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Abstract
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increasingly, Web and integration applications require more complex queries with multiple joins and even
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substantially via sideways information passing; push-style queries provide many opportunities for information
passing that have not been studied in the past literature. We present adaptive information passing, a general
runtime decision-making technique for reusing intermediate state from one query subresult to prune and
reduce computation of other subresults. We develop two alternative schemes for performing adaptive
information passing, which we study in several settings under a variety of workloads.

Keywords
sideways information passing, adaptive, push-style, adaptive information passing

Comments
Copyright 2008 IEEE. Reprinted from the IEEE 24th International Conference on Data Engineering, ICDE
2008, pages 774-783.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/db_research/42

http://repository.upenn.edu/db_research/42?utm_source=repository.upenn.edu%2Fdb_research%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages


Sideways Information Passing for
Push-Style Query Processing

Zachary G. Ives, Nicholas E. Taylor

Computer and Information Science Department, University of Pennsylvania
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Abstract— In many modern data management settings, data is
queried from a central node or nodes, but is stored at remote
sources. In such a setting it is common to perform “push-
style” query processing, using multithreaded pipelined hash
joins and bushy query plans to compute parts of the query in
parallel; to avoid idling, the CPU can switch between them as
delays are encountered. This works well for simple select-project-
join queries, but increasingly, Web and integration applications
require more complex queries with multiple joins and even
nested subqueries. As we demonstrate in this paper, push-style
execution of complex queries can be improved substantially
via sideways information passing; push-style queries provide
many opportunities for information passing that have not been
studied in the past literature. We present adaptive information
passing, a general runtime decision-making technique for reusing
intermediate state from one query subresult to prune and reduce
computation of other subresults. We develop two alternative
schemes for performing adaptive information passing, which we
study in several settings under a variety of workloads.

I. INTRODUCTION

Today the database query processing field has expanded to
consider a number of domains beyond those of traditional
client-server, parallel, or even distributed settings. Data in-
tegration [1], publish-subscribe [2], [3], and middleware [4]
systems pose queries over data that is autonomously held
at remote data sources — possibly including Web services
or XML data sources. Peer-to-peer and network query en-
gines [5], [6], [7], [8] pose queries over highly distributed
data, often stored outside of the query engine. One of the major
lessons learned in processing queries for these settings is to use
flexible scheduling: this enables the CPU to process different
portions of the plan when it encounters a delay in waiting
for a particular data source [9]. Rather than using traditional
iterator-driven (“pull”) query processing with deterministic
scheduling, most systems for querying distributed data instead
implement “push” query operators such as the pipelined hash
join [10], [11] and the eddy [12]; these operators are typically
implemented using threads [13], [14] and thus have nondeter-
ministic scheduling.

As data management systems of this vein become increas-
ingly sophisticated, one of the challenges is supporting more
complex queries with aggregation, many-way joins, and nested
subqueries. Applications that require such capabilities include
data integration, middleware-based nested XQueries over ex-
ternally controlled data, and distributed data exchange [15] —
the underpinnings of many e-commerce, mash-up, and cus-

tomer relationship management applications. Unfortunately,
complex queries may restrict flexibility in push-based exe-
cution by introducing blocking operations and/or dramatically
increasing the amount of state that must be maintained during
query processing. In this paper, we develop new techniques
for sideways information passing that allow state to be pruned
within a query plan, even across blocking operators and
among multiple correlated join expressions.

Our inspiration is the traditional relational DBMS context,
where many techniques were developed to handle complex
queries [16], [17], [18], [19]. Unfortunately, such techniques
assume the presence of indexing (seldom present in the
settings described above), fast LAN-speed communications
links (not present with Web-based applications), and “linear”
query plans in which all joins occur between a base relation
and either another base relation or an intermediate result
(inappropriate for push-style applications, which use more
flexible “bushy” plans where joins may also be between
intermediate results [20]). They prescribe a fixed order of
query evaluation, which may explicitly or implicitly en-
code sideways information passing within the query plan.
Sideways information passing, which includes techniques like
Bloomjoins [16], two-way semijoins [17], and magic sets [18],
is a means of sending information from one subexpression
not simply to its parent expression, but also to some other
correlated portion of the query computation, in order to prune
irrelevant results.

In this paper, we perform sideways information passing
adaptively, using what we term adaptive information passing
(AIP). AIP is a general and flexible technique that can often
provide the benefits of prior techniques like the Bloomjoin,
hash filter [19], or magic sets rewritings, though AIP is also
beneficial in many other settings. AIP is applicable across a
broad variety of queries, subject to the constraints that (1)
multiple subexpressions within a given query plan must be
mutually correlated through predicates, and (2) the query plan
must compute these subexpressions in parallel in a fashion that
preserves intermediate results. These assumptions are well-
suited to push-style query processing. Specifically, we:

• identify the opportunities for sideways information pass-
ing in push-style query processing and define adaptive
information passing (AIP),

• propose two algorithms for AIP in single- and multi-site
execution of push-style queries, one based on heuristics,
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Fig. 1. Plan for example query.

and the other based on cost estimation,
• describe an implementation in the Tukwila data integra-

tion engine [10], [21], and
• experimentally demonstrate the benefits of our AIP algo-

rithms using a variety of queries and workloads.
Section II reviews prior techniques for sideways information

passing and explains why they are ill-suited to push-style
query processing. Section III presents our model for adaptive
information passing, which addresses these shortcomings. Sec-
tion IV presents algorithms for adaptive information passing.
Section V describes how these algorithms were incorporated
into our Tukwila query processor. We analyze the performance
of AIP in Section VI, and then conclude and discuss future
work in Section VII.

