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Distributed Simulation of Multi-Agent Hybrid Systems
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Abstract

Systems such as coordinating robot systems, automo-
biles, aircrafts, and chemical process control systems can
be modeled as interacting hybrid systems, where hybrid sys-
tems are finite state machines with continuous dynamics.
The language CHARON and its simulator have been devel-
oped to model and analyze interacting hybrid systems as
communicating agents.

Simulations are widely used for the analyses of hybrid
systems. The simulation of a complex system is, however,
usually very slow. This paper proposes four algorithms for
distributed simulations of hybrid systems. The idea behind
distributed simulations is to achieve a speedup by utilizing
multiple computing resources. The agents of a modeled sys-
tem are distributed over multiple processors to simulate the
agents more efficiently. Since the state of the agent is af-
fected by the input from other agents, they synchronize to
update their local states. The challenge here is how to re-
duce the agent synchronization overhead.

We present two approaches for resolving the problem:
conservative and optimistic approaches. For the optimistic
approach, we present three different algorithms for dis-
tributed simulations of hybrid systems, and compare them.

1 Introduction

Coordinating robot control systems, electro-mechanical
systems, or chemical process control systems have a com-
mon feature that they control continuous dynamics with dis-
crete mode changes. The hybrid system community com-
posed of researchers from control engineers and computer
scientists has evolved to support modeling, simulation, ver-
ification, and code generation for such dynamical systems.
Traditional engineering tools, provide little support for de-
veloping complex hybrid systems with modes changing dy-
namics in response to conditions or discrete events.

There have been studies concerning the language support
for modeling hybrid systems to help people build complex
hybrid systems for years. With an introduction of an object-
oriented design paradigm, researchers developed object-
oriented modeling languages for hybrid systems. Among
those are Omola [15], Dymola [8], SHIFT [7], and Model-
ica [9]. Those languages, however, do not provide formal
semantics necessary for reasoning about the model of hy-
brid systems.

Compared to the previous languages for the modeling of
hybrid systems, the motivation of developing CHARON was
to provide a formal way of verifying hybrid systems and
to generate the executable code from models described in a
language for modeling both the architecture and the behav-
ior of hybrid systems modularly. Additionally, CHARON
supports exception handlings through group transitions and
default control points and provides interfaces between mod-
els and external packages described in Java [3, 4]. CHARON
has been used to model and study a multi-robot coordina-
tion [2], the Simplex Architecture-based inverted pendulum
controller [11], and automotive vehicle systems [1].

Simulations have been widely-used for analyzing hybrid
systems. Simulations of complex hybrid systems are, how-
ever, usually very slow. This paper describes four algo-
rithms that we have developed for the distributed simulation
of hybrid systems. We simulate hybrid systems in a dis-
tributed fashion to achieve a speedup by utilizing multiple
computing resources. The agents of the modeled system are
distributed over multiple processors to simulate the model
more efficiently.

Based on how agents synchronize, distributed simula-
tions of multi-agent hybrid systems can be classified as
conservative and optimistic simulations. If the local
clock of an agent always advances and does not go back-
ward, it is called a conservative simulation; otherwise, it
is called an optimistic simulation. A conservative simu-
lation is designed so that the local clock lc of an agent only
advances or stops, and thus, there are no rollbacks [6]. In
optimistic simulations, the goal is to exploit the potential
parallelism as much as possible letting the agents run at dif-
ferent speeds. If an event that occurred at time te gets
recognized by the agent at tr, where tr > te, the simulator
provides a rollback operation or performs a reverse compu-
tation [13, 5].

Distributed simulations have been used for simulating
only discrete event systems so far, but to the best of our
knowledge, there is no published algorithm for the dis-
tributed simulation of hybrid systems. Our methods to sim-
ulate hybrid systems in a distributed fashion exploit the in-
herent modularity of systems described in CHARON. By
modularity, we mean two things. One is a behavioral mod-
ularity captured by modes and the other is an architec-
tural modularity by agents. A way of using a mode-level
modularity in single-agent hybrid systems was presented in
[3]. In this paper we focus on distributing atomic agents
to utilize an agent-level modularity. The challenge is how
to reduce the synchronization overhead among distributed
agents.
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In the following sections, we introduce a language,
called CHARON, for modeling interactive multi-agent hy-
brid systems and its toolset in Section 2. We describe how
to simulate hybrid systems in Section 3, propose four dis-
tributed simulation algorithms of hybrid systems in Sec-
tion 4, and discuss the proposed algorithms and future work
in Section 5.

