April 2002

Distributed Simulation of Multi-Agent Hybrid Systems

Yerang Hur
University of Pennsylvania

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Recommended Citation
Yerang Hur and Insup Lee, "Distributed Simulation of Multi-Agent Hybrid Systems", April 2002.

Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=21665&page=3

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/28
For more information, please contact repository@pobox.upenn.edu.
Distributed Simulation of Multi-Agent Hybrid Systems

Abstract

Systems such as coordinating robot systems, automobiles, aircrafts, and chemical process control systems can be modeled as interacting hybrid systems, where hybrid systems are finite state machines with continuous dynamics. The language CHARON and its simulator have been developed to model and analyze interacting hybrid systems as communicating agents.

Simulations are widely used for the analyses of hybrid systems. The simulation of a complex system is, however, usually very slow. This paper proposes four algorithms for distributed simulations of hybrid systems. The idea behind distributed simulations is to achieve a speedup by utilizing multiple computing resources. The agents of a modeled system are distributed over multiple processors to simulate the agents more efficiently. Since the state of the agent is affected by the input from other agents, they synchronize to update their local states. The challenge here is how to reduce the agent synchronization overhead.

We present two approaches for resolving the problem: conservative and optimistic approaches. For the optimistic approach, we present three different algorithms for distributed simulations of hybrid systems, and compare them.

Comments

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
Distributed Simulation of Multi-Agent Hybrid Systems

Yerang Hur and Insup Lee
Department of Computer and Information Science
University of Pennsylvania
200 S 33rd St., Philadelphia, USA
{yehur,lee}@cis.upenn.edu

Abstract

Systems such as coordinating robot systems, automobiles, aircrafts, and chemical process control systems can be modeled as interacting hybrid systems, where hybrid systems are finite state machines with continuous dynamics. The language CHARON and its simulator have been developed to model and analyze interacting hybrid systems as communicating agents.

Simulations are widely used for the analyses of hybrid systems. The simulation of a complex system is, however, usually very slow. This paper proposes four algorithms for distributed simulations of hybrid systems. The idea behind distributed simulations is to achieve a speedup by utilizing multiple computing resources. The agents of a modeled system are distributed over multiple processors to simulate the agents more efficiently. Since the state of the agent is affected by the input from other agents, they synchronize to update their local states. The challenge here is how to reduce the agent synchronization overhead.

We present two approaches for resolving the problem: conservative and optimistic approaches. For the optimistic approach, we present three different algorithms for distributed simulations of hybrid systems, and compare them.

1 Introduction

Coordinating robot control systems, electro-mechanical systems, or chemical process control systems have a common feature that they control continuous dynamics with discrete mode changes. The hybrid system community composed of researchers from control engineers and computer scientists has evolved to support modeling, simulation, verification, and code generation for such dynamical systems. Traditional engineering tools, provide little support for developing complex hybrid systems with modes changing dynamics in response to conditions or discrete events.

There have been studies concerning the language support for modeling hybrid systems to help people build complex hybrid systems for years. With an introduction of an object-oriented design paradigm, researchers developed object-oriented modeling languages for hybrid systems. Among those are Omola [15], Dymola [8], SHiFT [7], and Modelica [9]. Those languages, however, do not provide formal semantics necessary for reasoning about the model of hybrid systems.

Compared to the previous languages for the modeling of hybrid systems, the motivation of developing CHARON was to provide a formal way of verifying hybrid systems and to generate the executable code from models described in a language for modeling both the architecture and the behavior of hybrid systems modularly. Additionally, CHARON supports exception handleings through group transitions and default control points and provides interfaces between models and external packages described in Java [3, 4]. CHARON has been used to model and study a multi-robot coordination [2], the Simplex Architecture-based inverted pendulum controller [11], and automotive vehicle systems [1].

