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Formations of Localization of Robot Networks

Abstract

In this paper, we consider the problem of cooperatively localizing a formation of networked mobile robots/
vehicles in SE(2), and adapting the formation to reduce localization errors. First, we propose necessary and
sufficient conditions to establish when a team of robots with heterogeneous sensors can be completely
localized. We present experimental measurements of range and bearing with omni-directional cameras to
motivate a simple model for noisy sensory information. We propose a measure of quality of team localization,
and show how this measure directly depends on a sensing graph. Finally, we show how the formation and the
sensing graph can be adapted to improve the measure of performance for team localization and for
localization of targets through experiments and simulations.
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Formations for Localization of Robot Networks
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' {zhangfan, bpg, kumar} @grasp.cis.upenn.edu

Abstract—In this paper, we consider the problem of coopera-
tively localizing a formation of networked mobile robots/vehicles
in SE(2), and adapting the formation to reduce localization
errors. First, we propose necessary and sufficient conditions to
establish when a team of robots with heterogeneous sensors can
be completely localized. We present experimental measurements
of range and bearing with omni-directional cameras to motivate
a simple model for noisy sensory information. We propose a
measure of quality of team localization, and show how this
measure directly depends on a sensing graph. Finally we show
hew the formation and the sensing graph can be adapted to
improve the measure of performance for team_localization and
for localization of targets through experiments and simulations.

I. INTRODUCTION

In order for a team of mobile robots to navigate au-
tonomously in some desired formations and further perform
cooperative tasks, such as surveillance and target acquisition,
they must be able to localize themselves in the formation
as well as in a global reference frame [1], [2]. Therefore,
how to estimate robots’ positions and orientations (poses) in a
precise and efficient way is of particular interest. Our interest
in this paper is localizing a team of heterogeneous robots in
SE(2), and in localizing targets with information obtained
from heterogeneous sensors. Specifically, we are interested
in conditions under which all robots in the formation can be
localized in the environment, and in minimizing the relative
and absolute uncertainty in the estimates. Our goal in this
paper is to derive necessary and sufficient conditions for
localizing a formation of three or more robots in SE(2) from
distributed camera measurements, quantifying the quality of
the resulting estimates, and adapting the team formation to
improving these estimates. .

Recent research has addressed the problem of network
localization in non-deterministic domains. Examples of fusing
observations from heterogeneous sensors to estimate the state
of a robot team include the distributed Kalman filter [3] and
maximum likelihcod [4] methods, These approaches consider
communication and computational cost but do not address
the impact of robot formation on the quality of the solution
obtained. Other studies investigate generating optimal sensing
trajectories for robots engaged in target tracking tasks given
the robot state is known exactly [5], [6]. The work presented
in this paper addresses the combination of these two problems.
Given the fact that the quality of estimates obtained from mea-
surements depends on how well sensors can be lecalized, we
extend these ideas to find an optimal formation control scheme
which will facilitate not only maximal target localization but
also comsider the robot configuration estimate quality.

0-7803-8232-3/04/$17.00 ©2004 IEEE

Also relevant to this work is the recent literature that uses
graphs to model sensor networks and cooperative control
schemes [73, [8]. Results on graph rigidity theory [9Y, [10],
[11] can be directly applied to multi-robot systems in R?
[12], [13]. However, relatively little attention has been paid
on networks with bearing observations, which is particularly
important for networks of cameras.

This paper is organized as follows. In Section I, formations
of mobile robots and sensor measurement information will
be modeled topologically via graph theory notations. Without
considering measurement error at first, we generate the con-
cepis of formation constraint and constraint matrix in Section
I, and vse them to find the necessary and sufficient conditions
for a formation to be localizable. Measurement errors and
their connection to estimate errors are introduced in Section
IV, and the dependence of localization quality on the sensing
graph and formation geometry is also investigated. A control
strategy for determining optimal formations is presented. Prac-
tical application of these coacepts to a small team of robots
equipped with omni-directional cameras follows in Section
V. The camera modelling, performance impact of the sensing
graph and robot deployment to an optimal configuration are
detailed. Concluding remarks are given in Section VL.