2 Modeling Hybrid Systems in CHARON

CHARON [3] is a language for modeling interacting hy-
brid systems based on the notions of agents and modes.
The distinguished feature of CHARON is that it supports
both architectural and behavioral descriptions of hybrid sys-
tems and provides concurrency and hierarchy in a modu-
lar way. It also has the scoping rule of variables parti-
tioned into the set of analog variables and discrete variables.
Agents describe the architecture of systems while modes
do the behavior of systems. CHARON modes comprise
submodes, transition relations between submodes, control
points, differential and algebraic constraints, invariants, and
variables [3]. The language provides compositional for-
mal semantics required to reason about systems in a mod-
ular way [4]. We now briefly describe the main features of
CHARON.
Architectural hierarchy. The architecture of systems is
described with communicating agents. Those agents share
information through shared variables or communication
channels. Agents are either atomic or composite. CHARON
also provides the operations of parallel composition for
building a composite agent, hiding for encapsulating infor-
mation of an agent. CHARON agents are reusable objects.

Behavioral hierarchy. An agent without any submodes
inside is called atomic agent, which has a reference to an
appropriate mode describing the behavior of the agent. In
other words, the mode is a construct for the hierarchical de-
scription of the behavior. Transitions between submodes are
enabled when a condition called guard becomes true. Also,
the mode has well-defined control points: entry and exit
points. We provide differential and algebraic constraints
representing continuous dynamics and invariants forcing a
continuous flow to satisfy a condition. The language also
supports the instantiation of a mode for the reuse of mode
definitions.
Continuous variables and discrete variables. The vari-
ables of CHARON are classified as analog and discrete vari-
ables. Analog variables are updated continuously while
time is flowing. Conversely, discrete variables are mod-
ified only when the modes of an agent change. The values
of discrete variables do not change in a time flow.

2.1 Example: TwoAgent

We present a simple two-agent example, TwoAgent,
composed of the agent a1 and the agent a2. The dy-
namics of a1 is independent of that of a2 but guards of
agents require shared information to decide whether an
agent changes modes or not.

macro TooLow 0.0

extern real Math.abs(real);

agent TwoAgent () f

private analog real v1, v2;

agent a1 = A(10.0, 0.0)

[vIn, vOut := v2, v1];

agent a2 = A(9.0, -1.0)

[vIn, vOut := v1, v2];

g

agent A(real initValue, real c)f

read analog real vIn;

write analog real vOut;

mode top=ATop(initValue, c);

g

Figure 1. Agent TwoAgent

Figure 1 defines a composite agent TwoAgent and an atomic
agent A. The two atomic agents a1 and a2 of the compos-
ite agent TwoAgent are the instances of the agent definition
A. The agent A has a reference to its top-mode top that de-
scribes the behavior of A. The behavior of the agent A is
represented in two submodes: mode0 and mode1. Both
submodes are instances of the mode choppy but parameters
are different. We use extern to specify interfaces between
the CHARON code and external packages. Subagents of
a composite agent communicate through shared variables
whose name are renamed. [vIn, vOut := v2, v1]
and [vIn, vOut := v1, v2] are the examples of re-
naming. vIn of the agent a1 and vOut of the agent a2 are
renamed to the new name v2. Thus, if a2 updates vOut then
it actually updates the shared variable v2 and so, vIn of a1
is also updated.

Figure 2 is the CHARON code describing the behavior of A.
Our CHARON toolset provides an editor with GUI (Graphi-
cal User Interface) for the visual specification of agents and
modes. Figure 3 shows how the behavior of A is specified
visually.

The mode definition ATop comprises variables vIn and
vOut, submodes mode0 and mode1, and transitions. Transi-
tions are represented with trans construct. In this example,
we have three transitions: initTrans, Mode0ToMode1, and
Mode1ToMode0. Action statements provided by do are
for specifying actions taken when transitions occur. Basi-
cally, actions update discrete variables or assign new values
to continuous variables.

Entry/exit points are for specifying interfaces between
the source locations and the destination locations of transi-
tions. The variable vOut is declared as write, which means
global and writable in the mode while read means read-
only. For localizing the scope of the variables, we use pri-
vate. The invariant invChoppy expresses that if vOut is out
of the specified range, the behavior of choppy is no longer
valid. We specify the rate at which vOut is updated with the
differential equation dvOut.

