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Kinetics of random aggregation-fragmentation processes with multiple components

. J. LaurenZi* and S. L. Diamond"
IDepartment of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, New Haven, Connecticut 06520
2Department of Chemical Engineering, Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk,
Philadelphia, Pennsylvania 19104
(Received 1 August 2002; published 9 May 2p03

A computationally efficient algorithm is presented for exact simulation of the stochastic time evolution of
spatially homogeneous aggregation-fragmentation processes featuring multiple components or conservation
laws. The algorithm can predict the average size and composition distributions of aggregating particles as well
as their fluctuations, regardless of the functional fqerg., composition dependencef the aggregation or
fragmentation kernels. Furthermore, it accurately predicts the complete time evolutions of all moments of the
size and composition distributions, even for systems that exhibit gel transitions. We demonstrate the robustness
and utility of the algorithm in case studies of linear and branched polymerization processes, the last of which
is a two-component process. These simulation results provide the stochastic description of these processes and
give new insights into their gel transitions, fluctuations, and long-time behavior when deterministic approaches
to aggregation kinetics may not be reliable.

DOI: 10.1103/PhysReVvE.67.051103 PACS nuni®er82.20—w, 05.10—a, 02.70-c, 36.20-r
I. INTRODUCTION K(u,v)
M(u)+M(v) = M(u+v). 2
F(u,v)

The aggregation of small entities into larger ones under-
lies processes as diverse as self-assembly, chemical polymer-
ization, and blood coagulation. When aggregation is concur;

rent with fragmentation, many of these processes may blen this caseK (u,v) andF(u,v) are multicomponent aggre-

. . o gation and fragmentation kernels that may depend on each
conceptualized as chemical polymerization processes,
component ofu andv.

To quantify the time evolution of aggregation-
fragmentation processes, the kinetic process represented by
Mi+j, () Eqg. (2) must be employed in a mathematical statement of
component conservation. The traditional approaches of
Smoluchowski[1], Blatz and Tobolsky{2], and Lushnikov

where M; and M; are particles of sizes and j, and the . . L .
aggregation and fragmentation kernddgi,j) and F(i,j) E)glgr?c\:/(ae :gﬂg’:%gé;ﬁ&gﬁ 2; the deterministic population

function as “chemical” rate constants. The size dependencies
of the kernels may be derived by the microphysical consid-
eration of the mechanism of a given process. Hence(Hq. u
is a general model by which many reversible aggregationﬁc(u’t): E 2 K(V,u—Vv)c(v,t)c(u—v,t)
processes may be represented. at =0 ' ' ’
As written, Eq.(1) describes a process with a single con-
servation law, i.e., conservation of monomers. However, ag- 2 K
gregation and fragmentation processes may also feature ad- =" (uvjc(u,e(v,t)
ditional conservation laws for other distinct monomeric

K(i.])

Mi+MjF\(i_,j)

[

units. For example, a detailed account of the kinetics of . ”

blood coagulation requires conservation laws for each active — 5> F(v,u=v)c(u,t)+ > F(uv)c(u+v,t).
blood component: platelets, leukocytes, soluble fibrinogen, Vo V=0

etc. To represent such processes, Egmust be modified to 3
account for the additional conservation laws or components.

Let us define each multicomponent spediéu) by a com-

position vectomu= (uq,u,, ... ,u,), whereuy (ke[1,«]) is  In this expression¢(u,t) is the concentration ai-mers and
the amount of théth conserved quantity or component. We the sums are computed over each compositign
may then rewrite Eq(1) for this multicomponent or multi- =(vq,v,, ... v,) e N¥, excluding the upper and lower lim-

conservative model as its.
Because PBEs, such as H), are infinite sets of infi-
nitely coupled nonlinear differential equations, obtaining
*FAX: (203 432-5175. their analytical and numerical solutions can be formidable
Email address: laurenzi@bioinfo.mbb.yale.edu challenges. Only a handful of analytical solutions of PBEs
TFAX: (215 573-7227. Email address: sld@seas.upenn.edu are known for processes with no fragmentation, most of
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which are for single-component systerfis3—§. Further- a(,u,v)dt=V_lK(u”,u,,)X'uX,,dt
more, only two analytical solutions are known for single-

component aggregation-fragmentation procegfeg|, and = Pr(any two particles ofunlike species

none are known for multicomponent aggregation- w and v with populations X, and X, will
fragmentation processes. In addition, it has been shown that aggregate within the imminent time intervalt),
PBEs have validity only in the large population limit, that is, (4)

when there are many aggregates of each composition
Consequently, PBEs cannot predict the long-time behaviors
of aggregation processes when the particles or molecules X, (X, —1)
completely aggregate or undergo a phase trangiior123.  a(u,p)dt=V~'K(u, auﬂ)%dt

Owing to these considerations, the stochastic approach to
aggregation kinetics has emerged as a viable and attractive =Pr(any two particles of thesame species u
alternativgl 10—20. The stochastic approach can give a more with population X, will aggregate within
realistic and robust characterization of aggregation pro-
cesses, explicitly accounting for both the conservation of
monomers and the statistical fluctuationsuwsmer popula-

tlons._ In this paper, we employ this approac_h to exactl_y CharApplying the stochastic approach to the chemical kinetics of
acterize the kinetics of reversible aggregation, wherein mul

. . the reverse reaction of Eq) likewise yields the followin
tiple components or conservation laws are extant. We the ®) y 9

present an exact Monte CarlbIC) algorithm for simulation ansition probabilities for fragmentation events:
of the time evolution of any spatially homogeneous aggrega-

tion process. The paper is organized as follows. In Sec. Il, wi _ _

derive the probability functions utilized by the MC algo- ?(,u,v)dt—F(uM V)Xt

rithm, setting the stage for the presentation of the algorithm =Pr(any particle of speciesu

in Sec. Ill. We then apply the MC algorithm to study the with population X, and compositionu
kinetics of physically relevant reversible polymerization pro- , ) ke ) K
cesses in Sec. IV. Here, we give the exact stochastic descrip- will break into two unlike particles of

tions of the time evolutions of the linear (RAand branched compositionsu,—v and v within the
(RA4/RB,) models of reversible polymerizations of multi- imminent time intervaldt), (6)
valent monomers, and develop methods of characterizing

their gel points exactly. We conclude with a discussion of the

the imminent time intervaldt). (5)

results in Sec. V. 1 (u. u
f(u,u,)dt==F| = -£|X dt
T 2 272"+
Il. STOCHASTIC APPROACH = Pr( any particle of speciesw  with population

] ) X, and compositionu,, will break into two
In a previous paper, we developed the stochastic formal-

ism for the description of irreversible aggregation of particles identical particles of compositio#zﬁ
with multiple components or conservation lays2]. We o o o
summarize those results here and develop the additional de- within the imminent time intervaidt. @)
tails pertaining to particle fragmentation.