II. BACKGROUND AND RELATED WORK

The basic technique of sideways information passing —
sending information from one query operator to another in a
fashion not specified by the query evaluation tree — has been
used in distributed [16] and deductive [22], [23] databases.

Example 2.1: We present a query that will be a running
example throughout the paper, which has several opportunities
for sideways information passing. Suppose we want to query
the standard TPC-H benchmark schema for opportunities to
break into the parts market by looking for parts that are
available for much less than their retail price, but for which
the stock on hand is low relative to sales so far this year.
SELECT DISTINCT p_partkey FROM part p, partsupp ps1,
(SELECT ps_partkey AS partkey,

SUM(ps_availqty) AS avail
FROM partsupp ps2 GROUP BY ps_partkey) avail,

(SELECT l_partkey AS partkey,
SUM(l_quantity) AS numsold
FROM lineitem l WHERE l_receiptdate > ‘2007-1-1’
GROUP BY l_partkey) sold

WHERE p_partkey = ps_partkey
AND p_partkey = avail.partkey
AND p_partkey = sold.partkey
AND 10 * avail < numsold
AND 2 * ps_supplycost < p_retailprice

There are two conventional strategies for evaluating this
multi-block query: (1) iterating over each value of the parent
query and recomputing the subqueries, or (2) computing each
block in parallel and then combining the results at the end.
The former strategy repeats work in the subqueries, while the

latter strategy may produce many results that are eliminated
when the query blocks’ outputs are combined.

We now review several previously studied means of increas-
ing performance through sideways information passing.
Semijoins and Bloomjoins. The semijoin operator was
initially studied in the context of distributed processing [24].
Given a primary source relation, it returns the subset that has a
match in a second relation; this can pre-filter intermediate re-
sults before we perform an expensive operation (e.g., shipping
them across a network). IBM’s System-R* proposed a two-way
semijoin: when two sites need to perform a distributed join,
the first sends a projection of its join attributes to the second,
which performs a semijoin and sends its matching tuples back
to the original source. The original source then performs the
final join. A variation is the Bloomjoin [16], where rather than
sending projected attributes, the first source sends a Bloom
filter summary of them. The second source may send back a
few spurious tuples because of false positives in the Bloom
filter — but the overall communication cost may be reduced
due to the Bloom filter’s small size.
Hash filters. The hash filter [19] uses Bloom filters within a
bushy join query plan. The query plan is executed in stages,
and Bloom filters are created and used to filter data in the
next stage. Benefits are substantial if the optimizer does a
good job in choosing execution stages. Unfortunately, in push
query processing settings, an optimizer seldom has enough
information to choose a good schedule, and hence it is likely to
create a plan that computes and uses Bloom filters inefficiently.
Magic sets. Magic sets rewriting techniques define an order
of evaluation across Datalog rules or SQL query blocks:
values bound in the main query are propagated to restrict
the computation being done in views or subquery blocks, in
order to filter out tuples that fail the outer query’s predicates.
The information being passed from one block to another is
termed a “magic set” or filter set. In essence, this set is
computed in the outer query, then “shared” with the subquery,
which performs a logical semijoin (on the relevant parent-child
correlation predicates) between the subquery and the magic
set. As initially presented in the context of deductive databases,
the goal of magic sets rewritings [22], [23] was to use any
constraints in the main query to more efficiently evaluate the
views. In later years, many of these techniques were adapted
to SQL views and nested SQL queries [25], [18].

Example 2.2: To create a magic set as part of the parent
query, we determine the parts that a supplier sells for less
than half of retail price. We feed this set of parts into the ag-
gregate subqueries “in parallel;” they then run independently,
computing answers restricted to possibly-relevant parts via a
semijoin with the magic set. The parent then joins their results
together and performs the selection to restrict the final result
to parts with low availability.
Discussion. In traditional sideways information passing, the
query optimizer makes an a priori decision about what infor-
mation to pass, how to pass it, and where to pass it. It encodes
this information in the form of query plan structure and



choice of algorithms. Often, by choosing which information
to pass, it must discard any alternatives, as the query plan
can only pass information in one direction. Yet in the push
model, multiple computations are going on in parallel, many
subresults are being computed simultaneously, and several of
these computations may produce information to pass across
the query plan. The order of completion may not be known
until runtime, so it is difficult for a query optimizer to take
full advantage of the opportunities.
Prior adaptive techniques. An apparent solution might be
techniques like eddies [12] or corrective query processing [21],
which change the query plan on-the-fly in response to observed
selectivities. In fact, the prior adaptive query processing tech-
niques of which we are aware [26] can only change the query
execution plan or the dataflow through it — whereas the
technique we present next can prune against many correlated
expressions simultaneously without creating additional inter-
mediate state. Moreover, unlike these prior approaches, our
techniques work across blocking operations like aggregation.