I1. MODELING

Consider a planar world, W = R2, occupied by a team of
7 robots, R = {R1,R2,... R,}, and assume each robot can
communicate with every other robot in the team. The physical
configurations of the robots coupled with the characteristics of
the hardware and the requirements of the sensing and control
algorithms induce a physical network or a formation of n
robots in SE{2). We define a global reference frame F by
forming a virtual robot or a beacon Ry with fixed configuration

{a) (b)
Fig. 1. Modeling of sensory information: (a) - physical network of 2 robots in
SE(2): R; has range measurements about R;; R has absolute measurements
about itself and bearing measurements about B;. A body reference frame, 8;,
has been attached to R;. (b) - sensing graph representation.
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go = 0 in the inertial frame. (See Figure 1{a)). The configu-
ration of R in F is denoted by ¢ = [g{ ,q3,....05 | €
R3", where ¢; = (p;,6;)T € R3 is a parameterization of
SE(2), with p; = (x;, ;)7 and 8;, the absolute position and
orientation of the i*" robot. A body reference frame B; at
the j** robot is also defined with its x-axis aligned with the
direction of heading of R;. The configuration or the shape of
the formation, R, is described in the body-fixed frame B; by
gj= [(‘TDT: (q%)T’_”?(q%)T]T’ where ‘13 = (pjheﬁ)T with
pji = (%1, 9;:)7 and @, the relative position and orientation
of R; about R;, and qj =0

In {7], {2], we defined the control graph, a directed graph
in which each edge represents an interconnection linking the
control inputs of cne robot to the state of another. Here, in
order to represent the sensory information, we define another
directed graph called the sensing graph, G = (V, &, Z,P),
where ¥V = R U {Ry} is a finite set of vertices. The edge set
& C VXV consists of labeled edges that represent the presence
of measurements (observations) between robots. We consider
three types of exteroceptive sensors: range sensors, bearing
sensors, and GPS sensors. The measurement set Z consists
of three type of sensory information: (i) range between two
robots, p;;, (if) bearing of one robot in relation to another, ¢;;,
and (iii) absolute position of a robot in F, (x;,y;), which can
be obtained by global positioning seasors, or via triangulation
with fixed, known landmarks. P is a model of the uncertainties
associated with the estimates in Z.

In a sensing graph G, the 7** vertex has an incoming
edge from the i** vertex labeled by (p;;, ¢;) whenever robot
R; can sense robot R;. Corresponding to types of sensory
information, we use (i) a shorthand relative range edge (pi;)
to denote (py;,null), (ii) a relative bearing edge (¢y;) for
(null, ¢;;) and (iii) a range-bearing edge (pi;, ¢i;) pointed
from R; to R; respectively. Any absolute measurements made
by any robot R; can be regarded as a range-bearing edge,
{pjo, djo}, or simply (p;, &;).

In the next section we will consider a deterministic sefting
to-determine necessary and sufficient conditions on the sensing
graph for team localization. We will later, in Section 1V,
consider uncertainties in measurements, with 7 consisting of
information about variances: 0.42:,-5 for range measurements,
‘75.-, for bearing measurements, and covartance matrices for
range-bearing measurements.

ITI1. LOCALIZABILITY OF FORMATIONS

In order 1o consider whether a team of robots can be
localized or not, it is necessary to fuse the information
available from different sensors and verify if this information
is adequate. For a team of n robots in SE(2), localization is the
determination of the 3n coordinates that characterize the robet
positions and orientations. Thus it is necessary to first see if 3n
independent measurements are available or not. Since every
measurement specifies a constraint on the 3n coordinates,
we have to develop a test of functional independence for all
constraints. Accordingly, we will define a consrraint matrix

whose rank will allow us to verify if the team can be localized
or not.