Consider a well-mixed and spatially homogeneous vol-
umeV in which there reside particles belongingNaistinct
aggregate species, and let each spegibg characterized by
a unique compositionu,=(u,, ...,u, ). That is, each

In these definitions, the population terms enumerate the num-
ber of ways by which the reactant species can be chosen. For
example, there ar¥ X, ways that a pair of distinct species

particle having the composition, is a member of the«ith and v can be chosen to aggregate. Likewise, therexgre
species. After tim¢=0, these species will randomly aggre- V&S of choosing a specigsfor a fragmentation. The factor
gate or fragment according to the mechanism of &), 2z N Eq.(7)isa consequence of the fact that there is on_ly one
resulting in a change in the populations of one or more speway that a particle can split in half, but two ways that it can
cies. To specify these changes mathematically, we specifge split asymmetrically.

the state of the system by a vectoe (X, ... ,Xy), Where In principle,u-mers may have many structural configura-
X, is the populatiorinumber of particlesof the uth species. ~ tions, each with its own size or shape that may affect the
Subsequently, we specify the probabilities of aggregation antates of aggregation and fragmentation. However, neither the
fragmentation of each specigs=[1,N] in that state. Apply- PBE nor our definition of species explicitly accounts for the
ing the stochastic approach to the chemical kinetics of theonfiguration or shape. Consequently, it is possible that any
forward “reaction” of Eq. (2), one obtains the following u-mer particle may exhibit any of thé(u) possible configu-
transition probabilities for aggregation eveht®,19: rations of u-mers, regardless of the population wimers.
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Thus, for Egs. (4)—(7) to be generally valid for all Po(t+ rlt) =exp(— a7). (15)
aggregation-fragmentation processes, even for singly popu-

lated species, the kernel§(u,v) and F(u,v) must be the
averagerates of aggregation and fragmentation taken ove
all conformations, shapes, cross-sectional areas, and so for

This condition implicitly requires that the conformation dis- valuated at+ r. For example, time-dependent kernels may

tributions of all species should remain constant throughou e necessary to describe the aggregations of biological cells,

the aggregation Process. I_n b(_)th the_: F.)BE and the stochas ose ability to adhere to each other is highly regulated and
approach to aggregation kinetics, this is commonly assume e dependent

to be true. ; ;

. . . Because Eqs(12) and (8) are derived analytically from
_Using Egs.(4)-(7), one can exactly derive probablllty Egs.(4)—(7) without approximation, they are valid and exact
d|§tr|but|ons for both the event to come and the pr ece_dlnqor any process described by any set of aggregation and frag-
quiescence t|_mé_12,19,2]]. The probablllty that the MM hentation kernels, regardless of their mathematical complex-
nent event will elther'be an aggregatpn .Of SOMe SpegIes ity or time dependence. Consequently, MC simulations based
andy ora fragmentation pf some speciesinto particles of upon these formulas are tantamount to individual aggrega-

compositions/ andu,,—V is tion processes governed by kerniléu,v) andF(u,v).

However, if the aggregation and fragmentation kerrjatsd
hus «) are explicit functions of time, Eq.14) will yield a
fferent expression folPy(t+ 7|t) and Eq.(8) should be

f(u,V)/a, |v[>0, v=0

Pa(p, v,V 7) = a(uv)la, V=0, ww>0, ® IIl. SIMULATION ALGORITHM

We now proceed to the development of the MC algorithm
for reversible aggregation processes with multiple compo-
N nents. Fundamentally, the process of simulation entails three
a= E (a,+X,0,) 9 steps—the selection of the quiescence time preceding the
n=1 imminent event, the selection of the event to come, and the
modification of the state of the system to account for the
occurrence of the chosen event. The process is then repeated
until some predetermined time or, in the case of irreversible
w aggregation, the system is reduced to a single particle pos-
a,= > a(u,v) (10)  sessing all of the mass and other conserved quantities of the
v=1 system.
The most computationally efficient method for the exact
selection of the quiescence interval and event to come is a
[(1/2)u,] modified version of Gillespie’s direct methd@1]. In this
b= 2 F(u,—v,v), v=(vy,...0,) (11 method, random variables are selected by integrating their
v=0 distributions until a uniform random number is just ex-

) . ceeded. Hence, the quiescence time is selected fro .
are so defined for reasons that will become apparent IategiS follows[21]: g ey

The probability that the next event will occur immediately
after the quiescence intervalis

where

is the sum of all transition frequenciegu,v) andf(u,v),
and

and

Py(r)d7=aPy(r+t/t)dr, (12 fo aexp—andr=ry, 1,€[0.D), (16
where Py(t+ 7]t) is the probability that nothing will occur
within the quiescence time. Becaua@r is the probability
that something will occur within the next time intervéd, it
may be specified thus

wherer 4 is a uniform random number. Inverting this expres-
sion, one obtains an explicit equation for the quiescence
time,

Po(t+ 87]t)=Py(t+0[t)[1— ad7+O(57)]. (19

1 1
7=—In(1_ ) T selection. (17
By transposingPy(t+0[t) from the left-hand side of Eq. @ M1

(13) and dividing throughout byr and lettingér—0, one

obtains the following differential equation fét(t+ 7|t): Similarly, the imminent event is specified by summing over
all Py(u,v;u,v|7) until another uniform random number

r,e[0,1) is exceeded. That is, if the temiu,v)/a causes
the running sum of the terms &,(u,v;u,v|7) to exceed
r,, then the imminent event will be an aggregation of species
Po(t+0[t)=1. (14  wandv.
Unfortunately, a simple equation such as ELj)) cannot
In the typical case wher&(u,v) and F(u,v) are indepen- be written for the definition of the imminent event. However,
dent of time, the solution of Eq14) is the imminent event may be selected by judicious integration

d
d—TPO(H 7|t) = aPy(t+ 7]t),
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g = (1,1, U2,1y e Ur,1 ), X1, Q1 . a(1,1)

q’(uh V), ¢1 K(uh ul)
ug = (U1,2, U2,2) - U,2), X2, 02 _ a(2,1) a(2,2)

@(UQ,V), ¢2 K(u27 ul) K(U2,u2)
u; = (ul,’iy U239 ooy un,i), X,‘, g — a(i, 1) a(i, 2) a,(z', ’I,)

q)(uivv)y ¢i K(u'i’ul) K(ui’ u2) K(ll.,, ui)
uy = (UL,N, U2, N, oy Uk, N ), XN, AN R a(N,1) a(N,2) a(N,1) a(N,N)
<I>(uNav)y ¢N K(uNyul) K(uNa u2) K(uN7 ui) K(uN7 uN)

FIG. 1. Aggregation table for storing information pertaining to the state of the system and probabilities of aggregation and fragmentation

events.

of Eq. (8). To begin with, we define the specigsinvolved
in the imminent event by integrating ovgr until the quan-
tity r,a is exceeded,

n=1 "
'21 (ai+Xi¢i)sr2a<Zl (aj+X;#;), u selection.
(18)

In this expression, we have employed the quantitiegnd
¢; defined by Eqs(10) and (11). The choice between an

[(1/2)v]

®(u, V)= W2=O Fu,,w), (21)

where®(u,,u,)=¢,. Thev-selection criterion may then

be written as

M n—=1
X, ®(u, ,v)>Ta— >, ai— 2, Xi¢;, v selection,
==

(22)

aggregation or a fragmentation is implicitly specified during_SUCh that is the first composition in the order of summation

this process. Ife, causes,a to be exceeded in Eq18),
then the event to come is an aggregation of spegiesgith
some other species; otherwise, the event to come will be
fragmentation,

pu—1
> (ai+Xj¢i)+a,>r,a, aggregation of specieg.,
=1

pu—1
izl (ai+Xj¢i) + a,=<r,a, fragmentation of specieg..
19

in Eq. (21) which causes the right-hand sideHS) of Eq.

(22) to be exceeded. In practice, this may be done by con-
gecutive summation using E@1) or by solving Eq(22) by
bisection when a simpler form db(u,, ,v) is known analyti-
cally.

Given these rules for the MC selection of the quiescence
time and imminent event, the following general simulation
algorithm may be outlined.

(2) Initialize the process by defining all initial species and
their propertiegu,,, X, a,, ¢,,P(u,,v), K(u,,v), and
a(u,v)] and computex [Eq. (9)].

