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Abstract 

This paper reports a new tool for assessing the reliability of text interpretations 
heretofore unavailable to qualitative research.  It responds to a combination of two 
challenges, the problem of assessing the reliability of multiple interpretations -- a 
solution to this problem was anticipated earlier (Krippendorff, 1992) but not fully 
developed -- and the problem of identifying units of analysis within a continuum of text 
and similar representations (Krippendorff, 1995).  The paper sketches the family of α-
coefficients, which this paper extends, and then describes its new arrival.  A 
computational example is included in the Appendix. 
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1  The Family of Alpha-Agreement Measures 

In the last thirty some years α (alpha) has developed from a simple generalization of several 

agreement coefficients for two coders, notably Scott’s (1956) π (pi) for nominal data, Spearman’s ρ 

(rho) (Siegel, 1956:202-213) for ordinal data, and Pearson’s (1901) and Tildesley’s (1921) intraclass 

correlation rii for interval data into a whole family of agreement coefficients (Krippendorff, 1970, 

1972, 1980, 1995, 2004).  This development opened a space for consistent reliability assessments of  

• Any number of observers or coders, not just two 

• Incomplete data (unoccupied cells in a reliability data matrix) 

• Small sample sizes, for which it corrects 

• Data with any kind of metric: nominal, ordinal, interval, ratio, but also circular, polar, 

and specialized kinds 

• Partitions and subsets of units of analysis, including individual units 
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• Situations in which data are unitized, not just coded.  Coding of interval data has 

dominated the literature 

• Multi-valued data, that is, multiple interpretations of single units of analysis, not just 

single-valued data  

α enables various analyses, for example, calculating: 

• Data reliability, the reproducibility of coding instructions, which is standard 

• The reliability of individual coders 

• The accuracy of coding processes relative to a trusted standard 

• The reliability of decisions within a conceptual hierarchy of coding assignments 

• The reliability of various data transformations, conditional reliabilities, reliability 

gains or losses due to the lumping of categories. 

With Do measuring the observed disagreement and De the expected disagreement, α’s general 

form is:  

e

o

D
D

1−=α  

Algebraically, when observed disagreement is absent, Do=0 and α=1, which indicates perfect 

reliability.  When observed disagreement is merely chance, Do=De and α=0, which signals the 

absence of reliability.  This form reveals α to be a measure of how much the proportion of two 

disagreement measures of the reliability data deviate from the ideal of perfect agreement, α=1.   

The literature shows divergent conceptualizations of agreement (Krippendorff, 1987).  I will 

not discus these but need to alert the reader that agreement measures must not be confused with 

correlation coefficients or measures of association, a confusion that permeates the psychometric 

literature.  A recent essay on reliability considerations (Brennan, 2001) attests to the almost exclusive 

reliance on correlations at the expense of agreements of interval data at the expense of other metrics, 

and on coding at the expense of unitizing and other data making processes.  There are important 

differences in the assumptions underlying the calculations of expected disagreement, which defines 

the zero point of agreement coefficients.  Common assumptions keep the α-family of agreement 

coefficients together and enable the researcher to apply uniform standards across numerous 

situations.      
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2  Qualitative Text Analysis Data 

Researchers committed to qualitative analysis of text have criticized content analysts for 

relying on rigid definitions of textual units of analysis -- words, sentences, paragraphs, or less natural 

units like lines of text, 20 seconds of conversation – using one kind of unit for a whole body of text, 

just for being able to use available statistical techniques.  I sympathize with this criticism.  We are in 

need for ways of analyzing textual units of variable size, units that are natural to an intelligent reader 

and informative to the research question being pursued.  The difficulty of analyzing such natural units 

of text has given rise to a qualitative research tradition that has essentially given up reliability 

concerns and focuses instead on issues of relevance to a particular contention or debate.  In response, 

I am suggesting that the mathematical complexity of analyzing variably unitized text, while an 

unquestionable hurdle for replicating research, is no justification for creating the methodological 

schism between quantitative and qualitative approaches to analyzing textual matter.  All text is 

qualitative to begin with.  It is written to be read by intelligent and culturally competent individuals.  

Readers do not count, at least not to begin with.  Content analysts as well as qualitative researchers 

interpret text, try to make sense of relevant parts of it by whatever means, and quote finite stretches 

from it in support of their conclusions.   

