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From Nonlinear to Hamiltonian via Feedback

Abstract

Mechanical control systems are an especially interesting and important class of nonlinear control systems.
They possess a rich mathematical structure and yet, physical considerations reveal extremely important for the
solution of a large class of control problems. In this note, we broaden the applicability of design
methodologies developed for mechanical control systems by rendering nonlinear control systems, mechanical
by a proper choice of feedback. In particular, we characterize which control systems can be transformed to
Hamiltonian control systems by a feedback transformation.
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From Nonlinear to Hamiltonian via Feedback II. HAMILTONIAN CONTROL SYSTEMS

Several different models of mechanical control systems abound in
the literature on control of mechanical control systems. We will adopt
what we think to be one of the simplest such models: Hamiltonian con-

Abstract—Mechanical control systems are an especially interesting and trol systems. To introduce it, we review some elementary notions of
important class of nonlinear control systems. They posses a rich mathe- symplectic geometry [10], [11].

matical structure and yet, physical considerations reveal extremely impor- A symplectic formw on a smooth manifold/ is a two-form satis-
tant for the solution of a large class of control problems. In this note, we . . the followi ties:

broaden the applicability of design methodologies developed for mechan- fying the following properties:
ical control systems by rendering nonlinear control systems, mechanicalby 1) Nondegeneracyv(X,Y) = 0 for every X € TM implies

Paulo Tabuada and George J. Pappas

a proper choice of feedback. In particular, we characterize which control Y =0;
systems can be transformed to Hamiltonian control systems by a feedback 2) Closednessiw = 0
transformation.

o ] where we have denoted the exterior derivativedoyWe also use the
tralr?gf?))r(m;teigr?s_Hammoman systems, nonlinear systems, feedback potationiyw to represent the contraction of the two-formwith the
’ vector field X, that is(ixw)(Y) = w(X,Y) foranyY € TM. The
first property of the formw is required to obtain an isomorphism be-
. INTRODUCTION tweenT M andT™ M from w. This is achieved by the correspondence

_ — iyw € T" M which allows to associate a unique Hamiltonian

. . . . X
Mechanical control systems are a particularly interesting class \94 tor fieldX ;; with any smooth magl : M — R through the equality
nonlinear control systems as they comprise a refined mathematicaf

structure and yet physical insights are extremely useful to guide ix,w=dH.

control design for these systems. Furthermore, many systems are in

fact built by mechanical subsystems which also justifies the interestiamiltonian vector fields conserve energy (the HamiltorfiBnalong
mechanical control systems from the applications point of view. It isheir trajectories:(#), that is

therefore, without surprise that we witness the growth of a wealth of d

powerful design methodologies for these systems. Examples include EH(C(”) =(LxyH)oc(t)=0.

energy shaping methods [1}-{3], specialized controllability notiothe nondegeneracy condition eralso implies that the dimension on

and tests [4], [5] motion planning and generation [6], among many .

others. See also the monographs [7], [8] for several design techniquéﬁzzﬁ tr?ibf an i?vsrt] nur:nbrer,tﬁetet,hfo;lexarpplﬁ, Erlncl)t] r-lrihi \(/:Iosteflness

based on the related notion of passivity. co ,,0 s required to ensure that the flowo a* amifonian vecto
field Xy respects the symplectic form, thatds*w = w. We now

In this note, we broaden the applicability of design tools for meiﬁ roduce the class of Hamiltonian control systems we will use in this
chanical control systems to other classes of systems by proper ch0|r(1:és Y

of feedback. More specifically, we will solve the following equivalence . . . .
. P Y. geq Definition 2.1: Let M be a smooth manifold equipped with sym-
problem: . - . . .
) . ) plectic formw and letU be the input manifold. A control affine system
Given a control system, determine if it is possible to transform . - 17 _ 72
it to a Hamiltonian control system by a feedback transformation »
We recall that this_has been considered one of the open problems in F=X+ ZY”“
the area of mechanical feedback control systems as described in the =1

