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Kinetics of random aggregation-fragmentation processes with multiple components
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A computationally efficient algorithm is presented for exact simulation of the stochastic time evolution of
spatially homogeneous aggregation-fragmentation processes featuring multiple components or conservation
laws. The algorithm can predict the average size and composition distributions of aggregating particles as well
as their fluctuations, regardless of the functional form~e.g., composition dependence! of the aggregation or
fragmentation kernels. Furthermore, it accurately predicts the complete time evolutions of all moments of the
size and composition distributions, even for systems that exhibit gel transitions. We demonstrate the robustness
and utility of the algorithm in case studies of linear and branched polymerization processes, the last of which
is a two-component process. These simulation results provide the stochastic description of these processes and
give new insights into their gel transitions, fluctuations, and long-time behavior when deterministic approaches
to aggregation kinetics may not be reliable.

DOI: 10.1103/PhysRevE.67.051103 PACS number~s!: 82.20.2w, 05.10.2a, 02.70.2c, 36.20.2r

I. INTRODUCTION

The aggregation of small entities into larger ones under-
lies processes as diverse as self-assembly, chemical polymer-
ization, and blood coagulation. When aggregation is concur-
rent with fragmentation, many of these processes may be
conceptualized as chemical polymerization processes,

Mi1M j

K~ i , j !



F~ i , j !

Mi 1 j , ~1!

where Mi and M j are particles of sizesi and j, and the
aggregation and fragmentation kernelsK( i , j ) and F( i , j )
function as ‘‘chemical’’ rate constants. The size dependencies
of the kernels may be derived by the microphysical consid-
eration of the mechanism of a given process. Hence, Eq.~1!
is a general model by which many reversible aggregation
processes may be represented.

As written, Eq.~1! describes a process with a single con-
servation law, i.e., conservation of monomers. However, ag-
gregation and fragmentation processes may also feature ad-
ditional conservation laws for other distinct monomeric
units. For example, a detailed account of the kinetics of
blood coagulation requires conservation laws for each active
blood component: platelets, leukocytes, soluble fibrinogen,
etc. To represent such processes, Eq.~1! must be modified to
account for the additional conservation laws or components.
Let us define each multicomponent speciesM (u) by a com-
position vectoru5(u1 ,u2 , . . . ,uk), whereuk (kP@1,k#) is
the amount of thekth conserved quantity or component. We
may then rewrite Eq.~1! for this multicomponent or multi-
conservative model as

M ~u!1M ~v!

K~u,v!



F~u,v!

M ~u1v!. ~2!

In this case,K(u,v) andF(u,v) are multicomponent aggre-
gation and fragmentation kernels that may depend on each
component ofu andv.

To quantify the time evolution of aggregation-
fragmentation processes, the kinetic process represented by
Eq. ~2! must be employed in a mathematical statement of
component conservation. The traditional approaches of
Smoluchowski@1#, Blatz and Tobolsky@2#, and Lushnikov
@3# have achieved this by use of the deterministic population
balance equations~PBEs! such as

]c~u,t !

]t
5

1

2 (
v50

u

K~v,u2v!c~v,t !c~u2v,t !

2(
v50

`

K~u,v!c~u,t !c~v,t !

2
1

2(
v50

u

F~v,u2v!c~u,t !1(
v50

`

F~u,v!c~u1v,t !.

~3!

In this expression,c(u,t) is the concentration ofu-mers and
the sums are computed over each compositionv
5(v1 ,v2 , . . . ,vk)PNk, excluding the upper and lower lim-
its.

Because PBEs, such as Eq.~3!, are infinite sets of infi-
nitely coupled nonlinear differential equations, obtaining
their analytical and numerical solutions can be formidable
challenges. Only a handful of analytical solutions of PBEs
are known for processes with no fragmentation, most of
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which are for single-component systems@1,3–8#. Further-
more, only two analytical solutions are known for single-
component aggregation-fragmentation processes@2,9#, and
none are known for multicomponent aggregation-
fragmentation processes. In addition, it has been shown that
PBEs have validity only in the large population limit, that is,
when there are many aggregates of each compositionu.
Consequently, PBEs cannot predict the long-time behaviors
of aggregation processes when the particles or molecules
completely aggregate or undergo a phase transition@10–12#.

Owing to these considerations, the stochastic approach to
aggregation kinetics has emerged as a viable and attractive
alternative@10–20#. The stochastic approach can give a more
realistic and robust characterization of aggregation pro-
cesses, explicitly accounting for both the conservation of
monomers and the statistical fluctuations ofu-mer popula-
tions. In this paper, we employ this approach to exactly char-
acterize the kinetics of reversible aggregation, wherein mul-
tiple components or conservation laws are extant. We then
present an exact Monte Carlo~MC! algorithm for simulation
of the time evolution of any spatially homogeneous aggrega-
tion process. The paper is organized as follows. In Sec. II, we
derive the probability functions utilized by the MC algo-
rithm, setting the stage for the presentation of the algorithm
in Sec. III. We then apply the MC algorithm to study the
kinetics of physically relevant reversible polymerization pro-
cesses in Sec. IV. Here, we give the exact stochastic descrip-
tions of the time evolutions of the linear (RAg) and branched
(RAg /RB2) models of reversible polymerizations of multi-
valent monomers, and develop methods of characterizing
their gel points exactly. We conclude with a discussion of the
results in Sec. V.

II. STOCHASTIC APPROACH

In a previous paper, we developed the stochastic formal-
ism for the description of irreversible aggregation of particles
with multiple components or conservation laws@12#. We
summarize those results here and develop the additional de-
tails pertaining to particle fragmentation.

Consider a well-mixed and spatially homogeneous vol-
umeV in which there reside particles belonging toN distinct
aggregate species, and let each speciesm be characterized by
a unique compositionum5(um,1 , . . . ,um,k). That is, each
particle having the compositionum is a member of themth
species. After timet50, these species will randomly aggre-
gate or fragment according to the mechanism of Eq.~2!,
resulting in a change in the populations of one or more spe-
cies. To specify these changes mathematically, we specify
the state of the system by a vectorx[(X1 , . . . ,XN), where
Xm is the population~number of particles! of themth species.
Subsequently, we specify the probabilities of aggregation and
fragmentation of each speciesmP@1,N# in that state. Apply-
ing the stochastic approach to the chemical kinetics of the
forward ‘‘reaction’’ of Eq. ~2!, one obtains the following
transition probabilities for aggregation events@12,19#:

a~m,n!dt5V21K~um ,un!XmXndt

5Pr~any two particles ofunlike species
m and n with populationsXm and Xn will
aggregate within the imminent time intervaldt),

(4)

a~m,m!dt5V21K~um ,um!
Xm~Xm21!

2
dt

5Pr~any two particles of thesame speciesm

with population Xm will aggregate within

the imminent time intervaldt). ~5!

Applying the stochastic approach to the chemical kinetics of
the reverse reaction of Eq.~2! likewise yields the following
transition probabilities for fragmentation events:

f ~m,v!dt5F~um2v,v!Xmdt

5Pr~any particle of speciesm

with population Xm and compositionum

will break into two unlike particles of

compositionsum2v and v within the

imminent time intervaldt), ~6!

f ~m,um!dt5
1

2
FS um

2
,
um

2 DXmdt

5Pr~any particle of speciesm with population

Xm and compositionum will break into two

identical particles of composition
um

2
within the imminent time intervaldt. ~7!

