart phone
so drivers may remotely “patch” their vehicle. This closed-
loop automotive control test-bed allows the automotive research
community to explore the capabilities and challenges of safe and
secure remote code updates for vehicle recalls management. 1

I. INTRODUCTION
In 2010, safety recalls affected 20.3 million vehicles,

according to the National Highway Traffic Safety Admin-
istration (NHTSA) [1], [2]. All together since 1966, when
NHTSA’s record of recalls begins, the industry has recalled
more than 470 million vehicles. Over the past decade,
software issues in the automotive electronic controller units
(ECUs) have begun to account for an increasing larger
share of the source of recalls. A typical modern car will
include 40-70 ECUs, each controlling a specific function
of the vehicle. These ECUs contain over 100 million lines
of code [3]. (As a point of reference, Microsofts Windows
XP contained about 40 million lines of code, when it was
released in 2001 [4].) Consider for example, in a 2009
defect notice filed with the NHTSA, Volvo recalled 17,000
vehicles [5] for the following software-related issue: “The
engine cooling fan may stop working due to a software
programming error in the fan control module.” In the short
term, the problem could lead to “reduced air conditioning
performance.” However, if not corrected, it could lead to
“loss of cooling system function and engine failure. The
driver may not have sufficient time to react to the warning
lights or the text message in the instrument panel, increasing

1All student authors contributed in equal parts. This research work was
supported by NSF CPS-0931239, CSR-0834517 and MRI-0923518 grants.

the risk of a crash.” While critical recalls require vehicles to
be repaired by the dealership, a large proportion of software-
related recalls can be remotely upgraded at lower cost.

There is an urgent need for systematic analysis of software
bugs in automotive control systems, a system to remotely
diagnose the software on a set of ECUs, perform safe and
secure remote code updates and finally execute methods
for online testing and runtime verification for evidence-
based confirmation of the safety and efficacy of the code
update. Remote vehicle recalls management will initiate
network-wide preventive maintenance and deliver a means
for continuous on-line performance monitoring and reduce
the cost of warranty management.

A. Remote ECU Recalls Management
Software-related issues with automotive ECUs will con-

tinue to be a dominant reason for recalls in the future.
The cost of servicing these recalls by manually servicing
each vehicle significantly impacts the competitiveness of the
automotive manufacturer. Furthermore, currently all vehicles
of the given make/year/model are recalled while the issue
may only affect a small percentage of the vehicles. There
is currently no means to distinguish the affected vehicles
from those that continue to be safe and efficient. There
is, therefore, an urgent need to explore remote warranty
management and remote recalls servicing of software. This
can be accomplished by interfacing the vehicle’s computer
to a smartphone and running remote code diagnostics, code
updates/patches, testing and safety certification. While this
approach may not be applicable to the most critical issues, it
will be able to service non-critical and cabin control issues.
The approach here involves the following steps (see Fig. 1):
1. Software Bug Detection: When the automotive manufac-
turer is alerted about a potential software issue in a particular
vehicle model, a broadcast with a diagnostic test is sent to
the potentially affected vehicle owners. The code is loaded
in a secure manner from the owner’s smartphone into the
vehicle via a WiFi gateway interfacing the vehicle’s on-board
diagnostics (OBD) computer.
2. Online Diagnostics: The diagnostic code runs a set of
invasive and non-invasive tests which determine if the vehicle
is to be recalled or not.
3. Remote Code Updates: If a recall is necessary, the
owner has the option to conduct the recall remotely by
downloading a patch for the ECU software. The patch is

Diagnostic Code Update

	

Buggy

Controller
Runtime

Diagnostics
Runtime

Debugging
Remote

Code Update
Runtime

Verification Test

System Profiling and Reporting

	
 Fig. 1. Procedure for remote ECU software diagnostics, updating and testing

applied automatically to the set of target ECUs.
4. Runtime testing and verification: provide evidence-
based proof that the applied patch is safe and does not violate
the properties of the affected ECUs.