(2) Select the quiescence tinji&q. (17)] and the immi-
nent even{Egs. (18)—(22)].

(3) Increment the time byr and modify the state of the

Finally, the imminent event is selected by determining WhiChsystem to account for the selected aggregation or fragmenta-

individual a(u,,u,) or f(u,,v) caused the sum of
P,(u,v; ;,v|7) to exceed ,a (18). If the imminent event is
an aggregation, then the species indegf the second par-
ticle is specified by

v—1

2

j=1

pu—1

a(pj)=<raa= 2 (ait+Xid)
<_El a(u,j), v selection, (20
=

where we note that the quant@{ff(ai + X, ;) was previ-
ously calculated in theu-selection step. Conversely, if the
imminent event is a fragmentation, the compositioof the
smaller daughter fragment of speciesis selected by sum-
ming the termsf(u,,v) until the quantityr,a—23%«;

tion event.

(4) Recomputea. If =0, stop the simulation. Other-
wise, return to step2).

The computationally intensive aspects of this algorithm
may be streamlined using an “aggregation tablEig. 1) as
previously described12]. The aggregation table is com-
posed of arlNX 1 “species vector” containing information
specific to each specig¢si,, X,, a,, ¢,, and®(u,,v)]
and a lower-diagonadll X N “aggregation matrix” containing
information specific to pairs of specig&(u,,,u,), a(u,v)].
This organization serves two functior(g) facilitation of the
creation, deletion, and update of species in stépsnd(3),
and (b) reduction of the number of computations necessary
for the event and quiescence time selection steps.

In step(1), the state of the system is defined by succes-
sively adding each initial species to the bottom of the species
vector and defining its corresponding row in the aggregation

— 31X ¢; is exceeded. Let us define the partial sum ofmatrix. For each new species added to the bottom of the

fragmentation kernels by

table (N), the compositionuy and populatiorX, are entered

051103-4
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first. Subsequently, the functiods(uy ,v) are computed and When fragmentation is added to the simulation procedure as
stored, thereby defininggy. Finally, {a(N,i)} and described and if the function®(u, ,v) for each specieg
{K(uy,u;)}(i e[1N]) are added to th&th row of the ag- are stored in computer memory as lookup tables, only
gregation matrix, andy, is computed according to ELO). O(In(Nm?X)) additional operations are requweédafer to the.
Due to the structure of the tabley, is just the sum of the APPendix. Consequently, the number of operations required
transition probabilitiea(N,i) in this row. Furthermoregy is of our algorithm per .event. s the same as that for Fhe most
just the sum of the quantities, for each specieg. in the efficient stochastic simulation algorithm for irreversible ag-
Jspecies vector m gregation processes with multiple conservation laws or com-
In the cour.se of simulation, product particles resultin ponents[12]. Thus, simulations of nongelling aggregation-
from an aggregation or fragme,ntgtion evgnt will often havgfragmentation processes with tens of thousands of particles

. ” q titut : | pically require only seconds of central processing unit time
unique compositions and constitute néw Species. I SUCH, yeach their steady states when run on a personal computer.

cases, these new species are added to the bottom of the qgg\vever, processes that produce gels tend to be much more
gregation table as .d|scussed. However, if the product Part'd@omputationally demanding since they can require computa-
belongs to a species already represented in the species Vgm and storage of thousands of new fragmentation kernels

tor, the information for that species must be updated to reafter every event that involves the large, singly populated gel
flect its change in population. The reactant species must likeparticle.

wise be updated. The aggregation table allows these

modifications to be performed in a straightforward way. For |y KINETICS OF REVERSIBLE POLYMERIZATION

example, consider a reactant or product spegiedth popu- o -~ _

lation X , prior to the imminent event. First, the population of = Polymerization is a specific type of aggregation process
this species is incremented or decremented to reflect its geMthereby the monomers are indistinuguishable chemical en-
eration or consumption. For example, if it aggregates with dities. In many cases, these chemical monomers possess func-
speciesv# u, then the population is decremented by one.tional groups that can reversibly react with complemgntary
Subsequently, the quantities{a(u,i),ie[1x]} and 9roups attached to other monomers or polymers. In this sec-
{a(j,u),j e[+1N]} in the uth row anduth column of  tion, we present MC simulation results for three such poly-
the aggregation matrix are recomputed systematically usinf!€r models. We begin by considering the single-component
the colocally stored kernel&(u,,v;) and K(u;,v,). As inear polymerization model of Blatz and Tobolsky. We then
these adjustments are made, the partial sumé@ ZZ) are consider single- and two-component processes that produce

updated concurrently. Overall, this procedure requd¢sl) ~ Pranched polymers. _
operations. Several features of these processes motivate the current

In processes featuring a gel transition or irreversible geStudy. First, the reaction-limited aggregation and fragmenta-
lation, species are often completely consumed. In thesHOn kernels may be computed exactly. Second, stationary
cases, the procedure for updating the aggregation table RPMPosition dlstn.bu'.uo.ns are known. for thesg processes in
significantly simplified. Because the quantitiéa(],u),j f[he thermodynamp limit, and at.ran.3|ent solution of the PBE
e[+ 1N} in the uth column of the aggregation matrix 1S known for the linear polymerization modg2,22]. Thus, -
are recomputed witi ,= 0, they will all be zero. Thus, the simulation results can be compared against these distribu-
partial sums; (j [+ 1,N]) only need to be decremented tions. Fmally, .the branchgd polymgrlzatlons have. been theo-
by the valuesa(j,u) corresponding to the stapior to the ”Z?d to exh|b|t 9?' transitions, defined by the rapid accumu-
event. Subsequently, theth row of the aggregation table Ia}tlon of a S|gn|f|can§ fractl_on of the .sjyst(_am. mass mtq a
and uth column of the aggregation matrix may be dele’[eds'n.gle particle. Our 5|mulat|on§ may give msght Into b'o'.
from computer memory without affecting the rest of the ag_loglcal processes such as antibody agglutination and actin

gregation table. As a result, the memory usage of the algo[_)olymerization, which are characterized by similar branched
fithm is minimiied ' polymerization mechanisms.

A remarkable feature of the aggregation table and selec-
tion rules here presented is that the fragmentation transition A. ARB model

frequenciesf(u,v) require neither direct computation nor  The ARB process is hamed for its monomers that possess

storage. Here, the rationale underlying the definitiongpf  one A group and one B group apiece. Due to the chemical
and®(u,,v) becomes apparent. Due to the fact that neithefeaction

of these quantities are functions Xf,, they require no ad-

justment once a species is initially defined. Consequently, the ky
simulation procedure eliminates the extensive postevent ac- A+B=A—B, (23
counting associated with the vast number of fragmentation Ky

transition probability densitie§f (x,v)} when specieg is a

reactant or product. As a consequence, simulatiorarf the monomers bind to each other and give rise to linear poly-
reversible aggregation process is feasible regardless of thmers of the form ARBARB),_,-ARB.

number of components. In simulations of strictly aggregating We concern ourselves with the reaction-limited process,
systems, computation af and selection of a pair of aggre- where the particles collide much more frequently than they
gating particles requirdD(N) operations per evenit12]. react. Hence, the rates of aggregation and fragmentation are
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equal to the total rates of bond formation and dissociation. If 10* ————— 10" —————
internal cyclization is forbidden, every monomer and poly- T =05 3 T=20
mer chain will have one A group and one B group. Conse- 10°F 1 10° y
quently, there will be two ways of attaching any two chains. < L,