Simulations have been widely-used for analyzing hybrid systems. Simulations of complex hybrid systems are, however, usually very slow. This paper describes four algorithms that we have developed for the distributed simulation of hybrid systems. We simulate hybrid systems in a distributed fashion to achieve a speedup by utilizing multiple computing resources. The agents of the modeled system are distributed over multiple processors to simulate the model more efficiently.

Based on how agents synchronize, distributed simulations of multi-agent hybrid systems can be classified as conservative and optimistic simulations. If the local clock of an agent always advances and does not go backward, it is called a conservative simulation; otherwise, it is called an optimistic simulation. A conservative simulation is designed so that the local clock lc of an agent only advances or stops, and thus, there are no rollbacks [6]. In optimistic simulations, the goal is to exploit the potential parallelism as much as possible letting the agents run at different speeds. If an event that occurred at time t_e gets recognized by the agent at time t_r, where $t_r > t_e$, the simulator provides a rollback operation or performs a reverse computation [13, 5].

Distributed simulations have been used for simulating only discrete event systems so far, but to the best of our knowledge, there is no published algorithm for the distributed simulation of hybrid systems. Our methods to simulate hybrid systems in a distributed fashion exploit the inherent modularity of systems described in CHARON. By modularity, we mean two things. One is a behavioral modularity captured by modes and the other is an architectural modularity by agents. A way of using a mode-level modularity in single-agent hybrid systems was presented in [3]. In this paper we focus on distributing atomic agents to utilize an agent-level modularity. The challenge is how to reduce the synchronization overhead among distributed agents.
In the following sections, we introduce a language, called CHARON, for modeling interactive multi-agent hybrid systems and its toolset in Section 2. We describe how to simulate hybrid systems in Section 3, propose four distributed simulation algorithms of hybrid systems in Section 4, and discuss the proposed algorithms and future work in Section 5.

2 Modeling Hybrid Systems in CHARON

CHARON [3] is a language for modeling interacting hybrid systems based on the notions of agents and modes. The distinguished feature of CHARON is that it supports both architectural and behavioral descriptions of hybrid systems and provides concurrency and hierarchy in a modular way. It also has the scoping rule of variables partitioned into the set of analog variables and discrete variables. Agents describe the architecture of systems while modes do the behavior of systems. CHARON modes comprise submodes, transition relations between submodes, control points, differential and algebraic constraints, invariants, and variables [3]. The language provides compositional formal semantics required to reason about systems in a modular way [4]. We now briefly describe the main features of CHARON.

Architectural hierarchy. The architecture of systems is described with communicating agents. Those agents share information through shared variables or communication channels. Agents are either atomic or composite. CHARON also provides the operations of parallel composition for building a composite agent, hiding for encapsulating information of an agent. CHARON agents are reusable objects.

Behavioral hierarchy. An agent without any submodes inside is called atomic agent, which has a reference to an appropriate mode describing the behavior of the agent. In other words, the mode is a construct for the hierarchical description of the behavior. Transitions between submodes are enabled when a condition called guard becomes true. Also, the mode has well-defined control points: entry and exit points. We provide differential and algebraic constraints representing continuous dynamics and invariants forcing a continuous flow to satisfy a condition. The language also supports the instantiation of a mode for the reuse of mode definitions.

Continuous variables and discrete variables. The variables of CHARON are classified as analog and discrete variables. Analog variables are updated continuously while time is flowing. Conversely, discrete variables are modified only when the modes of an agent change. The values of discrete variables do not change in a time flow.

2.1 Example: TwoAgent

We present a simple two-agent example, TwoAgent, composed of the agent a1 and the agent a2. The dynamics of a1 is independent of that of a2 but guards of agents require shared information to decide whether an agent changes modes or not.

```
macro TooLow 0.0
extern real Math.abs(real);
agent TwoAgent () {
  private analog real v1, v2;
  agent a1 = A(10.0, 0.0) {
    [vIn, vOut := v2, v1];
    agent a2 = A(9.0, -1.0) {
      [vIn, vOut := v1, v2];
    }
    agent A(real initValue, real c) {
      read analog real vIn;
      write analog real vOut;
      mode top=ATop(initValue, c);
    }
  }
}
```