following passage from [9]: is said to be a Hamiltonian control system with Hamiltonfrif the
“Find other techniques which enable one to use feedbackyector field X is Hamiltonian with Hamiltoniar .
control for mechanical or, indeed, nonmechanical systems, which  jithin the context of Hamiltonian control systems one could also
leave or put the system into Hamiltonian or Lagrangian form.”  consider other models, for example, one could consider that the vector
The structure of this note is as follows. In Section II, we review sonfields Y; are also Hamiltonian [12] or even the more general class of
elementary notions of symplectic geometry and introduce the notionmdrt-controlled Hamiltonian systems [13]. However, we will focus on
Hamiltonian control systems used throughout the note. In Section His simple model as the techniques to be developed extend to the other
we provide a simple test to determine if a given control system caases.
be rendered Hamiltonian with respect to a given Hamiltonian. In Sec-
tion 1V, we determine sufficient and necessary conditions for the exis- IIl. CAN WE ACHIEVE A GIVEN HAMILTONIAN ?
tence of some Hamiltonian and a feedback transformation rendering a L . )
control system Hamiltonian. These geometric conditions are then illus-//€ Start by determining if there exists a feedback transformation,
,amapa(z)+ 3(z)v: M x U — U with 3(z) invertible such

trated with an example. Finally, in Section V, we present some topitgat is
for further research. that the feedback transformed system

X(a)+ ) Yi@au(e) + Y Yi(a)Bi(x)v; (1.2)
¢ i,

. . ) is Hamiltonian with Hamiltoniarf . From expression (I11.1) it is clear
Manuscript received May 19, 2002; revised January 15, 2003. Recommen egt | ds to desi to ch Y ill simol
by Associate Editor J. M. A. Scherpen. This work was supported in part by t Qne only nee, S O, eSIQ“(m) oc f”mgef » SO V\,’e will-simply
National Science Foundation Information Technology Research Grant CCRG2Nsider thati(z) is the identity map o®/. This question has the fol-
21431. lowing simple answer.
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tabuadap@seas.upenn.edu; pappasg@seas.upenn.edu). inputs it is natural to restrict feedback transformations to affine transformations
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Proposition 3.1: Let F' be an affine control system on a smoothas well as the vector fields
manifold A equipped with symplectic from andH : M — R a _ 9 9
smooth map. There exists a local feedback transformation rend€ring Z= Z% +w(X.2) dy
Hamiltonian with Hamiltoniand iff ’

] o . defining the distributiomA~ on 3. These new objects allow to rewrite
dH —ixw € span{iy, w,iv,w,...,iy,w} (1mn.2) (IV.1) as

or, equivalently _ o
L,H=0 VZeA¥~
(dH—ixo.))/\iylw/\iVZQ.)/\---/\iypu):0. _
) . which we interpret as the requirement that vector figddae tangent to
Proof. Assume thgt a such a feedback exists, then the feedbqﬁ% submanifold #)~*(0) of M. Thus, we see that, in this geometric
transformed system satisfies interpretation of PDE (IV.1), finding a HamiltoniaH is equivalent to
dH finding a submanifold ofiZ, implicitly defined by a magd : A — R,
such thatA* is contained in the tangent space(&f) ' (0). Further-
more, H must also satisfydH /0y) # 0 which ensures, via the im-
plicit function theorem, thafl defines a function o/, the desired
Hamiltonian H. Necessary and sufficient conditions for the local ex-

istence of such a mafl are given in the next result which can be

clearly showing that (I11.2) is satisfied. Conversely, assume that (”l-?ﬁterpreted as providing geometric conditions for the integrability of
holds, then there are locally defined smooth functiens M — R ppg (1v.1):

X4 ai@)yi@)Y T
which we rewrite as

p
dH —ixw= E iy, w

=1

such that Theorem 4.1:Let F be an affine control system on a smooth man-
P ifold A4 with symplectic formv and denote b¢ andC the involutive
dH —ixw= Z a;iv,w. closures ofA* andA«~ which we assume to be regular. There exists a
i=1 locally defined mapH : M — R and a local feedback transformation
We now definex by the equalitiesv; = a; which define the desired "enderingt” Hamiltonian with Hamiltoniar# iff
local feedback. ]