If one further assumes equireactivity of all A and B groups, = 10 1= 10 3
the total rate of bond formation between iamer andj-mer > . ] > )

is 10 F 3 10 3

K(i,j)=2k;. (24

The fragmentation kernel can be derived likewise by consid-
ering the number of ways that anj)-mer can dissociate
into ani-mer and aj-mer. As Eq.(23) shows, the rate of
dissociation of any bond ik,. Because aniftj)-mer can
lose ani-mer at either end, the total fragmentation rate is

X (k)

F(i,j)=2k,. (25

Note that both Eqs(24) and (25 define constant kernels,
that is, they exhibit no size dependence. _ ) o ,
The kinetic time evolution of this process was first quan-__F'G- 2. Time evolution of the ARB polymerization process with

tified by Blatz and Tobolsky, who solved a single-component* ~ -0<10 " X(k) is the number ok-mers at the dimensionless

PBE such as Eq3) with these kernelf2] and with a mono- me T.

disperse initial conditiorc(k,0)=c( 8 1. Their solution for

the time-dependent size distribution is B. RAq model

Unlike the process discussed in the preceding section, the

c(k,q)=coq (1—q)?, (26) RAy process features monomers that havé groups on
each monomer. Moreover, these monomers aggregate as a
result of the following chemical reaction between A groups

wherec, is the initial concentration of monomers, on adjacent particles:
2 Ky
q= 1 A+A=A—A. (27)
(x+2)+\/x(x+4)cotr<§T\/x(>\+4) ka
is the extent of reaction of A or B groups=k,/(k,Cg) is 1 L e 3 0T o
. . . L . T =05 1 T =20

the dimensionless dissociation constant, @mdk,cgt is the 10k i 10 i
dimensionless time. — : I

To demonstrate the agreement of the stochastic method = 2 [ 138 ¢ -,
with the results of the PBE, simulations of the ARB poly- »< 1>
merization process were simulated using 10000 initial 10'L 1 10" 4
monomers ¢,=1, V=1.0x10% at \ ranging over six or- E
ders of magnitude. We show the average results of sets of ten 10°
replicate simulations fok =1.0x 10”4 and\ = 1.0 in Figs. 2
and 3, respectively. For all species with populations in excess 10— — 10
of ten, the agreement between the average stochastic results T =1.0 i
and the deterministic results was excellent. However, differ- 100k . 10°
ences between the approaches were evident for species with ~ i~
small populations. These differences are consequences of ~ 12 130
stochastic fluctuations of the populations of rare species, <
which cannot be predicted by deterministic approaches. In 10'F . 10'
contrast, the populations of well-populated species are not 0 ] 0
strongly affected by these fluctuations. Thus, our results 10

demonstrate that stochastic simulation can reproduce the k
time evolution of the size distribution as predicted by the

PBE for a wide range of kernels, and provide insight regard- FIG. 3. Time evolution of the ARB polymerization process with
ing the statistical fluctuations of rare species. A=1.0. X(k) is the number ok-mers at the dimensionless tiriie
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Hence, a 2-mer is composed of two RAonomers con- at which q exceedsq. In theory, analytical solution of a

nected by an A-A bond, and has 2(—1) A groups avail- PBE for this system could provide this information given

able to bind other monomers or aggregates. valid kernels. However, such a solution has not been ob-
The first quantitative study of the RAprocess was con- tained explicitly. van Dongen and Ernst have estimated the

ducted by Stockmayg®2]. Assuming equireactivity of all A time dependence of the reversible RBolymerization pro-

groups, forbidding internal cyclizatiofunbound A groups on  cess using Ziff’s methofl23,24],

an aggregate cannot react with each gthand assuming

that the process begins with BAinglets alone, he obtained g(kaCo)t \=0
a stationary solution for the size distributip?2] 1+g(ksco)t’
c(k,a)=coN(a/g)* (1~ q)7K9, (28) q(t)= 20
* A>0.
wherecy is the initial concentration of monomers,is the (1—qi)00t"{l(klco)f<t +(1+q§o)
extent of reaction of A groups, 2
(36)
ow(9)=(g—2)k+2 (29) . . .
« In this expressiong..=(2g+\ — k)/2g is the extent of re-
is the number of free A groups onkamer, and action at steady stat®=Kk,/(k;Co) is the dimensionless dis-
‘ sociation constant for the reaction between A groups, and
g (gk—k)! (30 =[N(A+4g)]*2 By equating this expression . in the
K Tl (o (M .. . " . . -
k! (o (g9))! limit t,—oc, one obtains the critical dimensionless equilib-

- ; . , __rium constanin [24],
is the number of unique structural isomers or configurations

of acyclick-mers. For example, one configuration is a linear g(g—2)>2
chain, another has one branch, still another two branches, CZ(QT’ (37)
etc.

. Stockmayer’s. Q|str|but|on has mtgre;png propertles relat'above which gel transitions should not be observed.
ing to gel transitions, whereat a significant portion of the Although Eq.(36) ascribes the time dependence to Stock-
monomers aggregate into a single particle. Stockmaye

h d that if th ; h q tical ayer’s distribution and the consumption of particles, it does
S lowe '?h It the contversflaélresaoc) gls or ex;:ee iza cn (cha not completely describe the time evolution of the R#oly-
value g, the moments o a( Iverge forn=- an merization process. Due to their radii of convergence, Egs.
decrease fon=1. The first few moments

(33) and(34) cannot be used to predict the time evolution of
o the higher-order moments of Stockmayer’s distribution be-
Ma(q)= 2 k"c(k,q) (31  yond the gel point. Alternative formulas for these moments
k=1 have only been computed for the postgelation phase of the
RA; polymerization 23], and neither these nor the preceding
kinetic solution has been fully validated by substitution into
9 the PBE or by comparison with stochastic simulation.
Mo(q)zco( 1- Eq), (32 Stochastic simulations can predict the time course of the
entire reversible R polymerization process, regardless of
M _ - 33 whether gel transitions occur, as long as they are performed
(@)=Co g=<Qec. (33 with proper kernels. The method of constructing kernels for
and polymerization processes was first developed by van Dongen
and Ernst, and we summarize their results here. Following
+q Stockmayer’s assumptions of equireactivity of A groups,
Mz(Q)ZCom, a<dc, (34 equal probabilities of all conformations df-mers, and
reaction-limited kinetics, the rate of aggregation will be
representing the total concentration of partileggregates equal to the average rate of bond formation between a pair of
and singletsin the system, the total concentration of mono- particles. Because there arg(g) o;(g) ways a bond may be
mers, and the width of the size distribution, respectivelyformed between aitmer andj-mer, the rate of bond forma-
Consequently, the thermodynamic analysis predicts a violation between these particles is
tion of monomer conservation and formation of an infinite

are

particle at the gel point at the critical conversion, K(i,j)=kyoi(9)aj(9). (38)
1 Because the fragmentation kernel is the average rate of
qC:(g_l)- (39 breakup of a particle into two specific daughter fragments,

the fragmentation kerndf(i,j) is equal to the dissociation
Although Stockmayer’s solution is an exact result of ther-rate constank, multiplied by the average number of ways
modynamic analysis, it specifies neither the time evolution othat an (+j)-mer can break into-mers and-mers. As dis-
the reversible RA polymerization, nor its gel pointt&tg) cussed, there are two unique ways this can happen in a
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FIG. 4. Time evolution of the RApolymerization process with
N=1/3. X(k,T) is the number ok-mers at the dimensionless time
T.