Figure 1 defines a composite agent TwoAgent and an atomic agent A. The two atomic agents a1 and a2 of the composite agent TwoAgent are the instances of the agent definition A. The agent A has a reference to its top-mode top that describes the behavior of A. The behavior of the agent A is represented in two submodes: mode0 and mode1. Both submodes are instances of the mode choppy but parameters are different. We use extern to specify interfaces between the CHARON code and external packages. Subagents of a composite agent communicate through shared variables whose name are renamed. [vIn, vOut := v2, v1] and [vIn, vOut := v1, v2] are the examples of renaming. vIn of the agent a1 and vOut of the agent a2 are renamed to the new name v2. Thus, if a2 updates vOut then it actually updates the shared variable v2 and so, vIn of a1 is also updated.

Figure 2 is the CHARON code describing the behavior of A. Our CHARON toolset provides an editor with GUI (Graphical User Interface) for the visual specification of agents and modes. Figure 3 shows how the behavior of A is specified visually.

The mode definition ATop comprises variables vIn and vOut, submodes mode0 and mode1, and transitions. Transitions are represented with trans construct. In this example, we have three transitions: initTrans, Mode0ToMode1, and Mode1ToMode0. Action statements provided by do are for specifying actions taken when transitions occur. Basically, actions update discrete variables or assign new values to continuous variables.

Entry/exit points are for specifying interfaces between the source locations and the destination locations of transitions. The variable vOut is declared as write, which means global and writable in the mode while read means readonly. For localizing the scope of the variables, we use private. The invariant invChoppy expresses that if vOut is out of the specified range, the behavior of choppy is no longer valid. We specify the rate at which vOut is updated with the differential equation dvOut.

Figure 4 is the result of simulating the example. Each agent generates a signal like a choppy wave, where the
mode ATop(real iVal, real c) {
 read analog real vIn;
 write analog real vOut;
 mode mode0 = choppy(2.0, -50.0, c);
 mode model = choppy(2.0, 1.0, c);
 trans initTrans
 from default to mode0
 when true do \{vOut = iVal\}
 trans Mode0ToMode1
 from mode0 to mode1
 when vOut < 8.0
 and Math.abs(vOut-vIn) > 1.1 \}
 trans Mode1ToMode0
 from mode1 to mode0
 when vOut > 12.0
 and Math.abs(vOut-vIn) > 1.0 \}
}
mode choppy(real a, real b, real c) {
 write analog real vOut;
 inv invChoppy \{vOut >= TooLow\}
 diff dvOut \{d(vOut) == a*vOut + b + c\}
}

Figure 2. Modes of TwoAgent

Figure 3. The Behavioral Hierarchy of the Agent A

wave of a1 follows that of a2. In a1, the guards enabling the transitions Mode0ToMode1 and Mode1ToMode0 are (v1 < 8.0 and |v1 - v2| > 1.1) and (v1 > 12.0 and |v1 - v2| > 1.0), respectively. Figure 4 shows that the mode transitions Mode0ToMode1 of a1 occur at time 0.09, 0.50, 0.87, 1.21, and so on.

2.2 CHARON toolset

Figure 5 describes the class hierarchy of the TwoAgent example. We depict the classes and objects of the example [12] with a modified OMT (Object Modeling Technique) notation used by Gamma and his colleagues. The symbols of classes and objects are rectangular boxes and rounded boxes, respectively. The subclass relationship is represented with a line and a triangle. Dashed lines with filled arrowheads are for specifying instantiations. Figure 6 illustrates how CHARON Simulator Generator (CSG) generates the simulation code. We have two kinds of generators to produce a simulator for the example. One is agentModeGen that generates agents and modes and the other is gSimGen. gSimGen generates model-specific information the simulator core requires for simulating a given CHARON model. In other words, simulator comprises simulator core and the routines generated by gSimGen. Agents and modes generated by agentModeGen are Java files translated from the model described in CHARON. In essence we simulate the objects generated from a given CHARON model.