III. ADAPTIVE INFORMATION PASSING

In order to take better advantage of sideways information
passing opportunities within a push-style query plan, we in-
troduce adaptive information passing, which determines what
intermediate state to pass across an executing query plan based
on runtime conditions.

Typically, when a query optimizer chooses a query plan,
it evaluates the query correlation predicates over the data in
series of binary joins. Even in a pipelined query plan, joins in
the upper part of the query plan may not “see” data from both
inputs until late in plan execution — because they received
their data from blocking operators (as in the join in the right
side of Figure 1) or from joins that had slow inputs. Thus, a
tuple may propagate through a series of join operators before
it is found to not produce any output.

A. Basic Approach

If, while the query processor is processing a tuple t at
some point in a query plan, it could look “holistically” at
other subexpressions that have been fully computed at this
point, it might be able to determine that t cannot satisfy
the predicates of the query in combination with any tuples
in the other relations (i.e., no tuple joins with t). Adaptive
information passing takes advantage of the fact that in push-
style query processing, intermediate results are computed and
buffered in the hash tables of pipelined hash joins or hash-
based aggregation operators. Hence once a subexpression is
fully computed, there is state that can be correlated against
arriving tuples from another subexpression; new tuples that
do not satisfy the query conditions may be discarded early.

Specifically, we can create a summary (e.g., a Bloom
filter, histogram, or hash set) of a completed subexpression’s
buffered data, and use a semijoin to probe arriving tuples
against this summary. The benefits are reduced state, greatly
reducing the memory footprint of a pipelined hash join plan,
as well as faster processing, since intermediate results can be

“pruned” early in the process and do not propagate through
the plan.

Example 3.1: Refer to Figure 1 and its associated SQL
query. Suppose we start executing both subtrees of the root
node in parallel, and the left subtree completes first. We can
create a hash set of the PARTKEY attribute from the state in the
distinct operator or in the top-level join. Now, we can inject
into the right subtree two semijoins with this set (based on
equality on PARTKEY), after PS2 is read and after L is read.
These semijoins can discard any tuples that do not join with
the left subtree — eliminating non-viable tuples and reducing
the amount of state in the aggregation operators.

Example 3.2: Suppose, instead, that for the query of Fig-
ure 1, the aggregation over L completes first. We can create
a Bloom filter of the PARTKEY attribute from the state in
the aggregation operator; this may be very small due to the
predicate over L. We inject a semijoin into the left subtree
between this set of PARTKEYs and the filescans of P and PS.
This allows us to prune tuples from the join. The Bloom filter
may return false positives, but this only slightly reduces the
number of tuples pruned. We can similarly add a semijoin to
the scan of PS2 to reduce the amount of state in the other
aggregation operator.

Adaptive information passing exploits correlation predicates
across different subexpressions within the same query plan,
regardless of whether there are intervening blocking operators:
in a sense, it bypasses the normal dataflow through the query
plan in order to provide filtering. As subexpressions become
fully computed, it may use them (or summary structures
representing them) as as “upper bounds” on what tuples might
viably produce output. We term the results of a subexpression
(or the summary structure of a subexpression) an AIP set, since
it is roughly analogous to a magic set.

B. Formal Justification

We briefly justify why adaptive information passing must
always produce correct results within a select-project-join
query block; the arguments are similar for queries with nesting
and aggregation. Suppose a query plan Q is divided into three
subexpressions that are joined as part of the query: EA, the
expression that produces the AIP set; EP , the expression that
is producing a subresult we would like to prune using the AIP
set; ER, the remaining expression.

Assume the query is being executed in pipelined fashion.
For EA to produce an AIP set, all results from EA must be
fully computed, whereas EP must only be partly computed: let
EPc be the computed part of EP and EPu be the uncomputed
part. We can express the query as

(EPc ∪ EPu) 1 ER 1 EA

For simplicity we omit the predicates on the joins. By algebraic
semijoin equivalence, which holds under bag or set semantics,
we may rewrite the query as

(EPc ∪ (EPu �< EA)) 1 ER 1 EA
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Loc. Key Predicates satisfied by AIP set
† ProdKey 2 · supplyCost < retailPrice
‡ ProdKey receiptDate > ‘2007-1-1’
...

...
...

AIP Registry
Fig. 2. AIP Manager structures for executing the query of example 1

This resembles semijoin optimizations [24]. Finally, it is easy
to prove that we can rewrite the above expression to

(EPc ∪ (EPu .θA
EA)) 1 ER 1 EA

where θA is any conjunctive subset of clauses from the join
conditions relating EP and EA (i.e., it can be any less-
restrictive set of predicates), and EPu.θEA represents a probe
of EPu against any summary of the tuples in EA, which might
return false positives (false matches) but never false negatives.
Therefore, EPu .θ EA returns a superset of EPu �< EA.

