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Minimal resonances in annular non-Euclidean strips

Bryan Gin-ge Chen
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA

Christian D. Santangelo
Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
(Received 16 July 2010; revised manuscript received 6 October 2010; published 2 November 2010)

Differential growth processes play a prominent role in shaping leaves and biological tissues. Using both
analytical and numerical calculations, we consider the shapes of closed, elastic strips which have been sub-
jected to an inhomogeneous pattern of swelling. The stretching and bending energies of a closed strip are
frustrated by compatibility constraints between the curvatures and metric of the strip. To analyze this frustra-
tion, we study the class of “conical” closed strips with a prescribed metric tensor on their center line. The
resulting strip shapes can be classified according to their number of wrinkles and the prescribed pattern of
swelling. We use this class of strips as a variational ansatz to obtain the minimal energy shapes of closed strips
and find excellent agreement with the results of a numerical bead-spring model. We derive and test a surprising
resonance condition for strips with minimal bending energy along the strip center line to exist.

DOI: 10.1103/PhysRevE.82.056601

The elastic buckling of thin sheets plays an important role
in the shaping of biological tissues, especially the leaves of
many plants [1-5]. In this context, the buckling results from
the addition of extra material in the sheet, as when the sheet
is subjected to local growth [6]. Recent experiments have
also demonstrated that such growth processes can be mim-
icked by synthetic systems [7-9]. There have been several
different theoretical formulations used to predict shapes of
buckled objects which, broadly, fall into two classes. The
first approach is to incorporate swelling by modifying the
Foppl-von Karman equations [2,6,10,11]. This is especially
suited to studying the stability of nearly flat sheets but its
applicability for studying the postbuckling behavior of
swelled sheets is not obvious. A second approach defines a
metric, prescribed by the local swelling of the sheet, from
which an “ideal,” strain-free shape can be determined
[12-18]. This approach is best suited for thin sheets, where
one can expect the sheets to be nearly strain-free.

In this paper, we will continue an approach, begun in Ref.
[18], to study narrow strips that have been subjected to an
inhomogeneous pattern of swelling. We will focus on the
specific case of closed, unknotted strips such as one that may
be cut from the edge of a circular disk. Based on the results
of a direct numerical minimization of a model of a swelled
strip, we will focus on a class of strips for which the normal
vector on the center line always lies tangent to a fixed cone:
a “conical” strip. Within this class of conical strips, we are
able to find profiles, depending only on the metric tensor
along the center line, that agree favorably with numerical
minimization of a bead-spring model. This analysis extends
the results of Ref. [18] to the entire class of conical strips,
and corroborates those results numerically.

For very thin, open strips, it can be shown that near-
isometric embeddings exist both with vanishing mean curva-
ture and mean curvature gradients along the center line [26].
Nevertheless, we derive a “resonance” condition, written in
terms of the metric and the number of wrinkles in the em-
bedding, for which a closed conical strip can have vanishing
mean curvature along its center line. Our results indicate that
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the additional topological condition that the strip be closed
results in nonvanishing mean curvature—thus, topology frus-
trates the bending energy. This prediction is in agreement
with our numerical results.

Throughout this paper, we will specialize to the case that
the Gaussian curvature is negative. As a motivational ex-
ample, consider the experiment described in Klein er al. [9],
in which a thin film of NIPA polymer gel is endowed with a
controlled, axisymmetric monomer concentration that varies
as a function of distance from the disk center. When the
temperature is increased, the disks shrink to a configuration
in which K<<0 is approximately constant.

It is fortuitous that there are families of smooth surfaces
that realize shapes of constant K<<0 [19-21], and, naively,
one might expect a sufficiently thin sheet to adopt one of
these known shapes. The reality, however, is that the experi-
mental sheets seem to adopt extremely wrinkled morpholo-
gies that are quite different from the known smooth embed-
dings. Though our results are not directly applicable to these
experiments because they are for narrow strips, they do shed
some light on the nature of the frustration. In particular, we
find numerically that the strips allow localized stretching in
order to lower their bending energy, despite the ready exis-
tence of embeddings that admit no stretching at all. This
detail will be the subject of a future publication [22].

In Sec. I, we frame the problem of inhomogeneous swell-
ing in terms of geometry and isometric embeddings. In Sec.
II, we specialize to closed strips with inhomogeneous pat-
terns of swelling and introduce the class of “conical strips,”
In Sec. III, we describe our direct numerical minimizations
and compare with analytical predictions. Finally, in Sec. IV,
we discuss our results.

I. SWELLING ELASTIC SHEETS

We will first consider the general problem of determining
the shapes of elastic sheets with inhomogeneous patterns of
swelling. We review the elasticity of such swelled sheets in
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u=20

FIG. 1. (Color online) Geodesic coordinates can be constructing
starting from a curve (thick line) parametrized by v, at which u
=0. The geodesics perpendicular to the u=0 curve are parameter-
ized by their arc length u (thin lines). The curves perpendicular to
the geodesics (dashed lines) constitute a coordinate system in which
the metric takes the form of Eq. (1).

terms of a “preferred” metric assigned to the sheet, and dis-
cuss the obstructions to minimizing both the stretching and
bending energies. Finally, we derive a simple model to de-
scribe the shape of the center line of a non-Euclidean strip.

A. Elasticity as differential geometry

In this section, we review the elasticity of swelled sheets,
and establish notation for the rest of the paper. Consider an
elastic sheet with thickness ¢ that has swelled by the position-
dependent scalar ). For thin sheets, the energy can be de-
composed into two terms, E=E -+ Ep, the in-plane stretching
energy E-ot, and the bending energy Ezo 3 [10,17,23]. This
swelling factor measures the change of infinitesimal dis-
tances on the sheet, and can be converted to a “prescribed”
metric tensor, g;;. When the actual metric (tensor) g;; equals
the prescribed metric g;;, the in-plane stretching energy, E¢
vanishes. Therefore, E is written in terms of a strain tensor,
Yij=8ij—&;- When Q=1, g;;=6; in an appropriate coordi-
nate system, and this recovers the standard formula for the
strain of an elastic sheet [23].

It will prove convenient to consider a coordinate system
(u,v) in which the metric of the buckled surface takes the
form

Suudit? + 28, dudv + g,,dv* = du* + p*(u,v)dv?. (1)

This can be compared to the metric on a flat disk du®
+u’dv?, where u,v are the radius and polar angle in polar
coordinates, respectively.