Figure 4 is the result of simulating the example. Each
agent generates a signal like a choppy wave, where the
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mode ATop(real iVal, real c)f

read analog real vIn;

write analog real vOut;

mode mode0 = choppy(2.0, -50.0, c);

mode mode1 = choppy(2.0, 1.0, c);

trans initTrans

from default to mode0

when true do fvOut = iValg

trans Mode0ToMode1

from mode0 to mode1

when vOut < 8.0

and Math.abs(vOut-vIn) > 1.1 do fg

trans Mode1ToMode0

from mode1 to mode0

when vOut > 12.0

and Math.abs(vOut-vIn) > 1.0 do fg

g

mode choppy(real a, real b, real c)f

write analog real vOut;

inv invChoppy fvOut >= TooLowg

diff dvOut fd(vOut) == a*vOut + b + cg

g

Figure 2. Modes of TwoAgent

vOut<8.0 and
|vOut-vIn|>1.1

vOut>12.0 and
|vOut-vIn|>1.0

write analog real vOut write analog real vOut

inv invChoppy inv invChoppy
{vOut > 0.0} {vOut > 0.0}

diff dvOut diff dvOut
{d(vOut) == 2.0*vOut + 1.0 + c}

mode0

ATop

{d(vOut) == 2.0*vOut -50.0 + c}

mode1

Figure 3. The Behavioral Hierarchy of the
Agent A

wave of a1 follows that of a2. In a1, the guards enabling
the transitions Mode0ToMode1 andMode1ToMode0 are
(v1 < 8:0 and jv1 � v2j > 1:1) and (v1 > 12:0 and
jv1�v2j > 1:0), respectively. Figure 4 shows that the mode
transitionsMode0ToMode1 of a1 occur at time 0.09, 0.50,
0.87, 1.21, and so on.

2.2 CHARON toolset

Figure 5 describes the class hierarchy of the TwoAgent
example. We depict the classes and objects of the exam-
ple [12] with a modified OMT (Object Modeling Tech-
nique) notation used by Gamma and his colleagues. The
symbols of classes and objects are rectangular boxes and
rounded boxes, respectively. The subclass relationship is
represented with a line and a triangle. Dashed lines with
filled arrowheads are for specifying instantiations. Fig-
ure 6 illustrates how CHARON Simulator Generator (CSG)
generates the simulation code. We have two kinds of gener-

TwoAgent

 v2

 v1

time7.00

8.00

9.00

10.00

11.00

12.00

0.00 2.00 4.00

Figure 4. Simulation Result

a2

top choppy

Mode

mode0

mode1
ATopAgent

ATwoAgent a1

(9.0, -1.0)

(10.0, 0.0)

Figure 5. Classes and Objects of the TwoA-
gent Simulator

ators to produce a simulator for the example. One is agent-
ModeGen that generates agents and modes and the other is
gSimGen. gSimGen generates model-specific information
the simulator core requires for simulating a given CHARON
model. In other words, simulator comprises simulator core
and the routines generated by gSimGen. Agents and modes
generated by agentModeGen are Java files translated from
the model described in CHARON. In essence we simulate
the objects generated from a given CHARON model.

3 Simulation of CHARON Program

3.1 Global Simulation

In this section, we describe how the simulator simu-
lates hybrid systems modeled in CHARON. The simula-
tion of CHARON program consists of the initialization step,
followed by a sequence of discrete update steps and con-
tinuous flow steps. After initializing agents, the simula-
tor executes either a discrete update step or a continuous
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Simulation
Results
(.rep files)

Environment

Description

System 

Behavior

Description

Architecture

Description

System Description

Numerical
Integrator

Other
Simulator
Related
Classes

Simulator Core

User-defined
External Classes

CHARON
model

(.cn file)

Modes

Agents
(.class files)

(.class files)

PlotPlotter

(.class file)

Simulator Main Generator (gSimGen)

AgentMode Generator (agentModeGen)

AgentMode Generator (agentModeGen)

Modes

Agents
(.java files)

(.java files)

(.java file)

Simulator
Main

Simulator
Main

Figure 6. CHARON Simulator Generation Process

flow step. In other words, the simulation of CHARON
program is initialization step (discrete update step or
continuous flow step)�.