In these definitions, the population terms enumerate the num-
ber of ways by which the reactant species can be chosen. For
example, there areXmXn ways that a pair of distinct species
m andn can be chosen to aggregate. Likewise, there areXm

ways of choosing a speciesm for a fragmentation. The factor
1
2 in Eq. ~7! is a consequence of the fact that there is only one
way that a particle can split in half, but two ways that it can
be split asymmetrically.

In principle,u-mers may have many structural configura-
tions, each with its own size or shape that may affect the
rates of aggregation and fragmentation. However, neither the
PBE nor our definition of species explicitly accounts for the
configuration or shape. Consequently, it is possible that any
u-mer particle may exhibit any of theN(u) possible configu-
rations of u-mers, regardless of the population ofu-mers.
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Thus, for Eqs. ~4!–~7! to be generally valid for all
aggregation-fragmentation processes, even for singly popu-
lated species, the kernelsK(u,v) and F(u,v) must be the
averagerates of aggregation and fragmentation taken over
all conformations, shapes, cross-sectional areas, and so forth.
This condition implicitly requires that the conformation dis-
tributions of all species should remain constant throughout
the aggregation process. In both the PBE and the stochastic
approach to aggregation kinetics, this is commonly assumed
to be true.

Using Eqs.~4!–~7!, one can exactly derive probability
distributions for both the event to come and the preceding
quiescence time@12,19,21#. The probability that the immi-
nent event will either be an aggregation of some speciesm
andn or a fragmentation of some speciesm into particles of
compositionsv andum2v is

P2~m,n;m,vut!5H f ~m,v!/a, uvu.0, n50

a~m,n!/a, uvu50, m,n.0,
~8!

where

a5 (
m51

N

~am1Xmfm! ~9!

is the sum of all transition frequenciesa(m,n) and f (m,v),
and

am5 (
n51

m

a~m,n! ~10!

and

fm5 (
v50

[(1/2)um]

F~um2v,v!, v5~v1 , . . . ,vk! ~11!

are so defined for reasons that will become apparent later.
The probability that the next event will occur immediately
after the quiescence intervalt is

P1~t!dt5aP0~t1tut !dt, ~12!

whereP0(t1tut) is the probability that nothing will occur
within the quiescence time. Becauseadt is the probability
that something will occur within the next time intervaldt, it
may be specified thus

P0~ t1dtut !5P0~ t10ut !@12adt1O~dt!#. ~13!

By transposingP0(t10ut) from the left-hand side of Eq.
~13! and dividing throughout bydt and lettingdt→0, one
obtains the following differential equation forP0(t1tut):

d

dt
P0~ t1tut !5aP0~ t1tut !,

P0~ t10ut !51. ~14!

In the typical case whereK(u,v) and F(u,v) are indepen-
dent of time, the solution of Eq.~14! is

P0~ t1tut !5exp~2at!. ~15!

However, if the aggregation and fragmentation kernels~and
thus a) are explicit functions of time, Eq.~14! will yield a
different expression forP0(t1tut) and Eq. ~8! should be
evaluated att1t. For example, time-dependent kernels may
be necessary to describe the aggregations of biological cells,
whose ability to adhere to each other is highly regulated and
time dependent.

Because Eqs.~12! and ~8! are derived analytically from
Eqs.~4!–~7! without approximation, they are valid and exact
for any process described by any set of aggregation and frag-
mentation kernels, regardless of their mathematical complex-
ity or time dependence. Consequently, MC simulations based
upon these formulas are tantamount to individual aggrega-
tion processes governed by kernelsK(u,v) andF(u,v).

III. SIMULATION ALGORITHM

We now proceed to the development of the MC algorithm
for reversible aggregation processes with multiple compo-
nents. Fundamentally, the process of simulation entails three
steps—the selection of the quiescence time preceding the
imminent event, the selection of the event to come, and the
modification of the state of the system to account for the
occurrence of the chosen event. The process is then repeated
until some predetermined time or, in the case of irreversible
aggregation, the system is reduced to a single particle pos-
sessing all of the mass and other conserved quantities of the
system.

The most computationally efficient method for the exact
selection of the quiescence interval and event to come is a
modified version of Gillespie’s direct method@21#. In this
method, random variables are selected by integrating their
distributions until a uniform random number is just ex-
ceeded. Hence, the quiescence time is selected from Eq.~12!
as follows@21#:

E
0

t

a exp~2at!dt5r 1 , r 1P@0,1!, ~16!

wherer 1 is a uniform random number. Inverting this expres-
sion, one obtains an explicit equation for the quiescence
time,

t5
1

a
lnS 1

12r 1
D , t selection. ~17!

Similarly, the imminent event is specified by summing over
all P2(m,n;m,vut) until another uniform random number
r 2P@0,1) is exceeded. That is, if the terma(m,n)/a causes
the running sum of the terms ofP2(m,n;m,vut) to exceed
r 2, then the imminent event will be an aggregation of species
m andn.

Unfortunately, a simple equation such as Eq.~17! cannot
be written for the definition of the imminent event. However,
the imminent event may be selected by judicious integration
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of Eq. ~8!. To begin with, we define the speciesm involved
in the imminent event by integrating overm until the quan-
tity r 2a is exceeded,

(
i 51

m21

~a i1Xif i !<r 2a,(
i 51

m

~a i1Xif i !, m selection.

~18!

In this expression, we have employed the quantitiesa i and
f i defined by Eqs.~10! and ~11!. The choice between an
aggregation or a fragmentation is implicitly specified during
this process. Ifam causesr 2a to be exceeded in Eq.~18!,
then the event to come is an aggregation of speciesm with
some other species; otherwise, the event to come will be a
fragmentation,

(
i 51

m21

~a i1Xif i !1am.r 2a, aggregation of speciesm,

(
i 51

m21

~a i1Xif i !1am<r 2a, fragmentation of speciesm.

~19!

Finally, the imminent event is selected by determining which
individual a(um ,un) or f (um ,v) caused the sum of
P2(m,n;m,vut) to exceedr 2a ~18!. If the imminent event is
an aggregation, then the species indexn of the second par-
ticle is specified by

(
j 51

n21

a~m, j !<r 2a2 (
i 51

m21

~a i1Xif i !

,(
j 51

n

a~m, j !, n selection, ~20!

where we note that the quantity( i 51
m21(a i1Xif i) was previ-

ously calculated in them-selection step. Conversely, if the
imminent event is a fragmentation, the compositionv of the
smaller daughter fragment of speciesm is selected by sum-
ming the termsf (um ,v) until the quantity r 2a2( i 51

m a i

2( i 51
m21Xif i is exceeded. Let us define the partial sum of

fragmentation kernels by

F~um ,v!5 (
wÄ0

[(1/2)v]

F~um ,w!, ~21!

whereF(um ,um)5fm . The v-selection criterion may then
be written as

XmF~um ,v!.r 2a2(
i 51

m

a i2 (
i 51

m21

Xif i , v selection,

~22!

such thatv is the first composition in the order of summation
in Eq. ~21! which causes the right-hand side~RHS! of Eq.
~22! to be exceeded. In practice, this may be done by con-
secutive summation using Eq.~21! or by solving Eq.~22! by
bisection when a simpler form ofF(um ,v) is known analyti-
cally.

Given these rules for the MC selection of the quiescence
time and imminent event, the following general simulation
algorithm may be outlined.

~1! Initialize the process by defining all initial species and
their properties@um , Xm , am , fm ,F(um ,v), K(um ,v), and
a(m,n)] and computea @Eq. ~9!#.

~2! Select the quiescence time@Eq. ~17!# and the immi-
nent event@Eqs.~18!–~22!#.

~3! Increment the time byt and modify the state of the
system to account for the selected aggregation or fragmenta-
tion event.

