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Trajectory Based Verification Using Local Finite-Time Invariance

Abstract
In this paper we propose a trajectory based reachability analysis by using local finite-time invariance property.
Trajectory based analysis are based on the execution traces of the system or the simulation thereof. This family
of methods is very appealing because of the simplicity of its execution, the possibility of having a partial
verification, and its highly parallel structure. The key idea in this paper is the construction of local barrier
functions with growth bound in local domains of validity. By using this idea, we can generalize our previous
method that is based on the availability of global bisimulation functions. We also propose a computational
scheme for constructing the local barrier functions and their domains of validity, which is based on the S-
procedure. We demonstrate that our method subsumes some other existing methods as special cases, and that
for polynomial systems the computation can be implemented using sum-of-squares programming.
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Trajectory based verification using local

finite-time invariance⋆

A. Agung Julius and George J. Pappas

Department of Electrical and Systems Engineering
University of Pennsylvania

200 South 33rd Street, Philadelphia PA-19104
United States of America

Email:{agung,pappasg}@seas.upenn.edu

Abstract. In this paper we propose a trajectory based reachability anal-
ysis by using local finite-time invariance property. Trajectory based anal-
ysis are based on the execution traces of the system or the simulation
thereof. This family of methods is very appealing because of the simplic-
ity of its execution, the possibility of having a partial verification, and
its highly parallel structure.

The key idea in this paper is the construction of local barrier functions
with growth bound in local domains of validity. By using this idea, we
can generalize our previous method that is based on the availability of
global bisimulation functions. We also propose a computational scheme
for constructing the local barrier functions and their domains of validity,
which is based on the S-procedure. We demonstrate that our method
subsumes some other existing methods as special cases, and that for
polynomial systems the computation can be implemented using sum-of-
squares programming.

1 Introduction

One of the main problems in the field of hybrid systems is reachability anal-
ysis/safety verification. This type of problems is related to verifying that the
state of a hybrid system does not enter a declared unsafe set in its execution
trajectory. The domain of application of the problem is very wide, ranging from
engineering design [1, 2], air traffic management systems [3, 4], to systems bi-
ology [5, 6]. Understanding the importance of the problem, the hybrid systems
community has put a lot of efforts in the research of reachability analysis and
verification. We refer the reader to [7–16] for some of the earlier references in
this topic1.

⋆ This work is partially funded by National Science Foundations awards CSR-EHS
0720518 and CSR-EHS 0509327.

1 Given the breadth of research in this topic, this list is by no means exhaustive.
However, it does capture a broad spectrum of techniques that have been developed
in the community to answer the safety/reachability problems.



Among the different approaches to reachability analysis, there is a family of
methods that is based on simulation or trajectory analysis. In some literature,
this type of approach is also called testing based [17], referring to the possibil-
ity of generating the trajectories through actual executions (tests). This type of
approach is very appealing because of several reasons [18]. One of the reasons
is its simplicity. Running or simulating a system is generally much simpler than
performing symbolic analysis on it. This is particularly true for systems with
complex dynamics. Another reason why trajectory based verification is attrac-
tive is that its algorithm is highly parallelizable. Since simulation runs of the
system do not depend one on another, they can be easily assigned to different
processors, resulting in a highly parallel system. Trajectory based verification
is also close to some actual practice in the industry where verification is done
through ”exhaustive” testing and/or simulation. Of course, formal exhaustive
testing for continuous/hybrid systems is not possible, unless they are coupled
with some notion of robustness, which is the central issue in this paper.

Within the family of trajectory based reachability analysis techniques itself
there are different approaches. Some methods, for example, conduct state space
exploration through randomized testing [19] or by using Rapidly exploring Ran-
dom Trees (RRT) or its adaptations [20, 21]. Methods based on linearization of
the system’s nonlinear dynamics along the execution trajectory have also been
proposed, for example in [22, 23]. Other related methods incorporate the notions
of sensitivity [24], local gain/contraction analysis [25, 26] and bisimulation func-
tion [27, 17, 28] to measure the difference between neighboring trajectories. The
method that we present in this paper belongs to this class. In a sense, these
methods combine two of the most successful analysis techniques for nonlinear
dynamics, simulation and stability analysis. The difference between our approach
and other approaches that use, for example, sensitivity analysis [24] and local
gain/contraction analysis [25, 26] is in the fact that we are not restricted to use a
prespecified metric in the state space. In fact, the bisimulation/barrier functions
induce a pseudometric that can be (locally) customized to best fit the application
[17].