A practice that literary scholars, journalist, and qualitative researchers share is to identify 

sections of text that they consider relevant, intend to use, revisit, or quote as a representative example 

of what they want to say.  Students might underline relevant sections of a text.  Literary scholars 

make notations on its margins, which amounts to a kind of categorization.  Journalists might keep 

folders of written material for their story.  Others collect quotations on index cards.  Qualitative text 

analysis software, N*Vivo and Atlas-ti, for example, plays on the metaphor of clipping printed matter 

by enabling their users to highlight contiguous sections of text, assign different codes to these 

sections, and cut, paste, sort, list, and enumerate the highlighted portions in terms of user-assigned 

categories.  Here, data consist of contiguous (textual) units of variable size and any number of 

categories or interpretations associated with each.  Figure 1 offers a graphical example. 

 

< Figure 1 About Here > 
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A Textual Continuum, Unitized and Categorized 

Figure 1 
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Note that these textual units are contiguous.  They may be assigned to more than one category.  Units 

may overlap due to being assigned to different categories.  Different categories are linked (become 

correlated) via units of text assigned in common.  Several categories may be lumped into higher-

order or less detailed categories.   

Notwithstanding commercially motivated claims, qualitative text analysis software rarely 

implements theories of meaning or of reading.  Such theories -- if one can call them theories -- are 

embodied in the intelligent and linguistically competent users of this software.  It is these users who 

connect their own readings of text to the categories of their research question.  It is a major 

epistemological mistake to assume that texts have inherent meanings or speak for themselves.  It is 

equally problematic for qualitative text analysts to assume that their categorizations are self-evident, 

implying no need to question whether other readers/analysts would come up with same or similar 

categories and no need to tell the users of their findings what their coding criteria were.  It is these 

naïve conceptions of text that obviate reliability considerations.   

One feature that most qualitative text analysis software offers is to automatically extend a 

user's ad hoc coding to a body of text larger than they actually read.  It amounts to operationalizing 

the theories by which analysts assign textual units to the categories of their analysis.  This increases 

the efficiency of the coding process, but it still remains a single analyst's reading, stays entirely 

within the particular software, and says nothing about reliability.  Most qualitative text analysis 

software is hermetically closed in this sense and makes it difficult, therefore, to assess how well it 

does.  Yet, it is not impossible to develop coding instructions outside these computer aids that could 

be followed by several text analysts to yield comparable data that could shed light on the 

trustworthiness or reliability of the process.   

I do not agree with methodologists of qualitative research who take the difficulty of 

measuring reliability as an excuse for being unconcerned with reliability considerations.  Instead, I 

take this difficulty as a challenge.   

 

3  Reliability Data for Qualitative Text Analysis 

 Let me be a bit more abstract in characterizing the data that qualitative text analysts typically 

generate.  There is a continuum.  This continuum may be a text, a video tape, or a period of time, 

anything that has an extension in a measurable dimension.  In this continuum, several observers, 

analysts, coders, or readers introduce their own distinctions, ideally using common criteria.  These 
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distinctions create contiguous units – highlighted text, stretches of a video recording, or intervals in 

time -- and irrelevant matter between them, which is left unattended.  Relevant units are assigned to 

categories that are comparable across individual observers.  The reliability data thus described can be 

depicted in a three dimensional data cube of observers-by-a continuum (of a certain length)-by-

available categories, as in Figure 2. 

 Length of Continuum 

 A unit identified by observer j 

      k
c Categories assigned  

 
 
 
 1 

2 
. 

Observers  i 
j 
 
 

m 

 
 
 
 
 
 
 
 

 
Reliability Data Cube 

Figure 2 
 
In this purely graphical depiction, one may notice that the two observers, i and j, agree perfectly in 

category k but show disagreements in category c.  In the latter, the two observers substantially agree 

on their first unit, i is merely a bit more conservative than j is.  Regarding the other units, 

considerable uncertainty prevails.  There seems to be no obvious pattern of agreement.  The 

numerical representation of this example and the computations of the reliabilities are found in the 

Appendix.  

 

4  Specification of Units and Gaps Between Them 

 
4.1 Measures of Lengths 

We consider the continuum as initially undifferentiated and known only by its beginning B 

and length L.  Similarly, units and the gaps between units are located in this continuum by knowing 

their beginnings b and lengths .  l

The unit for measuring these lengths is the smallest distinguishable length, duration, or 

number, for example the characters in text, frames of film, or smallest division on a ruler.  Lengths 
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are expressed in full integers, not in decimal points, not in units of varying size (like fractions of 

inches for small length and feet or miles for larger lengths).  

 

4.2 Categories  

Usually, units are interpreted, assigned to categories, or coded.  One unit may be assigned to 

any number of categories c or k.  However, for any one observer, units of the same category may not 

overlap.   