Coordinate systems of these types always exist locally
and can be found by the construction illustrated in Fig. 1
(also see page 286 of Ref. [24]). First, choose an arbitrary
curve on the surface to lie along #=0, and let v be the pa-
rameter along that curve. For instance, this curve will be the
center line of the strips that we consider. Curves of constant
v are defined to be geodesics perpendicular to the u=0 curve,
parametrized by their arc length u. Curves of constant u
# 0 are thus curves of fixed distance u from the u=0 curve
along that family of geodesics. Since the resulting curves are
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mutually orthogonal and u is arc length, the metric must have
the form of Eq. (1). By Gauss’s theorema egregium, the
Gaussian curvature can be written in terms of the metric
alone as K=-dp/p. The function p(0,v) is determined by
the metric on the curve at u=0. We will always choose the
coordinate v to be dimensionless, so that p carries dimen-
sions of length. Here, p(u,v)dv is the infinitesimal length
along curves of constant # and the width, w, is the width of
the strip after swelling.

To quadratic order in the strain, the elastic energy is [17]

tY

Ec=30-7

f dudv \/(E[V(gij%j)z +(1- V)gikgﬂ%j‘}’kl],

2)

where Y is the Young’s modulus and v the Poisson ratio of
the sheet. The bending energy is given by the usual expres-
sion

Ep= t3§ f dudv\g[4H? - (1 - v)K], (3)

where k=Y/[12(1-17)], H=gijhij/2 is the mean curvature
and K is the Gaussian curvature. These are both written in
terms of the second fundamental form, /;;=N-J,d;r where N
is the unit surface normal. Couplings between vy;; and 7;;
cannot exist if the swelling is invariant under a change in

surface orientation, N——N. We will also neglect variations
of the sheet thickness with swelling.

The total energy E=E-+Ep, or some variant of it, has
been considered by a number of authors [4,12,14-16]. This
functional provides a natural generalization of the usual elas-
tic energy to non-Euclidean metrics.

B. Geometrical constraints

Minimizing this energy is difficult because the metric and
curvature tensors are not independent when a surface is im-
mersed in three dimensions. In fact, they satisfy a set of
compatibility relations, which we will briefly review in this
section. To begin, we write two equations for how the frame

(&ur,&vr/p,N) changes [25],

a,r a,r
a,| arlp [=R,| axlp |, (4)
N N
and
ar a,r
a,| drlp |=R,| dx/p |, (5)
N N
where
0 0 Py
R,=| O 0 hylp |, (6)
i ~halp 0
and
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0 aup hUM
RU =|—dup 0 hvv/p . (7)
- hvu - hvv/p 0

These follow from the definitions of the metric and second
fundamental forms in our coordinates.

These two matrix equations are only compatible if J,R,
=d,R,+[R,,R,], where [,] is the commutator. This results in
three equations relating the second fundamental form to the
metric, the Gauss-Codazzi-Mainardi-Peterson equations
[25],

1
_au(phuv) = avhuu >
p

h h
&M( vv) = huuaup + al/( “ ) ’
p p

pﬂip = h2 - huuhvv . (8)

uv

The last equation is the theorema egregium of Gauss, and
will be used to relate the function p to the functions h;.
Equations (8) and (4) can also be used as evolution equations
to construct isometric embeddings for arbitrary p provided
that h,, # 0 (see, for example, [16,18]).

Finally, we will find it useful in Sec. II to relate the com-
ponents of the curvature directly to the mean curvature, H,
given by 2H=g"h;;=h,,+h,,/ p*. Using this relation in the
theorema egregium, we find

h
2pH (f) =hy, = pdup+ (hy/p)*. )

Therefore h,,/p and h,, lie on a circle and

| 2 1
h,=H+ VH — K sin a,

h =
—¥=H-\H’-Ksin a,
p

@:\er—Kcos a. (10)
p
Here, «a tells us how the principal curvature axes are aligned
with respect to the coordinate system. For example, when
a=m/2, the principal curvature H+H?~K points along the
tangent vector in the u direction.

C. Non-Euclidean strip energy

In this paper, we will consider the lowest order terms of
the stretching and bending energies in an expansion in pow-
ers of the ribbon width. Our procedure can be justified by a
careful perturbation expansion of both the stretching and
bending energies in powers of the strip width w, valid as
long as wy—K < 1, where K is the typical Gaussian curvature
associated with the prescribed metric. This expansion also
yields corrections to the strain along the center line due to
the bending energy and will be explored elsewhere [22].
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For our purposes, we need the following fact: as the rib-
bon thickness is decreased, its metric more closely agrees
with the prescribed metric [17,18]. Therefore, we will as-
sume our strips are sufficiently thin that the strain along the
center line vanishes, implying that the Gaussian curvature is
equal to the prescribed curvature. From the numerics in Sec.
III, the assumption of vanishing strain along the ribbon cen-
ter line is roughly borne out: as the thickness decreases, the
strain along the center of the strip similarly decreases. Ac-
cording to Fig. 7, however, the Gaussian curvature mis-
match, implying strain, remains along the edge. We will see
that even the condition that K is isometric on the center line
is only approximately true for the closed strips we are able to
simulate numerically. Nevertheless, the small remaining
strain leads to only small quantitative errors.

The size of this error can be estimated if we note that Egs.
(8) can be used to obtain the second fundamental form for a
fixed metric. For clarity, we will suppress all dependence on
u unless otherwise indicated until Sec. II B, as all quantities
in our analytical model will be evaluated on the center line at
u=0. If we suppose that the metric deviates from the pre-
scribed metric at the center line, we can obtain an upper
bound on the strain. To do so, we suppose a form for the
strain for which v,,=7%,,=0. Then y,,=p>~p>. Since the
Gaussian curvature determines d-p, ¥,, ~Ay(u/p)?, where
Ay describes the leading order deformation of the strain.
Substituting this into the stretching energy in Eq. (2), we
obtain a rigorous upper bound on the stretching energy

wd
Ec~ Yg(Av)z, (11)

where we have dropped a very small numerical factor de-
pending on v. This result suggests that the magnitude of the
energy in the strain can be controlled by adjusting the ribbon
width or, alternatively, its thickness.

Similarly, when K =K on the center line, similar consid-
erations show that E-~ Yrw’/p’Ay?> where Ay depends on
the third derivative of p at the center line. From Gauss’ theo-
rem egregium, this is linked to derivatives of the curvature
with respect to u.

We will approximate the bending energy by its leading
order power of w, which should be valid when w is suffi-
ciently small. For the bending energy, this yield

l3
E,~ %J dvp(0,0)H*(0,v), (12)

where the factor of w accounts for the integral over u. Thus,
using Gauss’ theorem egregium again, this only depends on
2p along the center line.