~4! Recomputea. If a50, stop the simulation. Other-
wise, return to step~2!.

The computationally intensive aspects of this algorithm
may be streamlined using an ‘‘aggregation table’’~Fig. 1! as
previously described@12#. The aggregation table is com-
posed of anN31 ‘‘species vector’’ containing information
specific to each species@um , Xm , am , fm , andF(um ,v)]
and a lower-diagonalN3N ‘‘aggregation matrix’’ containing
information specific to pairs of species@K(um ,un), a(m,n)].
This organization serves two functions:~a! facilitation of the
creation, deletion, and update of species in steps~1! and~3!,
and ~b! reduction of the number of computations necessary
for the event and quiescence time selection steps.

In step~1!, the state of the system is defined by succes-
sively adding each initial species to the bottom of the species
vector and defining its corresponding row in the aggregation
matrix. For each new species added to the bottom of the
table (N), the compositionuN and populationXN are entered

FIG. 1. Aggregation table for storing information pertaining to the state of the system and probabilities of aggregation and fragmentation
events.
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first. Subsequently, the functionsF(uN ,v) are computed and
stored, thereby definingfN . Finally, $a(N,i )% and
$K(uN ,ui)%( i P@1,N#) are added to theNth row of the ag-
gregation matrix, andaN is computed according to Eq.~10!.
Due to the structure of the table,aN is just the sum of the
transition probabilitiesa(N,i ) in this row. Furthermore,a is
just the sum of the quantitiesam for each speciesm in the
species vector.

In the course of simulation, product particles resulting
from an aggregation or fragmentation event will often have
unique compositions and constitute new species. In such
cases, these new species are added to the bottom of the ag-
gregation table as discussed. However, if the product particle
belongs to a species already represented in the species vec-
tor, the information for that species must be updated to re-
flect its change in population. The reactant species must like-
wise be updated. The aggregation table allows these
modifications to be performed in a straightforward way. For
example, consider a reactant or product speciesu with popu-
lation Xu prior to the imminent event. First, the population of
this species is incremented or decremented to reflect its gen-
eration or consumption. For example, if it aggregates with a
speciesnÞm, then the population is decremented by one.
Subsequently, the quantities$a(m,i ),i P@1,m#% and
$a( j ,m), j P@m11,N#% in the mth row andmth column of
the aggregation matrix are recomputed systematically using
the colocally stored kernelsK(um ,vi) and K(uj ,vm). As
these adjustments are made, the partial sumsa i ( i>m) are
updated concurrently. Overall, this procedure requiresO(N)
operations.

In processes featuring a gel transition or irreversible ge-
lation, species are often completely consumed. In these
cases, the procedure for updating the aggregation table is
significantly simplified. Because the quantities$a( j ,m), j
P@m11,N#% in the mth column of the aggregation matrix
are recomputed withXm50, they will all be zero. Thus, the
partial sumsa i ( j P@m11,N#) only need to be decremented
by the valuesa( j ,m) corresponding to the stateprior to the
event. Subsequently, themth row of the aggregation table
and mth column of the aggregation matrix may be deleted
from computer memory without affecting the rest of the ag-
gregation table. As a result, the memory usage of the algo-
rithm is minimized.

A remarkable feature of the aggregation table and selec-
tion rules here presented is that the fragmentation transition
frequenciesf (m,v) require neither direct computation nor
storage. Here, the rationale underlying the definitions offm
andF(um ,v) becomes apparent. Due to the fact that neither
of these quantities are functions ofXm , they require no ad-
justment once a species is initially defined. Consequently, the
simulation procedure eliminates the extensive postevent ac-
counting associated with the vast number of fragmentation
transition probability densities$ f (m,v)% when speciesm is a
reactant or product. As a consequence, simulation ofany
reversible aggregation process is feasible regardless of the
number of components. In simulations of strictly aggregating
systems, computation ofa and selection of a pair of aggre-
gating particles requireO(N) operations per event@12#.

When fragmentation is added to the simulation procedure as
described and if the functionsF(um ,v) for each speciesm
are stored in computer memory as lookup tables, only
O„ln(Nmax)… additional operations are required~refer to the
Appendix!. Consequently, the number of operations required
of our algorithm per event is the same as that for the most
efficient stochastic simulation algorithm for irreversible ag-
gregation processes with multiple conservation laws or com-
ponents@12#. Thus, simulations of nongelling aggregation-
fragmentation processes with tens of thousands of particles
typically require only seconds of central processing unit time
to reach their steady states when run on a personal computer.
However, processes that produce gels tend to be much more
computationally demanding since they can require computa-
tion and storage of thousands of new fragmentation kernels
after every event that involves the large, singly populated gel
particle.

IV. KINETICS OF REVERSIBLE POLYMERIZATION

Polymerization is a specific type of aggregation process
whereby the monomers are indistinuguishable chemical en-
tities. In many cases, these chemical monomers possess func-
tional groups that can reversibly react with complementary
groups attached to other monomers or polymers. In this sec-
tion, we present MC simulation results for three such poly-
mer models. We begin by considering the single-component
linear polymerization model of Blatz and Tobolsky. We then
consider single- and two-component processes that produce
branched polymers.

Several features of these processes motivate the current
study. First, the reaction-limited aggregation and fragmenta-
tion kernels may be computed exactly. Second, stationary
composition distributions are known for these processes in
the thermodynamic limit, and a transient solution of the PBE
is known for the linear polymerization model@2,22#. Thus,
simulation results can be compared against these distribu-
tions. Finally, the branched polymerizations have been theo-
rized to exhibit gel transitions, defined by the rapid accumu-
lation of a significant fraction of the system mass into a
single particle. Our simulations may give insight into bio-
logical processes such as antibody agglutination and actin
polymerization, which are characterized by similar branched
polymerization mechanisms.

A. ARB model

The ARB process is named for its monomers that possess
one A group and one B group apiece. Due to the chemical
reaction

A1B

k1



k2

AuB, ~23!

the monomers bind to each other and give rise to linear poly-
mers of the form ARB-~ARB! k22-ARB.

We concern ourselves with the reaction-limited process,
where the particles collide much more frequently than they
react. Hence, the rates of aggregation and fragmentation are

KINETICS OF RANDOM AGGREGATION- . . . PHYSICAL REVIEW E 67, 051103 ~2003!

051103-5



equal to the total rates of bond formation and dissociation. If
internal cyclization is forbidden, every monomer and poly-
mer chain will have one A group and one B group. Conse-
quently, there will be two ways of attaching any two chains.
If one further assumes equireactivity of all A and B groups,
the total rate of bond formation between ani-mer andj-mer
is

K~ i , j !52k1 . ~24!

The fragmentation kernel can be derived likewise by consid-
ering the number of ways that an (i 1 j )-mer can dissociate
into an i-mer and aj-mer. As Eq.~23! shows, the rate of
dissociation of any bond isk2. Because an (i 1 j )-mer can
lose ani-mer at either end, the total fragmentation rate is

F~ i , j !52k2 . ~25!

Note that both Eqs.~24! and ~25! define constant kernels,
that is, they exhibit no size dependence.

The kinetic time evolution of this process was first quan-
tified by Blatz and Tobolsky, who solved a single-component
PBE such as Eq.~3! with these kernels@2# and with a mono-
disperse initial conditionc(k,0)5c0dk,1 . Their solution for
the time-dependent size distribution is

c~k,q!5c0qk~12q!2, ~26!

wherec0 is the initial concentration of monomers,

q5
2

~l12!1Al~l14!cothS 1

2
TAl~l14! D

is the extent of reaction of A or B groups,l5k2 /(k1c0) is
the dimensionless dissociation constant, andT5k1c0t is the
dimensionless time.

