1-25-2011

Computing Krippendorff's Alpha-Reliability

Klaus Krippendorff

University of Pennsylvania, kkrippendorff@asc.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/asc_papers

Part of the Communication Commons

Recommended Citation

Postprint version.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/asc_papers/43

For more information, please contact repository@pobox.upenn.edu.
Computing Krippendorff’s Alpha-Reliability

Abstract
Krippendorff’s alpha (α) is a reliability coefficient developed to measure the agreement among observers, coders, judges, raters, or measuring instruments drawing distinctions among typically unstructured phenomena or assign computable values to them. α emerged in content analysis but is widely applicable wherever two or more methods of generating data are applied to the same set of objects, units of analysis, or items and the question is how much the resulting data can be trusted to represent something real.

Disciplines
Communication | Social and Behavioral Sciences

Comments
Postprint version.

This working paper is available at ScholarlyCommons: http://repository.upenn.edu/asc_papers/43
Computing Krippendorff’s Alpha-Reliability

Klaus Krippendorff
kkrippendorff@asc.upenn.edu
2011.1.25

Krippendorff’s alpha (α) is a reliability coefficient developed to measure the agreement among observers, coders, judges, raters, or measuring instruments drawing distinctions among typically unstructured phenomena or assign computable values to them. α emerged in content analysis but is widely applicable wherever two or more methods of generating data are applied to the same set of objects, units of analysis, or items and the question is how much the resulting data can be trusted to represent something real.

α’s general form is:

\[\alpha = 1 - \frac{D_o}{D_e} \]

where \(D_o \) is the observed disagreement among values assigned to units of analysis:

\[D_o = \frac{1}{n} \sum_c \sum_k o_{ck \text{ metric}} \delta_{ck}^2 \]

and \(D_e \) is the disagreement one would expect when the coding of units is attributable to chance rather than to the properties of these units:

\[D_e = \frac{1}{n(n-1)} \sum_c \sum_k n_c \cdot n_{k \text{ metric}} \delta_{ck}^2 \]

The arguments in the two disagreement measures, \(o_{ck}, n_c, n_k \text{ and } n \), refer to the frequencies of values in coincidence matrices, to be defined below.

Algebraically, when observers agree perfectly, observed disagreement \(D_o=0 \) and \(\alpha=1 \), which indicates perfect reliability. When observers agree as if chance had produced the results, \(D_o=D_e \) and \(\alpha=0 \), which indicates the absence of reliability. \(\alpha=0 \) occurs when observers are unable to distinguish among units or assign values to them drawn randomly from a collective estimate of the population of data. To rely on data generated by any method, \(\alpha \) needs to be far from these two extreme conditions, ideally \(\alpha=1 \). For reliability considerations, \(\alpha \)’s range is:

\[1 \geq \alpha \geq 0 \]

- Systematic disagreement
- Sampling errors

Unlike other specialized coefficients, \(\alpha \) is a generalization of several known reliability indices. It enables researchers to judge a variety of data with the same reliability standard. \(\alpha \) applies to:

- Any number of observers, not just two
- Any number of categories, scale values, or measures
- Any metric or level of measurement (nominal, ordinal, interval, ratio, and more)
- Incomplete or missing data
- Large and small sample sizes alike, not requiring a minimum

\(\alpha \) evaluates reliability one variable at a time. It offers other analytical possibilities not presented here.
Reliability data duplicate the process of generating data whose reliability is in question. Given such data, α-reliability can be computed in four computational steps, graphed below.

These four computational steps will be defined and illustrated with four kinds of data of increasing complexity:

A. Binary or dichotomous data, two observers, no missing data

B. Nominal data, two observers, no missing data

C. Nominal data, any number of observers, missing data

D. All metrics, any number of observers, missing data

Finally,

E. A general computational form is presented, bypassing coincidence matrices

A. Binary or dichotomous data, two observers, no missing data

1. **Construct a reliability data matrix**: here, a 2 observers-by-N units matrix, containing $2N$ values, c and k:

 Units: 1 2 … u … N

 Observers: i: c_{i1} c_{i2} … c_{iu} … c_{iN}

 j: c_{j1} c_{j2} … c_{jui} … c_{jN}

 For example, when two observers judge $N=10$ units, the 2-by-10 data matrix contains 20 values:

<table>
<thead>
<tr>
<th>Items judged</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meg:</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Owen:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

2. **Tabulate coincidences within units**. Coincidence matrices account for all values contained in a reliability data matrix. They differ from the familiar contingency matrices, which account for units in two dimensions, not values. The importance of this difference becomes apparent in C.

