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Networks with fourfold connectivity in two dimensions
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The elastic properties of planar,C4-symmetric networks under stress and at nonzero temperature are deter-
mined by simulation and mean field approximations. Attached at fourfold coordinated junction vertices, the
networks are self-avoiding in that their elements~or bonds! may not intersect each other. Two different models
are considered for the potential energy of the elements: either Hooke’s law springs or flexible tethers~square
well potential!. For certain ranges of stress and temperature, the properties of the networks are captured by one
of several models: at large tensions, the networks behave like a uniform system of square plaquettes, while at
large compressions or high temperatures, they display many characteristics of an ideal gas. Under less severe
conditions, mean field models with more general shapes~parallelograms! reproduce many essential features of
both networks. Lastly, the spring network expands without limit at a two-dimensional tension equal to the force
constant of the spring; however, it does not appear to collapse under compression, except at zero temperature.

DOI: 10.1103/PhysRevE.67.011903 PACS number~s!: 87.16.Dg, 87.16.Ka, 68.15.1e

I. INTRODUCTION

Two-dimensional networks are found in many cell struc-
tures, including the membrane-associated cytoskeleton of
mammalian erythrocytes, the bacterial cell wall, and the
nuclear lamina. The erythrocyte cytoskeleton is an example
of a network with at least partialC6 symmetry, in that the
network elements are frequently connected at sixfold coordi-
nated junctions@1,2#. However, networks with lower coordi-
nation ~i.e., fewer linking elements per vertex!, and hence
lower symmetry thanC6 , are also observed in nature. For
example, the nuclear lamina contains junctions that have
fourfold coordination~X shaped! @3#. Further, the cortical
lattice of the auditory outer hair cell@4# and the peptidogly-
can network of the bacterial cell wall@5# have T-shaped junc-
tions of threefold coordination and obviously low symmetry.
The properties of networks with symmetries lower thanC6
are not well documented.

Networks with sixfold symmetry are characterized by two
independent elastic moduli, as are isotropic materials, and
their behavior under stress and at finite temperature has been
investigated both analytically and by simulation. Thus far,
attention has focused on networks whose elements are beads
and tethers or identical springs@6–8#. In particular, spring
networks with C6 symmetry have been shown to expand
without bound when the in-plane tensile stress exceeds a
specific, temperature-independent threshold, and to collapse
when the compressive stress exceeds a temperature-
dependent threshold. The elastic moduli are stress dependent,
with the area compression modulus vanishing at the expan-
sion point, as one would expect.

In this paper, we explore the characteristics of networks
with fourfold connectivity, a sample configuration at finite
temperature being shown in Fig. 1. We refer to these systems
as square orC4-symmetric networks, reflecting the elemen-
tary plaquette shape or symmetry under tension. Of course,
this is just the simplest example of aC4-symmetric system:
more complex connectivities also are permitted. In many cel-

lular examples ofC4 networks, out-of-plane fluctuations are
suppressed because the network is held against a membrane
having modest bending resistance. In this paper, we study
networks confined to a plane, recognizing that transverse
fluctuations will modify some of the predicted elastic behav-
ior. We consider two different forms for the potential energy
of a single network element. In one approach, the elements
are ideal Hookean springs of force constantksp. This model
mimics the behavior of a polymer network at modest defor-
mations, but is not physical at two-dimensional tensions
greater thanksp, where the network expands without bound.
To investigate these latter conditions, we employ a network
of flexible tethers obeying a square well potential in which
network elements have a fixed maximal extension. Not only
is this network more physical at large deformations, it is also

FIG. 1. Snapshot of a square network of Hookean springs with
spring constantksp and unstressed spring lengths0 . This two-
dimensional network patch is subject to nonorthogonal periodic
boundary conditions, as indicated by the black background. Results
are from a Monte Carlo simulation performed at a temperaturekBT
of (1/4)ksps0

2 wherekB is Boltzmann’s constant. The configuration
has been rotated so that one of its axes lies along thex axis.
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well described by a simple mean field representation. In both
cases, the networks are self-avoiding in that their elements
are not permitted to cross one another.

In Sec. II, we demonstrate how the deformation energy of
square networks can be expressed in terms of three elastic
moduli, one more than required for isotropic materials in two
dimensions. Both the elastic moduli and the network geom-
etry can be described by mean field approximations, several
of which are presented in Secs. III and V for springs and
tethers, respectively. In Sec. IV, a Monte Carlo simulation of
a C4 spring network is reported, including both the stress and
temperature dependence of the network geometry and elastic
properties; these results are compared with the mean field
approaches. Tethered networks are treated in the same for-
mat: the mean field model in Sec. V and full simulations in
Sec. VI. Our conclusions are summarized in Sec. VII. Lastly,
the details of the simulation techniques are included in an
Appendix.