This suggests that the lowest order terms in the energy are
minimized when the curvature along the center line mini-
mizes Eq. (12) subject to the constraint on the Gaussian cur-
vature. The higher-order terms.

This type of approximation has also been used to describe
narrow developable strips. For instance, to obtain the Sad-
owsky functional [27], we would minimize Eq. (12) subject
to the constraint that K=0 on the center line. In Sec. III, we
will compare our results to a numerical minimization of sev-
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eral closed strips. This will both justify our assumptions as
well as confirm the predictions obtained from our calcula-
tions.

For infinitely thin open strips of sufficient narrowness, it
is possible to find an isometric immersion such that both H
=0 and d,H=0 along the center line [26]. Most of our nu-
merical strips do not even have H=0 on the center line; in
fact, we will derive conditions in Sec. II under which it is
possible to at least ensure that /=0 on the center line.

II. CLOSED STRIPS

We consider strips that are topologically closed and un-
knotted, such as strips resulting from punching a hole into
the center of a disk or swelling a cylinder. Though we will
formulate the problem quite generally at first, we quickly
find ourselves unable to generate sufficient and necessary
conditions for a strip with a prescribed metric to close. To
remedy this, we will restrict consideration to a large family
of strips that yield an analytically tractable way to enforce
both the prescribed Gaussian curvature and the closure con-
straint. We will therefore generate sufficient, but not neces-
sary, conditions for a strip of this type to close.

These strips will have the property that their surface nor-
mal on the center line always points along a cone. Though
many of the results in this section are not a priori valid for
all closed strips, we will show in Sec. III that the numerically
minimized strips seem to have this property as well. From
this assumption, we derive several predictions. In particular,
a key result of this section is that the strip center line can be
minimal (i.e., H=0) if a “resonance” condition

g +pdp—1

2wt 1) (13)

relating the number of wrinkles m to the derivatives of the
metric at the center line, is met. We corroborate this some-
what surprising result and others numerically in the next sec-
tion.

A. Class of closed, conical strips

Closed strips cut from an unswelled, flat disk have a natu-
ral coordinate system (r, 6), where @ is the azimuthal angle
around the strip. In the swelled case, it is natural to force the
coordinate v to be 2m-periodic as well. Once we determine
P, 9,p, &5;), and h;; on the center line at u=0 that result in a
closed strip, Eq. (4), which governs the evolution along lines
of constant v, will preserve the periodic structure of the strip
away from the center line.

We first note that Eq. (5) determining the evolution of the
strip frame along v can be recast as an equation for the
components of the two tangents and the surface normal in
space along the center line. Taking the x-component,

d,r-x a,r- X
a,r ar

d, 7-)6 =R, 7-)6 . (14)
N % N- %

Similarly, we can replace X with y or Z. The skew-symmetric
matrix R, is an infinitesimal rotation that depends on the
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second fundamental form along the strip center line, which
itself is a function of v. Therefore, Eq. (14) can be recast as
the equation for a particle in a magnetic field. To make this
mapping explicit, we identify the v coordinate with time and
define a “time-dependent magnetic field”

hy, A . N
B(v)=——"i+h,,j - d,pk, (15)
p
and the vector

v,(v) = (9, 2)i+ [<Q> -)e]j+ (N-Dk.  (16)
p

The index on v, refers to the fact that it arises from taking
the x-component of the frame in Eq. (14). The curves vy,v,

are defined similarly. The i ,f,lg introduced here label the J,r,

d, - . .

2 and N components in the frame in Eq. (14) and are not
tﬁe directions x,y,Z of our three dimensional Euclidean
space. Equation (14) now reads

I,vy=B X v,. (17)

So far, the steps we have taken here in no way restrict the
generality of our discussion. Requiring that our surface is a
closed strip is equivalent to finding conditions on B such that
v;(v) is a closed curve and that f(z)”p(v)[vi(v)-f]dv=0 for i
=X,y,Z. Supposing this could be done, the problem would be
to minimize the energy with respect to /;; and p on the set of
all closed solutions. However, this is related to the open
Fenchel problem of finding conditions on the curvature and
torsion of a space curve in order for it to close. Instead of
finding all possible closed solutions, we will construct an
ansatz for a class of solutions that admit a relatively simple
characterization.

We will restrict ourselves to strips whose normal vector,
on the center line, is constrained to lie on a cone. For con-
venience, we will refer to these as “conical strips.” Though
our motivation for considering these solutions was originally
to simplify our analysis, this choice of ansatz turned out to
be particularly apt, as will be shown in Sec. III. In Appendix
A, we derive expressions for conical strips with general
mean curvatures along the center line. We summarize the
results and notation here. First, we define sin é&=H/VH?>~K
and recall that H=h,,+h,,/p*> and K :—ﬂip/ p on the center
line from Sec. I B. We also have the angle « between the
principal curvature axes of the strip and the axes of the uv
coordinate system.

The final result for the tangent vector of the center line of
the strip is

(?Lpr = sinzg[sin(W+ B)x + cos(W+ B)y]
+ coszg[sin(W— B)x + cos(W - B)y]—sin ¢ cos B2,

(18)

with a constant cone angle ¢ between N and 2, satisfying
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\poﬁp cos «
cos B cos Ed,p—,)°

with W(v)=sec ¢[idv'[d,Bv')-d,p")]+W,, where W, is
an arbitrary constant, and tan B=(sin a—sin §)/cos a
=h,,/(ph,,). These expressions can be written directly in
terms of the functions p and £;; that characterize the shape of
the strip on the center line.

We now derive conditions under which a conical strip
closes. We first note that the tangent vectors can only be
periodic if AB=[BQ2m)-pB(0)]/(27) and AW=[W(2m)
—W(0)]/(2m) are integers. Note that if we fix 0< p<m/2
then the magnitude of the term with cos?(¢/2) in Eq. (18) is
larger, so that the number of times the strip wraps around
will be set by the period of W— g rather than W+ 3. There-
fore, we interpret AW—Ap as the number of times the strip
wraps around the z axis. In particular, this implies that if we
were to cut a closed strip from the edge of a disk, we should
require AW-ApB= = 1; other choices of AW-ApB could be
used to represent knotted strips. In addition, the integer AB
counts the number of times that the tangent vector of the
center line crosses the z=0 plane, since it does so whenever
B is an odd integer multiple of /2. Therefore, we interpret
A as the number of wrinkles of a closed strip. Finally, we
define Ap=[[;"dvd,p(v)]/(2m). From the definition of W,

AW=(AB- Ap)sec ¢

tan ¢p=— (19)

cos p=——"-, (20)

and thus the two choices of AW for a given AB mean that we
have two possible cone angles ¢ for a given metric that can
lead to closed conical strips. This gives us a criterion for the
existence of such a strip, since Ap and AB must be chosen so
that 0<cos ¢<1 (since 0 < p<r/2). In particular, this im-
plies

AB-Ap

0<
AB* 1

<1. (21)
The above conditions ensure that d,r/p is periodic. As a final

constraint, d,r must integrate to zero as v goes from O to 27
to ensure that r is periodic as well.