In this paper, we extend the approach reported in [17] (and in [18] for stochas-
tic systems). An illustration of the approach proposed in this paper is shown in
Figure 1. Suppose that we have a test trajectory that satisfies the safety con-
dition. In the above mentioned references, we rely on the assumption of the
availability of a bisimulation function for each mode of dynamics, which is valid
globally, to bound the divergence of the trajectories resulting from nearby initial
conditions. The contribution of this paper lies in the relaxation of this global
assumption, allowing for more flexibility in the computation. Effectively, we con-
struct a guarantee on the divergence of execution trajectories by piecing together
multiple local finite-time invariance arguments. The idea is to link the domains
of validity of these local invariance to cover a neighborhood of the test trajectory.
In Figure 1 these domains are shown as Domain-1, 2, and 3. The local invariance
arguments that we construct are similar to the barrier certificate as proposed
in [14], except for the fact that the validity of the invariance property is finite
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Fig. 1. The main idea presented in this paper. The test trajectory is shown as the
thick curve. The use of global bisimulation function to bound the divergence of the
trajectories is illustrated on the left side. Local finite-time invariance based analysis is
illustrated on the right side.

time. In each of these domains, the shape of the level sets of the barrier function
and the stability property of the dynamics can be different. This is illustrated
in Figure 1 by the changing of the shape and the size of the level sets.

The rest of the paper is organized as follows. In the next section, we present
some basic results about local finite-time invariance of dynamical systems. The
application of these results in safety verification is discussed in Section 3. In Sec-
tion 4, we also propose a computational scheme to compute the barrier functions
and their domains of validity based on the S-procedure [29]. We show that for
affine systems, the method proposed in this paper coincides with that in [17].
We also show that our result captures, as a special case, the method based on lo-
cal linearization of nonlinear systems. For polynomial systems we show that the
computation can be implemented by using sum-of-squares (SOS) programming
and demonstrate it with an example.

2 Local Finite-Time Invariance

We consider nonlinear dynamical system of the form

ẋ = f(x), x ∈ X , (1)

where X ⊂ R
n is the state space of the system, and a differentiable function

φ : X → R+. We assume that the differential equation posed in (1) admits a
unique solution for any initial condition in X , during the time interval of interest,
T .
Notation. We denote the flow of the dynamical system at time t with initial
condition x(t)t=t0 = x0 as ξ(t;x0, t0). That is, ξ(t;x0, t0) satisfies

d

dt
ξ(t;x0, t0) = f(ξ(t;x0, t0)),

ξ(t0;x0, t0) = x0.
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Fig. 2. Illustration for Propositions 1 and 2 for the case when k > 0 (left) and k < 0
(right).

We have the natural semigroup property of the flow: ξ(t;x0, t0) = ξ(t;x′, t′),
where x′ := ξ(t′;x0, t0) for any t′ ∈ [t0, t]. We also have the time invariance
property: ξ(t;x0, t0) = ξ(t + ∆;x0, t0 + ∆) for any ∆ ∈ R.
Notation. We denote the level set of a function φ : X → R as

Lφ,α := {x ∈ X | φ(x) ≤ α}. (2)

In the subsequent discussion in this paper we need the following two results
related to local finite-time invariance.

Proposition 1. Suppose that the following relation holds for a subset D ⊂ X
and for some k ∈ R,

∇xφ(x)f(x) ≤ k,∀x ∈ D. (3)

Take any α, β ∈ R such that β < α and Lφ,α ⊂ D. The following results hold.
(i) If k > 0, then any trajectory of the system (1) that starts in Lφ,β remains in

Lφ,α for at least α−β
k

time units, or mathematically

ξ(t;x0, 0) ∈ Lφ,α, ∀x0 ∈ Lφ,β ,∀t ≤
α − β

k
.

(ii) If k < 0, then any trajectory of the system (1) that starts in Lφ,α enters

Lφ,β after at most β−α
k

time units, or

ξ(t;x0, 0) ∈ Lφ,β , ∀x0 ∈ Lφ,α,∀t ≥
β − α

k
.



Proposition 2. Suppose that the following relation holds for a subset D ⊂ X
and for some k ∈ R,

∇xφ(x)f(x) ≤ kφ(x),∀x ∈ D. (4)

Take any α, β ∈ R such that β < α and Lφ,α ⊂ D. The following results hold.
(i) If k > 0, then any trajectory of the system (1) that starts in Lφ,β remains in

Lφ,α for at least ln α−ln β
k

time units, or mathematically

ξ(t;x0, 0) ∈ Lφ,α, ∀x0 ∈ Lφ,β ,∀t ≤
lnα − lnβ

k
.