 

4.3 Observers, Coders, Unitizers, Analysts 

 There are any number m of observers, coders, unitizers, or analysts, at least two.  They are 

generically referred to by i and j. 

  

4.4 Numbering of Sections 

The sections that an observer identifies as units or as gaps between units are consecutively 

numbered, separately for each observer and for each category.  For category c, observer i's sections 

are referred to by g and observer j's sections are referred to by h.  These are indicated by subscripts 

<cig>, <cjh>, <kig>, <kjh>, etc. of the beginnings b and lengths of sections in the continuum. l

0 

 
Continuum 

bci2                                 l  2ci

 
         Category c; Observer i: 
 
         Category c; Observer j: 
 
         Category k; Observer i: 
         Category k; Observer j: 
 

 

      B                                                                                L 
  g = 1                                 2                                      3                          4                   5 

  h = 1                                 2                                    3                     4         5           6          7 

0 

      bcj4                                                                                               4cjl

Specification of a Continuum and Location of Units Within It 
Figure 3 
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4.5 Differentiation of Units and Gaps 

Whether a section of the continuum is a unit or a gap between two units, between the 

beginning of the continuum and one unit or one unit and the end of that continuum is indicated by a 

binary function vcig of such sections:   

 
                                            vcig =  

 

0  iff section <cig> is a gap  
1  iff section <cig> is an identified unit 

 

5  Recoding of Categories f 

Qualitative text analysts often apply higher-order categories to lower-order categories, 

creating conceptual hierarchies.  Reliability may have to be evaluated on each level separately.  But 

regardless of such multi-level categorization, reliability analysts may create their own hierarchies by 

applying a mapping, c’=f(c) to the lowest level categories, in effect allowing for: 

• Omitting categories of units from the computed reliabilities and obtaining reliabilities that 

are conditional on the omitted ones 

• Lumping several categories into one in which case the units of the lumped categories 

collapse into their set theoretical unions.  For example: 
 

 

One observer's units of category a:
                                      category b: 
                                      category c : 
That observer's units with  
a, b, and c lumped into one category:

  1            2                                    3                                   4            5 
          1                 2               3              4                5              6       7 
                1                    2                        3                     4 5 6       7 
 
  1                      2                      3          4          5               6            7 

 
 
 
 
 

 
Collapsing of Units of Different Categories into One 

Figure 4 
 

6  Difference Function δcigjh
2 

For reliability to be perfect, the units that different observers identify must occupy the same 

locations in the continuum and be assigned to identical categories.  Disagreements sum deviations 

from this ideal by counting the pair wise differences between units and gaps, one pair at a time.  

Intuitively, such differences must be zero when units perfectly coincide.  They must increase as the 

overlap between any two units lessens and reach their largest value when a unit does not overlap with 

any other unit.  In terms of the following lengths: 
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                                                                       cigcig             b l

Category c; Observer i; unit g:                                                                                                         
                                                                          cjhcjh                 b l

Category c; Observer j; unit h; gap h+1: 
 1cjh1cjh                   b ++ l
 

The squared difference between any two observers’ sections g and h, all of the same 

category c, is defined by this function: 

2
cigjhδ

 

                         iff vcig=vcjh=1 and 2
cjhcjhcigcig

2
cjhcig )bb()bb( ll −−++− cjhcjhcigcig bb ll <−<−  

                                                                                 iff vcig =1, vcjh =0 and 2
cigl 0bb cjhcigcigcjh ≥−≥− ll  

                                                                                 iff vcig =0, vcjh =1 and 2
cjhl 0bb cjhcigcigcjh ≤−≤− ll  

                         0                                                            Otherwise 

=δ2
cigjh  

 

The first condition pertains to pairs of overlapping units.  Here, δ2 sums the squares of the two non-

overlapping lengths.  The second condition applies when observer i's unit g is fully contained in 

observer j's gap h.  The third condition is the converse of the second.  It applies when observer i's gap 

g fully contains observer j's unit h.  The fourth condition applies when two sections of the continuum 

overlap perfectly; are both gaps, not units; or have no relation with each other in the continuum. 