C. Practical Considerations

The general definition of AIP, as described above, allows
for arbitrary expressions in the semijoin, and therefore in the
probe of the summary. In practice, neither the construction
of the summaries nor the semijoin operations are free. Hence
in the implementation we discuss next, we target the most
beneficial, i.e., most selective, correlation conditions. We focus
solely on conjunctive conditions that must hold over all query
data, and in particular, equality/existence or non-equality/non-
existence conditions. Such conditions can be evaluated with
Bloom filters as well as hash sets. Range conditions and
complex disjunctive expressions are in principle simple to
implement, but in practice they are expensive to evaluate
because they may require more expensive summary structures,
such as histograms.

IV. AIP ALGORITHMS

In this section, we propose two strategies. One makes
greedy runtime decisions and is suitable for integration into
a conventional push query processor; the second utilizes the
query optimizer’s cost estimator at runtime and is therefore
only suitable when such features are available during query
execution, such in as our Tukwila system [21].

A. Greedy Feed-Forward Filtering

Our first algorithm, which requires minimal runtime
decision-making and no runtime statistics collection, optimisti-
cally creates and uses every potentially useful AIP set. During
query optimization, the system creates a source-predicate

graph describing the predicates (edges) between table vari-
ables (nodes), and whether these predicates are directional
(i.e., when the correlated attribute is projected away). See
Figure 2(a) for the source-predicate graph for our running
example.

Query initialization. As each state-producing operator (join
or group-by) is opened, it registers in a central AIP Registry a
candidate AIP set for each attribute A it produces. Figure 2(b)
shows some of the candidate AIP sets for the example query.
Each operator also registers potential interest in other AIP
sets, which it selects as follows: for each attribute A, it uses
the source-predicate graph to find all attributes transitively
equated to A by the query, but produced elsewhere. Once all
operators have finished registering interest, any potential AIP
sets without interested parties are then eliminated. Then, for
each connected component in the source-predicate graph, we
create in the AIP Registry a vector to hold associated and
completed AIP sets. Finally, each source of an AIP set creates
its own local “working copy” AIP set that it will construct
incrementally.

Query execution. Upon receiving an input tuple, a join or
group-by operator probes each attribute of this tuple against
the appropriate vector of registered AIP sets (if any). Tuples
that pass all filters are processed by the normal query operator,
and are recorded in the operator’s local AIP set. Space usage
can be bounded by using Bloom filters; we discuss memory
concerns further in Section V. Once an operator has finished
reading all values from a given source, it decrements its
interest in all the AIP sets it could have used, and then it sends
its local AIP set to the AIP Registry. The registry appends
the AIP set to the vector corresponding to its key attributes.
If Bloom filters are used, they can be merged via bitwise
intersection if they are of the same length and based on the
same hash function. Finally, all other operators check if there
is still interest in the AIP sets they are computing; if not, they
discard their local AIP sets.

B. Cost-Based AIP

As we see in the experimental analysis, the Feed-Forward
approach, in addition to being simple and easy to retrofit
into an existing system, is often quite effective. However, it
may incur unnecessary overhead by generating AIP sets that
are useless as filters. This motivates a cost-based approach.
It builds upon many of the concepts of the Feed-Forward
approach, but rather than creating AIP sets incrementally,
it proceeds with normal query processing until one of the
input expressions to a stateful operator (i.e., join or group-by)
completes. At this point, a global decision-making module,
the AIP Manager, is invoked. This module evaluates the
cost/benefit ratio of scanning the state within the operator,
creating an AIP set, and adding the AIP set as a filter elsewhere
in the query plan. This requires special support from the
query engine: (1) query operators that maintain information
about the cardinality of the results computed so far, (2) a cost
re-estimator that can predict how expensive computation of



AIPCANDIDATES (Q : qP lan, P : conjPredicateList)
1 for all join or group-by nodes n ∈ Q do
2 for c ∈ children(n) do
3 for p ∈ P ∩ (preds over ATTRIBS(c)− preds in n) do
4 for A ∈ ATTRIBS(p) ∩ ATTRIBS(c) do
5 Sources[A] := Sources[A] ∪ {n}
6 endfor
7 endfor
8 endfor
9 endfor
10 for every key A in map Sources do
11 for all join or group-by nodes n ∈ Q do
12 if ∃p ∈ P between EQ(A) and EQ(ATTRIBS(n)) then
13 Interested[A] := InterestedIn[A] ∪ {n}
14 endif
15 endfor
16 endfor
17 return(Sources, InterestedIn)

Fig. 3. Precomputing candidate AIP set producers and users.

ESTIMATEBENEFIT (Q : qP lan, A : AIPattrib, s : srcNode, R :
srcResult)
1 UPDATEESTIMATES(Q)
2 createCost := COST(creating AIP set over R)
3 savings := 0
4 used := {}
5 for n in InterestedIn[A] in inverse order of depth in Q do
6 n′ := node joined with n by n’s parent
7 useBenefit := COST(n �� n′)− COST((n �< A) �� n′)
8 if useBenefit > 0 ∧ n 6∈ used then
9 savings := savings + useBenefit
10 Propagate revised cardinality estimates to n’s ancestors
11 endif
12 if useBenefit > 0 then
13 Add to used all ancestors of n up to the common
14 ancestor of n and s
15 endif
16 endfor
17 return(savings > createCost)

Fig. 4. Estimating benefits of an AIP set

results will be, and (3) a means of re-invoking the cost and
selectivity estimator on-the-fly for evaluating potential AIP
sets.