 Into a 2-by-2 coincidence matrix, units are entered twice, once as $c-k$ pairs and once as $k-c$ pairs. In the example, unit 1 is entered as a 0-1 pair of values and as a 1-0 pair of values. Unit 2 is entered as two 1-1 pairs of values, etc.:

 Values:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_0</td>
<td>n_1</td>
<td>n_{00}</td>
<td>n_{01}</td>
</tr>
</tbody>
</table>

 Number of Values:

<table>
<thead>
<tr>
<th>n_0</th>
<th>n_1</th>
<th>$n=2N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>6</td>
<td>20</td>
</tr>
</tbody>
</table>
Accordingly, \(o_{00} \) represents the ten 0-0 pairs within units 4, 5, 7, 8, and 10. \(o_{01} \) represents the four 0-1 pairs in units 1, 3, 6, and 9, and \(o_{10} \) represents the four 1-0 pairs in the four same units. \(o_{11} \) represents the two 1-1 pairs found only in unit 2. \(n_0=14 \) is the number of 0s in the reliability data matrix, \(n_1=6 \) is the number of 1s, and \(n=2N=20 \) is the total number of values paired.

For these binary data, mismatching coincidences occur in two cells \(o_{01}, o_{10} \) of equal frequency, 4.

\[\alpha \text{-reliability (most simple form):} \]
\[\alpha_{\text{binary}} = 1 - \frac{D_a}{D_e} = 1 - \frac{o_{01}}{n_0 \cdot n_1} \]

In the example:
\[\alpha_{\text{binary}} = 1 - \frac{(20 - 1) \cdot 4}{14 \cdot 6} = 0.095 \]

B. Nominal data, two observers, no missing data

\[\alpha \text{-reliability (most simple form):} \]
\[\alpha_{\text{normal}} = 1 - \frac{D_a}{D_e} = 1 - \frac{\sum_{c<k} o_{ck}}{n_0 \cdot n_1} \]

In the example:
\[\alpha_{\text{normal}} = 1 - \frac{\sum_{c<k} o_{ck}}{24} = 0.095 \]

1. Construct a reliability data matrix — just as in A above. For a 2-by-12 example:

<table>
<thead>
<tr>
<th>Items judged:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ben:</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>d</td>
<td>c</td>
<td>c</td>
<td>e</td>
<td>d</td>
<td>d</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Gerry:</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>e</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Values:} \]
\[\begin{array}{ccccccccccc}
1 & o_{11} & o_{1k} & \ldots & n_1 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
1 & o_{c1} & o_{ck} & \ldots & n_c = \sum_k o_{ck} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
n_1 & n_k & \ldots & n = \sum_c \sum_k o_{ck} \end{array} \]

Where \(o_{ck} = \sum_u \) Number of c-k pairs in unit u specifically:

\[o_{ab} = 1 \] a-b pair in unit 1
\[o_{ba} = 1 \] b-a pair in unit 1
\[o_{aa} = 2 \] a-a pairs in unit 2
\[o_{bb} = 4 = 2 \] b-b pairs in unit 3
\[\ldots + 2 \] b-b pairs in unit 4

and so forth.

\[n_1=4 \text{ is the number of } a's \]
\[n_2=6 \text{ is the number of } b's \]

and so forth.

\[n = 24 \text{ is the total number of values} \]

for two observers: \(n = 2N \)

\[\alpha \text{-reliability (most simple form):} \]
\[\alpha_{\text{normal}} = 1 - \frac{D_a}{D_e} = 1 - \frac{\sum_{c<k} o_{ck} - \sum_n n_c (n_c - 1)}{n(n-1) - \sum_c n_c (n_c - 1)} \]
Wherein A_o is the percent of observed matches in units u and A_e is the percent of matches obtainable by chance. The computational form further simplifies the needed computations.