B. Research Challenges

With the proposed procedure, there are significant chal-
lenges with ensuring that the communication and write
actions to the vehicle are safe and secure; we focus on
safety here. As the onus of maintaining safe software in the
vehicle is on the manufacturer, there must be both functional
and formal approaches to guarantee the safety of the system
before, during and after the software patch. The patch will
be applied only when the vehicle’s engine is off.

The source of software related bugs/errors could range
from incorrect parameter settings, random timing delays
in code execution to increased noise from a faulty sensor.
New methods of system identification will be necessary to
identify, isolate and reproduce the source of the error. These
will require compact approaches for logging the state of the
controller and a new class of efficient provenance protocols
for concurrent operation with the controller.

Finally, a combination of runtime testing and verification
will be required to ensure the updated controller is suitable
for the particular vehicle. After the upgrade, the vehicle
will need to be monitored until a sufficient coverage of the
controller’s state space has been explored.

II. RELATED WORK

Much work has been done in detection and diagnosis of
Network Faults. [6] gives an overview of Fault Detection
and Diagnosis (FDD) for In Vehicle Electronic Systems
and existing methods for FDD in automotive networks as
well as at the component and feature-level with focus on
Controller Area Networks. [7] presents a software-based
implementation and verification scheme for an Automotive
FlexRay network, with emphasis on verifying timing of
control signals. While the work of these authors provide
a basis for detecting and diagnosing network faults, FDD
for automotive software-based controllers is yet to be ex-
plored. [8] discusses an Instrument-based Verification ap-
proach where automated tests are generated in order to check
whether models developed in Matlab/Simulink satisfy a set
of requirements.

Our focus is on testing the code on the ECU itself for
bugs/faults/errors. We use system identification to observe
if the transfer function of the implemented controller has
changed due to introduction of bugs in the system. We

approach the problem from the controls perspective to quan-
titatively analyze controller errors with the reference.

Software architectures for automotive systems is an active
area of research and practice. The motivation behind creating
an automotive ECU test-bed with mechanisms for remote di-
agnosis and software management is based on the idea of the
“car as a platform” [9]. A major effort on creating a standard
for automotive software architecture, AUTOSAR, specifies
models, tools and analytics for design-time development of
automotive software [10]. Existing remote vehicle systems,
such as GM’s OnStar and Ford’s Sync, that perform remote
servicing [11] are company-specific and do not perform
drivetrain/powertrain firmware upgrades nor allow for direct
remote management of the firmware.

III. SYSTEM ARCHITECTURE

We describe our early efforts in creating AutoPlug, an
Open Automotive ECU Test-bed for the development of
new software processes to improve the warranty and recall
management of vehicles. This platform will help investigate
new automotive architectures for remote vehicle software
monitoring, testing and updates for more efficient vehicle
controls software management. We have created a physical
network of ECUs which implement control algorithms for
anti-lock braking system (ABS), traction control, stability
control and cruise control. In place of a real vehicle we have
used The Open-source Race Car Simulator (TORCS) which
is a driving simulator that provides physics-based feedback
to the ECU network. Matlab is used to set parameters and
analyze the output.

AutoPlug consists of three layers: vehicle dynamics sim-
ulation, ECU network, and middleware for runtime soft-
ware diagnostics, debugging, upgrades and verification. The
simulation layer models a real automobile (e.g. 1999-2001
Mitsubishi Lancer EVO VI), which provides a form of vali-
dation for the ECU operation. The ECU network consists of
several microcontrollers (e.g. Freescale HCS12 each running
the nano-RK embedded real-time operating system [12]),
each of which performs a specific function (e.g. steering,
locking/unlocking doors, changing gears). These microcon-
trollers are networked together using the industry standard
CAN automotive protocol [13]. Some functions of vehicles,
such as Anti-Lock Braking System, require several ECUs to
work together in order to perform the necessary tasks, thus
there is a need for them to communicate. The “middleware”
layer consists of a small computer that provides a gateway
protocol for vehicle manufacturers to interface with the ECU
network. We describe the four components of AutoPlug:

A. Plant Model: Vehicle Dynamics Simulator

The TORCS model simulates car dynamics through
physics-based modeling, as well as individual car subsystem
components (engine, suspension, steering system). However,
code was added to support ECU network functions. This
included modeling additional vehicle components, as well
as integrating the National Instruments NI-6229-M data ac-
quisition cards into the simulation to provide real-time inputs
and outputs. The TORCS simulator provided the following
features that we deemed essential to the feasibility of our
project (including but not limited to):