FIG. 5. Consumption of the number of particldd {) in RA,

linear polymerization §=2), in which case the fragmenta- polymerization processes with various dissociation constants

tion kernel isF (i, j) =2k,. However, in branched polymer- Solid lines are simulation results, and dashed lines are results from

|zat|f9ns an {(+j)-mer may Ib? one o; , j lﬁmque structufral the deterministic theory. Stochastic simulation always predicts posi-
configurations or structural isomers. In the absence of intefs o . mbers of particies and proper equilibria, even whent.

nal cyclization and if the initial size distribution is monodis-
perse, then the distribution of £ j)-mers over theim;
configurations will be uniform24]. Thus, the total number
of ways thati-mers and-mers of all configurations can be
connected or disconnected d$(g) o (g) N;N; . Multiplying
this combinatorial factor by the dissociation rate constant
one obtains the rate of dissociation df+(j)-mers of all
configurations intoi-mers andj-mers. Since the rate of
breakup must be equal to the rate of bond dissociation, this
in turn must be exactly equal to the quantMy, ;F(i,j).
Equating these quantities, one obtains the van Dongen and
Ernst kerne[24]

from Eq.(28) by the y? test. However, we note thatvalues
for these tests were as low as 0.1 at some time points prior to
the steady state.

In Figs. 5 and 6, we show how the average value¥igf
andM, evolve over time in stochastic simulation. The aver-
age values reported here were computed using the results of

10°

=
. N;iN;
F(i,1)=ka0i(9)0j(9) - (39)

1+]

Using these rate kernels, we simulated the;RAd RA,
polymerization processes using 50000 initial monomers
(co=1V=5.0x10% at\, above and below the critical val-
ues of\ . for these two processes. We show these results in
Figs. 4—-8 in terms of a dimensionless time schiecyk;t.

In Fig. 4, we show the time evolution of the size distribu-
tion of an individual RA, polymerization simulation with\
=1 (gelling). In this figure, X(k,T) [=Vc(k,T)] is the
k-mer population at the dimensionless timeLike the de-
terministic description, MC simulation predicted the dimin-
ishing populations of alk-mers after the gel point as these
species were consumed by the gel. Additionally, stochastic
simulation demonstrated the probabilistic character of the g\ 6. Average widths of the Résize distribution with various
dynamics ofk-mers asX(k,T)—1. As we have discussed, gissociation constants. Solid lines are simulation results, and
strong fluctuations and a slight offset from the deterministicyashed lines are results from the deterministic theory. Below the
description are observed for smai{k, T), particularly when critical dissociation constant,= 1/3, systems of particles exhibit a
A<\.. Despite these fluctuations, the dynamic MC- gel transition. Stochastic simulation permits exact quantitation of
generated size distribution of Fig. 4 cannot be distinguishethe process in the postgel phase.
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A=10, T=10

FIG. 9. Equilibrium RA/RB, particle composition distribution
with dissociation constant=1 and relative R4 monomer content

FIG. 7. Coefficients of variation of the zeroth and second mo-y=0.4. X(m,n) is the number of particles composed mRA,
ments of the RA size distributions with dissociation constants in monomers andhRB, monomers. The dashed and solid lines are
the gelling and nongelling regions. Peaks are observed only foboundaries reflecting that aggregates must have more than zero free
processes that undergo a gel transition. Note that the coefficients @f and B groups, respectively.
variation exceed unity in these cases, indicating strong fluctuations

in the size distribution.

which is true for all single-component aggregations of finite
numbers of particle§3]. As we have mentioned, the deter-

ten replicate simulations. We also show the deterministic prefinistic equations predict a divergenceM$ and a decrease
dictions for comparison. We have normalized our results ii® M1 at the gel point, whereas the stochastic simulations
accordance with the physical criterion,

[VM(1)]
[VM,(t)]

o S
E 10 >
AL
A =0.50
,[ o= -1.80 +0.02
10 10" 10 7 100 10
1022 .
)
= 420 ..
S
A=050 %
5| @5 -0.54 £ 0.01
0 10° 100 100 10
f

=

=

1, k=2,

-

10°F :
A=5.00

o =-1.98 £ 0.02

(40

predicts a rapid but finite increase M, and rigorous con-
servation of mass. Just as noteworthy, however, are the dif-
ferences between the predictions of the two approaches for
time evolution of the total number of particléd,. For all
values of\, stochastic simulations predicting a asymptotic
decay of M, to a final positive value. However, when

<1 the deterministic equations predict tHdt, will either
vanish or become negative @s-. However, becaushl

is the total concentration of particles in the system, it cannot
be negative. Hence, the deterministic equations faif 3.

As \ is increased, the agreement between the two ap-
proaches improves. For example, simulation resultsMgr
with A=1 (\.=1.5) are in fairly good agreement with the
deterministic predictions, despite small differences in the de-
cay rate aftelT=0.3 and a slight offset between the steady-
state values. Ah=5, both the stochastic and the determin-
istic predictions of the time evolutions of the zeroth and
second moments are in close agreement.

Upon closer examination, it may be shown that the differ-
ences between the stochastic and the deterministic results are
neither a consequence of a difference between the stochastic
and the deterministic approaches to the kinetics of (2@
[25,26], nor do they result from an error in Stockmayer’s
distribution. Rather, these differences and the deterministic
prediction of negative zeroth moments primarily result from
the assumptions underlying the kinetic derivation of &)

FIG. 8. Average power spectra of the zeroth and second mofor q(t). Equation(36) is derived by applying deterministic
ments of the R4 size distributions. The second moment hasrate equations to Eq27) and assuming that all unbound A
Brownian noise(slope ~2) for nongelling processes, but colored groups are free to react with all other unbound A groups
noise(slope<2) for gelling processes.

[23,24). However, the derivations of both Stockmayer’s dis-
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tribution and the kernels we have used forbid internal cy{32) with q=gq.. We will use this method to characterize the
clization. Thus, any process starting wXgRA, monomers  copolymerization process discussed in the following section.
must have at Ieastxo(g) free A groups at any given time— Interestingly, our simulation results and E@7) agree in
the number possessed by a single aggregate of al] RAtheir predictions of the critical equilibrium constant for
monomers. This corresponds to a maximum extent of readhe RA,, RA;, and RA; polymerizations. Because.
tion <Omax, the aforementioned shortcomings of Eg6) do not
appear to strongly influence trsteady-statevalues of Eq.
Imax=[9%0 = 0,(9) [/gXo=2/g. (4D (36) on which Eq.(37) is based. Thus, our results suggest

B Eq36 lects th iderai it all that the methodology used by van Dongen and Ernst to de-
ecause E¢(36) NEgIects ese consideralions, 1t a oo termine Eq.(37) is valid, even though Ed36) is not gener-
exceedq,., Whena is sufficiently small. When this occurs, ally reliable

Eq. (32) predicts that the number of particles in the system In addition to allowing exact computation of the average

becomes negative. In summary, E§6) is predictive for 7 o . .
small T and for equilibrium constants in excess)af, when moments and the gel point, stochastic simulation permits one
) to compute additional fluctuation statistics. In Fig. 7, we

extents of reaction are smaller thap,,. However, it be- ¢ tati its for the ti uti f
comes progressively unreliable for valueshobmaller than ~ PreSent respresentative resufts for the time evolutions ot co-

\c. This is the reason why? testing of the simulation re- €fficients of variation ¥) for My and M,, for one gelling

sults shown in Fig. 4 yielded smailvalues for distributions (A =0.2) and one nongelling\(=0.2) system. Like the av-
at certain time points. erage values oM, andM, presented in Figs. 5-6, the co-