In the example:

$$\alpha = \frac{(24-1)(2+4+6+4+2) - [4(4-1)+6(6-1)+6(6-1)+6(6-1)+2(2-1)]}{24(24-1) - [4(4-1)+6(6-1)+6(6-1)+6(6-1)+2(2-1)]} = 0.692$$

C. Nominal data, any number of observers, missing data

1. Construct a reliability data matrix – just as in A and in B above, but for m observers:

 Units u:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>. .</th>
<th>u</th>
<th>. . .</th>
<th>. N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observers:</td>
<td>1</td>
<td>c_{11}</td>
<td>c_{12}</td>
<td>. .</td>
<td>c_{1u}</td>
</tr>
<tr>
<td></td>
<td>i</td>
<td>c_{i1}</td>
<td>c_{i2}</td>
<td>. .</td>
<td>c_{iu}</td>
</tr>
<tr>
<td></td>
<td>j</td>
<td>c_{j1}</td>
<td>c_{j2}</td>
<td>. .</td>
<td>c_{ju}</td>
</tr>
<tr>
<td></td>
<td>. . .</td>
<td>. .</td>
<td>. .</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>c_{m1}</td>
<td>c_{m2}</td>
<td>. .</td>
<td>c_{mu}</td>
</tr>
</tbody>
</table>

 Number of observers valuing u: m_1 m_2 . . . m_u m_N

 When data are missing, this matrix contains less than mN entries and m_u is variable.

 For example, a 4 observers-by-12 units reliability data matrix:

 Units u:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observer A:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Observer B:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>.</td>
</tr>
<tr>
<td>Observer C:</td>
<td>.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Observer D:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

 Number m_u of values in unit u: 3 4 4 4 4 4 4 4 4 3 2 1 41

 Note that 7 out of the 48 possible values in this matrix are missing. m_u varies from 1 to 4.

2. Tabulate coincidences within units. The coincidence matrix appears as in B:

 Values:

<table>
<thead>
<tr>
<th>1 . k .</th>
<th>n_i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>o_{ij}</td>
<td>o_{jk}</td>
<td>.</td>
<td>n_i</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>. . .</td>
<td>. .</td>
<td>.</td>
<td>n_i</td>
<td>.</td>
<td>2</td>
<td>4/3</td>
</tr>
<tr>
<td>. . .</td>
<td>. .</td>
<td>.</td>
<td>n_i</td>
<td>.</td>
<td>3</td>
<td>1/3</td>
</tr>
<tr>
<td>c</td>
<td>o_{ct}</td>
<td>o_{ck}</td>
<td>.</td>
<td>$n_k = \sum_k o_{ck}$</td>
<td>4</td>
<td>1/3</td>
</tr>
<tr>
<td>. . .</td>
<td>. .</td>
<td>.</td>
<td>n_k</td>
<td>.</td>
<td>5</td>
<td>.</td>
</tr>
<tr>
<td>n_i . n_k .</td>
<td>$n = \sum_i \sum_k n_{ik}$</td>
<td>9</td>
<td>13</td>
<td>10</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

 Unlike in the two-observer case in B: $o_{ck} = \frac{\text{Number of } c-k \text{ pairs in unit } u}{m_u - 1}$

 Note that each unit contains $m_u(m_u-1)$ coincidences. A coincidence matrix accounts for all pairs of values found in u. Unit 1 contains $3(3-1)=6$ pairs of matching 1s. It contributes
6/(3-1)=3 to the o_{11} cell, one for each value. Unit 2 contains 4(4-1)=12 pairs, 6 matching 2-2 pairs, 3 mismatching 2-3 pairs, and 3 mismatching 3-2 pairs. It adds 6/(4-1)=2 to o_{22}, 3/(4-1)=1 to o_{32}, and 4 to the total n, thus fully accounting for its 4 values. Unit 6 contains 4(4-1)=12 pairs of mismatching values, each adds 1/(4-1)=1/3 to a different cell. The lone value 3 in unit 12 affords no comparisons, 1(1-1)=0 pairs and does not add to this account. Thus, the margins of coincidence matrices do not represent all values that occur in a reliability data matrix, only those that can be paired within units, here $n=40$ pairable values over all units.