1) Realistic tire dynamics based on the Pacejka tire
model, an industry-standard empirical tire model

2) Variable road conditions
3) Accessible physics engine outputs for use in ECU net-

work (e.g. yaw rate, wheel speeds, later acceleration)
4) Suspension and differential modeling

B. Electronic Controller Unit Network

The ECU network subsystem consists of individual
Freescale MC9S12 micro-controllers that perform specific
control functions within the vehicle. Fig. 3 shows a general
interface between the ECUs and the Controller Area Network
(CAN). Each of the eight ECUs are connected to the network
in parallel, with every ECU is able to receive the messages
that are passed through the circuit. CAN-HIGH and CAN-
LOW are the two rails that make up the CAN bus. All ECUs
have built-in CAN transceivers and thus can connect directly
to the CAN bus.

IV. ELECTRONIC CONTROL UNITS (ECU)

In this section we briefly describe the automotive controls
implemented on the ECU network and show the performance
of each. The current platform has over nine ECUs which
implement controls including accelerator/break pedals, steer-
ing control, anti-lock brake system (ABS), differential (yaw)
control, cruise control, cabin comfort, transmission, console
and propulsion. Nine micrcontrollers are used, with two as

Fig. 2. AutoPlug system architecture

gateways to communicate with the simulator and diagnostics
interface.

A. Nano-RK embedded RTOS

To address the need for timing precision, priority schedul-
ing and fine-grained resource management, the nano-RK
resource kernel [12] has been previously developed with
timeliness as a first-class concern. nano-RK is a fully pre-
emptive RTOS with networking support that runs on a variety
of embedded network platforms (8-bit Atmel-AVR, 16-bit
TI-MSP430 and Freescale HCS12). It supports fixed-priority
preemptive scheduling for ensuring that task deadlines are
met, along with support for and enforcement of CPU and
network bandwidth reservations. Each ECU of AutoPlug
test-bed runs nano-RK with a 10µs OS clock-tick. Each
control application is implemented as a task on nano-rk.
These tasks can specify their resource demands and the
operating system provides timely, guaranteed and controlled
access to CPU cycles. In addition, these tasks can be easily
activated, suspended or terminated which is quite useful for
software diagnostics. This is how we switch between the
bugged cruise controller and normal cruise controller, as they
are implemented as 2 different tasks. With the RTOS and
the ability to program the ECU over CAN, we are able to
selectively program each ECU at the task level. This also
allows us to load diagnostic tasks at runtime.

B. Stability Control

The stability control is used to keep the car on course and
prevent loss of control. It is aided by traction control and
ABS in doing this. It measures the current yaw rate and if
above a threshold, it signifies that the car is possibly out of
control and about to spiral. A message is sent to the Engine
Control Unit to reduce the throttle and the brakes are applied
according to a proportional controller.

Under no stability control, when the car tries to corner
sharp bends at high speeds, hence having a high yaw rate,
the wheels tend to skid and the final direction of the car is
not in the intended direction. In Fig. 4, we can see that due to
hundred percent throttle, the wheels start skidding, sending
the car into a whirl, which is signified by the high yaw rate.

Fig. 3. AutoPlug ECU Test-bed ECUs connected via a CAN bus to the
vehicle simulator and system monitor

Fig. 4. Stability control OFF

Once the the control is switched on, as soon as the car
starts to whirl, its speed is immediately reduced and it is
almost brought to a halt. Fig. 5 shows that ECU modulates
the throttle and the brakes based upon the yaw rate, even if
the driver has the throttle completely pressed.

V. RUNTIME DIAGNOSTICS

We now describe on-going and future efforts on diagnos-
tics and verification using the AutoPlug test-bed.