II. ELASTIC MODULI

When an object deforms in response to a stress, a given
element of the object moves from its original positionx to a
new positionx8 by a displacementu, whereu varies locally
across the object. The relevant description of the deformation
is the strain tensorui j , which is related to the rate of change
of u with positionx through

ui j 5
1

2 F ]ui

]xj
1

]uj

]xi
1(

k

]uk

]xi

]uk

]xj
G . ~1!

In Hooke’s law materials, the change in the free energy den-
sity DF upon deformation is quadratic in the strain tensor
ui j :

DF5
1

2 (
i jkl

Ci jkl ui j ukl ~2!

where the material-specific constantsCi jkl are the elastic
moduli. In two dimensions, the symmetry ofui j under ex-
change ofi and j reduces the number of independent moduli
from 24 to six. In addition, symmetry of theC4 network
under x→2x and y→2y shows that all components of
Ci jkl with an odd number ofx or y indices must vanish,
further reducing the number of independent moduli to four.
Lastly, the fourfold rotational symmetry of the network (x
→2y and y→x) provides yet another relation among the
moduli.

Hence, the free energy density involves just three inde-
pendent elastic moduli, and can be written in the form

DF5~KA/2!~uxx1uyy!
21~mp/2!~uxx2uyy!

212msuxy
2,
~3!

where the few independent combinations ofCi jkl have been
replaced by the area compression modulusKA , the pure
shear modulusmp , and the simple shear modulusms . The
deformation modes associated with pure and simple shear
are illustrated in Fig. 2. Note thatmp5ms for isotropic ma-

terials or triangular networks under infinitesimal deformation
~see Ref.@9# for further reading!.

III. MEAN FIELD APPROXIMATIONS FOR SPRINGS

For many physical systems, the change in free energy
density arising from a modest deformation varies quadrati-
cally in the magnitude of the deformation with respect to a
reference configuration. The microscopic representation of
such systems may include a network of elements with a de-
formation energy that is quadratic in their extension~i.e.,
springs! or in the angular separation between their nearest
neighbors. The simplest of these networks involves identical
Hookean springs~each with a force constant ofksp and an
unstretched length ofs0) without explicit dependence upon
the angles between neighboring elements. At low tempera-
ture or high tension, triangular networks of such springs have
been successfully described by a mean field approach in
which all triangular plaquettes of the network are equilateral
@6–8#.

In the simplest mean field approach, a network is tiled
with identical plaquettes, such as triangles inC6 networks or
parallelograms inC4 . Why this approximation is so success-
ful in C6 spring networks is that the dominant plaquette
shape at low temperature or high tension is an equilateral
triangle, although the length of each side is not necessarily
s0 . However, even fourfold networks of springs~let alone
tethers! have a degenerate ground state at zero stress, as il-
lustrated by the equal-energy configurations shown in Fig.
3~a!. From simulations, the area per plaquette of this network
is 0.6s0

2, well below thes0
2 of identical square plaquettes.

Nevertheless, at least three mean field approximations are
useful for describingC4 networks of springs and all are

FIG. 2. Two potentially inequivalent shear modes inC4 sys-
tems: ~a! is pure shear and~b! is simple shear. The line outline
shows the unstressed object, while the cross-hatched region shows
the deformed object.

FIG. 3. ~a! The ground state of theC4 spring network is not
unique at zero stress: each of these plaquettes has the same energy.
~b! In the variable shape~VS! mean field model, a set of plaquette
shapes is generated by sampling the position of the point indicated
by the dotted region. The resulting parallelogram has two sides of
lengths and two ofs0 .
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based on the enthalpy for a single plaquette with the shape of
a parallelogram

Hplaquette5~ksp/2!$~s12s0!21~s22s0!2%2tA, ~4!

where pairs of sides have lengthss1 ands2 . The number of
plaquettes in the network equals the number of vertices, but
is half the number of springs.

In one approximation, all lengths and angles in the net-
work are identical; we refer to this as the square plaquette or
SP model. In a related approximation, the sides are fixed at
s15s25s0 and the acute included angleu is allowed to
change; we designate this as the variable angle or VA model.
In the least restrictive approach, the plaquettes are identical
parallelograms with one side of fixed length; we call this the
variable shape or VS model. All three models are most useful
at low temperature where the spring lengths are relatively
constant: square plaquettes should dominate at high tension,
while parallelograms~either VA or VS! are more appropriate
near zero stress. Our objective here is to obtain a set of
analytical solutions which can be used for such specific con-
ditions. In terms of plaquette variables, we have chosen to
remain close to the mean characteristics of the network~for
instance, two degrees of translational freedom per plaquette!,
although we will mention alternative approaches. We have
not evaluated the accuracy of a broad collection of mean
field models, nor have we discovered one approximation that
is valid under all conditions.