B. Some examples

It is instructive to consider some specific examples to un-
derstand the formulas derived in the last section. Consider
first conical strips with AB=0. This class of shapes contains
all of the axisymmetric strips, for which 8 is constant in v.
With this, 0<<Ap<1. For axisymmetric strips, for which p is
also independent of v, this criteria is well-known (see the
proof in Marder et al. [28] for another derivation of this
criteria for axisymmetric strips). The class of strips with
AB=0 contains, but is not limited to, axisymmetric shapes—
the function S need not be constant; all that is required is that
B be periodic as v varies from O to 27. The condition 0
<Ap<1 yields a limit on how quickly p can grow with u for
such a conical strip. This has ramifications for a disk with

PHYSICAL REVIEW E 82, 056601 (2010)

K=-1/R?, which has a metric with p(r,v)=R sinh(u/R)
[9,18], where r is the radial distance from the disk center. If
we imagine cutting a narrow strip from the edge of the disk
with center line at r=u, d,p=cosh(uy/R) > 1, which violates
the constraint for AB=0.

We next turn our attention to the case of AB=2, corre-
sponding to a saddle shape in which A, has four zeros (two
wrinkles). Then solution in this class of strips must have 1
<Ap<2or-1<Ap<2.If we specialize again to a strip cut
from a constant negative Gaussian curvature disk so that
p(u,v)=R sinh[(u+uy)/R], p=Rsinh(uy/R) and Ap
=cosh(uy/R), and we find that a solution of the first type is
possible when 0<uy<<R cosh™(1) or 0 <u,<1.32R. At the
limiting case, cos ¢»=0,1 and the mean curvature along the
center line diverges, as can be readily seen from Eq. (A5).

However, this should not be interpreted as the maximum
radius of finding a saddle-shaped isometric embedding. In
fact, arbitrarily large isometric embeddings of disks with K
=—1/R? exist [20]. If we were to cut a strip from the edge of
such an isometric embedding with radius larger than
R cosh™!(2), the strip center line may still have two wrinkles
(alternatively, four zeros for h,,). It could not be a conical
strip, however. Consequently, it is likely that minimal energy
strips deviate from the shapes we would predict for conical
strips, especially when the mean curvature is large.

We now return to conical strips with H=0 along their
center line. In that case, using Eq. (A5), we have

.
dup— ,B=— cot ¢\ pd,p (22)

at every v. For simplicity, we will specialize to the case that
p is constant in v along the center line, though by replacing
these quantities by their averages over v we could lift this
specialization. In this case, Ap=4,p which implies that J,8
=AB. Squaring both sides and using cot’> ¢
o (AB-App .
= BBz 1 —(ABAa] derived from Eq. (20), we find

[(AB = 1) = (AB-Ap)*]=pdip, (23)
which implies

(00 +pdip-1

AB= 20,p*= 1) 24)

Consider again the disk with constant negative Gaussian cur-
vature —1/R>. For a strip with center line at radius u,, p
=R sinh(ug/R), d,p=cosh(ug/R), &2p=p/R* and the reso-
nance condition above is satisfied when A
=cosh(uy/R) + 1. This generalizes the condition found by
one of us numerically [18]. For the class of solutions consid-
ered there, this condition could also be derived by Fourier
analysis.

Again, it need not be the case that there are no closed
strips with H=0 along their center lines when this condition
is not satisfied, only that there are none in the class of closed,
conical strips. Nevertheless, our results do have ramifications
on the shape of minimal energy strips: we will see in the next
section that we can satisfy both the bending and stretching
energies to lowest order in powers of w/R at one of these
resonances. Therefore, in the regime of thickness we are pri-
marily concerned with in this paper, d,8=cosh(uy/R) ¥ 1 is
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sufficient to demonstrate that H=0 along the center line. The
numerical evidence we will present in Sec. III suggests that,
at the very least, embeddings with zero mean curvature on
the center line do not exist for all choices of metric.

C. Energy minimization

We now seek to minimize the bending energy along the
center line of a closed, conical strip. The energy in Eq. (12)
would be minimized when H=0 along the center line. Hap-
pily, such a condition can be satisfied within the class of
closed, conical strips when Eq. (24) is satisfied. In this sec-
tion, we are interested in the minimal energy shape close to
H=0 as well.

When H=0 along the center line, B=mv from Eq. (22).
Near an H=0 resonance, we can look for an approximate
minimum of the form B=muv +f, where S=muv is the solution
for the H=0 strip with m wrinkles. Using Eq. (A5), we ex-
pand H in powers of f to find

-
. \pd,p _tan ¢ . Auf . @5)
tan ¢(d,p —m)? V/pé'ip sin(mv)

This allows us to expand Eq. (12) to quadratic order in f,
from which we find the Euler-Lagrange equation

_ ot
|l ———1|=0, 26
U\ sin®(mv) } (26)
which has solution
Al 1
f==|v+—sin(2mo) |, (27)
21l 2m

where A is a constant independent of v. Looking at Eq. (A5)
for the mean curvature, we see that d,8 always appears in the
combination d,p—d,8. Therefore, we can interpret the first
term of Eq. (27) as a shift in d,p, which must be accompa-
nied by a v-dependent correction proportional to sin(2mv).
Therefore, when d,p is tuned away from a resonance by an
amount A/2, the function S oscillates with a frequency 2m.

We can use this near-resonance solution as the basis for a
general conical strip ansatz valid for all metrics: B=mv

+A sin(2mv)/(2m). For sufficiently small A, this ansatz does
not modify the location of the zeros of sin 8 nor does it alter
d,[3 at those zeros. It is straightforward to show that the zeros
of h,, coincide with those of sin 8. At those zeros, d,8=m

—A. For H to remain finite at those zeros, inspection of Eq.
(A5) implies that d,8=4d,p+cot qb\ﬂ% when sin 8=0.
Therefore, we conclude that A =4d,p+cot (;S\J’p?up—m.

Finally, it is necessary to confirm that this ansatz yields a
closed strip. Since d,p is independent of v, W=sec ¢[d,pv
- B(v)+B(0)]+ W,. Examining the form of B, both W and B
change sign when v — v+ a/m. Inserting this into the equa-
tion for the tangent vector and integrating, we find that
f(z)wdvpﬁur/p=r(217)—r(0)=().