3 Simulation of CHARON Program

3.1 Global Simulation

In this section, we describe how the simulator simulates hybrid systems modeled in CHARON. The simulation of CHARON program consists of the initialization step, followed by a sequence of discrete update steps and continuous flow steps. After initializing agents, the simulator executes either a discrete update step or a continuous
flow step. In other words, the simulation of CHARON program is initialization step (discrete update step or continuous flow step).

Initialization. The simulator initializes agents by providing initial values for variables and configuring active modes. With initialization done, the active modes of an agent are the modes included in the path from the top mode to a leaf mode. For example, in TwoAgent, top and mode0 are the active modes and the initial values of vOut of a1 and a2 are 10.0 and 9.0, respectively after initializing the agents.

Discrete update. A discrete update step is a sequence of executing enabled transitions. The logical time of the simulator stops during transitions. The simulator picks an agent with enabled transitions. We say a transition is enabled if it is in an active mode and its associated guard is satisfied. After a transition is executed, the configuration of active modes is also updated. The step finishes if there is no more enabled transitions at the current time. In the example, the transition Mode0ToMode1 will be enabled when vOut gets less than 8.0 and the difference between vOut and vIn greater than 1.1.

Continuous flow. A continuous flow step represents a time flow for a given amount of duration not violating constraints. The constraints of a mode consist of invariants, differential and algebraic constraints. In this step, all the active modes of agents are executed together. The constraints of active modes are, the conjunction of constraints in the set of active modes. The discrete update step may preempt the continuous flow step, if a transition is enabled. For example, if active modes are top and mode0, the variable vOut will get updated at the rate of a*\(vOut\) + b + c as long as the invariant invChoppy is not violated. The transition Mode0ToMode1, however, may be executed when the guard of trans Mode0ToMode1 becomes true.

3.2 Efficient Simulation

The most simulation overhead results from numerical integrations. For more efficient numerical integrations, various numerical integrators are combined with adaptive integration steps, e.g., Runge-Kutta method with adaptive integration steps [17]. Another approach is simulating the system on a distributed platform. Our methods proposed here exploit the inherent modularity of systems described in CHARON as well as simulate the systems in a distributed fashion. By modularity, we mean two things: a behavioral modularity and an architectural modularity. In fact, each agent of CHARON has different dynamics and thus does not have to run at the same speed. Likewise, each mode in the different level of hierarchy of the same agent may have different dynamics. The basic idea is that we simulate an agent or a mode of slow dynamics using a larger integration step. Therefore, we can reduce the computation overhead from integrations. A way to exploit a mode-level modularity in a single-agent was presented in [3]. In the next section we focus on distributing atomic agents to utilize an agent-level modularity.

4 Distributed Simulation

We distribute agents of the modeled system over a distributed system to simulate the model more efficiently. As agents share information, they need to synchronize to update states. According to the way of synchronization, distributed simulations can be classified as two categories. If the local clock of an agent always advances and does not go backward, it is called conservative simulation. Otherwise, it is called optimistic simulation.

4.1 Conservative Simulation

In this approach, we decompose the functionality of a global simulation into sub-functional blocks and the simu-
lator allows agents to execute the next block only when all the agents complete the current block.

Figure 7 and Figure 8 describe the algorithm Conservative Simulation (CS). We decompose a simulation process into seven functional units: block0, ..., block6. The end of each block works as a barrier an agent cannot proceed until all the other agents finish the current block. Agents broadcast completion messages to the others at the end of each block.

In block0, we initialize the agent. The analog variables are updated in block1 followed by block2, where the shared analog variables are synchronized. In block3, guards and invariants are checked. Block4 is for executing enabled transitions. The variables updated in the transitions are synchronized in block5. Block6 is executed only when there is no enabled transition even though an invariant is violated. In such a case, the agent broadcasts stop signal to the others and the simulator reports the latest synchronized state.