For each range and bearing measurement, the constraints on
the coordinates in frame B; are given by:

Type 1: pix = '\/(Pj:' — pi) (P — Pik) M
Type 2: ¢j; = tan™ ' (y;i/xj:) @

A pair of bearing measurements, ¢;; and ¢5;, involving robots
R; and R;, results in the following Type 3 constraint:

Type 3: ¢pu—dri+7 =0 = ;1 — 05 (3)
Finally, any pair of bearing measurements, ¢;; and &,

involving three robots R;, R;, and Rg, results in the following
Type 4 constraint,

—1 {pii—psi) T (0ji—pix)

Type 4 ¢i;—ir=cos )
e psi—ps;lt - I je—pjell
All these constraints can be written in the form:
Ly -z = h{(§) (5)

where L, is a linear combination of measurements, and b is a
nonlinear function of the shape variables in some body-fixed
reference frame. It is not too difficult to see that there are
only four types of constraints that can be used to describe
the network. All other equations that can be written are
functionally dependent on the above constraint equations.

By differentiating the four constraint equations, we get
expressions describing allowable small changes (equivalently
velocities) of the robot coordinates.

[ pii

™. Toi . =0 6
[ rr Q,k]'pjk4 ©6)
v )
[ PLPii  PlPii ] [ Pji ] =0 (7
o ]
-1 1 L7t =0 8
(-1 1] ®
Dyt
[ brjic bajik bagw || By | =0 &)
| Pik
where
- Pii — Pik _ Dik — Pii
' \/ (p7i—256 )T (Psi—Din) \/ (pis—rx)T (pri—pix)
2[(psi — P15} (psi — pan)l
by sk = I — Dig — D
YT s i) (s — Pik)? (ps« = pis = Pi)
s —pi) s —pa)®
(psi — pis)ips — pix)? (s = p13)
_ 2psi — i) s — R
(D35 — pis ¥y — D ! (s = psx)
2{(pys — p33)" (s — pyx)]
bo ik = M
2T i — pis) 2Py ~ px)® (psx = Ps1)
2oy — i) s —wi)l2
(pse — pys)*(pss — Pix)? (si = psi)
Hipsg — 0T 5 — Dy
ba ik = [(psi — pis)" (P PJk}] (pjs — pit)

(psi — P33 )% {psi — Pik)?
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2[(17:: pis)" (P — )]’
(pji — P33 (pss — pix)*
Following this procedure for ali possible constraints gives us
a m x 3n constraint matrix for reference frame B;:

{pj:i — py &)

Ke(@ =0 (10)
where
" T1,ik Toik -
(oM _Ti
(Pj,pji P;iPyi )
Ky= - -1 - 1
by ik

bojik - bajik -

Ky = g—.h is called the constrainr matrix for the formation.

Deﬁmrmn 1: A team of n robots in SE(2) is said to be
localizable if the 3n coordinates of the n robots can be
estimated in an inertial frame.

Remark 1: Localizability is obviously related to observabil-
ity in systems theory [14] — if a team is localalizable over any
time interval, the system is completely observable. However,
we will use Definition 1 in an instantaneous, static setting and
thus refrain from using systems theoretic notation.

Remark 2: We can also require the team to be localized
in a relative setting [2] where it is only necessary to able to
estimate 3n — 3 coordinates of n—1 robots in a body reference
frame.

Theorem 1: A formation of n robots in SE(2}) is localizable
only if

N =3n—2n, —ny —n, <0, an

where ng, np and n, are numbers of measurements made
by inertial or global positioning sensors, bearing sensors and
range sensors respectively.