Diagnostic Trouble Codes (DTCs) are codes established
by Society of Automotive Engineers (SAE) to report errors
in a car over the On-Board Diagnostics (OBD) port in
the car. These are predefined codes which cover numerous
kinds of errors, and can be generic (applicable to all OBD
vehicles) or manufacturer-specific. OBD covers many errors
found on electrical and mechanical systems but for the ECU
software there are currently only 8 generic codes. Of these,
none specify what exactly is wrong with the software. The
code indicates that an internal integrity fault was detected
if anything within the ECU goes wrong. There are 4 codes
for ECU memory malfunction and 1 for programming error.
There are no codes for specific software/controls error. If
such an error does occur the current approach is to replace
the ECU. A less common approach is to re-write the software
to the ECU and update the code (i.e. software patch), and
that requires taking the car to the dealership. The limited
diagnostic information is unable to isolate the exact software
faults. Hence, for detecting bugs inside the ECU (the bug
might be due to - software, controls implementation, physical
errors manifesting themselves in the code) the DTC are
insufficient. Even if DTC is extended to test the running
code, one cannot be sure of all the possible errors that occur.

We require logs, software probes, breakpoints, traces, a
system comparable to a small embedded debugger to certifi-
ably test and analyze running code. Hence, this is a problem
of runtime testing and verification of control software and
for this what we require more dynamic diagnostics and
testing. Dynamic Diagnostics and Testing (DDT) will be a
method of introducing diagnostic software onto ECUs once
a car is observed to be faulty. There would be a library of
different diagnostics software for testing, observing, logging

Fig. 5. Stability control ON

different parameters/variables. On observing a car’s physical
performance, one would be able to determine the possible
problems and the kind of error to be detected. This would
determine the correct diagnostics test software to be uploaded
on to the ECU. Once the software is on the ECU, it will run
as a background task, minimally affecting the performance
of already running tasks/algorithms. The different kinds of
approaches currently being developed for on-line evaluation
of control software include:

A. Runtime Verification of results

Runtime verification compares system inputs and outputs
to the expected ones. Similar to test case generation, inputs
to the system are generated and the corresponding expected
output, along with important state variables are stored in a
tabular manner. When the run time diagnostics is activated,
the diagnostic program would take the input value and search
the established table for expected output values, based on the
input and current state of other important variables. Then
the actual output values will be compared with the expected
one. If the deviation between these two values exceeds set
threshold, system will alert users that software problems have
been detected in the controller and manufacturers should
recall the vehicle for more detailed inspection.

B. Control Implementation Verification

This compares the modeled controller to the implemented
controller. We can model the controller using CarSim [11],
which produces versatile car and environment models and
can be integrated with Simulink. This provides a robust plant
model with appropriate controller parameters.

The diagnostic software needs to log inputs, outputs
and state variables of the controller software while it is
executing. Once there is enough observation data, these
logs are extracted from the ECU. Starting with the desired
controller parameters (eg: state-space matrices, PID param-
eters) the logged inputs and state variable values are fed
to the modeled controller and the parameters are adjusted
with every iteration so that the output matches the logged
output. The recorded parameters are compared to the desired

Fig. 6. Comparison between Reference and Bugged Controller

parameters and the deviations give us information about how
the implementation has changed the controller.

C. Sensor Value Validation

This makes sure that the sensors are working correctly. It
checks various sensor parameters to detect sensor noise/mal-
functions indirectly. To ensure all the sensors report values
accurately, related physical values are monitored and com-
pared. For example, if the wheel speed sensor has significant
noise then in cruise control achieving the desired cruise speed
will be difficult. To make sure that the sensors are working
correctly, acceleration sensor values can be used to estimate
speed2 and compared to wheel speed. If these two values
deviate from each other significantly, we could say that at
least one is faulty.

VI. CONTROLLER VERIFICATION

The objective is to study the closed loop behavior of a
system with both a correct reference implementation and a
buggy implementation of the controller. The plant here is the
powertrain subsystem of the TORCS car model. We consider
the powertrain as the components of the car which results in
a rotations per minute (RPM) output at the motor shaft for an
acceleration input. An advantage of using the powertrain as a
plant is the fact that a step reference is a plausible real world
reference signal for a controller to match and is also the most
studied signal response in classical control literature.