A. Square plaquette and variable angle approximations

In the square plaquette approximation, all plaquettes are
identical squares with a lengths0 to the side when un-
stressed, andst to the side when subject to a two-
dimensional tensiont. The enthalpy per network vertexHSP
of this model is

HSP5ksp~s2s0!22ts2, ~5!

where each square plaquette has an area per vertex ofs2. At
zero temperature, the spring length in this approximation is
obtained by minimizing the enthalpy per vertex through the
condition ]HSP/]s50. This yields a spring length at a ten-
sion t of

st5s0 /~12t/ksp! ~SP model!. ~6!

From this expression, one can see that the spring length and
area per vertex expand without bound beyond a tension
given by

texp5ksp. ~7!

By subsituting Eq.~6! into Eq. ~5!, one arrives at

HSP5ksps0
2/~12ksp/t!5ksps0

2/~11ksp/P! ~8!

whereP52t is the pressure. For networks under compres-
sion, Eq.~8! establishes thatHSP.0 for P.0.

Lifting the right-angle constraint but keeping the sides
with fixed lengths0 leads to the expression

HVA5Ps0
2 sinu, 0<u<p/2, ~9!

for the enthalpy in the VA model, whereu is the acute angle
between neighboring sides of the plaquette. ForP.0, HVA
vanishes atu50, which corresponds to the shear collapsed
state of lower (C2) symmetry. Importantly, this configuration
has a lower enthalpy than Eq.~8! for all P.0. Hence,C4
networks at zero temperature are expected to collapse toward
C2 networks under any positive pressure:

Pcoll.0 or tcoll,0 ~VA model!. ~10!

This behavior is similar to triangular networks of springs at
zero temperature, which expand without bound when the in-
plane tension exceeds)ksp, and collapse when the pressure
~negative tension! is beyond)ksp/8.

For P,0 ~tension!, the VA model gives an area per
plaquette ofAv5s0

2 ~with u5p/2) rather thanAv50 ~with
u50 for P.0). Yet even though the enthalpy is lower for
the VA model under tension than for the SP model, the con-
stant length constraint is unphysical at high positive tensions.
Thus, the VA model primarily serves to prove that there is a
symmetry-breaking step change atP50 asu switches from
0 to p/2 and the enthalpy changes fromHVA50 to HVA

52ts0
2. However, the SP model needs to be used to more

accurately estimate the latter enthalpy.
Before proceeding to the third mean field model and full

network simulations, we express the elastic moduli in terms
of spring variables. This is done by determining the change
in the free energy density at zero temperature for the defor-
mation modes in Fig. 4 using two different expressions,
namely, Eqs.~3! and~4!, noting that Eq.~4! must be divided
by st

2 to obtain an energy density. The changes in the free
energy density, as well as the strain tensor, are given in Table
I for modes~a!–~c! of Fig. 4. Comparing columns 2 and 4 of
Table I yields the following expressions for the stress depen-
dence of the elastic moduli in the SP approximation:

KA5~ksp2t!/2, ~11!

mp5~ksp1t!/2 ~square plaquettes,T50, tÞ0!,
~12!

FIG. 4. Infinitesimal deformations of a square consisting of
springs stretched from their unstressed lengths0 to a stretched
length ofst . The stretched square is shown in outline with a black
border, and the infinitesimal deformation is shown as the cross-
hatched region. Mode~a! measures the area compression modulus,
while modes~b! and~c! measure the pure and simple shear moduli,
respectively.
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ms5t. ~13!

All three moduli are linear in the tension, and the simple
shear modulus vanishes at zero tension, as expected. Further,
the compression modulus decreases with increasing tension
until it vanishes at the blow-up point for the areatexp5ksp;
both shear moduli increase linearly with tension.

B. Variable shape approximation

Parallelograms represent a less restrictive set of plaquette
shapes. There are different algorithms for sampling the en-
semble of parallelogram shapes, corresponding to different
weights for each shape. The approach taken here is to fix one
side to have a lengths0 , with the shape being determined by
a point moving randomly in a two-dimensional plane, as in-
dicated by the shaded region in Fig. 3~b!. A line drawn from
the point to one end of the fixed side determines the lengths
and angleu of the second side of the parallelogram. The
remaining two sides are determined by symmetry. An alter-
native approach, which permits two vertices of a parallelo-
gram to move independently, involves four degrees of trans-
lational freedom per plaquette, rather than two degrees of
freedom in either the VS model or the network as a whole.
Introducing two extra degrees of freedom appears to com-
promise the accuracy of the VS approximation.