. L . . . dim(C) = dim(C). (Iv.2)
While the conditions in Proposition 3.1 provide a quick test to deter-

mine if one can transform a control system to a Hamiltonian one with  Proof: In view of the discussion preceding Theorem 4.1,
a specified , they are not useful if one wants to search for a feedbadk suffices to show that (IV.2) is sufficient and necessary for the
transformation and also a Hamiltonian. We devote the next sectionexistence of the ma@l : M — R satisfying(dH /dy) # 0 and

this problem. A« C T((H)™! (0)). To show necessity assume the existence of
H = H - y satisfyingA= C T((H)~'(0)).Leti: M — M be the
IV. CAN WE ACHIEVE SOME HAMILTONIAN ? mapi(x) = (@, H(x)) and note that

To provide a solution for the general case where no Hamiltonian is Tii-Z(x) = Z(;p)i +T.H - Z(w)ﬂ
priori specified we will reshape condition (111.2). We start by making ’ Oz ! dy
the following f':ldc.ilt|0-r1al assumption: . - = Z(0) 2+ w(X,2) 2

1) The distribution spanned by the input vector fields _ Ox dy

Y1,Y>,....Y,, denoted by\, is locally of constant rank. = Z(z, H(x))
=Zoi(x)

A. Geometric Solution
To develop a geometric solution we introduce the symplectic orthoyere the second equality follows from (IV.1). This shows that the

onal of A, which we denote by and define by vector fieldsz are.z-related to the vector fields'. Slncg |fZi isi-re-
lated toZ; andZ; isi-related taZ,, the brackefZ;, Z;] isi-related to

A={ZeTM:w(Z,Y)=0 VY € A} [Z:, Z;] (see [14]), it follows by induction thatim(C) = dim(C).

d Sufficiency is proved by applying Frobenius theorenCtgwhich

Is regular by assumption) to ensure the existence of a submanifold

N of M to which the vector fields im\~ are tangent. Furthermore,

Frobenius theorem also ensures that this submanifold is locally de-

scribed by the zero level of a smooth mép: M — R [14]. It re-

mains to show thato  /dy) # 0. We proceed by contradiction as-

dH(Z)=w(X,Z) VZ e A*. (IV.1)  suming thailim(C) = dim(C) and(0H /dy) = 0. Then the vector

field Z = 0(8/8x) + 1(0/dy) € ker(dH) = ker((0H /0x)dx +

(8H /dy)dy). This shows thadim(C) is at least greater thetiim (C)

Note thatA* is locally of constant rank in virtue of assumption 1 an
smoothness af. By making use of\* we can reformulate condition
(IN.2) to a more useful form. If condition (111.2) is satisfied, thdd —
iyw =" a;iy;w and contracting this expression with any vecto
field in A“ we have

Conversely, if (IV.1) is satisfied, thedH = ixw + v for some
v € span{iy,w,iyv,w,...,iy,w} which implies condition (lIl.2) S
and shows how (Il.2) can be equivalently expressed as (IV.1). T gohne, acozt;adllctlon. d sufficient diti f th. .

expression can also be regarded as a partial differential equatio eorem <. QIVes hecessary and sullicient conaiions for the exis-

(PDE) whose solution provides the desired HamiltontanWe now ter?cedofaf)?lutlct))ntto PDE (IV.1). Howevtir, solving P_DES 1S, |n|gen<tarail(,j
interpret this PDE geometrically by defining the new manifold ahard probiem but a heécessary one as they appear in several controt de-
sign problems for mechanical control systems [2], [3].

M=MxR As an immediate consequence of Theorem 4.1 we see that in the
casedim(A®~) = 1, that is, control systemd” has2m — 1 inputs and
dim(M) = 2m, condition (IV.2) is automatically satisfied.

Corollary 4.2: Let F' be an affine control system on a smooth man-
H=H—y ifold M of dimensior2m with symplectic formv and2m — 1 inputs.

with local coordinatesz, v), wherex are coordinates foR/ andy
coordinates foR. We also define the map
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Then, there exists a locally defined m&p: M — R and a local feed- Comparing this expression with (IV.5), we see that we necessarily have
back transformation rendering Hamiltonian with Hamiltoniard . iz;iz,dixw = 0.