Although CS is for the distributed simulation of hybrid systems, the overhead resulting from communications offset a potential performance gain from distributing computations. Thus, this technique is effective only in simulating hybrid systems with extensive computations. In Section 4.2 we propose three optimistic simulation algorithms to solve the problem.

```
begin block0
  state = initialize();
end
while(true) {
  begin block1
    // update analog variables
    // for a given time interval ti
    // and return the new state
    // and the new lc.
    (state, lc) := continuousFlow(state, lc, ti);
  end
  begin block2
    // exchange shared analog variables.
    state := synchronizeSharedVars(sharedVars);
  end
  begin block3
    if evaluateGuards(state, guards) == true
      then event := transitionEnabled
    elseif checkInvariants(state, invariants) == true
      then event := invariantViolated
  end
```

Figure 7. Conservative Simulation (CS): block0 ... block3

```
begin block4
  if event == transitionEnabled then
    state := discreteUpdate(state, lc);
  end
begin block5
  // exchange shared variables updated
  // by discreteUpdate.
  state := synchronizeSharedVars(sharedVars);
end
begin block6
  if event == invariantViolated
    then broadcastStopSignal; stop
end
```

Figure 8. Conservative Simulation (CS): block4 ... block6

4.2 Optimistic Simulation

Our optimistic simulation algorithms are phase-driven. Each phase is a sequence of consecutive stages that are setup stage, computation stage, and synchronization stage. After initializing the state, setup stage, computation stage, and synchronization stage are executed in the order as shown in Figure 9. The motivation of using the notion of phase is that we confine optimism within each phase.

In each of the Phase-driven Optimistic Simulation (POS), the operations performed during the stages are different. We describe the details of each stage of the three different POS approaches: Phase-driven Optimistic Simulation with a Reflection-based Prediction (POSRP), Phase-driven Optimistic Simulation with an Adaptive Phase Length (POSAPL), and Phase-driven Optimistic Simulation with an Estimator-based Prediction (POSEP).

The salient aspects of our algorithms are first, to reduce the communication overhead, we let agents synchronize just before the new value of a shared variable is necessary, instead of communicating every update round. Second, to reduce the computation overhead due to numerical integrations, we simulate an agent with its approximated polynomial dynamics and resolve the possible misses of events with rollback operations. This allows each agent to run computations without integrating shared variables controlled by other agents. Our approach is optimistic in the sense that each agent goes forward even though there is no guarantee that their clocks do not have to go backward.

Optimistic distributed simulations have been used for discrete event systems since the *Time Warp* distributed simulation algorithm was proposed [13]. Other methods in the category are the bounded-lag optimistic simulation [14], and a risk-free simulation [18]. Those methods are, however, only for simulating discrete event systems. To illustrate our algorithms, we use the two-agent system described in Section 2.
initialization;
while(!stop){
 executeSetupStage;
 executeComputationStage;
 executeSynchronizationStage;
}

Figure 9. Phase-driven Optimistic Simulation (POS)

4.3 Phase-driven Optimistic Simulation with a Reflection-based Prediction (POSRP)

In all three phase-driven algorithms, our goal is to reduce the communication overhead and unnecessary rollbacks without missing any event. In simulating the CHARON agents, the event means mode transitions or invariant violations. The common technique behind all of our phase-driven approaches is that each agent uses approximated dynamics of other agents until they get synchronized. Such an approximation may be a constant or a high-order polynomial. Note that if agents use actual dynamics of shared read analog variables which are the input from other agents, instead of using an approximated dynamics, each agent will integrate all such shared analog variables controlled by other agents.

Figures 10, 11, 12, and 13 illustrate Phase-driven Optimistic Simulation with a Reflection-based Prediction (POSRP). In POSRP, we simulate the agents with approximated dynamics of shared input variables until an agent reaches the end of the phase tf or a warning condition of an agent is satisfied. A warning condition is the disjunction of a guard and a reflection-based flag. The rationale behind a warning condition is that if a guard is satisfied, it will cause the abrupt changes of dynamics of the agent. Also, we observe that the approximated dynamics of the variables appr(v1) and appr(v2) are shared information between the agents, where the events are associated with the variables and thus we do not want to use the incorrect value of those input variables.