To demonstrate the agreement of the stochastic method
with the results of the PBE, simulations of the ARB poly-
merization process were simulated using 10 000 initial
monomers (c051, V51.03104) at l ranging over six or-
ders of magnitude. We show the average results of sets of ten
replicate simulations forl51.031024 andl51.0 in Figs. 2
and 3, respectively. For all species with populations in excess
of ten, the agreement between the average stochastic results
and the deterministic results was excellent. However, differ-
ences between the approaches were evident for species with
small populations. These differences are consequences of
stochastic fluctuations of the populations of rare species,
which cannot be predicted by deterministic approaches. In
contrast, the populations of well-populated species are not
strongly affected by these fluctuations. Thus, our results
demonstrate that stochastic simulation can reproduce the
time evolution of the size distribution as predicted by the
PBE for a wide range of kernels, and provide insight regard-
ing the statistical fluctuations of rare species.

B. RAg model

Unlike the process discussed in the preceding section, the
RAg process features monomers that haveg A groups on
each monomer. Moreover, these monomers aggregate as a
result of the following chemical reaction between A groups
on adjacent particles:

A1A

k1



k2

AuA. ~27!

FIG. 2. Time evolution of the ARB polymerization process with
l51.031024. X(k) is the number ofk-mers at the dimensionless
time T.

FIG. 3. Time evolution of the ARB polymerization process with
l51.0. X(k) is the number ofk-mers at the dimensionless timeT.

I. J. LAURENZI AND S. L. DIAMOND PHYSICAL REVIEW E 67, 051103 ~2003!

051103-6



Hence, a 2-mer is composed of two RAg monomers con-
nected by an AuA bond, and has 2(g21) A groups avail-
able to bind other monomers or aggregates.

The first quantitative study of the RAg process was con-
ducted by Stockmayer@22#. Assuming equireactivity of all A
groups, forbidding internal cyclization~unbound A groups on
an aggregate cannot react with each other!, and assuming
that the process begins with RAg singlets alone, he obtained
a stationary solution for the size distribution@22#

c~k,q!5c0Nk~q/g!k21~12q!sk(g), ~28!

wherec0 is the initial concentration of monomers,q is the
extent of reaction of A groups,

sk~g!5~g22!k12 ~29!

is the number of free A groups on ak-mer, and

Nk5
gk~gk2k!!

k! „sk~g!…!
~30!

is the number of unique structural isomers or configurations
of acyclick-mers. For example, one configuration is a linear
chain, another has one branch, still another two branches,
etc.

Stockmayer’s distribution has interesting properties relat-
ing to gel transitions, whereat a significant portion of the
monomers aggregate into a single particle. Stockmayer
showed that if the conversionq reaches or exceeds a critical
value qc , the moments of Eq.~30! diverge for n>2 and
decrease forn51. The first few moments

Mn~q!5 (
k51

`

knc~k,q! ~31!

are

M0~q!5c0S 12
g

2
qD , ~32!

M1~q!5c0 q,qc , ~33!

and

M2~q!5c0

11q

12~g21!q
, q,qc , ~34!

representing the total concentration of particles~aggregates
and singlets! in the system, the total concentration of mono-
mers, and the width of the size distribution, respectively.
Consequently, the thermodynamic analysis predicts a viola-
tion of monomer conservation and formation of an infinite
particle at the gel point at the critical conversion,

qc5
1

~g21!
. ~35!

Although Stockmayer’s solution is an exact result of ther-
modynamic analysis, it specifies neither the time evolution of
the reversible RAg polymerization, nor its gel point (t5tg)

at which q exceedsqc . In theory, analytical solution of a
PBE for this system could provide this information given
valid kernels. However, such a solution has not been ob-
tained explicitly. van Dongen and Ernst have estimated the
time dependence of the reversible RAg polymerization pro-
cess using Ziff’s method@23,24#,

q~ t !55
g~k1c0!t

11g~k1c0!t
, l50

2q`

~12q`
2 !cothF1

2
~k1c0!k t G1~11q`

2 !

, l.0.

~36!

In this expression,q`5(2g1l2k)/2g is the extent of re-
action at steady state,l5k2 /(k1c0) is the dimensionless dis-
sociation constant for the reaction between A groups, andk
5@l(l14g)#1/2. By equating this expression toqc in the
limit tg→`, one obtains the critical dimensionless equilib-
rium constantl @24#,

lc5
g~g22!2

~g21!
, ~37!

above which gel transitions should not be observed.
Although Eq.~36! ascribes the time dependence to Stock-

mayer’s distribution and the consumption of particles, it does
not completely describe the time evolution of the RAg poly-
merization process. Due to their radii of convergence, Eqs.
~33! and~34! cannot be used to predict the time evolution of
the higher-order moments of Stockmayer’s distribution be-
yond the gel point. Alternative formulas for these moments
have only been computed for the postgelation phase of the
RA3 polymerization@23#, and neither these nor the preceding
kinetic solution has been fully validated by substitution into
the PBE or by comparison with stochastic simulation.

Stochastic simulations can predict the time course of the
entire reversible RAg polymerization process, regardless of
whether gel transitions occur, as long as they are performed
with proper kernels. The method of constructing kernels for
polymerization processes was first developed by van Dongen
and Ernst, and we summarize their results here. Following
Stockmayer’s assumptions of equireactivity of A groups,
equal probabilities of all conformations ofk-mers, and
reaction-limited kinetics, the rate of aggregation will be
equal to the average rate of bond formation between a pair of
particles. Because there ares i(g)s j (g) ways a bond may be
formed between ani-mer andj-mer, the rate of bond forma-
tion between these particles is

K~ i , j !5k1s i~g!s j~g!. ~38!

Because the fragmentation kernel is the average rate of
breakup of a particle into two specific daughter fragments,
the fragmentation kernelF( i , j ) is equal to the dissociation
rate constantk2 multiplied by the average number of ways
that an (i 1 j )-mer can break intoi-mers andj-mers. As dis-
cussed, there are two unique ways this can happen in a
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linear polymerization (g52), in which case the fragmenta-
tion kernel isF( i , j )52k2. However, in branched polymer-
izations an (i 1 j )-mer may be one ofNi 1 j unique structural
configurations or structural isomers. In the absence of inter-
nal cyclization and if the initial size distribution is monodis-
perse, then the distribution of (i 1 j )-mers over theirNi 1 j
configurations will be uniform@24#. Thus, the total number
of ways thati-mers andj-mers of all configurations can be
connected or disconnected iss i(g)s j (g)NiNj . Multiplying
this combinatorial factor by the dissociation rate constant,
one obtains the rate of dissociation of (i 1 j )-mers of all
configurations intoi-mers and j-mers. Since the rate of
breakup must be equal to the rate of bond dissociation, this
in turn must be exactly equal to the quantityNi 1 jF( i , j ).
Equating these quantities, one obtains the van Dongen and
Ernst kernel@24#

F~ i , j !5k2s i~g!s j~g!
NiNj

Ni 1 j
. ~39!

Using these rate kernels, we simulated the RA3 and RA4
polymerization processes using 50 000 initial monomers
(c051,V55.03104) at l, above and below the critical val-
ues oflc for these two processes. We show these results in
Figs. 4–8 in terms of a dimensionless time scaleT5c0k1t.