The discussion so far has assumed that the symplectic fohas To show sufficiency we note that {iZ;, Z;] = Y, a:Z; for
beena priori specified. However, this is not necessary in virtue of;, Z;, Z; € C and smooth real valued functions, it follows by
Darboux theorem [10] which asserts that, locally, every symplect{t/.5) that[Z;, Z,] equals

manifold of dimensior2m is symplectomorphic (diffeomorphic by a 9 L. 9
diffeomorphism that preserves the symplectic form&8 with sym- [Zi. Z;] 9 + WX, [Z0 Z5]) + izidz; dlxw)@
plectic form 9 ) o P
:Za,Zlf+ W X,ZalZ] +lzilz.dlxw =
m 01 J ay
w= Zd,r,' A dy; (IV.3) ! !
i= a .. . 3]
1 :Za’Z‘07+ <me(X,Z,)+1Zilz]d1xw> 3
expressed in coordinates i, x2, ..., T, Y1y Y25 -« Yom) TOr 1 : [ y

R*™. Thus, we see that if a control system can be locally rendered _ Za,Z+ iz.iz.dixwi
Hamiltonian with respect to the form, then by a change of coordi- . Y )

nates, it is also Hamiltonian with respect to any other symplectic forfp, o assumptioriz,iz dixw = 0 now allows to conclude that
T4

i L Zi, Zi| = > aZi = [Z;i, Zi] = > a;Z; and an induction argument

B. An Alternative Characterization [shows] thatleim(c’) :[ dim(]@ th:ich by Theorem 4.1 implies the

The conditions for the existence of a Hamiltonian and a feedbaekistence off and the desired feedback transformation. |
transformation given in Theorem 4.1 require the computation of sev-This formulation also allows to see that Corollary 4.2 is a simple
eral objects such a&~, A=, C, C, etc. However, some of these objectgonsequence of the skew-symmetry.oflf dim(A“) = 1 we have
contain some degree of redundancy and we will now see how one ¢hat for anyZ;, Z, € A, Z, = A\Z; for a smooth real valued map
verify the conditions of Theorem 4.1 in a more efficient way. In particand (dix w)(Z;, A\Z;) = Mdixw)(Z;, Z;) = 0.
ular, we shall take advantage of the special form of the vector fields inThe necessary steps to determine the existence of a solution to PDE

A« From the expression ¢¥;, Z,] in local coordinates (IV.1) can now be resumed to the following.
o f’);j 0 Z 1) Compute a basis for the symplectic orthoganél of A
2. 2,1 = {dw(X,ZJ') o} L(X,Zi)} A*={ZE€TM:w(Z,Y)=0 VY €A}.

3 { & 0} { Z; ] 2) Check ifiz,iz,dixw = 0 for everyZ;, Z; in the basis ofA*
dw(X,Z;) 0] |w(X,Z)) computed in step 1).
If Theorem 4.1 is satisfied, then a solution to (IV.1) must be ob-
tained in order to determine the feedback transformatioH.i such a
[Z., Zj]i F(Lrw(X,Z;) - £ij(X7 Zi))i. (IV.4) solution, we c;letermnne_ th(_e feedback transformation by computing the
Oz Jy smooth functions:; satisfying
We now rewritel 7z, w(X, Z;) — Lz, w(X, Z;) as P
2:0(X, Z;) Zi (X, Z0) dH—ix;u:Zaiiyq.;u.
—d(izjixw)(z,j)—£zjw(X,Zi) =1
These functions allow to determine the tewf) of the feedback trans-
formationa(z) + 3(z)v by the equalities;; = a;. The term3(z) can
— (Lz,ixw —iz,dixw)(Z) — Lz,2(X, Z:) be taken as thejdentity dn or any other invertible (pointwise) linear
map fromU to U.

we see thafZ;, Z;] is given by

which by the Cartan magic formula [14] becomes

= _iZiEZjiXW + iZq-iZjdiX\’-U — [,ij(X,Zi)

