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From Nonlinear to Hamiltonian via Feedback

Abstract
Mechanical control systems are an especially interesting and important class of nonlinear control systems.
They possess a rich mathematical structure and yet, physical considerations reveal extremely important for the
solution of a large class of control problems. In this note, we broaden the applicability of design
methodologies developed for mechanical control systems by rendering nonlinear control systems, mechanical
by a proper choice of feedback. In particular, we characterize which control systems can be transformed to
Hamiltonian control systems by a feedback transformation.
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From Nonlinear to Hamiltonian via Feedback

Paulo Tabuada and George J. Pappas

Abstract—Mechanical control systems are an especially interesting and
important class of nonlinear control systems. They posses a rich mathe-
matical structure and yet, physical considerations reveal extremely impor-
tant for the solution of a large class of control problems. In this note, we
broaden the applicability of design methodologies developed for mechan-
ical control systems by rendering nonlinear control systems, mechanical by
a proper choice of feedback. In particular, we characterize which control
systems can be transformed to Hamiltonian control systems by a feedback
transformation.

Index Terms—Hamiltonian systems, nonlinear systems, feedback
transformation.

I. INTRODUCTION

Mechanical control systems are a particularly interesting class of
nonlinear control systems as they comprise a refined mathematical
structure and yet physical insights are extremely useful to guide
control design for these systems. Furthermore, many systems are in
fact built by mechanical subsystems which also justifies the interest in
mechanical control systems from the applications point of view. It is,
therefore, without surprise that we witness the growth of a wealth of
powerful design methodologies for these systems. Examples include
energy shaping methods [1]–[3], specialized controllability notions
and tests [4], [5] motion planning and generation [6], among many
others. See also the monographs [7], [8] for several design techniques
based on the related notion of passivity.

In this note, we broaden the applicability of design tools for me-
chanical control systems to other classes of systems by proper choices
of feedback. More specifically, we will solve the following equivalence
problem:

Given a control system, determine if it is possible to transform
it to a Hamiltonian control system by a feedback transformation.
We recall that this has been considered one of the open problems in

the area of mechanical feedback control systems as described in the
following passage from [9]:

“Find other techniques which enable one to use feedback
control for mechanical or, indeed, nonmechanical systems, which
leave or put the system into Hamiltonian or Lagrangian form.”

The structure of this note is as follows. In Section II, we review some
elementary notions of symplectic geometry and introduce the notion of
Hamiltonian control systems used throughout the note. In Section III,
we provide a simple test to determine if a given control system can
be rendered Hamiltonian with respect to a given Hamiltonian. In Sec-
tion IV, we determine sufficient and necessary conditions for the exis-
tence of some Hamiltonian and a feedback transformation rendering a
control system Hamiltonian. These geometric conditions are then illus-
trated with an example. Finally, in Section V, we present some topics
for further research.
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II. HAMILTONIAN CONTROL SYSTEMS

Several different models of mechanical control systems abound in
the literature on control of mechanical control systems. We will adopt
what we think to be one of the simplest such models: Hamiltonian con-
trol systems. To introduce it, we review some elementary notions of
symplectic geometry [10], [11].

A symplectic form! on a smooth manifoldM is a two-form satis-
fying the following properties:

1) Nondegeneracy:!(X; Y ) = 0 for everyX 2 TM implies
Y = 0;

2) Closedness:d! = 0

where we have denoted the exterior derivative byd. We also use the
notationiX! to represent the contraction of the two-form! with the
vector fieldX, that is(iX!)(Y ) = !(X;Y ) for anyY 2 TM . The
first property of the form! is required to obtain an isomorphism be-
tweenTM andT �M from!. This is achieved by the correspondence
X 7! iX! 2 T �M which allows to associate a unique Hamiltonian
vector fieldXH with any smooth mapH :M ! through the equality

iX ! = dH:

Hamiltonian vector fields conserve energy (the HamiltonianH) along
their trajectoriesc(t), that is

d

dt
H(c(t)) = (LX H) � c(t) = 0:

The nondegeneracy condition on! also implies that the dimension on
M has to be an even number; see, for example, [10]. The closedness
condition is required to ensure that the flow�t of a Hamiltonian vector
field XH respects the symplectic form, that is�t�! = !. We now
introduce the class of Hamiltonian control systems we will use in this
note.