Proof: It is easy to verify that each absolute position measure-
ment made by any global positioning sensor can be directly
used to estimate two state variables, and each bearing and
range measurement will add at least one constraint on the
configuration or shape of the formation. Thus, n, global
position sensors, 1, bearing sensors and n, range sensors will
provide at most 2ng + ny + n, independent measurements.
Since 3n state variables have to be estimated, 2ng + 1, + n,
must be at least equal to 3n. L

Given a formation of robots with limited sensing capability,
Theorem | provides a simple necessary condition to easily
verify the localizability without considering the formation ge-
ometry. Note that additional sensors such as landmark sensors,
compasses and IMUs can be incorporated into this framework
in a straightforward way. The following discussion provides
sufficient conditions for localizability.

Theorem 2: C(_)nsider.a formation of » robots in SE(2) with
the shape § = [(g])7, (¢3)%, ..., (g3)T]% in B;. The formation
is localizable relative to the robo[ fixed reference frame B; if
and only if '

rank{K;(§)} =3n—3, (n > 2). (12)

Proof: Any body-fixed description of a formation in SE(2)
has a natural group symmetry. Translation of this body-fixed
reference frame does not change the shape vector § = [(q‘i’)T,
(@), ... (g1)T)T € R®". Thus there are 3n — 3 free
variables that determine the shape of the formation in the
frame B;. Since the rank of K determines the number of
independent constraints imposed by sensor measurements in
the network, we must have:

rank{K;}=3n -3

in order to estimate the 3n —~ 3 nonzero variables in §. ]

The condition in Theorem 1 is only a weak necessary
condition. There are other necessary conditions that must be
satisfied. We are particularly interested in cases where global
positioning capability is not available to most robots. For
example, if ng = 0 or 1, it follows from Theorem 2 that
we need at least one range measurement leading to a Type
1 constraint and n — 1 pairs of bearing measurements leading
to Type 3 constraints. At least one Type 2 constraint must be
incorporated. And finally, for localization in an inertial frame,
one needs at least one global position estimate (g > 0), and
at least one bearing measurement of the virtual robot (i.e., a
measurement ¢;g).

IV. DEPENDENCE OF ESTIMATION ERRORS ON SENSING
GRAPH AND FORMATION GEOMETRY

In this section we assume a simple probabilistic model for
sensor measurements and show how errors in state estimates
depend on (a) the sensing graph. G; and (b) the shape of
the formation. In order to keep the analysis simple, we will
assume that the measurement noise is given by a joint normal
distribution. As shown [ater in Section V-A, our range sensor
measurements are normally distributed and it is reasonable to
assume that sensory measurements are independent. Accord-
ingly, the constraint equation in Equation 5 can be rewritten
as:

Li-z=h(g)+Lz-1p (13)

where z is the vector of measurements, § is the shape of
the formation in Bj, vo ~ N(0, Rp) is the vector of mea-
surements’ noise {assuming zero-mean independent noise and
hence a diagonal covariance matrix Rg), and R(§) represents
the nonlinearity in the constraints, Equations 1-4. L; are
matrices representing constant linear combinations of z and
vg. For example, if we consider Equation 3, the standard
deviations, g4,,, 04,,, and gg,, satisfy

2

2 2
Ty + Ty = T8,

and thus

Li={-1 1] Ly=[1 1]

If we define v to be the vector given by v = Ly - 15, v 15
also normally distributed with the expected value 0, and the
variance given by:

R=Ly Ry LT (14)
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Thus ©# ~ N(0, R} characterizes the noise in Equation 13.

In order to obtain the best estimate for the formation shape,
g, we can use a nonlinear least squares algorithm to sclve
Equaticn 13. Clearly, the total number of constraint equations,
m, must be at least 3n — 3, but at most equal to the number
of measurements, M. Thus,

3n—3<m<M, (n>2) (15)

Now let H be a m x (3n — 3) matrix obtained by deleting
the three columns corresponding to the jth robot’s coordinates
qj in Ky. Let z; be the 3n—3 vector obtained by deleting the
three variables corresponding to q} in §. Small changes in z;
denoted by dz; will be related to small changes in z, denoted
by 4z, according to:

Li6z=Héx (16)

Minimizing the weighted cost (Ly6z— Héx)T W (L, 62— H éx)
leads to [14]

br=(HTWH) 'H'WI,6z2 (a7

Setting the weighting matrix W = R~!, squaring equa-
tion (17) by multiplying both sides of the equation by their
transposes respectively and then taking the expectations on
both sides, we can get the covariance matrix P for errors of
coordinate estimates as

P=(H"WH) 'HTWRWTHHTWH)T

or simply
P=(HTR'H)! (18)

Obviously, the localization errors are affected by the specific
set of measurements and corresponding constraint equations
we use. Additionally, the terms of the constraint matrix ob-
served in Sections III indicate the estimate error covariance
resulting from Equation 18 depends on the robot spatial
configuration. The trace of the covariance matrix is a scalar
utility measure that captures quality of the estimate obtained
from a measurement set. This leads to a natural strategy for
comparison and optimization of sensing graphs and robot
formations for localization. The robot configuration is sought
that for a given a sensor assignment solves

= in trace P. 19
P = arg min trace (19)

Gradient descent provides a mechanism to drive sensing
elements to the optimat spatial configuration. Controliing robot

velocity according to
p = —kZtrace(P) (20

yields trajectories that realize the desired formation.
Using the matrix calculus relations

L trace(X) = trace(Z£ X) and £X = - X Z(X )X,

The control strategy, Equation 20 can be written directly in
terms of £ H (available analytically) as

p=—k trace [mP (%HTR'IH + HTR‘IE%H) P] - @D

V. RESULTS IN ROBOT LOCALIZATION AND ACTIVE
SENSING NETWORK DEPLOYMENT '

The concepts developed in this paper are applied to a smail
robot team. Three examples are presented to illustrate the
physical sensor characteristics, implications of the sensing
graph on localization performance and active robot deploy-
ment to maximize team localization performance.

A. Omni-Directional Camera Model Verification

The omni-directional camera detailed in Figure 2 utilizes a
parabolic mirror in order to enable a single camera to directly
measure both range and bearing to a feature. The mirror

Feature

tog

SR

Fig. 2. Parabolic Omni-directional Camera and Geometry

geometry introduces a nonlinear observation model that relates
measurements z = r, to the feature state (range) = = r, given
by
D

z:h(x)+uxg(\/l2+x2—l)+u. (22)
Where v in measurement notse p(¥) ~ A(0, R). For signal
levels where linearization is valid, noise in observations of
x derived from measurements z, will be the measurement
noise amplified by (HTR'H)™. For the model described
by Equation 22,

_Oh 2212 § 22

== 23
9z DI(VE+z2-1) @3

This indicates the variance of range observations obtained

from the omni-directional camera is approximately propor-
ticnal to the fourth power of the true feature range.

Experiments were conducted to validate use of this mod-
elling. The camera was rotated about its vertical axis while ob-
serving a static feature at various known ranges. Measurements
of feature centroid in the camera coordinates and a histogram
of corresponding range observations are shown in Figure 3.
Figure 4 compares the range observation standard deviation
observed experimentally to parabolic omni-directional camera
model, verifying the predicted range dependent- measurement
uncertainty.
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5
Truw Rarge smp

Fig. 3. Ommni-Directional camera measurements and feature range histogram

1 *  3gmeased .
3 o parabolic camara model| .

) (5]

1 18
Tam Alps (1)

Fig. 4. Measuored and modeled range measurement uncerfainty

B. Multi-Robot Localization Experiments

To investigate the dependence of estimation errors on sens-
ing graph as we discussed in Section IV, localization exper-
iments on a team of 5 car-like mobile robots equipped with
omni-directional cameras (see Figure 5) were conducted. In the
experiments, the robot team maintained a static formation on
the ground, and tried to localize each member in the formation
by taking relative measurements with respect to each other. In
order to simplify visual classification and association, each
robot was marked with a different color providing unique
sensor identification for each robot. A calibrated overhead
camera with an external computer was used to gather the
ground true data for the robot locations in the environment.