=Lzizixw—iz,Lz;ixw+izizdixw. C. Example
Using the fact thatl; iz, v — iz, L2,y = ~([Z:, Z;]) for any We now provide an example of the previously introduced method-
one-formy we obtain Y o ology. Consider the following control system:
W(X.[Zi Z5]) + iziiz, dixw. (V.5) = et A
) ) . By = wras 4+ Zad
Expression (IV.5) allows to formulate the following alternative ver- . 2
sion of Theorem 4.1. T3 = T1T2Tq + Xalyls
Theorem 4.3 (Alternative Characterization)et F' be an affine Ty = 1123 (Iv.7)

control system on a smooth manifold” with symplectic formw. — on g* with symplectic formw = dz; A das + das A das. In this
There exists a locally defined map : M — R and a local feedback ¢ase we have
transformation rendering’ Hamiltonian with Hamiltoniard iff

X3 X2 ()
iziz,dixw=0 VZ.,Z; €A (IV.6) xo M| |0 | O (V8)
T1X2T4 0 Toa ’
Proof: As we have seen in the proof of Theorem 4.1, existence - 0 0

of H and the feedback transformation implies that every vector field =~ - o1 . .
7 € A¥ isi-related to the vector field € A= for i(x) = (v, H(x)). andA = span{Y7,Y>}. We now follow the steps outlined in the pre

This, in turn, implies thalZ;, Z;] is alsoi-related tdZ;, Z;] leading vious section. _ _ _ i _
to 1) The symplectic orthogonal &f is obtained by first computing

iv,w = zodxs
iv,w = woxsday (IV.9)

_ o . 0
(2. Zi] = 1Zi, Z;] 7~ + w(X, [Z, Z;]) 5
Ox dy
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and then determining\* as the annihilating distribution of These results enlarge the class of systems to which powerful control
span{iy, w,iy,w}. DistributionA* is then given by the span of design methods developed for mechanical systems are applicable.
Many related problems remain open. When we cannot perform such
a feedback transformation it may still be possible to extract a quo-
tient (an abstraction, see, for example, [15] and [16]) or a subsystem
that is mechanical, or that can be rendered mechanical by feedback.
This would allow to synthesize controllers for part of the variables by
making use of techniques developed for mechanical control systems.

1 0
0 0
AR= Zo = A
=0 n=]Y (V.10)
0 0

2) We now compute

ixw=— (%li + 1113) dz; + zoxsdas

—z123des + xixexaday
which by differentiation gives
dixw = —2x129d2s Adr; — 23dag A da
+ xodas Adas — xsdag Adas
+ xoxadxr Adey + x1x4das Aday
= —2x1x2dxs Adri + xadas A das
+ zoxadxy Adxy + zixadas Aday

and evaluatingli x w on Z; andZ:

iz, dixw = xoday

iziz,dixw =0

shows, via Theorem 4.3, that a Hamiltonian and a feedback trans-

formation exist.

To obtainH one has to solve (1V.1), which in this case results in

OH 1, )
ory 2T
OH

76;1’3 = —XIr1x3.

It suffices to solve the first equation to obtain

1 o .
H = ~3 (:vf:vé + :vlgvé) .
One now computed H — ixw = (a:f;vg — zow3)das — x1w2xadas
which can be written ad H — ixw = a1iy,w + asiy,w for

1

a2 = —I124.

2
a;p =& — I3

(IV.11)

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

[9]

(20]

(11]

(12]

(23]

(14]

These functions now allow to define the feedback transformation as

a;(z) = a;(x) and for3(z) we simply use the identity ofy. The
feedback transformed system is now of the form

. 0H

T = s + xouy

. 0H

2= 8:1’1

. oOH

r3 = —— + Torsuo
Ouy

. 0H

revealing its Hamiltonian structure.

V. CONCLUSION

(15]

(16]

In this note, we addressed the problem of rendering a nonlinear con-
trol system Hamiltonian by a proper choice of feedback. We showed
that the solution is given by the solution of a PDE and provided suf-
ficient and necessary conditions for the local existence of solutions.
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