Query initialization. During query optimization, the AIP
Manager first traverses the current query plan and identifies
possibly-useful AIP sets and sources. The basic algorithm,
AIPCANDIDATES, takes the query plan and a list of conjunc-
tive predicates that must hold over all contributing tuples, and
it precomputes the potential sources and users of AIP sets.
Pseudocode is provided in Figure 3; it references two functions
that are not shown. Function EQ returns all attributes that
are transitively equated by the query, and function ATTRIBS
returns the set of attributes in a predicate or query plan node.
AIPCANDIDATES first records the set of potential source
nodes for each AIP set key (lines 1-9); note that the source
nodes are the children of (i.e., inputs to) state-producing
operators, whose results are stored within the operators. Lines
10-16 compute the sets of nodes whose output can be filtered
by the AIP sets.

Query execution. Whenever an input subexpression to a
pipelined hash join or hash group-by operator completes, it
triggers the AIP Manager. The operator’s internal state holds

the relational result of the now-completed subexpression —
next the AIP Manager must determine whether to construct
any AIP sets from this. Algorithm ESTIMATEBENEFIT (Fig-
ure 4), given the query plan Q, a possible AIP set attribute A,
source node s, and s’s output result R, uses the optimizer’s
cost modeler to estimate the benefit of producing and using
the AIP set.

ESTIMATEBENEFIT requires three functions to be provided
by the query optimizer during execution. UPDATEESTIMATES
updates the cardinality estimates to consider the amount of
computation remaining in query processing. Then (lines 5-11)
for each potential user n of the AIP set (evaluated in order
from lowest to highest in the query plan tree), we call COST,
which predicts cost of filtering n before it is joined against
some other node n′. To avoid “double counting” the benefits
of an AIP set, lines 12-15 ensure that, once we have seen that
it is beneficial to filter node n against an AIP set, we record
all of its ancestors so we do not also consider it beneficial to
filter with them.

If an AIP set is judged to be beneficial, the AIP Manager
makes the updated cardinality estimates permanent, constructs
the AIP set, and injects the AIP filter into the appropriate
stateful operators so n is prefiltered. In cases where there is
an existing AIP filter over the same key attributes, that filter
can either be intersected or, in the case of a filter with strictly
weaker constraints, directly replaced.

The algorithm given above makes greedy decisions about
individual potential AIP sets in isolation. This enables it to
be very fast, which is key because it is invoked frequently
during execution. The optimizer services invoked by the AIP
Manager, namely cost estimation, do not search the plan space
and therefore add little overhead.

V. IMPLEMENTATION

In this section, we discuss how we implemented our two
algorithms within the Tukwila data integration engine. As
mentioned previously, we consider two types of AIP sets:
Bloom filters, which use limited space and are efficient to
probe, but have false positives, and hash tables, which have no
false positives but take more memory and are more expensive
to probe. Preliminary experiments found that the added preci-
sion of a hash table was generally countered by its increased
creation and probing cost. Hence, our implementation only
employs Bloom filters, with a single exception which we
describe in the Cost-based AIP case.

Memory overflow is not a focus in AIP because (1) AIP
sets, especially if represented as Bloom filters, are small, and
(2) if memory becomes an issue, an AIP set may be discarded,
since it is a performance, not correctness, optimization. With a
hash-based AIP set one can discard portions, on a per-bucket
basis: any probe tuple that corresponds to a discarded bucket
will simply be passed through the filter, and any probe tuple
that corresponds to an existing bucket will be matched against
the hash table.



A. Brief Overview of Tukwila

The Tukwila data integration engine [10], [21] is a push-
style query processor whose focus is efficient processing of
data integration queries, in which the remote sources may have
little query processing capability of their own.
Query optimizer. Our cost-based query optimizer chooses
maximally pipelined plans, emphasizing the pipelined hash
join [27], [10], [11], hash-based aggregation, and bushy plans.
The optimizer uses a top-down search strategy similar to Vol-
cano’s [28], and its cost modeler does not require histograms:
instead, it relies on cardinality estimates and information
about keys and foreign keys when estimating the selectivity
of join conditions. Keys and foreign keys are useful for
estimating the number of unique values of join attributes,
and Tukwila’s optimizer propagates this information assuming
uniform distribution and uncorrelated attributes. For cases
where the remote source can process queries, e.g., if data is
located at a remote source running an instance of the Tukwila
engine, the optimizer considers plans that “push” portions of
the query from the “master” query node to the remote source,
assuming all nodes have the same CPU costs and the network
has 10Mbps bandwidth. The Tukwila optimizer and its sub-
components can be invoked at any time during execution.
Execution engine. In order to provide feedback to the query
optimizer, the Tukwila query engine maintains and exposes
state information. All query operators are supplemented with
cardinality counters. The Tukwila query engine is heavily
multithreaded, in that every pipelined hash join results in three
separate threads (one for each input and one to produce join
results). Finally, all stateful operators employ standardized
data structures (hash table, Bloom filter, list) for preserving
intermediate state, which they expose to the execution engine
for use in AIP.