To see how this function behaves in response to different degrees of overlap between two 

observers’ units, consider these examples: 

 

                                   Units of Length: 

                                                                                                          22 +62= 40 

                                                                                                          22 +62= 40 

                                                                                                          12 +52= 26 

                                                                                                                42 = 16 

                                                                                                          12 +32= 10 

                                                                                                          22 +22=   8 

                                                                                                          12 +12=   2 

                                                                                                                    =   0 

Sliding Differences Between Units 
Figure 5 
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7  Observed Disagreement Doc 

Just as in the definition of the observed Disagreement Do of the established family of α-

measures, the observed disagreement Doc between all pairs of units of the same category c is obtained 

by comparing each observer's sections with all other observers' sections on the continuum, applying 

the above difference function.  This systematic comparison gives rise to the measure of the observed 

disagreement: 

2

m
1i g

m
ij1j h

2
cigjh

oc
L)1m(m

D
−

δ
=
∑ ∑ ∑ ∑= ≠⏐=  

wherein  

m is the number of observers that unitize the continuum,  

m(m–1) is the number of pairs of observers whose units are being compared,  

L is the length of the continuum, and  
2
cigjhδ  is the difference between two sections <cig> and <cjh>,   . 2

cjhig
2
cigjh δ=δ

Doc is the observed disagreement in category c, which can be seen as an average difference.  

Note that the sums in Doc pair all observers i and j (but not with itself) and run through all 

pairs of sections in one category.   

 

8  Expected Disagreement Dec 

 The expected disagreement was difficult to derive.  It amounts to a virtual generation of all 

possible unitizations, using only the actually identified units and gaps of a particular category, 

comparing each with each other, and applying the disagreement measure to each possible pair of 

unitizations.  Just as the expected disagreement for coding is the disagreement without consideration 

of the units that were coded, the expected disagreement for unitizing is the disagreement without 

consideration of the location of the sections that should ideally match.  

With the number of units of category c that all m observers have identified:  

∑ ∑=
=

m
1i g cigc vN = The total number of units of category c identified by all m observers  

the expected disagreement for units in category c is: 
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=

= =

−−−

⎥⎦
⎤

⎢⎣
⎡ ≥+−−++−

−

= m
1i g cigcigcig

m
1i g

m
1j h cigcjhcigcjhcjh

2
cigcig

2
cig

3
cig

c
cig

ec
)1(v)1mL(mL

 iff  1v132
3

1N
v

L
2

D
ll

llllllll

 
Its proof is lengthy and provided elsewhere (Krippendorff, 1995).  Let me merely point out its 

principal components.  The first double summation in its enumerator goes through all observers’ 

units, which vcig separates from the gaps between them.  The first expression in the angular 

parenthesis accounts for the differences between one unit and all other units overlapping with that 

unit in all possible ways.  The double summation in the angular parenthesis goes through all gaps 

between units, adding the differences due to that unit falling within all possible gaps in all possible 

ways.  In the denominator, mL is the number of possible locations for a unit to occur in the 

continuum and mL(mL–1) is the number of pair comparisons of such units that the disagreement 

measure calculates virtually in this expression. 

 

9  α-Agreement for One of Several Categories or Interpretations 

With the observed and expected disagreements for one category c now in place and following 

the definition of α in our family of agreement measures, the α-agreement for a variably unitized 

continuum of one category c is: 

ec

oc
c D

D
1−=α  

 

10  α-Agreement For Multiple Categories or Interpretations 

To obtain the agreement for multiple categorizations/interpretations we aggregate the 

disagreements for all categories as in: 

∑
∑−=α

c ec

c oc

D
D

1  

The proof of this form follows the derivation of the reliability measure for unitizing 

(Krippendorff, 1995), which did not recognize multiple categorizations.  Although high reliabilities in 

one category may compensate for low reliability in another categories, consider the effects that 

different kinds of confusions have on these disagreement measures.  For example, suppose two 

observers agree on the location of a unit but assign it to different categories.  This confusion would be 
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registered in the observed and expected disagreements for both categories.  But suppose the two 

observers assign two units of the same length to the same category, but they do not occupy the same 

positions on the continuum. They overlap.  This confusion would only minimally, if at all, affect the 

expected disagreement of this category but be registered by its observed disagreement -- the amount 

of this increase dependents on the degree to which these units overlap. 

 An obvious possibility of this form of α is to obtain agreement coefficients for various subsets 

of categories.  If one category or interpretation turns out to be consistently unreliable or uncertain, 

researchers are informed by how much the reliability of data increases when the unreliable category 

is excluded from an analysis. 