In addition to showing the deterministic and stochasticefficients of variation presented in Fig. 7 were computed
predictions for the time evolution dfl, prior to gelation, ~from the results of ten simulations. At=0, the)(M,) and
Fig. 6 also shows the exact predictions of the time evolution/(M,) are exactly zero since the initial condition is exactly
of M, after the gel point. The shortcomings of E@6) known. Subsequently, these quantities rise as a result of the
aside, deterministic approaches cannot predict the time eveandom generation and consumption of new species and the
lution of the second moment beyond the gel point becausstochastic evolutions of their populations. The time evolu-
Eq. (34) diverges asy—q.. Moreover, even their steady- tions of V(M) and V(M,) have behaviors that distinguish
state behavior is not guaranteed to obey E4f) due to  gelling and nongelling systems. In nongelling processes, the
statistical factors lacking in Stockmayer’s methodology andcoefficients of variation of both moments grow monotoni-
in the PBE[11,12. However, any stochastic simulation of cally and approach asymptotic values that are always less
the aggregation of finite numbers of particles, ewasiesof  than 1. However, the time evolutions ¥{M,) and V(M)
particles, will predict size distributions with that obey Eq. are significantly different for gelling systems.N&<\ ., the
(40) for all N and reach a steady state. time series of both(M;y) and V(M,) go through maxima

The erroneous smal behavior of Eq(36) causes addi- prior to their steady states. Moreover, the time series of
tional significant differences between the simulation results)(M,) possesses a cusp at whigtiM,) exceeds unity, im-
and the deterministic equations. Early in the aggregation proplying that the standard deviation of the gel size is greater
cess, both the deterministic and the stochastic approachesan its average and this point is close to if not colocal with
give equivalent predictions of the growth bf, because Eq. the gel point. These intense fluctuations have ramifications
(36) predicts very small values af. However, as Eq(36)  for the deterministic desciption of gelling systems, inasmuch
predicts values ofj that approachy,y, it begins to lose as they relate to statistical terms usually neglected from the
predictive power. This translates to small deviationdMlg ~ RHS of PBEs such as Ed3) [11,13. For all reversible
prior to the gel point §.<0may because Eq32) predicts a branched aggregation processes studied, a coefficient of
linear relationship betweemandM,. However, the form of variation forM, in excess of unity implied a gel transition.
Eq. (34) enhances these deviations significantly. In fact, ifFinally, the steady-state values P{M,) are always much
the values ofy given by Eq.(36) are decreased by approxi- larger for gelling systems than the nongelling systems,
mately 10 time series for=0.5 and\ =1.0 agree very well whereas those foP(M,) are relatively insensitive ta. or
prior to the gel point. In the irreversible.&0) and nongel-  gelation.
ling (\=5) processes, there is a good agreement between The special behavior of the time evolutionsW{fM) for
simulation results and the deterministic equations. In the firsgelling processes is a direct consequence of the properties of
case, the gel transition occurs before the shortcomings of Eghe gel. The gel size fluctuates rapidly because the gel is a
(36) become evident. In the second case, B) never pre-  single particle subject to random aggregations with other par-
dicts a conversion as large gs(0.<0may, precluding the ticles. However, unlike other singly populated species, the
“depletion” of A groups for reaction that is its source of gel possesses a significant fraction of the monomers. Thus, a
error. single random fragmentation of a gel can bring about a sig-

A major consequence of this observation is that 8§)  nificant drop inM,, whereas a population change in 1-mers
cannot be used to accurately predict the gel point for thg RAfrom 1 to 0 will have little effect. Likewise, a random aggre-
polymerization. However, stochastic simulation can characgation of singly populated large particles or gel “daughters”
terize the gel point exactly. Since E@2) is valid for allg,  will result in large and immediate increasesNh,. The net
even in the stochastic approadh,is the time at which the result is that the steady stal§M,) is much larger for gel-
average value oM, is equal to the value predicted by Eq. ling systems than for nongelling systems. In contrast, these
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events have little effect upo(M,) because no single event groups. Hence, this process is a two-component system with
can changeM, by more than one. conservation laws for each type of monomer. Like the single-
In Figs. 6 and 7, both the average value and the coefficomponent ARB polymerization, aggregation occurs via the
cient of variation ofM, appear to fluctuate after the gel bonding between A groups on BAnonomers and B groups
transition, despite being statistical quantities taken from th@®n RB, monomers as in Eq23). Thus, if one of the two
results of ten replicate simulations. These fluctuations resufypes of monomers is absent, no polymerization can occur.
from the fact that these statistics are computed from the re- This process is analogous to the polymerization of anti-
sults of only ten simulations. Because the gel is a singldodies (RB) with multivalent antigens (R4). In this case,
particle, the apparent fluctuations of the average and the céhe B groups are antigen-bindirfg,, domains and the A
efficient of variation result from the considerable variation ofgroups are the corresponding multivalent antigenic determi-
the size of a gel from simulation to simulatigor experi-  nants(epitope. Hence, the R4{/RB, model quantifies the
ment to experimentat timet. To smooth out these apparent kinetics of polymerization of bivalent antibodigigD, IgE,
fluctuations, one must compute the statisticsMj using  19G, where Ig is immunoglobjnwith polyvalent antigens.
many more experiments or simulations. These fluctuationsikewise, the RA/RB, model describes the branched poly-
are not results of chaos or instability, and are not incompatmerization of polyfunctional antibodies such as Ig\ (
ible with the definitions of equilibrium and steady state. =10) or IgA (g=4) with antigens possessing two epitopes.
Using spectral analysis, the steady states of the time seridie predisposition of an RARB, polymerization to form
of the simulated size distributions and their moments can béranched aggregates depends upon how many of the RB
shown to be proper equilibrium states. In Fig. 8, we show theand RA; monomers are present initially.
average results of ten power spectraMf(t) and M(t) Under the assumptions of equireactivity of A and B
obtained by fast Fourier transform of their steady-state timegroups, no internal cyclization, and reaction-limited poly-
series. The individual spectra could be statistically distin-merization, Stockmayer calculated a stationary distribution
guished from the mean, thus, we conclude that thg & for this proces$22], which may be written as
lymerization as simulated is ergodic. Moreover, the absence
of distinct peaks in the spectra demonstrates an absence %f(u Q)= 29(1-q)(1-rq) £MEON(U)
periodic fluctuations at equilibrium. Similar results were ob- ' 0 q(2r+g) ’
tained for simulation results of the RAand RA, polymer- (42)
izations over broad ranges nf
In addition, the power spectra of both moments have théiere,mandn are the amounts of Rfand RB, monomers in
form P(f)c1/f®, regardless of the values bfandg used in @ u-mer[u=(m,n)]. Additionally, ¢, o andcy , are the total
the simulations, permitting a quantitative characterization ofoncentrations of Rpand RB, monomers, respectively,
the fluctuations. A completely random signal is often denoted
as “white noise” and hasv=0, whereas processes such as (= 9C10 43)
Brownian motion produce signals with=2. The “noise” 2Cq 1
associated witiM, and M, depends upon the value af
When\>\., the noise of both moments is Brownian, that is the ratio of A groups to B groups,is the fractional extent
is, w=2. However, as\ decreases below., so doesw, of reaction of A groups, and the quantitiésnd{ have been
resulting in what is often denoted as “colored noise.” Like defined by Stockmayer in terms of g, andr [22]. The
the height of the peaks of the coefficients of variation in Fig.quantity
7, the dependence @5 upon the equilibrium constamnt is
much stronger for the second moment than for the zeroth g™2"(gm—m)!
moment. For an RA polymerization with A =0.5(\, N(u)= [A(U,0)]'[B(u,g)]im!’ u=(mn) (44)
=1.5), the exponent for the zeroth moment is about 1.8,
which is essentially Brownian. In contrast, the exponent folig the number of unique structural isomers af-aner, where
the power spectrum of the second moment under these cofpe quantities
ditions is 0.54. Similar results are observed for all R#o-
lymerizations except wheg=2, where gelation cannot oc- A(u,9)=(g—1)m—n+1 (45)
cur andw=2 for all \. The power spectra of the zeroth
moments of RA polymerizations have exponents that do not5q
deviate substantially from 2, whereas the exponents from the
second moment power spectra become smaller than\liss B(u,g)=n—m+1 (46)
decreased below, .