To summarize the construction in this section, assume that
we are given some p(u,v). We would like to construct an
ansatz with m wrinkles. Next, we calculate tan ¢ using Eq.
(20). There are two choices, which are perhaps not equally
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FIG. 2. (Color online) Analytical predictions for the shapes of
three-, four- and five-wrinkle strips with H=0 along the center line.
The center line is the dark black line, and the surface displayed is
constructed by extending along the vector d,r from the center line.
Here p=R sinh(uy/R) and uy,R are chosen to satisfy the resonance
condition cosh(uy/R)=m—1, when m is the number of wrinkles.

good. Once this choice is made, it is straightforward to cal-
culate A, B, W and then we have the expressions for the
frame on the strip, including Eq. (18) for the tangent vector
as well as the other components, whose expressions are in
Appendix A. If we integrate the tangent vector, we may gen-
erate the space curve of the center line. To construct the
surface, we integrate Eq. (5) in a small neighborhood of the
center line. We depict center lines of strips with m=3,4,5 in
Fig. 2.

III. NUMERICS

A. Numerical model

To corroborate our analysis, we have implemented the
bead-and-spring model of inhomogeneous swelling devel-
oped by Marder and Papaniolaou [16]. An unswelled sheet is
represented by a stacked pair of close-packed triangular lat-
tices with a periodic length of 200 beads and a width of 20
beads (thus, 8000 particles). Nearest neighbors in the lattice
are connected by harmonic springs (35 000 total bonds) with
bond energy between two lattice sites a and b given by
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1
Epona = 5[(AX)2 -7, (28)

where |AX]| is the bond length. The swelling is incorporated
by setting the equilibrium bond length according to the ap-
proximate equation

€2 = Axiij(gTij (29)

where Ax’ are the components of the vector connecting beads
a and b in the unswelled membrane and g;; is the prescribed
metric. This approximates the integral that measures the pre-
scribed distance between points a and b. The prescribed met-
ric used in Eq. (29) is given by the average of the continuum
prescribed metric evaluated on the lattice points a and b.
Alternatively, we could evaluate the continuum prescribed
metric somewhere along the bond; as long as the average
bond length is small compared to R, the details of how we
evaluate the prescribed length between neighboring points a
and b do not change our results.

As shown in Ref. [16], Eq. (28) is compatible with a
continuum limit using the strain 7y;;=g;;—§;;. Note that the
2D strip energy consisting of a sum of stretching and bend-
ing energies is recovered from this 3D model when the thick-
ness is small. In particular, we note that the bending energy
arises naturally from the differential stretching and compres-
sion of the two layers of the sheet. The energy is minimized
using either a conjugate-gradient or Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm, as implemented the
GNU Scientific Library (GSL). In general, we find that strips
develop “creases” often as the minimization procedure pro-
ceeds unless the strips are sufficiently thick and the change
in the degree of swelling sufficiently small. As a practical
matter, therefore, we start our minimization with thick strips,

t=~0.025w, and small prescribed curvatures K~=~-102w2,
We then increase the curvature in a sequence of steps to the

desired curvature (up to \E’wz 1.3) and, once this sequence
is complete, decrease the thickness to the desired thickness
(down to r=0.004w). If we decrease the thickness first, the
strips often develop creases, though as long as the strips
remain smooth during this process, the energy minima we
have found appear to be quite robust against changes in the
sequence of steps taken. Finally, it is difficult to maintain a
smooth strip shape, even at fixed swelling, once the thickness
becomes too small. Therefore, we are not able to probe the
limit of truly thin strips; consequently, all our strips seem to
have some residual strain, even in the ground state.

We find that strips with different numbers of wrinkles are
metastable, and have explicitly seen this up to five wrinkles.
Therefore, to select the number of wrinkles, we bias the
minimization by choosing an initial strip shape with a pre-
scribed number of wrinkles m. Typically, we use the graph
z(r,0)=h, cos(mf) as an initial condition for the lattice,
where r and 6 are polar coordinates in the xy plane. We have
also tried adding additional Fourier modes in the initial con-
ditions and have tried amplitudes in the range 0.017<<h,
<100z for sheets of thickness ¢. In all cases we have tried,
the number of wrinkles is primarily chosen by the dominant
mode in z(r, 6), though there is a small bias toward lower
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energy structures with two wrinkles, and all strips with the
same number of wrinkles are nearly identical. If no bias is
chosen, the minimization will take a long time to break the
symmetry and will go into a state with two or three wrinkles.

Finally, since we are interested in verifying the assump-
tions and predictions of our analytical calculations here, we
will focus on metrics with p(u,v) independent of the longi-
tudinal direction v. We have explored two prescribed metrics
in detail: (1) p,(u,v)=R sinh(u/R+uy/R) and (2) p,(u,v)
=R cosh(u/R)/(27)+ nR sinh(u/R). Both of these metrics
have K=—1/R? everywhere. The first of these corresponds to
cutting a strip of width w from the edge of a buckled disk at
radius uy—w/2. The resonance condition for the center line
of this metric gives cosh(uy/R)=m—1. For m=3, this re-
quires a degree of swelling which is difficult to achieve nu-
merically at low thicknesses. Therefore, to study the reso-
nance condition numerically, we use p,(u,) for various
values of 7. From the resonance condition in Eq. (24), we
have four solutions

1
n:m+(mtl)\/l—m (30)

+O[m=17?]  (31)

=2m=*1-

202m) (m = 1)

1
or 7]=m—(mi1)\/l—m (32)

Tl ofme 2
= S emm ey ClmETL (Y

where the * must be chosen consistently in each equation.
With the swelling factors accessible to our numerics, we are
able to probe the branch of resonances with 7 near +1 for 2,

3, and 4 wrinkles.

VY

FIG. 3. (Color online) A typical minimal energy strip with four

wrinkles and prescribed metric p;, with K=—(1/9)w™2, u,
=(5/m)w, and t=0.0lw found by numerical minimization. Below,
the mean curvature of the center line is displayed.
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FIG. 4. Gaussian curvature along the center line for the strip
shown in Fig. 3 with thicknesses t/w=0.02, t/w=0.015, and #/w
=0.01. As the thickness is lowered, the Gaussian curvature ap-
proaches the prescribed curvature (straight dotted line).

Geometric quantities such as H, K for our numerically
minimized surfaces are computed from an interpolation of
the points on the midsurface between the two bead-spring
sheets.