By examining self-extracted information on the present dynamics or reflection, we can flag that agents should synchronize. That is, the agent a1 stops not only when the guard becomes true but also when |appr(v1)−v1| >= p, p is a threshold updated adaptively, based on the history of the mode changes. We update p adaptively, as a small value of p causes unnecessary synchronizations while a large value does more rollbacks. So, we adjust p of the agent a, a.p to be c/(1 + the number of mode changes in a previous phase of the agent a). Thus, agents will get synchronized less frequently, if mode changes occur less in a current phase. In case there is no mode change in the current phase, the value of p remains the same in the next phase. c is a parameter given by users.

Figures 10 and 11 depict the setup stage and the computation stage. Figures 12 and 13 show the event notification sub-stage and the rollback sub-sub-stage of the synchronization stage. Note that we call the start time of each phase ts. The final time is called tf. Also, the phase length pl is defined as tf − ts.

- Setup Stage (Figure 10): We update p in each agent at time ts. A new p is c/(1 + the number of mode changes in a previous phase). Initially, p is the same as c. Then, information to compute the approximated values of shared variables the other agents need are broadcast. We use first-order polynomials as the approximation of dynamics in the current approach. Thus, appr(v) is defined as m*(a.p − ts) + vs, where ts is the start time of the current phase and m is the coefficient of the highest order term of dynamics of v.

- Computation Stage (Figure 11): Every agent computes dynamics until its local clock reaches tf or the warning condition is evaluated to be true. In agent a1, the warning condition is (a1.v1 < 8.0 and \(|a1.v1 − a1.appr(v1)| > 1.1 \) ∨ (\(|a1.appr(v1) − a1.v1| >= a1.p \))). a1.appr(v1) is m1*(a1.c − ts) + v1s, and a1.appr(v2) is m2*(a1.c − ts) + v2s, where v1s and v2s are the values of v1 and v2 at the start time of the current phase ts and m1 and m2 are the coefficients of the highest order term of dynamics of v1 and v2, which are 2.0 in both agents in the example.

- Synchronization Stage (Figures 12 and 13)

 - Event notification sub-stage: Suppose a2 reaches tf and the warning condition of a1 is satisfied. Then, a1 notifies an event to a2 with its local clock tg. After a2 being informed of an event, it sends the state of a2 at time tg to a1 that a1 can evaluate the guard with the actual value of v2.

 - Rollback sub-stage: If a1 confirms the event then a2 must rollback. After a2 rollbacks to time tg, both agents discard the history of the state between ts and tg. At the end of the rollback sub-stage, ts is modified to tg and the next phase starts. In case that the event was not confirmed by a1 with the actual value of v2, a1 continues its computation.

\[pl \text{ and } c \text{ are given by the environment.} \]

\[a1.p = c/(1 + \text{number of mode changes in a previous phase of agent a1}) \]

\[a2.p = c/(1 + \text{number of mode changes in a previous phase of agent a2}) \]

Figure 10. POSRP Setup stage
a1 is in mode0 and a2 is in mode1.

\[v_2 = 2.0 v_2 \]
\[v_1 = 2.0 v_1 - 50.0 \]

Figure 11. POSRP Computation stage

4.4 Phase-driven Optimistic Simulation with an Adaptive Phase Length (POSAPL)

In POSRP, the phase length \(pl \) is given by the simulation environment and fixed in all the simulation phases. However, a large value of \(pl \) causes unnecessary rollbacks while a small value of \(pl \) will result in frequent synchronizations. In POSAPL, we adjust \(pl \) in each phase to enhance the performance. The only difference between POSRP and POSAPL is at a setup stage. If there is no rollback in \(phase_e \), then \(pl \) will be doubled in \(phase_e \), otherwise it will be reduced to half the length.