COZ Cl,0+ CO,l'

are the number of free A and B groups om-aner, respec-

C. RA4/RB;, model tively.

Like the RA, process, the R/RB, process is a polymer- The moments of Eq42)

ization that can produce highly branched aggregates. The

RA/RB; process_ls a copolymerization of two types of My () = >y min‘c(u,q), c((0,0),q)=0 (47)
monomers: one witlg A groups and the other with two B =0 n=0
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have physical interpretations similar to those of the moments N(u)N(v)
discussed in the preceding section. However, their computa- F(u,v)=k2[A(u,g)B(v,g)+A(v,g)B(u,g)]N(u—+v),
tion is not trivial except for the first momenks, ,=c, o and (52)

Mg 1=Co 1, and the zeroth moment

ModP)=co(1—gay), qe[0,min(gy) 11)], (48

where

where the combinatorial ternf$(u) are given by Eq(44).

Like the aggregation kernel, the fragmentation kernel ac-
counts for the connectivity of A and B groups. If a compo-
sition u is inconsistent with the requirement that aggregates
must be linked by A-B bonds, eithét(u) or N(v) will be

(49)  zero. Consequently, the fragmentation kernel does not permit
the breakup of anu+v)-mer into daughter fragments that
violate the chemistry and stoichiometry of EG3).

Using these kernels, we conducted stochastic simulations
for the RA,/RB, system with 10000 particlex§=1.0, V
=10000) over broad ranges gfand . The valency was
specifically chosen to represent the polymerization of an IgA
antibody @=4) with a bivalent antigeritwo epitopes

Figure 9 shows the complete steady-stafe=(0) two-
component size-composition distribution from a single simu-

tion of an RA/RB, process withy=0.5 and\=1. Like

e process discussed in the preceding section, the steady
states of this model constitute proper equilibria, since the
time and data averages are equivalent in the limit of large
Note that all the species conform to the aforementioned con-
straintsA(u,g) =0 (dashed lingandB(u,g) =0 (solid line),

2r
2r+g

— Cl'o_
Co

is the relative ratio of R§{ monomers to the total number of
reactive monomers. Physically, the momeMs o, Mg,
andM, ; are the total concentration of particlesnglets and
aggregates total concentration of RA monomers and total
concentration of RB monomers, respectively. The second
momentsMg,, My, andM,  are the widths of the distri-
bution in RA; and RB, composition. The mixed second mo-
mentM ; indicates the extent of mixing of the two types of
monomers in the aggregates. In analogy with the stationar
distribution for the R4 polymerization, these higher-order
moments k+ €=2) will diverge when the conversion ex-
ceeds the critical value

:; reflecting the fact that the simulation algorithm cannot select
de (50 : :
Vr(g—1) an event having a zero kernel. Also, note that there is no gel
in this distribution.
at the gel pointg. The absence of a gel in Fig. @e., a large particle con-

Although Stockmayer’s description predicts conversion ofstituting a significant portion of the monomgmiggests via
a stationary system, it does not predict the time evolution oEq. (50) that the equilibrium extent of reactiag(«) is less
the RA,/RB, process. Moreover, the gel criteri¢h0) does  thang.. This hypothesis may be validated directly using Eq.
not specify whether or not a system will possess a gel trang48) that, like Eq.(32), is exact in both the stochastic and the
sition for a specific combination of dimensionless chemicaldeterministic approaches. The composition distribution
equilibrium constank =k, /(k;co) andr (ory). As we have  shown in Fig. 9 had/ () = 3650 particles, corresponding
shown in the preceding section, the deterministic treatmento a conversiong(>)=0.397. Stockmayer’s gel criterion
of the kinetics of reactions such as H@3) to ascribe the specifies that a conversion of=0.5 is required for gela-
time dependence to the conversigrmay not be reliable. tion, thus both the stochastic and the deterministic ap-
Thus, we conducted stochastic simulations to characterizgroaches agree that no gel transition occurs. Moreover, Eq.
the kinetic time evolution of this process exactly and deter{42) with q=0.397 is indistinguishable from the composition
mine thex andy dependencies of its gel point. distributions generated by stochastic simulation according to

The derivations of the kernels for this process are analoy? significance testingg=1.0).
gous to those of the model of the preceding section. Again, Like the second moments of the size distribution for the
we impose the constraints ¢f) equireactivity of A and B single-component RAprocess, the second momernk
groups,(2) reaction-limited aggregation, an8) no internal  (k+¢=2) exhibit strong fluctuations after a gel transition.
cyclization. To define the aggregation kernel, the rate conin Fig. 10, we present time series for the average moments
stantk; in Eq. (23) must be multiplied by the total number of Moo, Mg2, M1, andMg, of gelling (y,\)=(0.4,0.2) and
ways of forming a bond betweeniamer and a-mer. Enu-  nongelling ,\)=(0.4,0.5) processes computed from ten
merating the ways in which one can form a bond between Aeplicate simulations pem(y) pair. Here, we normalize the
and B groups on these species, one obtains moments according to the physical limit for finite systems of

particles,
K(u,v)=k4[A(u,9)B(v,g9) +A(v,9)B(u,9)]. (5

Note that if a combination of free A and B groups is not [VMi (V)]
possible between these species, the aggregation kernel will [VMy o(t)][VMg(t)]°
be zero. For example, if=v=(1,0) (interaction of two RA

monomerg, both B(u,g) and B(v,g) will be zero on the In Fig. 11, we present the corresponding coefficients of
RHS of Eq.(51). Employing the arguments of the preceding variation. Like the second moments of the single-component
section, the fragmentation kernel may be written as RA, process, the “second” momentd,, My, andMg,

1, k+e=2. (53)
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FIG. 12. Phase diagram for the RARB, polymerization pro-

FIG. 10. Average moments of the RARB, composition distri- ~ Cess.\ is the dimensionless dissociation constant gmsithe ratio
bution with A above and below the gelation threshold and relative0f RA4 monomers to total reactive monomers. Crosses denote po-
RA, monomer conteny=0.4. In processes with=0.2, a gel lymerizations featuring a gel transition. Polymerizations lacking a
transition is observed, resulting in a rapid and sizable jump in thed€l transition are represented by circles. Gel points are indicated in
second-order moments. the shading bar.

rapidly increase when the gel transition occurs. Moreover/aration in excess of 1. However, these were invariably con-
the coefficients of variation of these moments go througrﬁequences of artificial fluctuations as discussed in the preced-
unambiguous maxima for processes featuring a gel transitiolfd_ Section when the asymptotic limit of a coefficient of
and exceed unity, whereas nongelling processes increa¥gation was close to 1. Moreover, the noise of the second
monotonically to asymptotic values smaller than 1. In somdnoments as computed from the individual simulations was

cases, nongelling processes appeared to have coefficients'Byariably Brownian for nongelling processes and colored
for gelling ones, in analogy with the results for the single-

component R4 polymerization(data not shown

Organizing the results of thousands of replicate simula-
tions over the X,y) space, we constructed a phase diagram
for the RA,/RB, process(Fig. 12). In this figure, circles
denote simulations that featured no gelation and squares de-
note simulations in which gelation occurred. The shading
indicates the magnitudes of the gel points. As discussed in
the preceding section, these are defined as the points in time
where the simulation averaged valuesMyj o are equal to