(ii) If k < 0, then any trajectory of the system (1) that starts in Lφ,α enters

Lφ,β after at most ln β−ln α
k

time units, or

ξ(t;x0, 0) ∈ Lφ,β , ∀x0 ∈ Lφ,α,∀t ≥
lnβ − lnα

k
.

Definition 1. Hereafter, we call a function φ : X → R that satisfies (3) or
(4) a barrier function with constant and linear growth bound, respectively. The
corresponding domain D is called the domain of validity of the barrier functions.

Propositions 1 and 2 can be proved by using an argument similar to Lyapunov
stability theory, which is a standard result in nonlinear system analysis (see, for
example [30]). Effectively, the results above can be used to establish a barrier
certificate that is valid for a finite time. Notice that if ∂φ

∂x
f(x) is continuous

and D is a compact set, we can always find a finite bound k in (3). In a sense,
this property guarantees that for any continuous function f(x) and a compact
domain D, we can always construct a smooth barrier function with a finite
constant growth bound.

3 Safety Verification

In this section, we extend the results in the previous section to the product of a
dynamical system with itself. The goal is to establish a method for computing the
robustness of test trajectories for systems with nonlinear dynamics. We consider
dynamical systems in the form of (1), and suppose that there is an unsafe subset
of the state space X , which we denote by Unsafe. We want to verify that the
execution trajectories of the system are safe. That is, they do not enter the
unsafe set. The object of robustness computation is to establish a neighborhood
around a test trajectory that is guaranteed to have the same safety property.

Consider a trajectory of the system with initial condition xi ∈ X in the
time interval [0, T ], as illustrated in Figure 3. Suppose that there exists a set
D ⊂ X × X such that the trajectory (ξ (t;xi, 0) , ξ (t;xi, 0)) ∈ D, and that the
trajectory is safe, i.e. ξ (t;xi, 0) /∈ Unsafe, for all t ∈ [0, T ]. Further, for any



function φ : X × X → R, we define a function

d(t) := inf
y∈Avoid(t)

φ(ξ (t;xi, 0) , y),∀t ∈ [0, T ], (5)

Avoid(t) := {y | y ∈ Unsafe, (ξ (t;xi, 0) , y) ∈ D} ∪ {y | (ξ (t;xi, 0) , y) /∈ D},
(6)

and introduce the following notation.
Notation. We introduce the level set notation

Lx
φ,α := {y | φ(x, y) ≤ α}. (7)

Proposition 3. Suppose that for all (x, y) ∈ D, there exists a k ∈ R such that

∇xφ(x, y)f(x) + ∇yφ(x, y)f(y) ≤ k.

Let β and k′ be such that

β + k′t ≤ d(t),∀t ∈ [0, T ], (8)

k′ ≥ k. (9)

For any initial condition x0 ∈ Lxi

φ,β , we have that

ξ(t;x0, 0) /∈ Unsafe, (10)

(ξ(t;xi, 0), ξ(t;x0, 0)) ∈ D, (11)

for all t ∈ [0, T ].

Proof. By applying Proposition 1, we can show that for all t ∈ [0, T ],

φ(ξ(t;xi, 0), ξ(t;x0, 0)) ≤ β + k′t ≤ d(t). (12)

By definition, it implies that for all t ∈ [0, T ],

φ(ξ(t;xi, 0), ξ(t;x0, 0)) ≤ inf
y∈Avoid(t)

φ(ξ (t;xi, 0) , y),

and therefore
ξ(t;x0, 0) /∈ Avoid(t).

By definition of Avoid(t), this immediately implies the validity of (10 - 11).

A result similar to Proposition 3 for barrier functions with linear growth
bound can be constructed as follows (the proof follows a similar construction).

Proposition 4. Suppose that for all (x, y) ∈ D, there exists a k ∈ R such that

∇xφ(x, y)f(x) + ∇yφ(x, y)f(y) ≤ kφ(x, y).

Let β and k′ be such that

lnβ + k′t ≤ ln d(t),∀t ∈ [0, T ], (13)

k′ ≥ k. (14)
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Fig. 3. Illustration for Proposition 3. The circles represent level sets of φ. For β that
satisfies the condition in Proposition 3, any trajectory that starts in L

xi

φ,β is guaranteed
to possess the same safety property as ξ(t; xi, 0).