In Fig. 4, we show the time evolution of the size distribu-
tion of an individual RA4 polymerization simulation withl
5 1

3 ~gelling!. In this figure, X(k,T) @5Vc(k,T)# is the
k-mer population at the dimensionless timeT. Like the de-
terministic description, MC simulation predicted the dimin-
ishing populations of allk-mers after the gel point as these
species were consumed by the gel. Additionally, stochastic
simulation demonstrated the probabilistic character of the
dynamics ofk-mers asX(k,T)→1. As we have discussed,
strong fluctuations and a slight offset from the deterministic
description are observed for smallX(k,T), particularly when
l,lc . Despite these fluctuations, the dynamic MC-
generated size distribution of Fig. 4 cannot be distinguished

from Eq.~28! by thex2 test. However, we note thatp values
for these tests were as low as 0.1 at some time points prior to
the steady state.

In Figs. 5 and 6, we show how the average values ofM0
andM2 evolve over time in stochastic simulation. The aver-
age values reported here were computed using the results of

FIG. 4. Time evolution of the RA3 polymerization process with
l51/3. X(k,T) is the number ofk-mers at the dimensionless time
T.

FIG. 5. Consumption of the number of particles (M0) in RA4

polymerization processes with various dissociation constantsl.
Solid lines are simulation results, and dashed lines are results from
the deterministic theory. Stochastic simulation always predicts posi-
tive numbers of particles and proper equilibria, even whenl< 1

2 .

FIG. 6. Average widths of the RA4 size distribution with various
dissociation constantsl. Solid lines are simulation results, and
dashed lines are results from the deterministic theory. Below the
critical dissociation constantlc51/3, systems of particles exhibit a
gel transition. Stochastic simulation permits exact quantitation of
the process in the postgel phase.
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ten replicate simulations. We also show the deterministic pre-
dictions for comparison. We have normalized our results in
accordance with the physical criterion,

@VMk~ t !#

@VM1~ t !#k
<1, k>2, ~40!

which is true for all single-component aggregations of finite
numbers of particles@3#. As we have mentioned, the deter-
ministic equations predict a divergence ofM2 and a decrease
in M1 at the gel point, whereas the stochastic simulations
predicts a rapid but finite increase inM2 and rigorous con-
servation of mass. Just as noteworthy, however, are the dif-
ferences between the predictions of the two approaches for
time evolution of the total number of particlesM0. For all
values ofl, stochastic simulations predicting a asymptotic
decay of M0 to a final positive value. However, whenl
< 1

2 the deterministic equations predict thatM0 will either
vanish or become negative asT→`. However, becauseM0
is the total concentration of particles in the system, it cannot
be negative. Hence, the deterministic equations fail,l< 1

2 .
As l is increased, the agreement between the two ap-
proaches improves. For example, simulation results forM0
with l51 (lc51.5) are in fairly good agreement with the
deterministic predictions, despite small differences in the de-
cay rate afterT.0.3 and a slight offset between the steady-
state values. Atl55, both the stochastic and the determin-
istic predictions of the time evolutions of the zeroth and
second moments are in close agreement.

Upon closer examination, it may be shown that the differ-
ences between the stochastic and the deterministic results are
neither a consequence of a difference between the stochastic
and the deterministic approaches to the kinetics of Eq.~27!
@25,26#, nor do they result from an error in Stockmayer’s
distribution. Rather, these differences and the deterministic
prediction of negative zeroth moments primarily result from
the assumptions underlying the kinetic derivation of Eq.~36!
for q(t). Equation~36! is derived by applying deterministic
rate equations to Eq.~27! and assuming that all unbound A
groups are free to react with all other unbound A groups
@23,24#. However, the derivations of both Stockmayer’s dis-

FIG. 7. Coefficients of variation of the zeroth and second mo-
ments of the RA4 size distributions with dissociation constants in
the gelling and nongelling regions. Peaks are observed only for
processes that undergo a gel transition. Note that the coefficients of
variation exceed unity in these cases, indicating strong fluctuations
in the size distribution.

FIG. 8. Average power spectra of the zeroth and second mo-
ments of the RA4 size distributions. The second moment has
Brownian noise~slope;2) for nongelling processes, but colored
noise~slope,2) for gelling processes.

FIG. 9. Equilibrium RA4 /RB2 particle composition distribution
with dissociation constantl51 and relative RA4 monomer content
y50.4. X(m,n) is the number of particles composed ofmRA4

monomers andnRB2 monomers. The dashed and solid lines are
boundaries reflecting that aggregates must have more than zero free
A and B groups, respectively.
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tribution and the kernels we have used forbid internal cy-
clization. Thus, any process starting withX0RAg monomers
must have at leastsX0

(g) free A groups at any given time–

the number possessed by a single aggregate of all RAg
monomers. This corresponds to a maximum extent of reac-
tion

qmax5@gX02sX0
~g!#/gX0.2/g. ~41!

Because Eq.~36! neglects these considerations, it allowsq to
exceedqmax whenl is sufficiently small. When this occurs,
Eq. ~32! predicts that the number of particles in the system
becomes negative. In summary, Eq.~36! is predictive for
small T and for equilibrium constants in excess oflc, when
extents of reaction are smaller thanqmax. However, it be-
comes progressively unreliable for values ofl smaller than
lc . This is the reason whyx2 testing of the simulation re-
sults shown in Fig. 4 yielded smallp values for distributions
at certain time points.

In addition to showing the deterministic and stochastic
predictions for the time evolution ofM2 prior to gelation,
Fig. 6 also shows the exact predictions of the time evolution
of M2 after the gel point. The shortcomings of Eq.~36!
aside, deterministic approaches cannot predict the time evo-
lution of the second moment beyond the gel point because
Eq. ~34! diverges asq→qc . Moreover, even their steady-
state behavior is not guaranteed to obey Eq.~40! due to
statistical factors lacking in Stockmayer’s methodology and
in the PBE@11,12#. However, any stochastic simulation of
the aggregation of finite numbers of particles, evenmolesof
particles, will predict size distributions with that obey Eq.
~40! for all l and reach a steady state.

The erroneous smalll behavior of Eq.~36! causes addi-
tional significant differences between the simulation results
and the deterministic equations. Early in the aggregation pro-
cess, both the deterministic and the stochastic approaches
give equivalent predictions of the growth ofM2 because Eq.
~36! predicts very small values ofq. However, as Eq.~36!
predicts values ofq that approachqmax, it begins to lose
predictive power. This translates to small deviations inM0
prior to the gel point (qc,qmax) because Eq.~32! predicts a
linear relationship betweenq andM0. However, the form of
Eq. ~34! enhances these deviations significantly. In fact, if
the values ofq given by Eq.~36! are decreased by approxi-
mately 10 time series forl50.5 andl51.0 agree very well
prior to the gel point. In the irreversible (l50) and nongel-
ling (l55) processes, there is a good agreement between
simulation results and the deterministic equations. In the first
case, the gel transition occurs before the shortcomings of Eq.
~36! become evident. In the second case, Eq.~36! never pre-
dicts a conversion as large asqc(qc,qmax), precluding the
‘‘depletion’’ of A groups for reaction that is its source of
error.

A major consequence of this observation is that Eq.~36!
cannot be used to accurately predict the gel point for the RAg
polymerization. However, stochastic simulation can charac-
terize the gel point exactly. Since Eq.~32! is valid for all q,
even in the stochastic approach,tg is the time at which the
average value ofM0 is equal to the value predicted by Eq.

~32! with q5qc . We will use this method to characterize the
copolymerization process discussed in the following section.
Interestingly, our simulation results and Eq.~37! agree in
their predictions of the critical equilibrium constantlc for
the RA2, RA3, and RA4 polymerizations. Becauseqc

,qmax, the aforementioned shortcomings of Eq.~36! do not
appear to strongly influence thesteady-statevalues of Eq.
~36! on which Eq.~37! is based. Thus, our results suggest
that the methodology used by van Dongen and Ernst to de-
termine Eq.~37! is valid, even though Eq.~36! is not gener-
ally reliable.