Initialization. The simulator initializes agents by provid-
ing initial values for variables and configuring active modes.
With initialization done, the active modes of an agent are
the modes included in the path from the top mode to a leaf
mode. For example, in TwoAgent, top and mode0 are the
active modes and the initial values of vOut of a1 and a2 are
10.0 and 9.0, respectively after initializing the agents.

Discrete update. A discrete update step is a sequence of
executing enabled transitions. The logical time of the simu-
lator stops during transitions. The simulator picks an agent
with enabled transitions. We say a transition is enabled if
it is in an active mode and its associated guard is satisfied.
After a transition is executed, the configuration of active
modes is also updated. The step finishes if there is no
more enabled transitions at the current time. In the example,
the transition Mode0ToMode1 will be enabled when vOut
gets less than 8.0 and the difference between vOut and vIn
greater than 1.1.

Continuous flow. A continuous flow step represents a
time flow for a given amount of duration not violating con-
straints. The constraints of a mode consist of invariants, dif-
ferential and algebraic constraints. In this step, all the active
modes of agents are executed together. The constraints of
active modes are, the conjunction of constraints in the set
of active modes. The discrete update step may preempt the
continuous flow step, if a transition is enabled. For exam-
ple, if active modes are top and mode0, the variable vOut
will get updated at the rate of a � vOut + b + c as long
as the invariant invChoppy is not violated. The transition
Mode0ToMode1, however, may be executed when the guard
of trans Mode0ToMode1 becomes true.

3.2 Efficient Simulation

The most simulation overhead results from numerical in-
tegrations. For more efficient numerical integrations, vari-
ous numerical integrators are combined with adaptive inte-
gration steps, e.g., Runge-Kutta method with adaptive in-
tegration steps [17]. Another approach is simulating the
system on a distributed platform. Our methods proposed
here exploit the inherent modularity of systems described
in CHARON as well as simulate the systems in a distributed
fashion. By modularity, we mean two things: a behavioral
modularity and an architectural modularity. In fact, each
agent of CHARON has different dynamics and thus does not
have to run at the same speed. Likewise, each mode in the
different level of hierarchy of the same agent may have dif-
ferent dynamics. The basic idea is that we simulate an agent
or a mode of slow dynamics using a larger integration step.
Therefore, we can reduce the computation overhead from
integrations. A way to exploit a mode-level modularity in
a single-agent was presented in [3]. In the next section we
focus on distributing atomic agents to utilize an agent-level
modularity.

4 Distributed Simulation

We distribute agents of the modeled system over a dis-
tributed system to simulate the model more efficiently. As
agents share information, they need to synchronize to up-
date states. According to the way of synchronization, dis-
tributed simulations can be classified as two categories. If
the local clock of an agent always advances and does not go
backward, it is called conservative simulation. Otherwise,
it is called optimistic simulation.

4.1 Conservative Simulation

In this approach, we decompose the functionality of a
global simulation into sub-functional blocks and the simu-

Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC�02) 
0-7695-1558-4/02 $17.00 © 2002 IEEE 



lator allows agents to execute the next block only when all
the agents complete the current block.

Figure 7 and Figure 8 describe the algorithm Conserva-
tive Simulation (CS). We decompose a simulation process
into seven functional units: block0, ..., block6. The end of
each block works as a barrier an agent cannot proceed until
all the other agents finish the current block. Agents broad-
cast completion messages to the others at the end of each
block.

In block0, we initialize the agent. The analog variables
are updated in block1 followed by block2, where the shared
analog variables are synchronized. In block3, guards and
invariants are checked. Block4 is for executing enabled
transitions. The variables updated in the transitions are syn-
chronized in block5. Block6 is executed only when there is
no enabled transition even though an invariant is violated.
In such a case, the agent broadcasts stop signal to the others
and the simulator reports the latest synchronized state.

Although CS is for the distributed simulation of hybrid
systems, the overhead resulting from communications off-
set a potential performance gain from distributing compu-
tations. Thus, this technique is effective only in simulating
hybrid systems with extensive computations. In Section 4.2
we propose three optimistic simulation algorithms to solve
the problem.

begin block0

state = initialize();

end

while(true)f

begin block1

//update analog variables

//for a given time interval ti

//and return the new state

//and the new lc.