For any initial condition x0 ∈ Lxi

φ,β , we have that

ξ(t;x0, 0) /∈ Unsafe, (15)

(ξ(t;xi, 0), ξ(t;x0, 0)) ∈ D, (16)

for all t ∈ [0, T ].

The results above establish a way to perform a local testing-based safety ver-
ification using a local bisimulation function/ Lyapunov function type argument,
which is similar to [17]. Namely, we can guarantee the safety of all trajectories
starting from a neighborhood Lxi

φ,β of the nominal initial state xi. The new con-
tribution in this paper lies in the fact that the domain of validity of the function
can be local. The locality of this analysis can be extended by linking multiple
local analysis to cover a test trajectory. This idea is elucidated in the following
theorem, and illustrated in Figure 4.

Theorem 1. Consider a test trajectory ξ(t;x0, 0), t ∈ [0, T ]. Suppose that for
i = 1, . . . , N, there exists a family of sets Di ⊂ X×X , functions φi : X×X → R+,
positive constants αi and βi, and time intervals 0 = t0 < t1 < · · · < tN = T
such that
(i) (ξ(t;x0, 0), ξ(t;x0, 0)) ∈ Di for all t ∈ [ti−1, ti],
(ii) for all (x, y) ∈ Di, there exists a ki ∈ R such that

∇xφi(x, y)f(x) + ∇yφi(x, y)f(y) ≤ ki, (17)

(iii) there exists a k′
i ≥ ki such that

βi + k′
it ≤ di(t),∀t ∈ [0, ti − ti−1],

βi + k′
i (ti − ti−1) ≤ αi,
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Fig. 4. Illustration of Theorem 1. The solid trajectory represents the test trajectory,
while the dashed ones represent other trajectories with initial conditions in L
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where

di(t) := inf
y∈Avoidi(t)

φi(ξ (t;xi−1, 0) , y),∀t ∈ [0, ti − ti−1],

Avoidi(t) := {y | y ∈ Unsafe, (ξ (t;xi−1, 0) , y) ∈ Di} ∪ {y | (ξ (t;xi−1, 0) , y) /∈ Di},

xi−1 := x(ti−1),

(iv) for i = 1, . . . , N − 1,

αi ≤ sup
{

α | Lxi

φi,α
⊂ Lxi

φi+1,βi+1

}

.

For any initial condition x̃0 ∈ Lx0

φ1,β1
, we have that

ξ(t; x̃0, 0) /∈ Unsafe, (18)

(ξ(t;x0, 0), ξ(t; x̃0, 0)) ∈ ∪N
i=1Di, (19)

for all t ∈ [0, T ].

Proof. Consider the last interval of the trajectory, that is t ∈ [tN−1, T ]. By
Proposition 3, we have that for any x̃N−1 ∈ L

xN−1

φN ,βN
,

ξ(t; x̃N−1, tN−1) /∈ Unsafe, (20)

(ξ(t;xN−1, 0), ξ(t; x̃N−1, 0)) ∈ ∪N
i=1Di, (21)

for all t ∈ [tN−1, T ]. Also, for any i = 1, . . . , N − 1, using the same proposition,
we can conclude that for any x̃i−1 ∈ L

xi−1

φi,βi
,

ξ(t; x̃i−1, ti−1) /∈ Unsafe, (22)

(ξ(t;xi−1, ti−1), ξ(t; x̃i−1, ti−1)) ∈ ∪N
i=1Di, (23)

ξ(ti; x̃i−1, ti−1) ∈ Lxi

φi,αi
. (24)



By construction, Lxi

φi,αi
⊂ Lxi

φi+1,βi+1
. Hence, from (24) we can obtain

ξ(ti; x̃i−1, ti−1) ∈ Lxi

φi+1,βi+1
.

Therefore, by repeated application of Proposition 3, we can prove that this the-
orem holds.

The result given in Theorem 1 can be easily extended by replacing the barrier
functions with constant growth bounds with those with linear growth bounds.
In this case, the proof will follow Proposition 4.

4 Computation of Barrier Functions and the Domains of

Validity

4.1 General scheme

In the previous sections we have established some results that describe how to
construct a finite-time safety/ reachability type guarantee based on the barrier
function φ and its domain of validity D. In this section, we propose a computa-
tional scheme to construct such barrier function and domain of validity.

Consider the dynamical system in (1).