4.5 Phase-driven Optimistic Simulation with an Event Predictor (POSEP)

If we know exactly when the next event will occur, we can determine the synchronization point easily. There have been studies on detecting events in differential-algebraic models [16] and hybrid systems [10].

The third method of our optimistic approaches is based on the estimator that predicts when the next event will occur. In POSEP, \(Estimator \) is a special process which collects the agent states and the constraints of the active modes from all agents. \(Estimator \) solves the constraints to predict \(tf \) and broadcasts it with the approximated dynamics of shared variables at the setup stage. Figures 14, 15, 16, and 17 illustrate an optimistic distributed simulation algorithm POSEP.

- Setup stage (Figure 14): Agents send their current states and constraints to \(Estimator \) at \(ts \). \(Estimator \) solves the constraints and predicts when the next event will occur. Such information is sent to the agents with the polynomial approximation of shared variables. Thus, we do not need \(pl \) to decide the final time \(tf \) of the current phase. \(Estimator \) computes and broadcasts \(tf \) to the agents \(a1 \) and \(a2 \).
4.6 Comparison

Table 1 compares different distributed simulations of hybrid systems. A potential speedup from the distributed simulation of hybrid systems depends on the following three factors mainly: communication overhead, rollback overhead, and computation time for numerical integrations and solving constraints.

The communication overhead is extremely large in the algorithm CS (Conservative Simulation), as agents communicate every single update round. In phase-driven optimistic simulations, the communication overhead is relatively small. Contrast to all the optimistic approaches, there is no rollback overhead in the conservative approach. As we use the constraint solver to predict a possible synchronization point better in POSEP, the rollback overhead will be smaller in POSEP than in POSRP or POSAPL. Although there will be the smaller rollback overhead in POSEP, it takes normally a large amount of computation time in solving constraints. Thus, it will depend on the characteristics of given models whether we benefit from POSEP more than POSAPL.

5 Conclusion and Future Work

We have illustrated how to model interactive multi-agent hybrid systems using a modeling language CHARON and proposed four distributed simulation algorithms: one conservative simulation algorithm and three optimistic algorithms. The three optimistic algorithms are phase-driven. In general, the optimistic approaches have the more potential for a speedup than the conservative approach, since agents will not be blocked while waiting for the other agents to finish their phases. Our approaches restrict optimism within each phase to reduce the high rollback overhead caused by a large gap among the local clocks of different agents.

We are implementing the proposed simulation methods over a network of workstations and also on shared-memory multiprocessor machines. Since performance depends largely on how much agents need to communicate, we are currently developing clustering and load balanc-
Table 1. Comparison of different distributed simulations of hybrid systems

<table>
<thead>
<tr>
<th>name</th>
<th>communication overhead</th>
<th>rollback overhead</th>
<th>potential speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservative</td>
<td>very large</td>
<td>N/A</td>
<td>low</td>
</tr>
<tr>
<td>POSRP</td>
<td>relatively small</td>
<td>large</td>
<td>low</td>
</tr>
<tr>
<td>POSAPL</td>
<td>relatively small</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td>POSEP</td>
<td>relatively small</td>
<td>small</td>
<td>high</td>
</tr>
</tbody>
</table>

ing techniques for the proposed distributed simulation algorithms.

Acknowledgment. We would like to thank the former and current members of the Hybrid Systems group of the University of Pennsylvania, especially, Rajeek Alur, Rafael Fierro, Radu Grosu, Vijay Kumar, George Pappas, and Oleg Sokolsky for productive discussions in the regular meetings and CHARON developers, Franjo Ivancic, Usa Sammapun and Valentina Sokolskaya for developing the toolset together. This research was supported in part by DARPA ITO MOBIES F33615-00-C-1707, NSF CCR-9988409, NSF CCR-0086147, and NSF CISE-9703220.

References