One of these extra degrees of freedom can be removed by
forcing one side of the parallelogram to lie in a fixed direc-
tion, so that there are just three degrees of freedom per
plaquette, one more than the network as a whole. For spring
networks at low temperatures and zero stress, this model
displays the same temperature dependence as the VS model
to first order. Differences between the mean field models are
more apparent at nonzero stress and temperature, but are not
so great as to rule out one of the approximations. Please note
that these conclusions apply only toC4 networks; networks
with higher connectivity, likeC6 , behave differently because
of the coupling between adjacent plaquette sides introduced
by the extra bonds.

Our mean field model can be evaluated analytically at
zero tension (t50) and low temperature (kBT!ksps0

2); the
model can be treated at arbitrary tension and temperature by
numerical integration@10#. Each plaquette corresponds to

two springs, one of lengths and the others0 , such that the
potential energy per plaquette is

E5~ksp/2!~s2s0!2. ~14!

We introduce two dimensionless variables

a5bksps0
2/2, ~15a!

s5s/s0 , ~15b!

permitting the Boltzmann factor for a single vertex~or a
single plaquette! to be written as

exp~2bE!5exp~2bksp@s2s0#2/2!5exp~2a@s21#2!.
~16!

In the above expressions, the inverse temperature isb
5(kBT)21, wherekB is Boltzmann’s constant.

Equation~16! can be used to construct a probability dis-
tribution for plaquette shapes. The mobile vertex which de-
fines the plaquette shape moves in a two-dimensional plane.
We defineP(s)s ds du as the probability of finding the
mobile vertex in the ranges ds du around the location~s,u!
in polar coordinates. As Eq.~16! does not depend uponu, the
probability is

P~s!s ds5
exp~2a@s21#2!s ds

* exp~2a@a21#2!s ds
. ~17!

The ensemble average of the area per vertex in the VS model
~with one side of the plaquette of fixed lengths0) is

^Av&5s0^s&^sinu&5~2/p!s0
2^s&, ~18!

where

^s&5E
0

`

sP~s!s ds5
* exp~2a@s21#2!s2ds

* exp~2a@s21#2!s ds
.

~19!

At low temperature, the integrands in Eq.~19! are concen-
trated arounds51, and it is convenient to change variables
to

«5s21, ~20!

so that Eq.~19! becomes

^s&5
*21

` exp~2a«2!~«11!2d«

*21
` exp~2a«2!~«11!d«

. ~21!

Expanding the polynomials in Eq.~21! leads to a number of
integrals of the form

E exp~2a«2!«nd«5a2~n11!/2E exp~2j2!jndj,

~22!

where the integration limits onj are from 2Aa to 1`.
Equation~15a! shows thata tends to infinity at low tempera-
ture; as a consequence, the integrands are approximately

TABLE I. Change in free energy densityDF for deformation
modes~a!, ~b!, and ~c! in Fig. 4 of a square network of springs
under stress. Column 2~microscopic! refers to the enthalpy change
expressed in spring variables, while column 4~continuum! is the
free energy change using Eq.~3! and the strain tensor in column 3.

Mode DF ~microscopic! Strain DF ~continuum!

~a! (ksp2t)(d/st)
2 uxx5uyy5d/st

uxy50
2KA(d/st)

2

~b! (ksp1t)(d/st)
2 uxx52d/st

uyy5(11d/st)
2121

uxy50

2mp(d/st)
2

~c! (t/2)(d/st)
2 uxx5uyy50

uxy5(d/2st)
(ms/2)(d/st)

2
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symmetric aboutj50 at low temperature, and integrals with
odd n must vanish. Integrals even inj are easy to evaluate,
leading to

^s&511
1

2a
~23!

so that the area per vertex is

^Av&5
2

p
s0

2S 11
kBT

ksps0
2D . ~24!

From Eq. ~24!, the VS approximation predicts that the
plaquette area will increase linearly with temperature, corre-
sponding to a positive thermal expansion coefficient. This is
in contrast toC6 networks which display a negative thermal
expansion coefficient both in simulations and in other theo-
retical approaches@11#. With one side of fixed length, pure
dilations are not achievable in the VS model, so that the area
compression modulus cannot be extracted directly from fluc-
tuations in area. We return to this point in Sec. V.

IV. SIMULATION OF SPRING NETWORKS

As emphasized in Sec. III, square networks assume a
broad range of configurations at any given temperature and
pressure, except when the network is placed under large ten-
sion and the elementary plaquettes are stretched into squares.
Such a large configuration space is difficult to treat by ana-
lytic approximation, so we have recourse to computer simu-
lations to determine the characteristics of spring networks at
arbitrary temperature and pressure. The simulations involve
standard Monte Carlo algorithms@6,7,12# for the isobaric
isothermal ensemble, and are presented in more detail in the
Appendix. In essence, the Monte Carlo procedure generates a
set of configurations which correctly samples the integrand
of the partition function, and from which statistically signifi-
cant ensemble averages can be extracted.