In addition to allowing exact computation of the average
moments and the gel point, stochastic simulation permits one
to compute additional fluctuation statistics. In Fig. 7, we
present respresentative results for the time evolutions of co-
efficients of variation (V) for M0 and M2, for one gelling
(l50.2) and one nongelling (l50.2) system. Like the av-
erage values ofM0 and M2 presented in Figs. 5–6, the co-
efficients of variation presented in Fig. 7 were computed
from the results of ten simulations. Att50, theV(M0) and
V(M2) are exactly zero since the initial condition is exactly
known. Subsequently, these quantities rise as a result of the
random generation and consumption of new species and the
stochastic evolutions of their populations. The time evolu-
tions of V(M0) and V(M2) have behaviors that distinguish
gelling and nongelling systems. In nongelling processes, the
coefficients of variation of both moments grow monotoni-
cally and approach asymptotic values that are always less
than 1. However, the time evolutions ofV(M0) andV(M2)
are significantly different for gelling systems. Ifl,lc , the
time series of bothV(M0) and V(M2) go through maxima
prior to their steady states. Moreover, the time series of
V(M2) possesses a cusp at whichV(M2) exceeds unity, im-
plying that the standard deviation of the gel size is greater
than its average and this point is close to if not colocal with
the gel point. These intense fluctuations have ramifications
for the deterministic desciption of gelling systems, inasmuch
as they relate to statistical terms usually neglected from the
RHS of PBEs such as Eq.~3! @11,13#. For all reversible
branched aggregation processes studied, a coefficient of
variation forM2 in excess of unity implied a gel transition.
Finally, the steady-state values ofV(M2) are always much
larger for gelling systems than the nongelling systems,
whereas those forV(M2) are relatively insensitive tol or
gelation.

The special behavior of the time evolutions ofV(M2) for
gelling processes is a direct consequence of the properties of
the gel. The gel size fluctuates rapidly because the gel is a
single particle subject to random aggregations with other par-
ticles. However, unlike other singly populated species, the
gel possesses a significant fraction of the monomers. Thus, a
single random fragmentation of a gel can bring about a sig-
nificant drop inM2, whereas a population change in 1-mers
from 1 to 0 will have little effect. Likewise, a random aggre-
gation of singly populated large particles or gel ‘‘daughters’’
will result in large and immediate increases inM2. The net
result is that the steady stateV(M2) is much larger for gel-
ling systems than for nongelling systems. In contrast, these
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events have little effect uponV(M0) because no single event
can changeM0 by more than one.

In Figs. 6 and 7, both the average value and the coeffi-
cient of variation ofM2 appear to fluctuate after the gel
transition, despite being statistical quantities taken from the
results of ten replicate simulations. These fluctuations result
from the fact that these statistics are computed from the re-
sults of only ten simulations. Because the gel is a single
particle, the apparent fluctuations of the average and the co-
efficient of variation result from the considerable variation of
the size of a gel from simulation to simulation~or experi-
ment to experiment! at time t. To smooth out these apparent
fluctuations, one must compute the statistics ofM2 using
many more experiments or simulations. These fluctuations
are not results of chaos or instability, and are not incompat-
ible with the definitions of equilibrium and steady state.

Using spectral analysis, the steady states of the time series
of the simulated size distributions and their moments can be
shown to be proper equilibrium states. In Fig. 8, we show the
average results of ten power spectra ofM0(t) and M2(t)
obtained by fast Fourier transform of their steady-state time
series. The individual spectra could be statistically distin-
guished from the mean, thus, we conclude that the RAg po-
lymerization as simulated is ergodic. Moreover, the absence
of distinct peaks in the spectra demonstrates an absence of
periodic fluctuations at equilibrium. Similar results were ob-
tained for simulation results of the RA3 and RA4 polymer-
izations over broad ranges ofl.

In addition, the power spectra of both moments have the
form P( f )}1/f v, regardless of the values ofl andg used in
the simulations, permitting a quantitative characterization of
the fluctuations. A completely random signal is often denoted
as ‘‘white noise’’ and hasv.0, whereas processes such as
Brownian motion produce signals withv.2. The ‘‘noise’’
associated withM0 and M2 depends upon the value ofl.
Whenl.lc , the noise of both moments is Brownian, that
is, v.2. However, asl decreases belowlc , so doesv,
resulting in what is often denoted as ‘‘colored noise.’’ Like
the height of the peaks of the coefficients of variation in Fig.
7, the dependence ofv upon the equilibrium constantl is
much stronger for the second moment than for the zeroth
moment. For an RA3 polymerization with l50.5(lc
51.5), the exponent for the zeroth moment is about 1.8,
which is essentially Brownian. In contrast, the exponent for
the power spectrum of the second moment under these con-
ditions is 0.54. Similar results are observed for all RAg po-
lymerizations except wheng52, where gelation cannot oc-
cur andv.2 for all l. The power spectra of the zeroth
moments of RAg polymerizations have exponents that do not
deviate substantially from 2, whereas the exponents from the
second moment power spectra become smaller than 1 asl is
decreased belowlc .

C. RAg ÕRB2 model

Like the RAg process, the RAg /RB2 process is a polymer-
ization that can produce highly branched aggregates. The
RAg /RB2 process is a copolymerization of two types of
monomers: one withg A groups and the other with two B

groups. Hence, this process is a two-component system with
conservation laws for each type of monomer. Like the single-
component ARB polymerization, aggregation occurs via the
bonding between A groups on RAg monomers and B groups
on RB2 monomers as in Eq.~23!. Thus, if one of the two
types of monomers is absent, no polymerization can occur.

This process is analogous to the polymerization of anti-
bodies (RB2) with multivalent antigens (RAg). In this case,
the B groups are antigen-bindingFab domains and the A
groups are the corresponding multivalent antigenic determi-
nants~epitopes!. Hence, the RAg /RB2 model quantifies the
kinetics of polymerization of bivalent antibodies~IgD, IgE,
IgG, where Ig is immunoglobin! with polyvalent antigens.
Likewise, the RAg /RB2 model describes the branched poly-
merization of polyfunctional antibodies such as IgM (g
510) or IgA (g54) with antigens possessing two epitopes.
The predisposition of an RAg /RB2 polymerization to form
branched aggregates depends upon how many of the RB2
and RAg monomers are present initially.

Under the assumptions of equireactivity of A and B
groups, no internal cyclization, and reaction-limited poly-
merization, Stockmayer calculated a stationary distribution
for this process@22#, which may be written as

c~u,q!5c0

2g~12q!~12rq !

q~2r 1g!
jmznN~u!, c05c1,01c0,1.

~42!

Here,m andn are the amounts of RAg and RB2 monomers in
a u-mer @u5(m,n)#. Additionally, c1,0 andc0,1 are the total
concentrations of RAg and RB2 monomers, respectively,

r 5
gc1,0

2c0,1
~43!

is the ratio of A groups to B groups,q is the fractional extent
of reaction of A groups, and the quantitiesj andz have been
defined by Stockmayer in terms ofq, g, and r @22#. The
quantity

N~u!5
gm2n~gm2m!!

@A~u,g!#! @B~u,g!#!m!
, u5~m,n! ~44!

is the number of unique structural isomers of au-mer, where
the quantities

A~u,g!5~g21!m2n11 ~45!

and

B~u,g!5n2m11 ~46!

are the number of free A and B groups on au-mer, respec-
tively.