3. Skip

4. Compute α-reliability – just as in B

$$\alpha_{\text{nominal}} = 1 - \frac{D_o}{D_e} = 1 - \frac{A_o - A_e}{1 - A_e} = \frac{(n-1)\sum o_{cc} - \sum n_c(n_c - 1)}{n(n-1) - \sum n_c(n_c - 1)}$$

In the example:

$$\alpha_{\text{nominal}} = \frac{(40-1)(7+10+8+4+3)-[9(9-1)+13(13-1)+10(10-1)+5(5-1)+3(3-1)]}{40(40-1)-[9(9-1)+13(13-1)+10(10-1)+5(5-1)+3(3-1)]} = 0.743$$

D. Any metric, any number of observers, missing data

1. Construct a reliability data matrix – just as in C

2. Tabulate coincidences within units – just as in C

3. Insert the difference function δ^2_{ck} that is appropriate to the metric of the given data into the two disagreements D_o and D_e defined in the beginning of this document.

Note that α accounts for different metrics or levels of measurement by weighing the observed and expected coincidences by the squared difference between the coinciding values. Differences can be expressed as mathematical functions and in the form of a table. The latter makes their relative magnitudes transparent. Interval and ratio metric differences are functions of the values being paired. Ordinal differences depend on their frequencies of using values. And nominal differences are added here to generalize step 4.

- **Nominal metric differences** – Two values either match, or they do not:

 Nominal categories, names:

 \[
 \begin{array}{cccccc}
 a & b & c & d & e & f \\
 0 & 1 & 1 & 1 & 1 & 1 \\
 1 & 0 & 1 & 1 & 1 & 1 \\
 1 & 1 & 0 & 1 & 1 & 1 \\
 1 & 1 & 1 & 0 & 1 & 1 \\
 1 & 1 & 1 & 1 & 0 & 1 \\
 1 & 1 & 1 & 1 & 1 & 0 \\
 \end{array}
 \]

 \[
 \delta^2_{ck} \begin{cases}
 0 & \text{iff } c = k \\
 1 & \text{iff } c \neq k
 \end{cases}
 \]
- **Ordinal metric differences** – Values have the meaning of ranks and differences between ranks depend on how many ranks they are apart from each other. For example, with frequencies from data in C (and one unused rank added to show that it does not matter):

<table>
<thead>
<tr>
<th>Ranks:</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>0</td>
<td>11^2</td>
<td>22.5</td>
<td>30^2</td>
<td>32.5</td>
<td>34^2</td>
</tr>
<tr>
<td>2nd</td>
<td>121</td>
<td>0</td>
<td>11.5</td>
<td>19^2</td>
<td>21.5</td>
<td>23^2</td>
</tr>
<tr>
<td>3rd</td>
<td>506</td>
<td>132</td>
<td>0</td>
<td>7.5^2</td>
<td>10^2</td>
<td>11.5^2</td>
</tr>
<tr>
<td>4th</td>
<td>900</td>
<td>361</td>
<td>56</td>
<td>0</td>
<td>2.5^2</td>
<td>4^2</td>
</tr>
<tr>
<td>5th</td>
<td>992</td>
<td>462</td>
<td>100</td>
<td>16</td>
<td>0</td>
<td>2.3</td>
</tr>
<tr>
<td>6th</td>
<td>1156</td>
<td>529</td>
<td>132</td>
<td>16</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

\[
\text{Ordinal } \delta^2_{ck} = \left(\sum_{g=c}^{k} n_g - \frac{n_c + n_k}{2} \right)^2
\]

Ordinal metric differences may be standardized: \(0 \leq \text{Ordinal } \delta^2_{ck} \leq 1\) by:

\[
\text{Ordinal } \delta^2_{ck} = \left(\frac{\sum_{g=c}^{k} n_g - \frac{n_c + n_k}{2}}{n - \frac{n_{\text{max}} + n_{\text{min}}}{2}} \right)^2
\]

where \(c_{\text{max}}\) is the largest and \(c_{\text{min}}\) the smallest rank among all ranks used. Standardization does not affect \(\alpha\), however.