We begin our presentation of the simulation results with
the behavior of the network area and then move on to elastic
moduli. Figure 5 shows the area per junction vertex
^A&/Njs0

2 ~or the area per plaquette! as a function of ten-
sion, which is quoted as the dimensionless ratiot/ksp ~nega-
tive values oft correspond to pressure!. The figure contains
the square plaquette prediction found by squaring Eq.~6!, as
well as the simulation results for several temperatures:
kBT/ksps0

251/32, 1/16, 1/4, and 1. First, note that the gen-
eral features of the SP model are reflected in the simulation
of the full network. Indeed, the agreement is at the factor of
2 level for a significant fraction of the range of tensions
shown in the figure, and the agreement is particularly good at
large t/ksp where the network is stretched into square
plaquettes.

Under compression, the values of^Av&/s0
2 in the network

are much lower than the SP prediction at low temperatures,
i.e., kBT/ksps0

2<1/16. At the lowest temperature displayed
(kBT/ksps0

2<1/32) the drop in the area belowt50 is a hint
of the collapse transition referred to in Eq.~10! for the vari-
able angle model, although it may be that the temperature is

simply too high even atkBT/ksps0
251/32 for the transition

to be visible in aC4 network. In comparison, the collapse
transition is clearly visible in triangular networks at this tem-
perature. We conclude that square networks possess a col-
lapse transition only at the lowest~if not zero! temperatures,
with the much larger configuration space available to square
networks removing the transition at modest temperatures.

At large compressions and high temperatures, we expect
that the presence of the network springs is unimportant to
some physical properties, and the vertices should behave
more like an ideal gas. That is, at large compressions,
^Av&/s0

2 should approach the ideal gas limit of 1/bPs0
2,

whereP52t is the pressure. Certainly, the SP prediction of
Eq. ~6! doesnot possess this limit. The asymptotic behavior
of the network area can be obtained by plotting the area as a
function of 1/bPs0

2, which is done in Fig. 6, where high
pressures are on the left-hand side of the figure. The ideal gas
behavior of the network is most apparent at 1/bPs0

2,0.2;
the lowest temperature system (kBT/ksps0

251/32) is the first
to deviate from an ideal gas.

The area compression modulus is presented in Fig. 7,
where the reduced modulusKA /ksp is plotted against the
reduced tensiont/ksp, a choice of variables suggested by the
mean field expression Eq.~11!. For stretched networks at low
temperature (kBT/ksps0

2,1/4), the compression modulus
tracks the square plaquette prediction remarkably well over a
broad range of tension, and vanishes att5ksp as predicted
by Eq. ~11!. Of course, this is not a surprise given the good
agreement of the SP prediction displayed in Fig. 5 for the
same range of conditions. However, for modest tensions, or

FIG. 5. Area per junction vertex̂Av&/s0
2 of a spring network as

a function of reduced tensiont/ksp. The predictions of the square
plaquette~SP! and variable angle~VA ! approximations are com-
pared with the full network simulation for several temperatures:
bksps0

2532, 16, 4, and 1. Negative tension corresponds to pres-
sure.
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networks under compression, the agreement is nowhere near
as good, and the compression modulus drops below the
square plaquette prediction for the two lowest temperatures,
and lies above the SP prediction for the two highest tempera-
tures. Also visible on Fig. 7, the compression modulus fol-
lows along the ideal gas value at low temperature and high
pressure, whereKA5P52p. In addition, Fig. 7 illustrates
thatKA increases with temperature for networks under mod-
est compression:KA is a factor of 3 higher atkBT/ksps0

2

51 than atkBT/ksps0
251/16 for tensions near zero. Lastly,

KA drops neart50 for kBT/ksps0
251/32, reflecting the con-

traction in the network area seen in Fig. 5, although the
behavior ofKA does not appear to signal a phase transition.

The pure shear modulus is displayed as a function of tem-
perature in Fig. 8. As expected, the agreement between the
square plaquette approach and the full network is best when
the network is stretched att/ksp.0.5. Further, the general
rise of mp /ksp with increasing tension is also in moderately
good agreement with the SP approximation. However, the
behavior of the network under compression, or near zero
pressure, is significantly different from the square mean field
result. We do not believe that the nonzero value ofmp at
kBT/ksps0

251/16 and under compression is a finite size ef-
fect: no systematic decrease inmp is observed as the system
size increases from 144 to 1600 vertices. Lastly, we present
the simple shear modulus in Fig. 9. The network agrees with
the square plaquette approximation ofms5t at the largest
tensions for all temperatures considered. Further, the agree-
ment with the SP model improves as the temperature de-
creases, and is excellent atkBT/ksps0

251/32.