B. Query Processor Extensions for AIP

Feed-forward. The Feed-forward algorithm of Section IV
required minimal extension to the Tukwila’s query engine. The
main new component, the AIP Registry, maintains a vector of
completed AIP sets for each query attribute. It also determines
which attributes are equated by the query. During initialization,
a join reserves a container for a Bloom filter for each attribute
that may be used in an AIP set, as described in Section IV-A.
Finally, to enable on-the-fly pipelined query plan modification,
we extended our join and group-by implementations to support
registration of new semijoin operators “on the fly”; these
semijoins are called when a tuple is received and before it
is processed internally by the operator.
Cost-based AIP. The cost-based AIP algorithm required
substantially more modifications, as it needs to be able to “look
at” the entire query plan and selectively re-invoke optimizer
cost and cardinality estimation. We achieved this through
a global AIP Manager, which holds the data structures of
Figure 2. The source-predicate graph, as in the Feed-forward
algorithm, indicates equivalences of attributes of query atoms
and is used to check transitive attribute equivalence. AIP sets

are generated from particular portions of the query plan, and
registered with the AIP Manager. The AIP Manager must also
maintain cost estimate information about the query plan as
different subresults are built. An AIP Registry (with more
information than the version for the Feed-Forward algorithm)
describes the essential characteristics of each AIP set, its
key attributes and the predicates that have been evaluated in
creating the set. Our cost-based algorithm only creates Bloom
filter-based AIP sets. However, in some cases a hash table
from an operator (e.g., a join) may be directly reused as an
AIP set, if it has an appropriate key.
Distributed query extensions.

For this paper, we make only limited use of Tukwila’s
distributed computation capabilities: we consider how AIP sets
can be sent to remote nodes to reduce data transfer rates, as
in a Bloom join. We extended the cost-based AIP scheme
to support distributed coordination and information passing
among Tukwila query nodes. Our scheme relies on one AIP
Manager with complete information about plan progress and
intermediate result cardinalities. The “master” query node runs
the AIP Manager and tracks the progress of the complete
global query plan. Via TCP sockets, the AIP Manager period-
ically polls all secondary sites to discover execution progress
and intermediate result availability. When a subresult becomes
available at one site, the AIP Manager determines where it
may be useful to inject into the global plan. We extended
ESTIMATEBENEFITS’s cost model with an additional factor,
the cost of transmitting an AIP filter across the network. We
only ship Bloom filters in our implementation, so we simply
estimate the cost of shipping n bytes, where n is the size
of the filter. When an AIP filter is estimated to be useful, the
AIP Manager requests it from the source, relays it to the target
node if necessary, and injects it into the appropriate query plan
operator.

VI. EXPERIMENTS

We conducted 3 classes of experiments: AIP as a means of
executing subqueries when the data is arriving at a high rate;
AIP with subqueries in the presence of delays, as in many
wide area query processing settings; and AIP as a means of
speeding up join query performance, including joins with a
remote source.
Experimental workload. We elected to use the established
TPC-H benchmark as a starting point, rather than designing
our own data sets. For the base instance, we used the 1GB-
scale TPC-H data. In some experiments we substituted a 1GB-
scale TPC-D data set with the same queries, where the TPC-D
data set was created by the Microsoft skewed data generator
with a Zipfian skew factor z of 0.5.

We began with the basic TPC-H queries that include select,
project, join, and grouping with multiple correlated predicates:
these included queries 2, 5, 9, and 17 (where 2 and 17 include
nested subqueries and 5 and 9 are single-block). Additionally,
we added a query used previously to validate magic sets
optimizations in [18]: this query somewhat resembles TPC-
H query 2 but has slightly fewer joins. Finally, to compare



the effects of variations in selectivity, we modified these
basic queries along a number of axes — adding or removing
predicates or weakening range conditions. Queries are listed
in Table I.

To provide a point of comparison with adaptive information
passing, we extended Tukwila to perform magic sets rewrit-
ings using the approach of [18]. We adopt [18]’s heuristics
in pruning the optimizer search space: (1) the filter set is
computed from the entire outer query, and (2) the filter set
contains the largest number of attributes that can be joined.
Our implementation performs full pipelining when computing
the filter set: the filter set is computed simultaneously with
the main query and the subquery. Experiments were repeated
a minimum of 5 times and 95% confidence intervals are
included. Our Tukwila engine is approximately 80,000 lines
of C++ code. Experiments were conducted on a dual 3GHz
Xeon machine with 2GB of memory running Windows Server
2003. For AIP, our Bloom filters use one hash function and
are sized for a 5% false positive rate. Our cost estimates for
transmitting Bloom filters assume 10Mbps data transfer rates.

A. AIP and Correlated Subqueries

Our initial motivation in developing adaptive information
passing was to facilitate better multi-block query processing
capabilities in push-style query engines. Thus our first experi-
ment focuses on the performance of AIP for correlated, nested
SQL queries: these are the queries that have previously been
shown to be amenable to magic sets decorrelation. Figures 5
and 6 show the running times among normal query processing
with no special optimizations (baseline), our pipelined magic
sets implementation (Magic), and the two AIP approaches,
Feed-forward and Cost-based. Figures 7 and 8 show the
corresponding space usage. These queries were executed under
“optimum” data transfer conditions to see how the algorithms
perform when we are primarily CPU-bound. We streamed data
directly from disk and without the presence of indices, since
random access is unavailable in most push-based applications.