B. Results

As an example of a minimal energy surface from our
numerical calculations, Fig. 3 shows a four wrinkle strip with
metric from p; and #=0.01w with prescribed Gaussian cur-

vature, K=—(1/9)w2. In Fig. 4, we plot the Gaussian curva-
ture along the center line for strips for three thicknesses
t/w=0.02, 0.015, and 0.01 and otherwise identical param-
eters. As expected, along the center line K approaches its
prescribed value as the thickness decreases. It is interesting
to note that even for the thinnest strips we have tried, the
Gaussian curvature always displays localized regions of
stretching. Nevertheless, our results are apparently robust
against this localized residual strain.

In Fig. 5, we plot the three components of the normal
vector on the center line for the thinnest of the strips in Fig.
4. The x and y components oscillate (with amplitude close to
0.25) around zero while the z component is very nearly con-
stant. To quantify this, we compute the average N,=(N-2)

~0.950 and the variance [((N~2—Nz)2>]‘1/2~0.01. The ana-
lytical angle cos ¢ is predicted from Eq. (20) to be 0.951.
Similar levels of agreement are obtained for other choices
of metric, curvature and thicknesses, though thinner sheets
have a closer agreement. We tested two-, three-, and four-
wrinkle strips of thickness #/w=0.025 with metric from p;

10 & N,
05F
N, No
0.0 Ny
-0.5
T 21
v

FIG. 5. The three components of the normal for the strip of Fig.
3 along the center line, which makes a nearly constant angle with
the z axis. The average z component is (N-Z)=N,~0.950 compared

to the predicted value cos ¢=0.952. The variance [(N-2
-N)HTV2=0.01.
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FIG. 6. (Color online) Comparison of the cosine of the angle of
the normal vector to the z axis on the center line (points) on nu-
merically minimized strips to the prediction of Eq. (20) (solid line)
for strips with metric from p;, with thickness #/w=0.025 and pa-
rameter uy/w=5/ for two-, three-, and four-wrinkle strips [red
(left), green (middle), and blue (right) curves, respectively]. The x
axis is d,p=cosh(uq/R), so prescribed curvature increases to the
right. Error bars mark the variance of cos ¢ on the center line as v
runs from O to 27r. Beneath the plot is a sequence of two-wrinkle
strips showing the symmetry-breaking transition that causes the
conical strip ansatz to breaks down at large curvatures.

(with uy/w=5/1r as are all strips with p; in this paper) start-
ing from R=150 and increasing the curvature down to R
~20. Figure 6 shows the resulting average cos ¢ on the
center line as a function of d,p=cosh(u,/R), where the error
bars show the variance of cos ¢. Our theory and Eq. (20)
predict a linear relationship, with zero variance. This is ob-
served up to fairly high curvatures—at the curvatures where
cos ¢ begins to oscillate, we observe an intriguing
symmetry-breaking from strips with D,,; symmetry to strips
with C,,, symmetry, and the wrinkles curl into tubes. The
explanation of this transition is outside the scope of this pa-
per, but we display this transition in two-wrinkle strips in the
inset of Fig. 6. We note that in this symmetry-breaking tran-
sition, as in the minimization without a bias toward a set
number of wrinkles, the system seems to take a long time to
find a minimum, often oscillating between different states.
In Fig. 7, the distribution of Gaussian curvature is plotted
for three thicknesses (#/w=0.008, 0.004, and 0.0015) and

Kw?=—-0.029 for prescribed metric p;. A boundary layer is
evident in all the images. In both cases the degree of stretch-

K-K

& iw 2 wrinkles 3 wrinkles
04 0.008 —

0.2

00 l 0.004 _

02

04 00015 —

FIG. 7. (Color online) Gaussian curvature for strips with #/w
~(0.008, 0.004, and 0.0015 for m=2 and m=3. These strips have a
prescribed metric of p; with Kw?=-0.0324. Only the middle third
of the strip width is shown. Darker regions have Gaussian curvature
nearer to the prescribed curvature and so have less strain, while
cyan or yellow (lighter) regions have more strain.
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5 wrinkles
4 wrinkles

3 wrinkles
2 wrinkles

Period

FIG. 8. The mean curvature HR along the center line of a p,
strip with #/w=0.006 and Kw?=-0.029 with 5, 4, 3, and 2 wrinkles

(solid) compared to theoretical predictions (dotted) along the center
line.

ing decreases near the center of the strip as the thickness
decreases.

We further test our model by comparing the numerically
obtained H along the center line with our analytical calcula-
tions. In Fig. 8, we show the specific case with prescribed

metric p;, t/w=0.006 and K=-0.029. The solid lines show

H/V|K| along the center line for strips with different num-
bers of wrinkles from m=2 to m=5. For the purposes of
comparison, we rescale v to contain one period of the strip,
2m/m. Though these curves agree favorably in magnitude
with those predicted by our theory, there is some discrepancy
in the precise strip shape. This discrepancy may be caused by
the failure of the Gaussian curvature to agree with the pre-
scribed curvature exactly or perhaps by the fact that the ana-
Iytical center line may approximate a curve on the strip that
is not exactly in the center.

A more stringent test of the analytical theory is the sur-
prising resonance condition of Eq. (24). Since resonances are
at relatively high curvatures it is more difficult to achieve
low thicknesses without creases using metric p,(u), we focus
on the metric p,(u#) with various values of 7. We choose

t/w=0.00375 and I?w2:—0.01; though very thin, even at this

VA(HR)?)

12¢

0.8}

04F

1.020 1.030

n

FIG. 9. (Color online) Comparison of numerical mean curvature
variance V{(HR)?) (dashed lines are meant to guide the eye between
the data points) to analytical predictions (solid) for p,, #/w=0.004
as a function of # for two-, three- and four-wrinkle strips (green,
red, and blue, respectively)—note the observed resonance minima
at roughly 7#=1.0120, #=1.0060, and 7=1.0042, compared to ana-
Iytical predictions of 7=1.0128, 7=1.0063, and #=1.0042, for
two-, three-, and four-wrinkle strips, respectively.
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FIG. 10. (Color online) Comparison of numerical mean curva-
ture variance \((HR)?) (dashed lines are meant to guide the eyes
between the data points) to analytical predictions (solid) for p,
t/w=0.025 as a function of d,p=cosh(uy/R) for two-, three-, and
four-wrinkle strips (green, red, and blue, respectively) — note the
observed resonance minima at roughly d,p=1.193, d,p=1.997 and
d,p=3.073, compared to analytical predictions of d,p=1, 2, and 3,
for two-, three- and four-wrinkle strips, respectively.

t/w there is some deviation of K along the center line from
its prescribed value. In Fig. 9, we show the numerically mea-
sured variance of mean curvature and the analytical predic-
tions from the ansatz in Sec. II C for such strips. It is clear
that the shape of the variance as a function of # is fairly
well-mimicked with # above resonance, but there is less
good agreement below resonance. In fact, the numerically
minimized shapes tend to look nearly flat at =1, as opposed
to the ansatz which predicts a singular strip. For complete-
ness we include Fig. 10 which shows this data for the p;
strips shown in Fig. 6—the agreement appears to be worse as
a result of the thickness being around #/w=0.025. It does
appear for three-wrinkle ribbons that the point at which the
numerical data begins to differ from the predictions occurs
near the same values of d,p where the symmetry-breaking
transition causes the conical strip ansatz to fail.