Although the area and the compression modulus display
ideal gas behavior over a large range of compression, neither
mp nor ms vanishes at high temperatures, contrary to ideal
gas expectations. That the shear moduli are nonzero reflects
how the presence of bonds tends to make the network more
rigid, an effect noted in studies of other networks@13#. Fig-

FIG. 6. Area per junction vertex̂Av&/s0
2 for a spring network

under compressionP52t. The area is plotted as a function of
1/bPs0

2 ~high pressure on the left-hand side of the graph! so that
the ideal gas prediction for the area is just a straight line with unit
slope. The full network simulation is shown forbksps0

252, 8, and
32.

FIG. 7. Area compression modulusKA /ksp of a spring network
shown as a function of reduced tensiont/ksp. The full network
simulation is shown forbksps0

2532, 16, 4, and 1. The square
plaquette~SP! calculation is from Eq.~11!. The ideal gas expecta-
tion for the compression modulus isKA5P52t.

FIG. 8. Pure shear modulusmp /ksp of a spring network shown
as a function of reduced tensiont/ksp. The full network simulation
is shown forbksps0

2516, 8, 4, and 1. The square plaquette calcu-
lation is from Eq.~12!.
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ures 8 and 9 suggest that bothmp andms vanish under com-
pression at zero temperature.

Figures 5–9 emphasize the stress dependence of the net-
work by plotting results at fixed temperature. In Figs. 10 and
11 we show a selection of simulation results plotted as a

function of temperature at fixed stress. As shown in Fig. 10,
the area per vertex both increases and decreases as a function
of temperature, depending on the stress. The area increases
with T for all the systems under compression, implying that
the network has a positive thermal expansion coefficient for
P52t.0. However, for some of the networks under ten-
sion, the area initially decreases with increasing temperature,
corresponding to a negative thermal expansion coefficient
~negative thermal expansion coefficients are also observed in
C6 networks@11#!. Inspection of sample configurations dem-
onstrates why this happens: at low temperatures and moder-
ate tension, network plaquettes have the form of squares,
with the spring lengths not too far from their unstressed val-
ues. As the temperature increases slowly fromT50, the
spring lengths are still close tos0 , but the plaquettes become
parallelograms and other shapes favored by entropy, result-
ing in a decrease of area. Figure 10 also displays the VS
prediction of the network area at zero stress according to Eq.
~24!. Over the range of temperature investigated, the pre-
dicted values are in very good agreement with simulations.
Lastly, the temperature dependence of the area compression
modulus is displayed in Fig. 11. Not unexpectedly, the net-
work softens as the temperature increases.

V. MEAN FIELD MODEL FOR TETHERED NETWORKS

As with the spring network, we now ask whether there is
a mean field model in which a single fluctuating plaquette
roughly mimics the behavior of the network as a whole. As
with the springs, our approach is to tile the network with
parallelograms with one pair of sides having fixed length
while the length of the other pair is determined by the posi-
tion of a randomly moving vertex, as in Fig. 3~b!. The fixed

FIG. 9. Simple shear modulusms /ksp of a spring network
shown as a function of reduced tensiont/ksp. The full network
simulation is shown forbksps0

2532, 4, 2, and 1. The square
plaquette calculation is from Eq.~13!.

FIG. 10. Temperature dependence of the area per junction vertex
^Av&/s0

2 of a spring network for a selection of pressures with
kBT/ksps0

2<1. The variable shape calculation is from Eq.~24!.

FIG. 11. Temperature dependence of the compression modulus
bKAs0

2 for a spring network over a range of pressures with
kBT/ksps0

2<1.
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side is chosen to have a length equal to the mean length of a
tether in one dimension, namely,smax/2. This is similar to
choosing a length ofs0 for springs, although the low tem-
perature fluctuations in tether length are dramatic compared
to those of springs. Again, we note that this is just one algo-
rithm for sampling the shapes of parallelograms; an in-
equivalent approach is to fix one vertex and allow two mov-
ing vertices to define two adjacent sides of the plaquette.
However, introducing additional degrees of translational
freedom reduces the accuracy of the model.

We evaluate this model analytically at zero tension~for
tÞ0, the calculation can be performed numerically, as dem-
onstrated in Ref.@10#!. With one side fixed, the mean area
per plaquette is simply

^A&
N

5

1

2
*0

p*0
smaxsmaxs

2 sinu du ds

*0
p*0

smaxs sinu du ds
5

2smax
2

3p
. ~25!