- **Interval metric differences** – Values differ algebraically:

<table>
<thead>
<tr>
<th>Interval values:</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>1^2</td>
<td>2^2</td>
<td>3^2</td>
<td>4^2</td>
<td>5^2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1^2</td>
<td>2^2</td>
<td>3^2</td>
<td>4^2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1^2</td>
<td>2^2</td>
<td>3^2</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1^2</td>
<td>2^2</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1^2</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>16</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\text{Interval } \delta^2_{ck} = (c - k)^2
\]

Interval metric differences may be standardized as well: \(0 \leq \text{Interval } \delta^2_{ck} \leq 1\) by:

\[
\text{Interval } \delta^2_{ck} = \left(\frac{c - k}{c_{\text{max}} - c_{\text{min}}} \right)^2
\]

where \(c_{\text{max}}\) is the largest and \(c_{\text{min}}\) is the smallest value occurring in the data. This standardization does not affect \(\alpha\) either.
• **Ratio metric differences** – Algebraic differences between two values are expressed relative to an absolute zero point. They are proportional to the magnitude of their values:

\[\text{Ratio values:} \]

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & \left(\frac{1}{2} \right)^2 & \frac{1}{2} \left(\frac{1}{2} \right)^2 & \left(\frac{1}{2} \right)^2 & \frac{1}{2} \left(\frac{1}{2} \right)^2 \\
1 & 0 & \left(\frac{1}{2} \right)^2 & \frac{1}{2} \left(\frac{1}{2} \right)^2 & \left(\frac{1}{2} \right)^2 & \frac{1}{2} \left(\frac{1}{2} \right)^2 \\
2 & 1.11 & 0 & \left(\frac{1}{2} \right)^2 & \left(\frac{1}{2} \right)^2 & \left(\frac{1}{2} \right)^2 \\
3 & .25 & .04 & 0 & \left(\frac{1}{2} \right)^2 & \left(\frac{1}{2} \right)^2 \\
4 & .36 & .11 & .02 & 0 & \left(\frac{1}{2} \right)^2 \\
5 & .44 & .18 & .06 & .01 & 0 \\
\end{array}
\]

\[\text{ratio} \ \delta_{ek}^2 = \left(\frac{c - k}{c + k} \right)^2 \]

• **Circular metric differences** – Shortest differences between any two values on a circular scale with arbitrary endpoints but a fixed circumference \(U = \) the number of equal intervals on a circle.

\[\text{Circular values:} \]

With the sine function expressed in degrees:

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0.25 & 0.75 & 1 & 0.75 & 0.25 \\
1 & 0.25 & 0 & 0.75 & 1 & 0.75 \\
2 & 0.75 & 0.25 & 0 & 0.75 & 1 \\
3 & 1 & 0.75 & 0.25 & 0 & 0.75 \\
4 & 0.75 & 1 & 0.25 & 0 & 0.25 \\
5 & 0.25 & 0.75 & 1 & 0.75 & 0.25 \\
\end{array}
\]

With the sine function expressed in radian:

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 1 & 0.75 & 0.25 & 0 & 0.75 \\
1 & 0.75 & 1 & 0.25 & 0 & 0.25 \\
2 & 0.25 & 0.75 & 1 & 0.75 & 0.25 \\
3 & 0.25 & 0.75 & 1 & 0.75 & 0.25 \\
4 & 0.75 & 1 & 0.25 & 0 & 0.25 \\
5 & 0.25 & 0.75 & 1 & 0.75 & 0.25 \\
\end{array}
\]

• **Bipolar metric differences** – Algebraic differences are expressed relative to the two endpoints, \(c_{\text{min}} \) and \(c_{\text{max}} \), of the scale. Near the center, a bipolar metric behaves like an interval metric and near the poles it behaves like a ratio metric.

\[\text{Bipolar values:} \]

\[
\begin{array}{cccccc}
-2 & -1 & 0 & 1 & 2 \\
0 & \frac{1}{1} & \frac{2}{2} & \frac{3}{3} & \frac{4}{4} \\
1 & 0 & \frac{1}{3} & \frac{2}{4} & \frac{3}{5} & \frac{4}{5} \\
2 & \frac{3}{5} & \frac{4}{6} & \frac{5}{3} & \frac{6}{2} & \frac{7}{1} \\
3 & \frac{5}{7} & \frac{6}{8} & \frac{7}{5} & \frac{8}{4} & \frac{9}{3} \\
4 & \frac{7}{9} & \frac{8}{10} & \frac{9}{7} & \frac{10}{5} & \frac{11}{3} \\
5 & \frac{9}{11} & \frac{10}{12} & \frac{11}{9} & \frac{12}{7} & \frac{13}{5} \\
\end{array}
\]