We propose two methods to differentiate between the
behavior of the closed loop system with the reference and
buggy controller in the feedback loop and also possibly
pinpoint the error in controller gain.

A. Using the step response properties

The most intuitive method of differentiating between two
closed loop systems that are supposed to follow the same step
reference is to compare the properties of the step response
like rise time, peak time, maximum overshoot etc. With

2Inertial sensors are not used to estimate speeds in normal cases since
they function poorly as speed estimators when there is no acceleration

ControllerRise Time(ms)Settling Time(ms)Overshoot(%)
Reference1414.8 17005 0.6667
Erroneous303.8 17723 75.3333

TABLE I
COMPARISON OF STEP RESPONSE CHARACTERISTICS

Fig. 7. Comparison between Modeled and Implemented Controller

knowledge of these parameters it is not very difficult to
speculate which of the controller gains (Proportional, Integral
or Derivative) is incorrect, but it will never give an exact
numerical answer as to how much the gains are. This method
is a simple way to invalidate a controller.

To develop a controller, we first modeled a plant in
Simulink based on the underlying physics model for the
Powertrain in TORCS. The non-linear model thus obtained
was used to develop a discrete time PI-controller in C which
was imported into Simulink as a S-Function. To validate
the controller, we implemented the same C code for the
controller on the Engine Control ECU and compared the
response to a step input of 3000 RPM obtained from TORCS
to that obtained from Simulink. We found a reasonably good
match in the step-responses (Fig. 7) and hence considered
this controller as our reference controller.

The bugged controller was the same C code but with the
values for both gains changed. The same step input of 3000
RPM is given to the controller. The output RPM values
logged from the CAN-Bus were imported into MATLAB
(Fig. 6). The stepinfo command was used to get the rise
time, settling time and overshoot with both the reference and
bugged controller in the feedback loop (Table I). It is easy
to invalidate the bugged controller from both the waveform
obtained and the values in the table. It is however not
conclusive in pinpointing whether it is just the proportional
gain that is wrong or both the proportional and integral gains.

B. Using System Identification

To get a mathematical representation of the powertrain
model in TORCS, system identification is done on the testbed
with no controller in the closed loop. Binary inputs [14] (with
1 corresponding to full acceleration and 0 corresponding to
to acceleration) are sent to TORCS and the RPM output is
logged. The Matlab System Identification toolbox is used
to get a high order linear approximation of the TORCS

Fig. 8. Error between measured and simulated plant output

powertrain and non-linearities (like saturation and a constant
offset) are added to get a very good approximation of the
the actual TORCS model. This higher order model with non-
linearities is further simplified (through system identification
again) to get a third-order linear approximation of the
TORCS model (see Fig.8). We aim to get a third-order model
as it is generally considered acceptable in most powertrain
control literature [15].

The objective here is to identify the closed loop transfer
function of the identified plant with a reference controller
and then with a buggy controller in the feedback loop. This
is also a motivation to get a good linear representation of the
TORCS powertrain system. System identification with just a
step reference as input to the system is be able to provide
closed loop transfer functions which we can decompose to
get the gains of both the reference and buggy controller. The
PI controller is written in C and is imported into Simulink
as a black box (S-Function). The generic transfer function of
which is (with Kp and Ki as the proportional and integral
controller gains):

Kp +
q

q − 1
TsKi (1)

and can also be written as:

C =
(TsKi +Kp)−Kpq

−1

1− q−1
=
n1 − n2q−1

1− n3q−1
(2)

The identified plant is:

P =
(2.988q−1 + 2.733q−2)

(1− 1.172q−1 + 0.07295q−2 + 0.1008q−3)
(3)

and the closed loop transfer function for the generic PI
controller and the plant is:

PC

1 + PC
= (2.988n1q

−1 − 2.733n1q
−2 − 2.988n2q

−2+

2.733n2q
−3)/(1 + (2.988n1 − n3 − 1.172)q−1

+(0.07295 + 1.172n3 − 2.733n1 − 2.988n2)q
−2

+(2.733n2 + .1008− 0.07295n3)q
−3 − 0.1008n3q

−4)
(4)

By comparing the coefficients of the powers of q in the
above transfer function to the identified closed loop transfer
function should give us n1, n2, and n3 and hence the gains
of the PI controller.