The elastic moduli can be obtained from the fluctuations in
the height of a parallelogram with a fixed base. Whenuxx
vanishes on account of the fixed length of the parallelogram
base, Eq.~A3! for the free energy density reads

DF5~KA1mp!~uyy
2/2!12msuxy

2. ~26!

The same logic that leads to Eqs.~A4!–~A6! now gives

b~KA1mp!^Av&5
1

^uyy
2&

5
^y&2

^y2&2^y&2 , ~27!

bms^Av&5
1

4^uxy
2&

5
^y&2

^x2&2^x&2 , ~28!

where (x,y) are the coordinates of the moving vertex and
^Av& is the mean area of the parallelogram, from Eq.~25!
with one vertex per plaquette. It is trivial to show that^x2&
5^y2&5smax

2/4 and^y&54smax/3p, so that

b~KA1mp!smax
254p>12.6, ~29!

bmssmax
2532/3p>3.40 ~mean field for tethers!.

~30!

The elastic moduli under tension can be obtained by numeri-
cal integration@10#.

VI. SIMULATIONS OF TETHERED NETWORKS

The first thing to note about tethers compared to springs is
that, while the square well potential sets a fundamental
length scalesmax for the network, it does not provide an
energy scale. Thus, the only independent thermodynamic pa-
rameter in the network is the dimensionless combination
tsmax

2/kBT, wheret is the two-dimensional tension, as usual.
The mean area per vertex^Av&5^A&/N is displayed as a
function of this parameter in Fig. 12. Under compression, the
area approaches that of an ideal gas^Av&5kBT/P, where
the pressureP is equal to2t, particularly for tsmax

2/kBT

,210. Under tension (t.0), the network initially expands
rapidly, but finally approaches its asymptotic value of
^Av&/smax

251 dictated by the maximum tether length. This
behavior is in contrast to springs, which can expand without
limit. At zero stress, the numerical value of^Av&/smax

2 is
found to be 0.23, which is very close to 2/3p50.21 pre-
dicted by the mean field approach of Eq.~25!. In fact, when
the parallelogram approximation of Sec. V is extended to
nonzero tension@10#, the predictions are within a few percent
of the numerical results of Fig. 12.

The area compression modulusKA is proportional to the
reciprocal of the tangent to the area vs tension curve, so we
expectKA to diverge at large tension, where the area changes
only very slowly. This behavior can be seen in Fig. 13, where
KA clearly increases with tension. Thus, the vanishing ofKA
under tension seen in spring networks in Fig. 7 is absent with
tethers. However, the behavior of the shear moduli is similar
in the two networks: the plaquettes in both networks fluctu-
ate ever more tightly about square shapes at large tension,
meaning that their shear resistance increases. This feature
can be seen in Fig. 13 for tethers, and in Figs. 8 and 9 for
springs. Indeed, a linear increase in shear resistance with
tension can be observed in all of these figures. At zero stress,
the sumb(KA1mp)smax

2 from Fig. 13 is 11.7, close to the
mean field prediction of Eq.~29!. Similarly, the observed
value ofbmssmax

2 is 3.0, close to Eq.~30!.

VII. SUMMARY

We investigate two different planar networks with four-
fold connectivity: N vertices linked together by 2N struc-
tural elements, which may be either springs or tethers but are
not allowed to cross one another. Examined at both nonvan-

FIG. 12. Mean area per vertex^Av&/smax
2 for a tethered network

as a function of reduced tensiontsmax
2/kBT. Under moderate com-

pression (tsmax
2/kBT,210), the system behaves like an ideal gas.

Over the range of tensions displayed, the mean field predictions of
Sec. V lie within a few percent of the data~see Ref.@10#!.
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ishing temperatureT and tensiont, the networks are de-
scribed by three elastic moduli in two dimensions—the com-
pression modulusKA , pure shear modulusmp , and simple
shear modulusms . In general, the large fluctuations in net-
work shape present even atT50 require that the geometrical
and elastic properties be determined by Monte Carlo simula-
tion. However, under some conditions, the network can be
described by one of several mean field approximations in
which all plaquettes have the shape of squares or parallelo-
grams.

Spring networks are useful for describing polymer sys-
tems at modest temperatures and stress. Our model system
consists of identical springs with force constantksp and un-
stressed lengths0 . The simulations show that the area in-
creases with tension until it expands without bound att
5ksp. Correspondingly, the area compression modulus de-
creases with increasing tension until it vanishes att5ksp.
The two shear modulimp and ms increase with tension, as
expected where the plaquettes become similar in shape~more
resistance to shear! but fluctuate dramatically in size~less
resistance to compression!. When the network is subject to
compression, its area and compression modulus~but not its
shear moduli! approach those of an ideal gas. However, there
does not appear to be a phase transition to a collapsed state
except at zero temperature. This behavior is in contrast to
triangulated networks, in which the collapse transition is
clearly visible at a temperature-dependent threshold in stress.