For two-wrinkle strips, at 7= 1.0055 and 7= 1.0010 be-
low resonance we observe fairly sharp and reproducible
jumps in the variance of the mean curvature—we do not
currently have a good explanation of this, as the strip shapes
do not appear to change dramatically over these values of 7.

In Fig. 11, we plot (H*(u)/Hyy=[dvp(u)[H*(u,v)/Hy)/
[27p(u)] over the surface of numerically minimized strips
with two, three, and four wrinkles above, near, and below
resonance. Here H is the average mean curvature in a cer-
tain region of the strip. There is a clear trend toward extin-
guishing the mean curvature near the center line of the strip
when 7 is tuned near the resonance condition of Eq. (24).

Equation (24) and its application to p, strips, Eq. (32),
predicts rather well the observed location of the resonance.
We find that the center line of a two wrinkle strip will have
H=0 when 7n=1.01275, a three wrinkle strip will have H
=0 when #7=1.006 34, and a four wrinkle strip will have
H=0 when 7n=1.004 22.

For example, with two wrinkle strips we find that the
mean curvature is slightly smaller with »=1.012 than near
the predicted resonance of 7=1.013. We ascribe this small
discrepancy to our assumption that the Gaussian curvature
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FIG. 11. (Color online) Plots of (H?/H3)y=[dvp(u)[H*(u,v)/
H%]/[pr(u)] for strips of width w in the region —w/4<u<w/4,
where H is the average mean curvature within this region. The
prescribed metric is p,(u) and the thickness is #/w=0.00375. (a)
<H2/H(2)) for »=1.02 (dashed), »=1.01 (solid) and 7=1.006 34
(dotted) for m=2. The resonance condition yields 7= 1.012 75. (b)
<H2/H(2)) for #=1.01 (dashed), 7=1.006 34 (solid) and 7=1.0042
(dotted) for m=3. The resonance condition yields 7= 1.006 34. (c)
(H?/ H(z)) for 7=1.006 34 (dashed), 7=1.0042 (solid) and 7%
=1.003 (dotted) for m=4. The resonance condition yields 7
~1.0042. Above is the mean curvature of each strip near resonance
with dashed lines indicating the limits of the plots below; the mean
curvature is clearly extinguished (dark regions) near the center of
the strip but not near the edges.

along the center line agrees with that prescribed by the met-
ric. Indeed, thick membranes do not show any evidence of
the resonance condition at all, nor does the Gaussian curva-
ture reach its prescribed curvature on the center line. It is
also interesting to note that, below resonance, the mean cur-
vature near the center line of a strip is 7 out of phase with
the mean curvature near the strip edges.

Finally, we plot the energy for p; and p, in Figs. 12 and
13. In both cases, the energy of m=2 appears to be lowest
throughout the range of parameters tested, though for a large
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FIG. 12. (Color online) Energy for p=p, as a function of R

=1/V=K for four, three-, and two-wrinkle strips (from top to bot-
tom; blue, red, and green, respectively).

degree of swelling the energies become nearly degenerate.
For Fig. 13, dips in the energy occur at the resonances in 7
as we might expect, since the dominant term in the bending
energy vanishes near the resonances. In Fig. 12, the reso-
nances occur in the regions where R is small and the energies
are nearly degenerate. At large R, the energy scales as
1/R*=|K]|, which we expect since Ez~ H>o1/R>.

Note that, at a resonance, the energy is dominated by
higher order terms that we have neglected in our analysis. It
is these additional terms that set the energy scale at the reso-
nances. It is these higher order terms that seem to determine
which shapes have the lowest absolute energy.

IV. CONCLUSION

In this paper, we have studied the interplay between to-
pology and buckling for elastic strips which have been
swelled inhomogeneously. We have focused on negative
Gaussian curvatures with metrics that depend only on dis-
tance from the strip center line, though nothing precludes
studying more general metrics. We identify a class of closed
strips for which we can guarantee a prescribed Gaussian cur-
vature; these “conical” strips have the property that their unit
normals point along a cone everywhere on their center line.
Using this family of strips, we predict the existence of mini-
mal bending resonances for which the mean curvature along
the strip center line vanishes for a prescribed number of
wrinkles. This surprising result was confirmed in numerical
simulations. To our knowledge, this phenomenon has not

Energy
00070
00030 e
L P . o7 . )
00015+ R o
=010 1.020 1.030

FIG. 13. (Color online) Energy for p=p, as a function of 7 for
four-, three-, and two-wrinkle strips (from top to bottom; blue, red,
and green, respectively).
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been observed experimentally in any system as of yet.

The main surprise from our numerical tests was the fact
that conical strips were such a good description of the nu-
merical strip shape. It is not clear if this agreement can per-
sist to very thin strips, nor is it clear if there are other, lower
energy, strip shapes which do not exhibit this property.
Strictly speaking, our analytical calculations are only valid
within this class of strips and, at best, our resonance condi-
tion is sufficient, but not necessary, to find a strip with H
=0 along the center line. Further work quantifying closed
strip shapes will be necessary to understand this fortuitous
agreement. For instance, there may exist an expansion of the
elastic energy around conical solutions which should explain
the deviation from conical strips at very high curvatures.

Though the experiments of Klein et al. [9] are for wide
strips with W\s’:(~ 1, our results do shed some light on the
frustration that may be leading to the high degree of wrin-
kling observed. Unlike experiments [29], our numerical
minimization shows no indication that the number of
wrinkles increases with decreasing thickness. Whether this is
due to the narrowness of our ribbons compared to the experi-
ments is not clear. Indeed, it would be interesting to probe
the degree to which strips with various numbers of wrinkles
are metastable by perturbing the minimized strips and re-
minimizing.

Another interesting point about our analytical predictions
is that only the values at u=0 of the first two derivatives of p
with respect to u# enter the formulas. Preliminary tests of
minimizing strips with an added «* term to p, indicated that
the behavior of the Gaussian curvature on the center line
changed by a bit, but the angle of the normal was the same
and the mean curvature was also close, so we expect that
more systematic tests will confirm our predictions in their
regime of validity.