 

11  α-Agreement for Recoded Categories or Interpretations 

When categories of units are recoded, α is computed for the transformed data, ignoring units 

whose categories are excluded and collapsing units whose categories are lumped into their set 

theoretical unions: 

∑
∑−=α

'c )c(f,e

'c )c(f,o

D
D

1  

In the extreme this recoding option enables analysts to calculate α-reliabilities for data in which all 

categories are collapsed into one, the common quality of units being identified as relevant.  The 

difference between the reliability for all categories and for all categories collapsed into one (the 

reliability of identifying relevant matter) indicates how much categorizing adds to or distracts from 

the reliability of mere unitizing. 

 

12  Summary 

This paper suggests a computational solution to the problem of evaluating the reliability of 

variably unitized and multiply categorized or interpreted textual matter, video recordings, group 

interactions, and the like, all of which start out as undifferentiated continua until researchers draw 

distinctions within them.  The proposal extends the family of α-agreement coefficients and brings to 

qualitative research standards that are acceptable elsewhere.  Qualitative text analysts often consider 

the lack of reliability measures in their empirical domain as indicative of the fundamental difference 

between qualitative and quantitative research.  This justification is no longer valid.  Although the 

above proposal does not solve all problems of assessing the reliability of qualitative data, it shows its 
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possibility and its feasibility.  I argue that even multiple interpretations of textual matter need to be 

reliable in the sense of being replicable by other researchers or described same or similarly by 

independent analysts of the same continuum.  Actually, reliability considerations should not be 

entirely strange in qualitative research.  Consider that qualitative researchers customarily accept some 

interpretations as valid and others as disagreeable, unacceptable, or without adequate ground.  The 

above merely gives such judgments an explicit face and offers ways the trustworthiness of different 

data making processes may be compared.  I would contend that addressing reliability questions is  

essential to improve the credibility of qualitative research.   

The computation of these reliabilities are not simple indeed.  When the volume of textual data 

is large and unitizing and coding is complex, reliabilities can no longer be calculated by hand.  A 

computer program for calculating these is currently being developed.  But the use of computer-aided 

text analysis software brings a computable precision to qualitative research that heretofore was 

unavailable to traditional qualitative researchers.  The above solution can easily be incorporated in 

such software and made widely available.  It would enable qualitative researchers to keep track of 

their unreliabilities as routinely as they currently use spell checkers.  In my experience, information 

about the reliability of one’s work is informative to the coder or analysts and the use of such quality 

checks encourages a more responsible use of qualitative data in the social sciences. 
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Appendix 

A Numerical Example 

 

 The numerical values of the units depicted in the reliability data cube of Figure 2 are: 

Continuum   B L 

  150    300 

Sections    b  v l

ci1  150 75 0 
ci2  225 70 1 
ci3  295 75 0 
ci4  370 30 1 
ci5  400 50 0 
cj1  150 70 0 
cj2  220 80 1 
cj3  300 55 0 
cj4  355 20 1 
cj5  375 25 0 
cj6  400 20 1 
cj7  420 30 0 
ki1  150 30 0 
ki2  180 60 1 
ki3  240 60 0 
ki4  300 50 1 
ki5  350    100 0 
kj1  150 30 0 
kj2  180 60 1 
kj3  240 60 0 
kj4  300 50 1 
kj5  350    100 0 
 

The non-zero differences between the two observers’ sections in category c are: 
2

2i2cj
22222

2j2ci 5055)8022070225()220225( δ==+=−−++−=δ  
2

4i4cj
22222

4j4ci 8502515)2035530370()355370( δ==+=−−++−=δ  
2

5i6cj
22

6j5ci 40020 δ===δ  
Evidently, the first pair of units, showing observer i as merely a bit more conservative than j is, 

contributes very little by comparison with the remaining three units, which are more scattered on the 

continuum.  In category k all differences are zero: 

2
4j4ki

2
2j2ki 0 δ==δ  
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The observed disagreement in category c is: 

0144.
300)12(2

)40085050(2

L)1m(m
D

22

2
5i6cj

2
4i4cj2i2cj6j5ci4j4ci2j2ci

oc
δ+δ+δ+δ+δ

=
2222

=
−

++
=

−

δ+
 

The observed disagreement in category k, Dok = .0000, of course. 

 

any more steps.  In 

ry c, with a total of N =2+3=5 identified units, the expected disagreement becomes: 

 Calculating the expected disagreement with the above formula requires m

catego c
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And in category k, with a total of Nk=2+2=4 identified units, the expected disagreement becomes: 
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The α-reliability for one category – category c and k separately -- is: 

7293.
0532.
0144.1c =−=α  

  0000.1
0490.
0000.1k =−=α , 

 

and the α-reliability for categories c and k jointly, is: 

8591.
0490.0532.
0000.0144.1 =

+
+

−=α  
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