(state, lc)

:= continuousFlow(state, lc, ti);

end

begin block2

// exchange shared analog variables.

state

:= synchronizeSharedVars(sharedVars);

end

begin block3

if evaluateGuards(state, guards)==true

then event := transitionEnabled

elseif checkInvariants(state,

invariants)==true

then event := invariantViolated

end

Figure 7. Conservative Simulation (CS):
block0 ... block3

begin block4

if event == transitionEnabled then

state

:= discreteUpdate(state, lc);

end

begin block5

//exchange shared variables updated

//by discreteUpdate.

state

:= synchronizeSharedVars(sharedVars)

end

begin block6

if event == invariantViolated

then broadcastStopSignal; stop

end

g

Figure 8. Conservative Simulation (CS):
block4 ... block6

4.2 Optimistic Simulation

Our optimistic simulation algorithms are phase-driven.
Each phase is a sequence of consecutive stages that are
setup stage, computation stage, and synchronization stage.
After initializing the state, setup stage, computation stage,
and synchronization stage are executed in the order as
shown in Figure 9. The motivation of using the notion of
phase is that we confine optimism within each phase.

In each of the Phase-driven Optimistic Simulation
(POS), the operations performed during the stages are
different. We describe the details of each stage of the
three different POS approaches: Phase-driven Optimistic
Simulation with a Reflection-based Prediction (POSRP),
Phase-driven Optimistic Simulation with an Adaptive Phase
Length (POSAPL), and Phase-driven Optimistic Simulation
with an Estimator-based Prediction (POSEP).

The salient aspects of our algorithms are first, to re-
duce the communication overhead, we let agents synchro-
nize just before the new value of a shared variable is nec-
essary, instead of communicating every update round. Sec-
ond, to reduce the computation overhead due to numerical
integrations, we simulate an agent with its approximated
polynomial dynamics and resolve the possible misses of
events with rollback operations. This allows each agent to
run computations without integrating shared variables con-
trolled by other agents. Our approach is optimistic in the
sense that each agent goes forward even though there is no
guarantee that their clocks do not have to go backward.

Optimistic distributed simulations have been used for
discrete event systems since the T ime Warp distributed
simulation algorithm was proposed [13]. Other methods in
the category are the bounded-lag optimistic simulation [14],
and a risk-free simulation [18]. Those methods are, how-
ever, only for simulating discrete event systems. To illus-
trate our algorithms, we use the two-agent system described
in Section 2.
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initialization;
while(!stop)f

executeSetupStage;
executeComputationStage;
executeSynchronizationStage;

g

Figure 9. Phase-driven Optimistic Simulation
(POS)

4.3 Phase-driven Optimistic Simulation with a
Reflection-based Prediction (POSRP)

In all three phase-driven algorithms, our goal is to re-
duce the communication overhead and unnecessary roll-
backs without missing any event. In simulating the
CHARON agents, the event means mode transitions or in-
variant violations. The common technique behind all of our
phase-driven approaches is that each agent uses approxi-
mated dynamics of other agents until they get synchronized.
Such an approximation may be a constant or a high-order
polynomial. Note that if agents use actual dynamics of
shared read analog variables which are the input from other
agents, instead of using an approximated dynamics, each
agent will integrate all such shared analog variables con-
trolled by other agents.

Figures 10, 11, 12, and 13 illustrate Phase-driven
Optimistic Simulation with a Reflection-based Prediction
(POSRP). In POSRP, we simulate the agents with approx-
imated dynamics of shared input variables until an agent
reaches the end of the phase tf or a warning condition of an
agent is satisfied. A warning condition is the disjunction of
a guard and a reflection-based flag. The rationale behind
a warning condition is that if a guard is satisfied, it will
cause the abrupt changes of dynamics of the agent. Also,
we observe that the approximated dynamics of the variables
appr(v1) and appr(v2) are shared information between the
agents, where the events are associated with the variables
and thus we do not want to use the incorrect value of those
input variables.

By examining self-extracted information on the present
dynamics or reflection, we can flag that agents should syn-
chronize. That is, the agent a1 stops not only when the
guard becomes true but also when jappr(v1)�v1j >= p. p
is a threshold updated adaptively, based on the history of the
mode changes. We update p adaptively, as a small value of
p causes unnecessary synchronizations while a large value
does more rollbacks. So, we adjust p of the agent a, a:p to
be c=(1 + the number of mode changes in a previous phase
of the agent a). Thus, agents will get synchronized less fre-
quently, if mode changes occur less in a current phase. In
case there is no mode change in the current phase, the value
of p remains the same in the next phase. c is a parameter
given by users.