It is also interesting to consider the results of the numeri-
cal simulations more closely. One of the generic features of
all the numerical minima is the persistence of strain in the
strip, in particular, in fairly localized regions of the wrinkle.
On the boundaries this is plausible as one might expect a
boundary layer to appear on quite general grounds. On the
other hand, even along the center line there is a small degree
of strain, and we are unable to obtain strips that are suffi-
ciently thin for this strain to vanish. Though we do not do so
here, this residual strain can be studied using a more careful
perturbative expansion of the energy [22].

ACKNOWLEDGMENTS

We acknowledge useful discussions with E. Efrati, E.
Sharon, and R. Kupferman. We are particularly indebted to
them for providing preprints of their recent work. C.D.S.
acknowledges funding from the National Science Foundation
Award No. DMR-0846582. B.G.C. acknowledges the hospi-
tality of the UMass Soft Matter Summer School, where this
work was begun and the encouragement of R. Kamien as
well as support from NSF Grants No. DMR05-47230 and
No. DMRO05-20020.

APPENDIX A: CONICAL, CLOSED STRIPS

Recall that we wish to find closed solutions of d,v4(v)
=B(v) X v4(v), where
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B(v) =- }%h Bl = upk. (A1)

In this form, the nontrivial dependence of B on v makes it
difficult to determine the strip shape or to determine gener-
ally sufficient and necessary conditions for the strip to be
closed. Of course, B must be 2m-periodic and we shall as-
sume this in what follows. Note furthermore that this linear,
homogeneous equation may be solved by Fourier analysis,
though the conditions for closedness lead to an infinite set of
equations relating the Fourier coefficients of p and h;;.

To motivate our construction, consider the special case of
B with a constant direction but possibly changing magnitude.
Closed solutions for v, to this problem rotate in a plane
perpendicular to B, with a frequency that is proportional to
the magnitude of B. If we rotate B so that it’s pointing in the
k axis, then

v, (v) = |v,|[cos(wv)i + sin(wv);],

o=|B|.

The class of solutions that we consider build off of this
case; we allow the direction of B to move on a cone. If we
allow a rotation of the ijk coordinate frame by a v-dependent
matrix, O(v), then B may be transformed into a vector that is
always parallel to the k axis. We will consider the solutions
in this class for which the direction of B lies along a cone
with axis the k axis.

To make a bit more sense of this, remember that the k-axis
corresponds to components of the normal vector—as it turns
out, this restriction will force the normal vector to point
along a cone oriented along the z axis in space. This is why
we will call these conical strips.

Due to this specialization, we are restricting the allowed
values of the second fundamental form to a subclass of pos-
sible strip shapes. Our form for B remains general enough,
however, that many solutions for closed strips still exist in
the set of conical strips, including some with low bending
energies. Furthermore, the center lines of strips we find by
numerical minimization have this property as well.

We proceed by rotating B about the k axis with respect to
an arbitrary angle —B(v). This yields a modified equation
d,vi=B’ X v., where

’ hvv . N huv . 2
B'=-|—cos B+h,,sin Bli—|—-h,, cos B+ ——sin B]j
p p

+(8,8=-a,p)k. (A2)

We now choose S so that the i component of B’ vanishes,
which simplifies the equation somewhat. In particular, we
choose

hvv _ .
cos B=—hy, sin 3,
p

pH — pVH? - K sin a cos B=— p\/'H2 — K cos asin B,

(sin £—sin a)cos B=—sin B cos a,
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sin a— sin &

tan 8= (A3)

cos a
where sin é=H/\VH>-K and we have used Egs. (10). The
vector B’ will therefore point in a direction in the (new)
Jk-plane.

Let ¢ be the constant angle between B’ and the k axis,
defined by

hUU .
, —hy,cos B+—sinf
p

tan ¢ = —f =
Bk &up - O')vﬁ
a
—_ \po,p Cos & (Ad)
cos B cos E(dup—,B)”
Note that we’ve applied the relation K =—(9ip/ p.
By eliminating «, we derive that
H e ! (tan $0up = 3,)
—(— =lan = N
\“/:( 2 sin ﬁ \y/pazup
o
\pd,
- Pap ) (AS)
tan d)((?up - (911[3)

This expression for the mean curvature tells us that for coni-
cal strips, ¢=0 (flat disk limit) or ¢p=7/2 (cylinder limit) is
potentially bad.

As above, a closed particle trajectory requires that the
particle velocity, v,, will lie in the plane perpendicular to B’'.
The instantaneous frequency (in v) of this motion in the
plane is given by w(v)=(d,B-4d,p)sec ¢. To find the com-
plete solution, we return to our original unrotated frame by
rotating the vector v, by —f to find

v,(v) =[sin ¢ cos y sin W - cos ¢ sin ylk
+[cos y cos B cos W+ cos ¢ cos ysin Bsin W

+sin ¢ sin y sin B + [~ cos y sin B cos W
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+cos ¢ cos ycos B sin W+ sin ¢ sin y cos S]],
(A6)

where 7 is an integration constant having to do with motion
of the fictitious particle along the B’ axis and W
=[tdv’ w(v')+W,. The constant W, sets the initial phase of
the motion. Thus W is defined so that W(0)=0, or W
=sec d)fzdv,((?vﬂ_ 5uP)

Recall that the vector v, contains the X components of the
entire frame. But we can also use this solution for the com-
ponents vy and v, of the strip frame, each of which is de-
scribed by the solution given in Eq. (A6) and differing only
in the integration constants y and W(0)=W,. These constants
must be chosen to be compatible with the orthogonality of
the three vectors describing the frame. We choose: (1) y=0
and W;,=0, (2) y=0 and Wy=7/2, and (3) y=—m/2 to define
a set of three mutually orthogonal vectors at v=0. Since the
evolution acts by rotations, these three orthogonal vectors
remain orthogonal throughout the evolution.

If we take the i components of the three solutions we get

dr= sinzg[cos(W+ B)x - sin(W + B)¥]

+ coszg[cos(W— B)x —sin(W - B)y] —sin B sin ¢Z.
(A7)

If we take the j components of the three solutions, we obtain

Gr =— sinzg[sin(W+ B)% + cos(W + B)y]
p

+ coszg[sin(W— B)x + cos(W = B)y]—cos Bsin ¢zZ,
(A8)

Finally, the k components yield the normal vector

A

N =sin ¢ sin WX + sin ¢ cos Wy +cos ¢Z.  (A9)
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