Mc=Moddc), (54)

as computed using E¢48) with g, defined by Eq(50). For
every simulation in which a gel transition occurred, a mac-
roparticle was generated in the species vector, the coeffi-
cients of variation of the second moments went through a
peak in time, and the conversiap exceeded the critical
value specified by Eq50). The converse was also observed.
n Processes that did not produce macroparticles featured
107 10 monotonically increasing coefficients of variation of the sec-
r ond moments and their equilibrium conversiag(se) were
FIG. 11. Coefficients of variation of moments of the RRB,  always smaller thau .
composition distributions with dissociation constants in the gelling ~ The additional curve shown in Fig. 12 is a deterministic
and nongelling regions. In processes featuring a gel transitionprediction of the phase boundary, derived by extension of the
V(M,) has a peak in excess of unity, reflecting strong fluctuationgnethod of van Dongen and Ernst to the chemistry of Eqg.
in the composition distribution at the gel point. (23,

0 1

10
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1 cesses: the single-component RAolymerization, the
g(l—qc)(r—qc single-component ARB polymerization, and the two-
(55  component R4/RB, copolymerization. The first of these is

Ge an aggregation of monomers featuriggfunctional groups

) ) o that bind to identical functional groups on other monomers
The differences between the stochastic predictions of thgccording to the chemical reactiotA=A—A. The latter

phase boundary and E(5) were negligible for almost all wyo are mediated by the complexation reaction A
N>\, with some exceptions. In these cases, the neglect of B=A—B; the ARB process featuring one type of mono-
the critical limit gy,=(yg) ! in the deterministic method mer with both types of functional group and the IRB,
resulted in unreliable results for, . Despite this, Eq(55) is copolymerization featuring two types of monomers—one
generally predictive of the gel transition. However, in anal-jth g A ligands and the other with two B ligands. We ex-
ogy to our results for the single-component Rfxocess, the  amined statistical fluctuations during and following gel tran-
time dependence o predicted by Ziff's method was not sitions of reversibly aggregating systems. The stochastically
accurate foh <A, and produced incorrect estimatestofor  generated time series of the moments of size and composi-
all » andy. tion distributions have different types of noise depending on
The analysis used here to characterize they /8, co-  the occurrence of a gel transition. Finally, we developed the
polymerization may further the understanding of antibodyfirst phase diagram to predict the gel transition for the
agglutination. For a known dissociation constarp( RA,/RB, copolymerization process in terms of its chemical
=ky/k;) of an antibody-antigen pair, one can predict properties. Using the stochastic simulation algorithm, the
whether or not a mixture of the two molecules will result in type of analyses performed for these processes may be ap-
a precipitate and when the precipitate will form. Copolymer-plied to related biological processes such as the cross linking
izations of pertinence to immunology such as those of IgMof cells via polyvalent or bivalent macromolecules. Specific
(9=10) with bifunctional antigens may be simulated andexamples include von Willebrand factor or fibrinogen-
characterized likewise. However, the following caveatsmediated platelet aggregation and the antibody-mediated
should be noted before applying these results. First, we havgross linking of red blood cells in blood typing.
assumed that the internal cyclization is forbidden, which may |n this work, we have simulated processes for whith
not be true in a real agglutination process. Second, our analyhe aggregation and fragmentation kernels were related by
sis additionally presumes that there is no steric hindrancehe combinatorics of connecting multivalent monomers, and
Finally, the kernels we have used did not explicitly account(2) aggregate formation was mediated by the formation of
for the effects of transport or Brownian motion, which may chemical bonds. However, many aggregation-fragmentation

2r
Ne= 2r+g

become important in the limit of gelation. processes feature other mechanisms of aggregation and frag-
mentation, which are not microscopically reversible. Indeed,
V. DISCUSSION the steady states of such processes may not even be true

equilibrium states. However, these issues are irrelevant to

We have presented a simulation algorithm for determiningooth the stochastic simulation algorithm and to the PBE so
the stochastic time evolution of reversibly aggregating systong as the forms oK (u,v) and F(u,v) correctly quantify
tems of particles with multiple components or conservatiorthe average rates of aggregation and fragmentation. Because
laws. Because the simulation algorithm addresses aggregtie probability density functions underlying the algorithm
tion and fragmentation events as random events, compleare independent of the functional forms of the kernels, the
population balance equations may be replaced with simplestochastic simulation algorithm, like the PBE, can predict the
probability distributions that are amenable to Monte Carlotime evolution of any process characterized by any pair of
sampling. The simulation procedure first involves selectiorkernelsK(u,v) andF(u,v).
of a time intervalr in which no aggregation or fragmentation  In both this paper and in a previous publicatidr?], we
events occur. Subsequently, the imminent event idhave shown thatthe stochastic simulation algorithm can pre-
chosen—be it an aggregation of two particles or a fragmendict the time evolution of processes that feature a gel transi-
tation of a single particle. Finally, a time counter and thetion. Under certain conditions, processes described by “shat-
system state are updated to account for the consumption ¢ering” kernels are also amenable to simulation. However,
production of particles. By successive selections of eventthis requires careful consideration of the size and composi-
and quiescence times, any virtual system of aggregating dion space. When size or composition is treated as a continu-
fragmenting particles, biological cells, or molecules may beous variable (< R*), solutions of the corresponding “con-
evolved stepwise, including those having time-dependent aginuous” PBE with certain fragmentation kernels imply a
gregation and fragmentation kernels. At the heart of this alloss of system mad27-29. These results follow from the
gorithm is the aggregation table—a data structure designeféct that particles are considered to be infinitely divisible.
to keep track of multicomponent or multiproperty speciesThus, the “shattering transition” results from the disintegra-
and the probability densities of imminent events. The aggretion of particles into infinitesimally small fragments. How-
gation table accounts for aggregate species rather than indéver, when particles are aggregates of monomeric units (
vidual particles, reducing the data storage requirements and N*), the smallest particles must be monomers. Hence, so-
increasing the speed by orders of magnitude. lutions of a discrete PBE such as E®) with a “shattering

We have applied the algorithm to three aggregation prokernel” will predict a rapid fragmentation of particles into
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the constituent monomers. Because the stochastic simulatiQhere[ (), ] is the greatest integer less thafl,. Using the

algorithm is indifferent to the functional forms of simulated relationship between the amounts of each component and the
kernels, it may be used to predict the time evolution of bothy,5vimum number of specie ., [12]

“aggregation dominated” and “fragmentation dominated”
processes with multiple components as long as the initial
particles are composed of monomers. K
Q=2"*NKEL A2
APPENDIX kHl ‘ e -

The maximum number of operations necessary for deter-
mining the composition of a daughter fragment in E2QR) Eq. (A1) may be simplified to
follows from a consideration of the breakup of the aggregate
of all particles in the system. Consider a system of particles
composed ofx components, such as different types of NZN;];xl_ (A3)
chemical monomers or different blood cell types. Let us de-
fine Q(ke[1,«]) as the amount of each type of component
particle. The number of distinct fragmentation kernels for theif Eq. (22) is solved by bisection to obtain the composition
aggregate of all of the particles is then of a daughter fragment, at most lg¢y) operations are re-
quired, for a maximum 0O(In(N,,,,)) operations. This does

K
/\/:H le , (A1) not include Fhe theN operations necessary to specify the
k=12 mother species.
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