Proposition 5. Suppose that the functions φ(x) and γ(x) satisfy

∇xφ(x)f(x) − k ≤ ε(x)γ(x), (25)

for some strictly positive function ε(x), and k ∈ R. Then φ(x) is a barrier
function with k as its constant growth bound and D := {x | γ(x) ≤ 0} is its
domain of validity,

Proof. This construction is based on the S-procedure. From (25), it follows that
γ(x) ≤ 0 implies

∇xφ(x)f(x) ≤ k.

The linear growth bound version of this proposition can be found by replacing
k in (25) with kφ(x). We can use this proposition to generate a barrier function
φ for a given domain of validity D.

Given γ(x), find φ(x) and ε(x) satisfying

∇xφ(x)f(x) − ε(x)γ(x) − k ≤ 0, ε(x) ≥ 0. (26)

Extending this scheme for safety verification amounts to finding a barrier
function φ : X ×X → R that is valid in a domain given by γ(x, y) ≤ 0. This can
be done by solving the following problem.

Given γ(x, y), find φ(x, y) and ε(x, y) satisfying

∇xφ(x, y)f(x) + ∇yφ(x, y)f(y) − ε(x, y)γ(x, y) − k ≤ 0, ε(x, y) ≥ 0. (27)

For a special class of systems, we can explicitly outline a computational tech-
nique that implements this general scheme, as described in the next subsection.



4.2 Affine systems

If f(x) in (1) is a linear function,

f(x) = Ax + b, x ∈ R
n, A ∈ R

n×n, b ∈ R
n×1

we can constrain a barrier function to be a quadratic function

φ(x, y) = (x − y)
T

M (x − y) ,

for some M > 0. If the matrix A is Hurwitz, for barrier function with linear
growth bound the domain of validity of the barrier function can be extended
globally, by choosing γ(x, y) = 0. In this case, (27) becomes

∇xφ(x, y)f(x) + ∇yφ(x, y)f(y) − kφ(x, y) = (x − y)T (MA + A
T
M − kM) (x − y)

≤ 0 (28)

which is a Lyapunov equation that can be solved for k ≥ 2λ(A), where λ(A)
is the largest eigenvalue of A. Obviously, a similar approach also works for non-
positive constant growth bound.

If the matrix A is not Hurwitz, then for barrier function with linear growth
bound (28) can still be solved if k ≥ 2λ(A). For barrier functions with positive
constant growth bound, the domain of validity must be bounded. If we choose,
for the domain of validity, an ellipsoidal set given by γ(x, y) ≤ 0, where γ(x, y) =

(x − y)
T

Q (x − y)−1, for some Q > 0, then (27) becomes finding M and ε(x, y)
satisfying

(x − y)
T (

MA + AT M − ε(x, y)Q
)

(x − y) + ε(x, y) − k ≤ 0, ε(x, y) ≥ 0, (29)

which can be solved by taking ε(x, y) = 1 and M small enough such that MA+
AT M ≤ Q. Once M is determined, we can find the tightest constant growth
bound by solving the following optimization problem

minimize k subject to (29),

with k and ε(x, y) as the optimization variables. In this case, we can bound k as

k ≤ inf
ε∈R

{ε | MA + AT M ≤ εQ}. (30)

4.3 Locally linearized systems

For a locally linearized system f(x) in (1) can be written as,

f(x) = Ax + b + ω(x), x ∈ D ⊂ R
n.

Here Ax + b is the linearized model and ω(x) is the residual term. Suppose that
D is bounded and its diameter is given by

ρ(D) := sup
x,y∈D

‖x − y‖ ,



and there exists a δ > 0 such that ‖ω(x)‖ ≤ δ, for all x ∈ D. That is, we assume
that we can bound the magnitude of the linearization residue in D.

We propose to construct a quadratic barrier function in the form of φ(x, y) =

(x − y)
T

M (x − y) , M > 0. In this case, we obtain

∇xφ(x, y)f(x) + ∇yφ(x, y)f(y) = (x − y)
T

(MA + AT M) (x − y)

+ 2 (x − y)
T

M (ρ(x) − ρ(y)) ,

≤ (x − y)
T

(MA + AT M) (x − y) + 4 ‖M‖ δρ(D),

where ‖M‖ is the largest singular value of M .
If A is Hurwitz, then by following the same computation as in the previous

subsection, we can construct a barrier function with constant growth bound
by solving the Lyapunov equation (MA + AT M) ≤ 0 and the growth bound
is 4 ‖M‖ δρ(D). If A is not Hurwitz, for any choice of M we can construct a
positive constant growth bound for the barrier function by adding 4 ‖M‖ δρ(D)

to an upper bound of (x − y)
T

(MA + AT M) (x − y) for x, y ∈ D. This can be
done by using the technique described in the previous subsection, or by using
the following (possibly conservative) bound