The moments of Eq.~42!

Mk,,~q!5 (
m50

`

(
n50

`

mkn,c~u,q!, c„~0,0!,q…[0 ~47!
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have physical interpretations similar to those of the moments
discussed in the preceding section. However, their computa-
tion is not trivial except for the first momentsM1,05c1,0 and
M0,15c0,1, and the zeroth moment

M0,0~p!5c0~12gqy!, qP@0,min„~gy!21,1…#, ~48!

where

y5
c1,0

c0
5S 2r

2r 1gD ~49!

is the relative ratio of RAg monomers to the total number of
reactive monomers. Physically, the momentsM0,0, M1,0,
andM0,1 are the total concentration of particles~singlets and
aggregates!, total concentration of RAg , monomers and total
concentration of RB2 monomers, respectively. The second
momentsM0,2, M1,1, andM2,0 are the widths of the distri-
bution in RAg and RB2 composition. The mixed second mo-
mentM1,1 indicates the extent of mixing of the two types of
monomers in the aggregates. In analogy with the stationary
distribution for the RAg polymerization, these higher-order
moments (k1,>2) will diverge when the conversionq ex-
ceeds the critical value

qc5
1

Ar ~g21!
~50!

at the gel pointtg .
Although Stockmayer’s description predicts conversion of

a stationary system, it does not predict the time evolution of
the RAg /RB2 process. Moreover, the gel criterion~50! does
not specify whether or not a system will possess a gel tran-
sition for a specific combination of dimensionless chemical
equilibrium constantl5k2 /(k1c0) andr ~or y). As we have
shown in the preceding section, the deterministic treatment
of the kinetics of reactions such as Eq.~23! to ascribe the
time dependence to the conversionq may not be reliable.
Thus, we conducted stochastic simulations to characterize
the kinetic time evolution of this process exactly and deter-
mine thel andy dependencies of its gel point.

The derivations of the kernels for this process are analo-
gous to those of the model of the preceding section. Again,
we impose the constraints of~1! equireactivity of A and B
groups,~2! reaction-limited aggregation, and~3! no internal
cyclization. To define the aggregation kernel, the rate con-
stantk1 in Eq. ~23! must be multiplied by the total number of
ways of forming a bond between au-mer and av-mer. Enu-
merating the ways in which one can form a bond between A
and B groups on these species, one obtains

K~u,v!5k1@A~u,g!B~v,g!1A~v,g!B~u,g!#. ~51!

Note that if a combination of free A and B groups is not
possible between these species, the aggregation kernel will
be zero. For example, ifu5v5(1,0) ~interaction of two RAg
monomers!, both B(u,g) and B(v,g) will be zero on the
RHS of Eq.~51!. Employing the arguments of the preceding
section, the fragmentation kernel may be written as

F~u,v!5k2@A~u,g!B~v,g!1A~v,g!B~u,g!#
N~u!N~v!

N~u1v!
,

~52!

where the combinatorial termsN(u) are given by Eq.~44!.
Like the aggregation kernel, the fragmentation kernel ac-
counts for the connectivity of A and B groups. If a compo-
sition u is inconsistent with the requirement that aggregates
must be linked by A-B bonds, eitherN(u) or N(v) will be
zero. Consequently, the fragmentation kernel does not permit
the breakup of an (u1v)-mer into daughter fragments that
violate the chemistry and stoichiometry of Eq.~23!.

Using these kernels, we conducted stochastic simulations
for the RA4 /RB2 system with 10 000 particles (c051.0, V
510 000) over broad ranges ofy and l. The valency was
specifically chosen to represent the polymerization of an IgA
antibody (g54) with a bivalent antigen~two epitopes!.

Figure 9 shows the complete steady-state (T510) two-
component size-composition distribution from a single simu-
lation of an RA4 /RB2 process withy50.5 andl51. Like
the process discussed in the preceding section, the steady
states of this model constitute proper equilibria, since the
time and data averages are equivalent in the limit of larget.
Note that all the species conform to the aforementioned con-
straintsA(u,g)>0 ~dashed line! andB(u,g)>0 ~solid line!,
reflecting the fact that the simulation algorithm cannot select
an event having a zero kernel. Also, note that there is no gel
in this distribution.

The absence of a gel in Fig. 9~i.e., a large particle con-
stituting a significant portion of the monomers! suggests via
Eq. ~50! that the equilibrium extent of reactionq(`) is less
thanqc . This hypothesis may be validated directly using Eq.
~48! that, like Eq.~32!, is exact in both the stochastic and the
deterministic approaches. The composition distribution
shown in Fig. 9 hasM0,0(`)53650 particles, corresponding
to a conversionq(`)50.397. Stockmayer’s gel criterion
specifies that a conversion ofqc50.5 is required for gela-
tion, thus both the stochastic and the deterministic ap-
proaches agree that no gel transition occurs. Moreover, Eq.
~42! with q50.397 is indistinguishable from the composition
distributions generated by stochastic simulation according to
x2 significance testing (p51.0).

Like the second moments of the size distribution for the
single-component RAg process, the second momentsMk,,
(k1,>2) exhibit strong fluctuations after a gel transition.
In Fig. 10, we present time series for the average moments
M0,0, M0,2, M1,1, andM0,2 of gelling (y,l)5(0.4,0.2) and
nongelling (y,l)5(0.4,0.5) processes computed from ten
replicate simulations per (l,y) pair. Here, we normalize the
moments according to the physical limit for finite systems of
particles,

@VMk,,~ t !#

@VM1,0~ t !#k@VM0,1~ t !#,
<1, k1,>2. ~53!

In Fig. 11, we present the corresponding coefficients of
variation. Like the second moments of the single-component
RAg process, the ‘‘second’’ momentsM0,2, M1,1, andM0,2
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rapidly increase when the gel transition occurs. Moreover,
the coefficients of variation of these moments go through
unambiguous maxima for processes featuring a gel transition
and exceed unity, whereas nongelling processes increase
monotonically to asymptotic values smaller than 1. In some
cases, nongelling processes appeared to have coefficients of

variation in excess of 1. However, these were invariably con-
sequences of artificial fluctuations as discussed in the preced-
ing section when the asymptotic limit of a coefficient of
variation was close to 1. Moreover, the noise of the second
moments as computed from the individual simulations was
invariably Brownian for nongelling processes and colored
for gelling ones, in analogy with the results for the single-
component RAg polymerization~data not shown!.

Organizing the results of thousands of replicate simula-
tions over the (l,y) space, we constructed a phase diagram
for the RA4 /RB2 process~Fig. 12!. In this figure, circles
denote simulations that featured no gelation and squares de-
note simulations in which gelation occurred. The shading
indicates the magnitudes of the gel points. As discussed in
the preceding section, these are defined as the points in time
where the simulation averaged values ofM0,0 are equal to

Mc5M0,0~qc!, ~54!

as computed using Eq.~48! with qc defined by Eq.~50!. For
every simulation in which a gel transition occurred, a mac-
roparticle was generated in the species vector, the coeffi-
cients of variation of the second moments went through a
peak in time, and the conversionq exceeded the critical
value specified by Eq.~50!. The converse was also observed.
Processes that did not produce macroparticles featured
monotonically increasing coefficients of variation of the sec-
ond moments and their equilibrium conversionsq(`) were
always smaller thanqc .

The additional curve shown in Fig. 12 is a deterministic
prediction of the phase boundary, derived by extension of the
method of van Dongen and Ernst to the chemistry of Eq.
~23!,

FIG. 10. Average moments of the RA4 /RB2 composition distri-
bution with l above and below the gelation threshold and relative
RA4 monomer contenty50.4. In processes withl50.2, a gel
transition is observed, resulting in a rapid and sizable jump in the
second-order moments.