For most of our workload queries, the magic sets rewriting
outperformed the baseline approach in terms of running time.
Tukwila pipelines computation of the filter set and execution
of the parent and child query blocks, and use of the filter set
is beneficial. In one case, Q2E, the magic set is not useful
as a filter, so the running time is slightly worse. Additionally,
for Q2C, Magic’s space usage was dramatically worse. In this
case, we are seeing the effects of an optimization in Tukwila’s
pipelined hash join implementation: if one of the join inputs
completes, the other input “short-circuits” and stops buffering
input that will not be needed later. The dataflow in the Baseline
plan allowed the LINEITEM table to be short-circuited early
in execution, whereas the Magic plan did not.

We now discuss the AIP results, which validate that there is
significant opportunity for filtering in a push-style query plan.
Almost uniformly, both AIP methods outperform Baseline
and Magic. Cost-based AIP is more conservative in creating
AIP sets than Feed-forward, which sometimes avoids excess
filtering and leads to better performance, as in Q3E; though it

TPCH-2: Q1A (normal), Q1B (skewed), Q1C (remote)
select s acctbal, s name, n name, p partkey, p mfgr, s address,
s phone, s comment
from part, supplier, partsupp, nation, region
where p partkey = ps partkey ∧ s suppkey = ps suppkey
∧ p size = 1 ∧ p type like ‘%TIN’ ∧ s nationkey =

n nationkey ∧ n regionkey = r regionkey ∧ r name =
‘AFRICA’ ∧ ps supplycost = (select min(ps supplycost) from
partsupp,supplier,nation,region where p partkey = ps partkey
∧ s suppkey = ps suppkey ∧ s nationkey = n nationkey
∧ n regionkey = r regionkey ∧ r name = ‘AFRICA’)

Q1D (child weaker)
Q1A with child r name < ‘S’ and no p type constraint

Q1E (parent weaker)
Q1A with parent p type < ‘TIN’ and r name < ‘S’

TPCH-17: Q2A (normal), Q2B (skewed)
select sum(l extendedprice) / 7.0 from lineitem, part
where p partkey = l partkey ∧ p brand = ‘Brand#34’
∧ p container = ’MED CAN’ ∧ l quantity < (select 0.2

* avg(l quantity) from lineitem where l partkey = p partkey)
Q2C (parent stronger)

Q2A with parent l partkey < 1000
Q2D (child stronger)

Q2A with child p partkey < 1000
Q2E (parent weaker)

Q2A with parent omitting predicate on p brand
IBM [29]: Q3A (normal), Q3B (skewed), Q3C (remote)

select s name, s acctbal, s address, s phone, s comment
from part, supplier, partsupp
where s nation=‘FRANCE’ ∧ p size = 15 ∧ p type=‘BRASS’
∧ p partkey = ps partkey ∧ s suppkey = ps suppkey
∧ ps supplycost = (select min(ps supplycost) from part-

supp,supplier where p partkey = ps partkey ∧ s suppkey =
ps suppkey ∧ s nation=‘FRANCE’)

Q3D (child weaker)
Q3A with child n name >= ‘FRANCE’

Q3E (parent-weaker)
Q3A omitting parent p size predicate

TPCH-5: Q4A (normal)
select n name, sum(l extendedprice * (1 - l discount))
from customer, orders, lineitem, supplier, nation, region
where c custkey = o custkey ∧ l orderkey = o orderkey
∧ l suppkey = s suppkey ∧ c nationkey = s nationkey
∧ s nationkey = n nationkey ∧ n regionkey = r regionkey
∧ r name = ‘MIDDLE EAST’ ∧ o orderdate >= ‘1995-01-
01’ ∧ o orderdate < ‘1996-01-01’
group by n name

Q4B (fewer suppliers)
Q4A with l suppkey < 1000

TPCH-9: Q5A (normal)
select n name, o year, sum(amount) from
(select n name, year(o orderdate) as o year, l extendedprice * (1
- l discount) - ps supplycost * l quantity as amount
from part, supplier, lineitem, partsupp, orders, nation
where s suppkey = l suppkey ∧ ps suppkey = l suppkey
∧ ps partkey = l partkey ∧ p partkey = l partkey ∧ o orderkey
= l orderkey ∧ s nationkey = n nationkey ∧ p name like
‘%black%’)
group by n name, o year

Q5B (fewer nations)
Q5A with n nationkey < 10

TABLE I
QUERIES USED IN EXPERIMENTS
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Fig. 5. Running times: Variations on TPC-H Query 2 and the IBM query.
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Fig. 6. Running times: Variations on TPC-H Query 17.

may miss “borderline” filtering opportunities. Moreover, there
is a delay in estimating costs and in creating AIP sets (we
measured approximately 4% overhead for Q1A and 2.5% for
Q2A); meanwhile unfiltered pipelined execution may continue
elsewhere in the query plan. These factors mean that the
cost-based approach typically performs in the same range as
the naı̈ve Feed-forward approach, which creates filters over-
aggressively but does not suffer greatly because of their low
overhead. Early experiments with using hash sets instead of
Bloom filters showed a significantly greater disparity; however,
Bloom filters proved to be superior in performance for all
cases, so we only show Bloom filter results here.