Figures 10 and 11 depict the setup stage and the compu-
tation stage. Figures 12 and 13 show the event notification
sub-stage and the rollback sub-stage of the synchronization
stage. Note that we call the start time of each phase ts. The
final time is called tf . Also, the phase length pl is defined
as tf - ts.

� Setup Stage (Figure 10): We update p in each agent
at time ts. A new p is c=(1 + the number of mode
changes in a previous phase). Initially, p is the same as
c. Then, information to compute the approximated val-
ues of shared variables the other agents need are broad-
cast. We use first-order polynomials as the approx-
imation of dynamics in the current approach. Thus,
a:appr(v) is defined as m � (a:lc � ts) + vts, where
ts is the start time of the current phase and m is the
coefficient of the highest order term of dynamics of v.
Each agent transmits m to the other agents. The phase
length pl is fixed in the setup stage of phase0. We
assume that the initial state is known a priori.

� Computation Stage (Figure 11): Every agent com-
putes dynamics until its local clock reaches tf or
the warning condition is evaluated to be true. In
agent a1, the warning condition is (a1:v1 < 8:0 and
ja1:v1 � a1:appr(v2)j > 1:1) _ (ja1:appr(v1) �
a1:v1j >= a1:p). a1:appr(v1) is m1 � (a1:lc� ts) +
v1ts and a1:appr(v2) is m2�(a1:lc�ts)+v2ts, where
v1ts and v2ts are the values of v1 and v2 at the start
time of the current phase ts and m1 and m2 are the co-
efficients of the highest order term of dynamics of v1
and v2, which are 2.0 in both agents in the example.

� Synchronization Stage (Figures 12 and 13)

– Event notification sub-stage: Suppose a2 reaches
tf and the warning condition of a1 is satisfied.
Then, a1 notifies an event to a2 with its local
clock tg. After a2 being informed of an event,
it sends the state of a2 at time tg to a1 that a1
can evaluate the guard with the actual value of
v2.

– Rollback sub-stage: If a1 confirms the event then
a2 must rollback. After a2 rollbacks to time tg,
both agents discard the history of the state be-
tween ts and tg. At the end of the rollback sub-
stage, ts is modified to tg and the next phase
starts. In a case that the event was not confirmed
by a1 with the actual value of v2, a1 continues
its computation.

a1.p = c/(1 + the number of mode changes

tg

a1

a2

pl

tfts

pl and c  are given by the environment.

a2.p = c/(1 + the number of mode changes 
in a previous phase of agent a1)

in a previous phase of agent a2)

time

Figure 10. POSRP Setup stage
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v2

v1

tg

a1

a2

pl

ts tf

=2.0*v2

=2.0*v1-50.0

a1 is in mode0 and a2 is in mode1.

time

Figure 11. POSRP Computation stage

tg

a1

a2

pl

ts tf

 current time
a2 to a1: send the past state
of a2 at time tg.

tg
a1 to a2: notify an event and

|a1.appr(v1) - a1.v1| >= a1.p
(a1.v1 < 8.0 and |a1.v1-a1.appr(v2)| >1.1)  or

time

Figure 12. POSRP Synchronization stage
(event notification)

4.4 Phase-driven Optimistic Simulation with an
Adaptive Phase Length (POSAPL)

In POSRP, the phase length pl is given by the simulation
environment and fixed in all the simulation phases. How-
ever, a large value of pl causes unnecessary rollbacks while
a small value of pl will result in frequent synchronizations.
In POSAPL, we adjust pl in each phase to enhance the per-
formance. The only difference between POSRP and POS-
APL is at a setup stage. If there is no rollback in phasei�1
then pl will be doubled in phasei, otherwise it will be re-
duced to half the length.

4.5 Phase-driven Optimistic Simulation with an
Event Predictor (POSEP)

If we know exactly when the next event will occur, we
can determine the synchronization point easily. There have

tg

a1

a2

pl

ts tf

if a1 confirms the event
then a2 rollbacks 

and discards history from ts to tg.

and finishes the current phase.
else a1 continues its computation.

Also, updates ts with tg

time

Figure 13. POSRP Synchronization stage
(rollback)

been studies on detecting events in differential-algebraic
models [16] and hybrid systems [10].