Hookean springs do not provide an accurate description of
a physical network at large stress because the spring can be
stretched without limit. To provide insight into networks un-
der these conditions, we also investigate tethered networks,
in which the bond elements are hard tethers whose length
may range freely between 0 andsmax but not beyond. Teth-
ered networks approach a maximal area ofNsmax

2 at large
tension; their compression modulus necessarily diverges un-
der these conditions, in contrast to ideal spring networks

where the compression modulus vanishes. Of course, the
shear moduli also increase with tension just as they do for
springs: at large tensions, the network plaquettes ever more
resemble squares and resist deformation in their shape.
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APPENDIX: SIMULATION TECHNIQUE

The C4 network in our simulations consists ofN vertices
with fourfold connectivity, linked together by a total of 2N
elements or bonds. The periodic network shape is described
by two nonorthogonal vectorsU and V which define the
boundaries of the repeat unit, a parallelogram. For the spring
network, the enthalpyH is simply

H5~ksp/2!(
i

~si2s0!22tA ~springs!, ~A1!

where the sum is over all springsi of the network, each with
force constantksp and unstressed lengths0 . For a tethered
network, the enthalpy just contains the term2tA, with the
constraint that all bond lengthssi must be less thansmax. A
configuration is propagated using a Monte Carlo technique in
which trial moves are made on the positions of all vertices
and on the boundary vectors of the network.

~i! Trial moves are made sequentially on the set of verti-
ces by displacing each one randomly within a maximum dis-
tanceDv in each Cartesian direction, and evaluating the re-
sulting change in enthalpyDH of a single vertex move.
Clearly, a change in a vertex position may only result in a
change in energy, since a vertex move does not change the
area of the system. The move is accepted according to the
conventional Boltzmann weight exp(2bDH), whereb is the
inverse temperature (b215kBT).

~ii ! Trial moves are made on the two boundary vectorsU
andV by displacing each one randomly within a maximum
distanceDb in each Cartesian direction, and rescaling the
positions of the vertices simultaneously. Changing the peri-
odic container shape results in a change in areaDA and a
change in enthalpyDH from which a pseudo-Boltzmann
weight

W5exp@2bDH1N ln~11DA/A!# ~A2!

can be constructed@12#. One boundary rescaling is attempted
for every N positional moves~i.e., the procedure involves
one trial move on each vertex, followed by one boundary
rescaling!.

The values ofDv andDb , while fixed during the simula-
tion of a givenT and t, are adjusted to give reasonable ac-
ceptance rates.

In our calculational method, the elastic moduli are ex-
tracted from fluctuations in the shape of the periodic bound-

FIG. 13. Elastic moduli of tethered network as a function of the
reduced tensiontsmax

2/kBT.
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aries of the network. From Sec. II, the change in free energy
density for deformations around an equilibrium state can be
expressed in terms of the strain tensorui j as

DF5~KA/2!~uxx1uyy!
21~mp/2!~uxx2uyy!

212msuxy
2.

~A3!

Being quadratic in the strain tensor combinationsuxx1uyy ,
uxx2uyy , anduxy , this expression implies that the fluctua-
tions in these combinations should be Gaussian, with expec-
tations

^~uxx1uyy!
2&51/bKA^A&, ~A4!

^~uxx2uyy!
2&51/bmp^A&, ~A5!

^uxy
2&51/4bms^A&. ~A6!

The strain tensor can be written in terms of the boundary
vectorsU andV which have coordinates

U5~Lx1Dx,0! and V5~Dyx ,Ly1Dy!, ~A7!

whereLx andLy are the equilibrium values of the boundary
vectors at a given temperature and pressure. Note thatU has

been rotated so as to lie along thex axis in this representa-
tion, even thoughU andV randomly sample Cartesian space
in the simulation. In terms of the boundary vectors, Eq.~A4!
corresponds to the familiar

1/bKA5^DA2&/^A&. ~A8!

Equations~A4! and ~A5! can be combined to give

1/bmp5~1/bKA!24^DxDy&. ~A9!

Finally, Eq. ~A6! is just

1/bms5^A&^~Dyx /Ly!2&. ~A10!

All of the simulations are performed withN5196, and a
total of 2100 configurations are generated at each pressure/
temperature combination, although the first 100 configura-
tions are discarded to remove any dependence on the initial
configuration. Each configuration in the ensemble is sepa-
rated by 2000 attempted moves per vertex, which is a suffi-
ciently large number to strongly reduce the correlation be-
tween successive configurations. With this data set, we
estimate that the uncertainties in geometrical quantities such
as the area are about 1%, and the uncertainties in the elastic
moduli are about 10%.
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