\[\text{polar} \ \delta_{ek}^2 = \left(\frac{c - k}{c + k - 2c_{\text{min}}}(2c_{\text{max}} - c - k) \right)^2 \]
Compute **α-reliability** (the computationally most efficient form):

\[\alpha = 1 - D = 1 - (n - 1) \frac{\sum_o \sum_{k > c} \delta^2_{ck}}{\sum_e \sum_{k > c} n_k \delta^2_{ck}} \]

Note that the sums in this form enumerate only one of the two symmetrical off-diagonal triangles of a coincidence matrix. Its entries, \(o_{ck} \) as well as the products \(n_k n_k \) are weighted by an appropriately chosen difference function \(\delta^2_{ck} \).

Computations are illustrated with the numerical data in C above, interpreted as ordinal, interval and ratio data respectively. Zero frequencies appear as 0 in the list of multiplications:

With data in C as **ordinal data**: \(\alpha = 1 - (n - 1) \frac{\sum_o \sum_{k > c} \delta^2_{ck}}{\sum_e \sum_{k > c} n_k \delta^2_{ck}} \)

In the Example:

\[
\alpha = 1 - \left(\frac{\sum \sum (o_{ck} \text{ ordinal}) \delta^2_{ck}}{\sum \sum (n_k \text{ ordinal}) \delta^2_{ck}} \right)
= 1 - \left(\frac{\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \cdots + \frac{1}{3}}{9 - \frac{1}{3} + \frac{1}{3} + \cdots + \frac{1}{3}} \right)
= 0.815
\]

With data in C as **interval data**: \(\alpha = 1 - (n - 1) \frac{\sum_o \sum_{k > c} \delta^2_{ck}}{\sum_e \sum_{k > c} n_k \delta^2_{ck}} \)

In the Example:

\[
\alpha = 1 - \left(\frac{\sum \sum (o_{ck} \text{ interval}) \delta^2_{ck}}{\sum \sum (n_k \text{ interval}) \delta^2_{ck}} \right)
= 1 - \left(\frac{\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \cdots + \frac{1}{3}}{9 - \frac{1}{3} + \frac{1}{3} + \cdots + \frac{1}{3}} \right)
= 0.849
\]

With data in C as **ratio data**: \(\alpha = 1 - (n - 1) \frac{\sum_o \sum_{k > c} \delta^2_{ck}}{\sum_e \sum_{k > c} n_k \delta^2_{ck}} \)

In the Example:

\[
\alpha = 1 - \left(\frac{\sum \sum (o_{ck} \text{ ratio}) \delta^2_{ck}}{\sum \sum (n_k \text{ ratio}) \delta^2_{ck}} \right)
= 1 - \left(\frac{\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \cdots + \frac{1}{3}}{9 - \frac{1}{3} + \frac{1}{3} + \cdots + \frac{1}{3}} \right)
= 0.797
\]
E. A general computational form, bypassing coincidence matrices:

Start from a reliability data matrix as in C above:

<table>
<thead>
<tr>
<th>Units u:</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>u</th>
<th>...</th>
<th>...</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observers:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>c_{i1}</td>
<td>c_{i2}</td>
<td>...</td>
<td>c_{iu}</td>
<td>...</td>
<td>...</td>
<td>c_{iN}</td>
</tr>
<tr>
<td>j</td>
<td>c_{j1}</td>
<td>c_{j2}</td>
<td>...</td>
<td>c_{ju}</td>
<td>...</td>
<td>...</td>
<td>c_{jN}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>m</td>
<td>c_{m1}</td>
<td>c_{m2}</td>
<td>...</td>
<td>c_{mu}</td>
<td>...</td>
<td>...</td>
<td>c_{mN}</td>
</tr>
</tbody>
</table>

When data are missing, this matrix will contain fewer than \(mN \) values.