(x − y)
T

(MA + AT M) (x − y) ≤ ρ(D)2
∥

∥MA + AT M
∥

∥ . (31)

4.4 Polynomial systems

If f(x) in (1) is a polynomial, and if we assume that φ(x), ε(x), and γ(x) are
polynomials, the semidefinite constraints in (26) can be recast as sum-of-squares
constraints. Similar situation applies to (27) for safety verification. In this case,
the computation can be implemented by using computational tools for sum-of-
squares programming, such as SOSTOOLS [31].

Example 1. A standard model of the dynamics of an enzymatic reaction

Enzyme + Substrate ⇄ Enz.Sub → Enzyme + Product

is given by

d

dt









x1

x2

x3

x4









=









−kfx1x2 + (kb + km)x3

−kfx1x2 + kbx3

kfx1x2 − (kb + km)x3

kmx3









,

where the state variables are the concentrations of the enzyme, substrate, enzyme-
substrate complex, and product, respectively. The constants kf , kb, and km are
reaction constants that determines the speed of the reactions. Several trajecto-
ries of this system are shown in Figure 5. In this simulation, we take kb = 0.1
and kf = km = 1. Consider the middle trajectory in Figure 5, which starts at
the initial condition (1, 1, 0, 0). Suppose that we take this trajectory as our test
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Fig. 5. Three trajectories of the system in Example 1 with varying enzyme availabil-
ity. In the right panel we can see that smaller enzyme concentration implies slower
consumption of the substrate.

trajectory and we want to construct a local barrier function for this system for
a given domain of validity. The circular domain of validity is expressed as

γ(x, y) := (x − c)T (x − c) + (x − y)T (x − y) − r2 ≤ 0,

where the vector c = (0.70, 0.51, 0.30.0.19)T defines the center of the circle in
the state space and r = 0.2 is its radius. We assume that the barrier function
can be written as

φ(x, y) :=
1

2
(x − y)T M(x − y),

with M a 4×4 symmetric positive semidefinite matrix. Finding a suitable barrier
function by using sum-of-squares programming can be cast as

minimize 0 subject to

−∇xφ(x, y)f(x) −∇yφ(x, y)f(x) + ε(x, y)γ(x, y) + k = sos,

φ(x, y) = sos, ε(x, y) = sos.

Solving this problem with SOSTOOLS, we get

M =









0.28 −0.07 0.21 −0.07
∗ 0.19 0.11 0.19
∗ ∗ 0.16 0.11
∗ ∗ ∗ 0.19









, k = 0.02.

Notice that we replace nonnegativity of the polynomials with sum-of-squares
property, which is more restrictive and can lead to some conservativeness. How-
ever, through this step, the program can then be solved using available SOS
computational tools.



5 Discussion

In this paper we propose a trajectory based reachability analysis using local
finite-time invariance property. This method is a generalization of our previous
results [17, 18], where a global bisimulation is required for each mode of dynam-
ics. We demonstrate that our method captures some other existing methods as
special cases, and that for polynomial systems the computation can be imple-
mented using sum-of-squares.

The extension of the method proposed in this paper to analysis of hybrid
systems is relatively straightforward. The method proposed in [17] for hybrid
systems performs the analysis on a hybrid test trajectory by piecing together
trajectory segments between mode transitions in a way analogous to Theorem
1. We can therefore apply the local analysis based method to hybrid systems by
extending Theorem 1 to handle transition guards in a way similar to Proposition
2 in [17].

In order to develop an effective implementation of the result posed in this
paper, we still need to design a comprehensive test algorithm. There are a number
of issues that need to be addressed along this direction. For example, the notion
of test coverage and automatic test generation based on the coverage need to
be developed to get an efficient testing procedure that can quickly cover the
set of initial states. We also need to address the issue of optimal placement of
the local domains of validity of the barrier functions. The goal is to design the
segmentation of trajectories in a way that requires as few segments as possible.
Another issue that we have not investigated is the use of constant and linear
growth bounds. In the case where both bounds are available, we need to design
an algorithm that can optimally choose which bound to use, in order to minimize
the conservativeness of the bound.
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