B. AIP with Delayed Input

Since push query processing is oriented towards query-
ing remote data, we next consider the impact of delays on
overall performance. Naturally, in a pipelined query plan, as
the input dataflow rates decrease, computational efficiency
becomes less critical to individual query performance — I/O
delays dominate. Hence one would expect that as relations
are delayed, the running time disparities between different
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Fig. 7. Space usage: Variations on TPC-H Query 2 and IBM variant.
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Fig. 8. Space usage: Variations on TPC-H Query 17.

query processing methods will diminish. We repeated the
previous set of queries in a setting where one of the larger
input relations, PARTSUPP, was delayed by 100msec and
rate-limited by injecting a 5msec delay every 1000 tuples.
The space usage (Figures 11 and 12) is very similar to the
previous experiment. However, as expected, the running time
differences (Figures 9 and 10) have gone down. Still, there
remains a noticeable performance benefit to using AIP: in fact,
the Feed-forward approach becomes even more viable, as even
expensive filters may provide some benefit. The Cost-based
approach optimizes for CPU cost rather than query completion
time, and hence it is less aggressive in generating AIP sets.
It also incurs a propagation delay in receiving information
about distributed AIP set availability, as well as the overheads
mentioned in Section VI-A. Finally, we note that a reduction
in both CPU cost and memory can be very useful in improving
throughput if multiple queries are running concurrently, even
if they do not decrease the latency of a single specific query.
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Fig. 9. Running times with delayed PARTSUPP relation: variations on TPC-
H Query 2 and IBM variant.
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Fig. 10. Running times with delayed PARTSUPP relation: variations on
TPC-H Query 17.

C. AIP and Join Queries

Our final set of experiments focuses on join queries, which
are seldom considered for sideways information passing. The
leftmost two queries of Figures 13 and 14 show that for the
base TPC-H benchmark queries, AIP reduces the amount of
intermediate state and thus the running time. Not surpris-
ingly, some of these benefits are dependent on the relative
selectivities of the correlation predicates versus the predicates
that are being evaluated by the joins in the query plan. For
Q4B, we reduce the cardinality of the SUPPLIER relation
and see the relative performance of AIP increases slightly.
On the other hand, a similar change in Q5A, reducing the
number of nations (Q5B), is detrimental to performance. This
is because the NATION table was already being joined early in
the query plan as a means of pruning state, and there are few
other selection conditions in the query — meaning that few
other useful filter sets exist (except against the final join, with
LINEITEM, which reduces state but not running time). Here
the Cost-based algorithm at least does not generate wasteful
filters.

The final two queries in the figure show that in a truly
distributed setting, where a remote query engine with AIP
support is used to fetch data, we can derive many of the
same benefits as Bloomjoins, but in an adaptive way. As
discussed previously, we implemented a distributed version
of the Cost-based algorithm, which can send filter sets to
remote nodes “on the fly.” Here, we see that the two queries,
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Fig. 11. Space usage under delay: variations on TPC-H Query 2 and IBM
variant.
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Fig. 12. Space usage under delay: variations on TPC-H Query 17.

where all computation is done on the master node but the
PARTSUPP relation is fetched across a 100Mb Ethernet,
benefit substantially from the distributed AIP approach.

D. Summary of Experimental Results

Our experimental results show the benefit of both imple-
mentations of AIP in a variety of centralized and distributed
settings. AIP offers significant savings in terms of both running
time and memory usage against other execution strategies,
including earlier sideways information passing techniques. The
memory savings may be particularly imporant in a system that
executes multiple queries simultaneously, as in such systems
memory shortages can constrain performance. Furthermore,
the experimental results show that use of AIP is safe: even
when the query offers little or no opportunity for information
passing, our techniques do not add a significant amount of
overhead.

VII. CONCLUSIONS AND FUTURE WORK

Adaptive information passing is a novel and general model
for passing filters between portions of a query plan, which
provides significant benefits in state size and running times,
even when compared to magic sets, with minor overhead. We
examined two implementation strategies, one of which can be
easily retrofitted into an existing distributed query engine, and
the other of which can be added to modern adaptive query
processing systems. Experiments showed the benefits of both
strategies in push-based query processing when data arrived
rapidly or when it was delayed. The Feed-forward approach
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Fig. 13. Running times for join and distributed join queries.
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Fig. 14. Space usage for join and distributed join queries.

provides great benefits and is simple to implement; it therefore
seems ideal for retrofitting into conventional push engines.
The Cost-based approach provides slightly greater benefits
(in particular, lower worst-case overhead) for systems that
can be extended to support it, namely modern adaptive query
processing engines.

We feel that adaptive information passing is a promising
new technique for processing remote data. It reduces the
performance and memory penalty of pipelined hash joins,
which are standard in push query engines. It generalizes the
concepts behind Bloomjoins, the two-phase semijoin, hash fil-
ters, and to a limited extent, magic sets. In the future, we hope
to investigate the synergies between AIP and more general
adaptive query processing techniques, such as STAIRS [30]
or corrective query processing [21].
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