For the 4 observers-by-12 units example of reliability data used in C and D above:

<table>
<thead>
<tr>
<th>Units u:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observers:</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>...</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>...</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

Note that
- Out of the \(mN = 4 \times 12 = 48 \) possible values in this matrix, 7 are missing.
- The value 3, assigned by observer B to the 12th unit cannot be paired with non-existing values in that unit, cannot contribute to observed agreements or disagreements, drops out when constructing a coincidence matrix, and has to be ignored.

Thus, this matrix contains a total of \(n.. = 40 \) pairable values.

Instead of \(2 \) and \(3 \), enumerate the values found in units and create a values-by-units matrix:

<table>
<thead>
<tr>
<th>Units:</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>u</th>
<th>...</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(n_{11})</td>
<td>(n_{21})</td>
<td>...</td>
<td>(n_{u1})</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>c</td>
<td>(n_{fc})</td>
<td>(n_{zc})</td>
<td>...</td>
<td>(n_{uc})</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>k</td>
<td>(n_{1k})</td>
<td>(n_{2k})</td>
<td>...</td>
<td>(n_{uk})</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Totals:</td>
<td>(n_{1})</td>
<td>(n_{2})</td>
<td>...</td>
<td>(n_{u})</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Where \(n_{uc} \) = the number of values \(c \) assigned to unit \(u \), \(n_{uc} \leq m \) observers. \(n_{uk} \) by analogy
\(n_{u} = \sum_{c} n_{uc} = \) the number of values assigned to unit \(u \)
\(n_{c} = \sum_{u|n_{uc} \geq 2} n_{uc} = \) the number of pairable values \(c \) occurring in the reliability data (omitting all units with lone or no values: \(n_{u} \leq 1 \))
\(n.. = \sum_{u|n_{u} \geq 2} n_{u} = \) the total number of all pairable values in the reliability data (omitting all units with lone or no values: \(n_{u} \leq 1 \)); \(n.. \leq mN \)
For the above example

Units u:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values c, k:</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| Totals n_u: | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 1 | 40 | n_u. |

Note that the marginal sum n_3 of pairwise values 3 omits the only lone value in unit 12, n_{12}=1.

4. **Compute α** with the appropriate metric difference function as defined in D above:

$$\alpha_{metric} = 1 - \frac{d_u}{D_e} = 1 - \left(n_{..} - 1 \right) \frac{\sum_{u} \frac{1}{n_u} \sum_{c} \sum_{k>0} n_{uc} n_{uk} \delta_{ck}^2}{\sum_{c} \sum_{k>0} n_{c} n_{k} \delta_{ck}^2}$$

If the above example consists of **nominal data** (perfect agreement seen as 0 disagreement):

$$\alpha_{nominal} = 1 - \left(40 - 1 \right) \frac{0 + 3 \cdot 1 + 0 + 0 + 6 \cdot 1 + 0 + 3 \cdot 1 + 0 + 0 + 0}{9 \cdot 13 + 9 \cdot 10 + 9 \cdot 5 + 9 \cdot 3 + 13 \cdot 10 + 13 \cdot 5 + 13 \cdot 3 + 10 \cdot 5 + 10 \cdot 3 + 5 \cdot 3} = 0.743$$

If the above example consists of **interval data** (perfect agreement seen as 0 disagreement):

$$\alpha_{interval} = 1 - \left(40 - 1 \right) \frac{0 + 3 \cdot 1 \cdot 1^2 + 0 + 0 + 1 \cdot 1 \cdot 1^2 + 1 \cdot 1 \cdot 2^2 + 1 \cdot 1 \cdot 3^2 + \ldots + 1 \cdot 1 \cdot 1^2 + 0 + 3 \cdot 1 \cdot 1^2 + 0 + 0 + 0}{9 \cdot 13 \cdot 1^2 + 9 \cdot 10 \cdot 2^2 + 9 \cdot 5 \cdot 3^2 + 9 \cdot 3 \cdot 4^2 + 13 \cdot 10 \cdot 1^2 + 13 \cdot 5 \cdot 2^2 + 13 \cdot 3 \cdot 3^2 + \ldots + 5 \cdot 3 \cdot 1^2} = 0.849$$

Most computations of α can be performed with SPSS or SAS macros written by Andrew Hayes. Available at http://www.afhayes.com: Go to “SPSS and SAS Macros” then to “KALPHA.”

References:

http://repository.upenn.edu/asc_papers/242 Last accessed 2011.1.25