While all the necessary and sufficient conditions for team lo-
calization provided in Section Il are strictly maintained, there
still exist extra degrees of freedom in choosing the measure-
ment set and corresponding consiraint equations to achieve the

Fig. 5. A formation of five car-like mobile robots (left) and a sample image'
from omni-directional camera (cght).

estimation. As an example, six sets of measurements, which
are denoted by six sensing graphs in Figure 6, were used to
estimate the state of five robots in the experiment respectively.
Equation 18 was applied to compute the covariance matrix of
estimation errors for each sensing graph considered. Table I
shows the corresponding localization quality, quantified by the
trace of the error covariance matrix.

Fig. 6. Sensing Graphs used to illustrate impact on localization quality. (a)
- contains all available measurements. (b) - contains all measurements except
for ¢s3. (c) - case b with ¢gs and paa removed. (d) - case ¢ with p3z
removed. {€) - contains the graph that maximizes estimate quality subject to
using the minimum number of measurements required for localizability. (f)
- as in case e with one bearing measurement ¢4o substituted by paa.

TABLE 1
ESTIMATE QUALITY FOR DIFFERENT SENSING GRAPHS
Case ¢ [ Case b [ Case ¢ [ Case d | Case ¢ | Casef |
Trace | 0.0142 | 0.0142 | 0.0171 | 0.0228 | 0.1231 { 0.1505 |

As expected, Table 1 indicates that the localization quality
was improved when more measurement information was used
to construct the sensing graph. However, comparing the cases
provides insight to the process of sensing graph selection.
The removal of ¢s3 in case b does not significantly reduce
localization quality. This indicates ¢53 is relatively uninforma-
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tive given the measurements in graph b. Considering the cost
of processing additional measurements motivates selecting a
measurement sub-graph when redundancy is high.

Substitution of a bearing measurement for range measure-
ment improves the estimate quality obtained in case e over
f- This outcome is expected considering the characteristics of
the omni-directional camera, the other measurements used and
the true shape of the robot formation, However, impact of an
individual measurement can not be determined independently
of other graph assignments. Solutions to this difficult nonlinear
assignment are of significant practical interest.

C. Optimal Formation Deployment

In this case (see Figure 7}, three mobile robots are deployed
to collaboratively localize themselves and a target of interest
in Ry's reference frame. A minimum number of relative mea-
surements are used to achieve localization. The initial compact
formation of Ry, Re and Rj close to Ry yields poor target
localization degrading overall localization performance. The
control scheme described by Equation 21 is applied to improve
this situation. Each robot moves afong a trajectory governed
by the gradient of the trace of the error covariance matrix. The
configuration of this mobile sensor network converges to an

T T T T

Initial Corfllidenca
""" 'Final Confidence ...+ ™

5
25 4
o |— A1
st Ao | R2
L Rl
© |~ Target

Individual Confidence 1 ¢
[+

k=]

0 5 - 10

(=]
o
-
(=1

Fig. 7. Three mobile robots/sensors deploy to collectively localize themselves
and a target of interest using a minimal sensing graph containing the relative
measurements z = {01, P10, P12, P13, P20, P23 P2T, P30, P3T }- Where
pir denotes the relative range measurement between the iy, robet and the
farget.

optimal formation, where the quality of overall team location
estimation is maximized.

V1., CONCLUSIONS

In this paper, we presented a graphical model of robot-
sensor networks in SE(2), and derived the sufficient and
necessary conditions for building rigid sensing graphs and
localizable formations based on distributed exteroceplive sen-
sors. The affect of the sensing graphs and the robot formation
geometry on localization quality was investigated using exper-
imentally validated sensor modelling. A gradient based control
scheme was applied to deploy robot teams to configurations
that maximize the quality of localization estimates obtained.
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