For the closed loop behavior, a constant RPM value (3000
RPM) is taken as the reference input and the output values
are logged for both cases. The system identification with
these values gives an exact match for both cases with the
expected 3rd order numerator and 4th order denominator.

The identified closed loop transfer functions are:

CLbug =
(.8967q−1 − 1.717q−2 + .8198q−3)

(1− 1.275q−1 − 0.4715q−2 + 0.8477q−3 − .1008q−4)
(5)

CLref =
(0.2991q−1 − 0.5724q−2 + 0.2733q−3)

(1− 1873q−1 + 0.6727q−2 + 0.3011q−3 − 0.1008q−4)
(6)

Comparing coefficients of q in Eqn. 4 to Eqn. 6 and
Eqn. 5 give us Kp = 0.1 and Ki = 0.01 and Kp = 0.3
and Ki = 0.01 for the reference and bugged controller
respectively (for Ts = 0.002) which are exactly the same
as the values which we had made the controllers for. This
demonstrates a simple method to isolate a controller’s buggy
software implementation of controller code running on the
test-bed. In the near future, we are exploring more techniques
for runtime testing and verification of ECU software.

VII. CONCLUSION

Automotive recalls due to software-related issues are on
the rise and will continue to affect a very large number of
vehicles. AutoPlug, an open automotive ECU architecture,
is proposed for use by the community at large. This will
facilitate new and efficient methods to detect, diagnose,
update, test and verify automotive ECU software. In this
early effort, we presented the initial architecture of the
AutoPlug ECU test-bed along with implementations of cruise
control, stability control, traction control and anti-lock brak-
ing system. The controls are implemented in hardware-based
ECUs and interact with a vehicle simulator which provides
real-time physics-based feedback. The test-bed is capable in
remotely updating code on the ECUs and executing runtime
diagnostics and debugging. The test-bed has been used
to demonstrate ECU control-software testing and runtime
verification to lower the cost of future vehicle recalls. For
more details, visit http://www.autoplug.org.

REFERENCES

[1] Reuters. Ford, GM lead in U.S. auto recalls 2005-2009, 2010.
[2] DailyFinance.com. It’s not just Toyota: Auto Recalls Accelerate, 2011.
[3] R. Charette. This Car Runs on Code. Discovery News., 2010.
[4] Economist. Cars and software bugs, 2010.
[5] VolvoOnAut.com. Volvo Recalls over 17,000 Vehicles, 2009.
[6] J. Suwatthikul. Fault detection. InTech, 2010.
[7] Wei-Wen Hu, Ming-Li Wang, and Yu-Hui Lin. On the Software-

Based Development and Verification of Automotive Control Systems.
In Conference of the IEEE Industrial Electronics Society. IEEE, 2007.

[8] Arnab Ray, Iris Morschhaeuser, Chris Ackermann, Rance Cleaveland,
Charles Shelton, and Chris Martin. Validating Automotive Control
Software using Instrumentation-based Verification. In International
Conference on Automated Software Engineering. IEEE/ACM, 2009.

[9] K. Koscher. Experimental security analysis of a modern automobile.
In Symposium on Security and Privacy, 2010.

[10] H. Heinecke. Automotive Open System Architecture - An Industry-
wide Initiative to Manage the Complexity of Emerging Automotive
E/E-Architectures. In SAE World Congress, 2004.

[11] T. Kinjawadekar. Model-based Design of Electronic Stability Control
System for Passenger Cars Using CarSim and Matlab-Simulink, 2009.

[12] The nano-RK Sensor Real-Time Operating System.
[13] W. Voss. A Comprehensible Guide to Controller Area Network.

Copperhill Media, 2005.
[14] Cristian R. Rojas, James S. Welsh, and Graham C. Goodwin. A

Receding Horizon Algorithm to Generate Binary Signals with a
Prescribed Autocovariance. In American Control Conference, 2007.

[15] D. Hrovat and Jing Sun. Models and Control Methodologies for IC
Engine Idle Speed Control Design. Control Eng. Practice, Vol. 5,
1997.