FIG. 11. Coefficients of variation of moments of the RA4 /RB2

composition distributions with dissociation constants in the gelling
and nongelling regions. In processes featuring a gel transition,
V(M2) has a peak in excess of unity, reflecting strong fluctuations
in the composition distribution at the gel point.

FIG. 12. Phase diagram for the RA4 /RB2 polymerization pro-
cess.l is the dimensionless dissociation constant andy is the ratio
of RA4 monomers to total reactive monomers. Crosses denote po-
lymerizations featuring a gel transition. Polymerizations lacking a
gel transition are represented by circles. Gel points are indicated in
the shading bar.
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2qcD

qc
. ~55!

The differences between the stochastic predictions of the
phase boundary and Eq.~55! were negligible for almost all
l.lc , with some exceptions. In these cases, the neglect of
the critical limit qmax5(yg)21 in the deterministic method
resulted in unreliable results forq` . Despite this, Eq.~55! is
generally predictive of the gel transition. However, in anal-
ogy to our results for the single-component RAg process, the
time dependence ofq predicted by Ziff’s method was not
accurate forl,lc and produced incorrect estimates oftg for
all l andy.

The analysis used here to characterize the RA4 /RB2 co-
polymerization may further the understanding of antibody
agglutination. For a known dissociation constant (KD
5k2 /k1) of an antibody-antigen pair, one can predict
whether or not a mixture of the two molecules will result in
a precipitate and when the precipitate will form. Copolymer-
izations of pertinence to immunology such as those of IgM
(g510) with bifunctional antigens may be simulated and
characterized likewise. However, the following caveats
should be noted before applying these results. First, we have
assumed that the internal cyclization is forbidden, which may
not be true in a real agglutination process. Second, our analy-
sis additionally presumes that there is no steric hindrance.
Finally, the kernels we have used did not explicitly account
for the effects of transport or Brownian motion, which may
become important in the limit of gelation.

V. DISCUSSION

We have presented a simulation algorithm for determining
the stochastic time evolution of reversibly aggregating sys-
tems of particles with multiple components or conservation
laws. Because the simulation algorithm addresses aggrega-
tion and fragmentation events as random events, complex
population balance equations may be replaced with simpler
probability distributions that are amenable to Monte Carlo
sampling. The simulation procedure first involves selection
of a time intervalt in which no aggregation or fragmentation
events occur. Subsequently, the imminent event is
chosen—be it an aggregation of two particles or a fragmen-
tation of a single particle. Finally, a time counter and the
system state are updated to account for the consumption or
production of particles. By successive selections of events
and quiescence times, any virtual system of aggregating or
fragmenting particles, biological cells, or molecules may be
evolved stepwise, including those having time-dependent ag-
gregation and fragmentation kernels. At the heart of this al-
gorithm is the aggregation table—a data structure designed
to keep track of multicomponent or multiproperty species
and the probability densities of imminent events. The aggre-
gation table accounts for aggregate species rather than indi-
vidual particles, reducing the data storage requirements and
increasing the speed by orders of magnitude.

We have applied the algorithm to three aggregation pro-

cesses: the single-component RAg polymerization, the
single-component ARB polymerization, and the two-
component RAg /RB2 copolymerization. The first of these is
an aggregation of monomers featuringg functional groups
that bind to identical functional groups on other monomers
according to the chemical reaction A1A�AuA. The latter
two are mediated by the complexation reaction A
1B�A—B; the ARB process featuring one type of mono-
mer with both types of functional group and the RAg /RB2
copolymerization featuring two types of monomers—one
with g A ligands and the other with two B ligands. We ex-
amined statistical fluctuations during and following gel tran-
sitions of reversibly aggregating systems. The stochastically
generated time series of the moments of size and composi-
tion distributions have different types of noise depending on
the occurrence of a gel transition. Finally, we developed the
first phase diagram to predict the gel transition for the
RA4 /RB2 copolymerization process in terms of its chemical
properties. Using the stochastic simulation algorithm, the
type of analyses performed for these processes may be ap-
plied to related biological processes such as the cross linking
of cells via polyvalent or bivalent macromolecules. Specific
examples include von Willebrand factor or fibrinogen-
mediated platelet aggregation and the antibody-mediated
cross linking of red blood cells in blood typing.

In this work, we have simulated processes for which~1!
the aggregation and fragmentation kernels were related by
the combinatorics of connecting multivalent monomers, and
~2! aggregate formation was mediated by the formation of
chemical bonds. However, many aggregation-fragmentation
processes feature other mechanisms of aggregation and frag-
mentation, which are not microscopically reversible. Indeed,
the steady states of such processes may not even be true
equilibrium states. However, these issues are irrelevant to
both the stochastic simulation algorithm and to the PBE so
long as the forms ofK(u,v) and F(u,v) correctly quantify
the average rates of aggregation and fragmentation. Because
the probability density functions underlying the algorithm
are independent of the functional forms of the kernels, the
stochastic simulation algorithm, like the PBE, can predict the
time evolution of any process characterized by any pair of
kernelsK(u,v) andF(u,v).

In both this paper and in a previous publication@12#, we
have shown that the stochastic simulation algorithm can pre-
dict the time evolution of processes that feature a gel transi-
tion. Under certain conditions, processes described by ‘‘shat-
tering’’ kernels are also amenable to simulation. However,
this requires careful consideration of the size and composi-
tion space. When size or composition is treated as a continu-
ous variable (uPRk), solutions of the corresponding ‘‘con-
tinuous’’ PBE with certain fragmentation kernels imply a
loss of system mass@27–29#. These results follow from the
fact that particles are considered to be infinitely divisible.
Thus, the ‘‘shattering transition’’ results from the disintegra-
tion of particles into infinitesimally small fragments. How-
ever, when particles are aggregates of monomeric units (u
PNk), the smallest particles must be monomers. Hence, so-
lutions of a discrete PBE such as Eq.~3! with a ‘‘shattering
kernel’’ will predict a rapid fragmentation of particles into

I. J. LAURENZI AND S. L. DIAMOND PHYSICAL REVIEW E 67, 051103 ~2003!

051103-14



the constituent monomers. Because the stochastic simulation
algorithm is indifferent to the functional forms of simulated
kernels, it may be used to predict the time evolution of both
‘‘aggregation dominated’’ and ‘‘fragmentation dominated’’
processes with multiple components as long as the initial
particles are composed of monomers.

APPENDIX

The maximum number of operations necessary for deter-
mining the composition of a daughter fragment in Eq.~22!
follows from a consideration of the breakup of the aggregate
of all particles in the system. Consider a system of particles
composed ofk components, such as different types of
chemical monomers or different blood cell types. Let us de-
fine Vk(kP@1,k#) as the amount of each type of component
particle. The number of distinct fragmentation kernels for the
aggregate of all of the particles is then

N5)
k51

k F1

2
VkG , ~A1!

where@ 1
2 Vk# is the greatest integer less than1

2 Vk . Using the
relationship between the amounts of each component and the
maximum number of speciesNmax @12#,

)
k51

k

Vk.22kNmax
k11 , ~A2!

Eq. ~A1! may be simplified to

N.Nmax
k11 . ~A3!

If Eq. ~22! is solved by bisection to obtain the composition
of a daughter fragment, at most log2(N) operations are re-
quired, for a maximum ofO„ln(Nmax)… operations. This does
not include the theN operations necessary to specify the
mother species.
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