The third method of our optimistic approaches is based
on the estimator that predicts when the next event will oc-
cur. In POSEP, Estimator is a special process which col-
lects the agent states and the constraints of the active modes
from all agents. Estimator solves the constraints to pre-
dict tf and broadcasts it with the approximated dynamics
of shared variables at the setup stage. Figures 14, 15, 16,
and 17 illustrate an optimistic distributed simulation algo-
rithm POSEP.

tf and polynomial approximation of
Estimator to agents: 

shared input variables

Agents to estimator: state and constraints

��
��
��

��
��
��

a2

a1

Estimator

ts tf

time

Figure 14. POSEP Setup stage

� Setup stage (Figure 14): Agents send their current
states and constraints to Estimator at ts. Estimator
solves the constraints and predicts when the next event
will occur. Such information is sent to the agents
with the polynomial approximation of shared vari-
ables. Thus, we do not need pl to decide the final
time tf of the current phase. Estimator computes
and broadcasts tf to the agents a1 and a2.
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v2

v1

��
��
��

��
��
��

a1

a2

ts

Estimator

tg tf

=2.0*v1-50.0

=2.0*v2

a1 is in mode0 and a2 is in mode1.

time

Figure 15. POSEP Computation stage

��
��
��

��
��
��

a1

a2

ts tftg

Estimator

a2 to a1: the past state of a2 at time tg 
a1 to a2: notify an event and tg

a1.v1 < 8.0 and |a1.v1-a1.appr(v2)| > 1.1

time

Figure 16. POSEP Synchronization stage
(event notification)

� Computation stage (Figure 15): As Estimator pro-
vides information on the event occurrences, agents do
not have to utilize reflection to predict the possi-
ble next event occurrences. So, a warning condition
is related to only guards. In the example, the warn-
ing condition of a1 is a1:v1 < 8:0 and ja1:v1 �
a1:appr(v2)j > 1:1.

� Synchronization stage (Figures 16 and 17):

– Event notification sub-stage: Suppose a2 reaches
tf and the warning condition of a1 is satisfied.
Then, a1 notifies an event to a2 with the its local
clock tg.

– Rollback sub-stage: If a1 confirms the event then
a2 must rollback. After a2 rollbacks to time tg,
the both agents discard the history of the state
between ts and tg and Estimator process ad-
vances up to tg. The current phase ends and ts
is updated to tg. As is the case in POSRP, a1
will continue its computation if the event is not
confirmed by a1.

��
��
��

��
��
��

a1

a2

ts tg tf

Estimator

if a1 confirms an event

else a1 continues computation

rollback

then a2 rollbacks and Estimator moves to tg

time

Figure 17. POSEP Synchronization stage
(rollback)

4.6 Comparison

Table 1 compares different distributed simulations of hy-
brid systems. A potential speedup from the distributed sim-
ulation of hybrid systems depends on the following three
factors mainly: communication overhead, rollback over-
head, and computation time for numerical integrations and
solving constraints.

The communication overhead is extremely large in the
algorithm CS (Conservative Simulation), as agents com-
municate every single update round. In phase-driven op-
timistic simulations, the communication overhead is rela-
tively small. Contrast to all the optimistic approaches, there
is no rollback overhead in the conservative approach. As we
use the constraint solver to predict a possible synchroniza-
tion point better in POSEP, the rollback overhead will be
smaller in POSEP than in POSRP or POSAPL. Although
there will be the smaller rollback overhead in POSEP, it
takes normally a large amount of computation time in solv-
ing constraints. Thus, it will depend on the characteristics
of given models whether we benefit from POSEP more than
POSAPL.

5 Conclusion and Future Work

We have illustrated how to model interactive multi-agent
hybrid systems using a modeling language CHARON and
proposed four distributed simulation algorithms: one con-
servative simulation algorithm and three optimistic algo-
rithms. The three optimistic algorithms are phase-driven. In
general, the optimistic approaches have the more potential
for a speedup than the conservative approach, since agents
will not be blocked while waiting for the other agents to fin-
ish their phases. Our approaches restrict optimism within
each phase to reduce the high rollback overhead caused by
a large gap among the local clocks of different agents.

We are implementing the proposed simulation meth-
ods over a network of workstations and also on shared-
memory multiprocessor machines. Since performance de-
pends largely on how much agents need to communicate,
we are currently developing clustering and load balanc-
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name communication overhead rollback overhead potential speedup
Conservative very large N/A low

POSRP relatively small large low
POSAPL relatively small medium high
POSEP relatively small small high

Table 1. Comparison of different distributed simulations of hybrid systems

ing techniques for the proposed distributed simulation al-
gorithms.
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