Definition 2.1: Let M be a smooth manifold equipped with sym-
plectic form! and letU be the input manifold. A control affine system
F : M � U ! TM

F = X +

p

i=1

Yiui

is said to be a Hamiltonian control system with HamiltonianH if the
vector fieldX is Hamiltonian with HamiltonianH .

Within the context of Hamiltonian control systems one could also
consider other models, for example, one could consider that the vector
fields Yi are also Hamiltonian [12] or even the more general class of
port-controlled Hamiltonian systems [13]. However, we will focus on
this simple model as the techniques to be developed extend to the other
cases.

III. CAN WE ACHIEVE A GIVEN HAMILTONIAN ?

We start by determining if there exists a feedback transformation,
that is, a map1 �(x)+�(x)v :M �U ! U with �(x) invertible such
that the feedback transformed system

X(x) +
i

Yi(x)�i(x) +
i;j

Yi(x)�ij(x)vj (III.1)

is Hamiltonian with HamiltonianH . From expression (III.1) it is clear
that one only needs to design�(x) to changeX, so we will simply
consider that�(x) is the identity map onU . This question has the fol-
lowing simple answer.

1In the current setting where control systems are assumed to be affine in the
inputs it is natural to restrict feedback transformations to affine transformations
as this ensures that the transformed system is still input affine.

0018-9286/03$17.00 © 2003 IEEE
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Proposition 3.1: Let F be an affine control system on a smooth
manifoldM equipped with symplectic from! andH : M ! a
smooth map. There exists a local feedback transformation renderingF
Hamiltonian with HamiltonianH iff

dH � iX! 2 spanfiY !; iY !; . . . ; iY !g (III.2)

or, equivalently

(dH � iX!) ^ iY ! ^ iY ! ^ � � � ^ iY ! = 0:

Proof: Assume that a such a feedback exists, then the feedback
transformed system satisfies

i
X+ � (x)Y (x)! = dH

which we rewrite as

dH � iX! =

p

i=1

�iiY !

clearly showing that (III.2) is satisfied. Conversely, assume that (III.2)
holds, then there are locally defined smooth functionsai : M !
such that

dH � iX! =

p

i=1

aiiY !:

We now define� by the equalities�i = ai which define the desired
local feedback.

While the conditions in Proposition 3.1 provide a quick test to deter-
mine if one can transform a control system to a Hamiltonian one with
a specifiedH , they are not useful if one wants to search for a feedback
transformation and also a Hamiltonian. We devote the next section to
this problem.

IV. CAN WE ACHIEVE SOME HAMILTONIAN ?

To provide a solution for the general case where no Hamiltonian isa
priori specified we will reshape condition (III.2). We start by making
the following additional assumption:

1) The distribution spanned by the input vector fields
Y1; Y2; . . . ; Yp, denoted by�, is locally of constant rank.

A. Geometric Solution

To develop a geometric solution we introduce the symplectic orthog-
onal of�, which we denote by�! and define by

�! = fZ 2 TM : !(Z; Y ) = 0 8Y 2 �g:

Note that�! is locally of constant rank in virtue of assumption 1 and
smoothness of!. By making use of�! we can reformulate condition
(III.2) to a more useful form. If condition (III.2) is satisfied, thendH�
iX! = p

i=1 aiiY ! and contracting this expression with any vector
field in �! we have

dH(Z) = !(X;Z) 8Z 2 �!: (IV.1)

Conversely, if (IV.1) is satisfied, thendH = iX! + 
 for some

 2 spanfiY !; iY !; . . . ; iY !g which implies condition (III.2)
and shows how (III.2) can be equivalently expressed as (IV.1). This
expression can also be regarded as a partial differential equation
(PDE) whose solution provides the desired HamiltonianH . We now
interpret this PDE geometrically by defining the new manifold

�M = M �

with local coordinates(x; y), wherex are coordinates forM andy
coordinates for . We also define the map

�H = H � y

as well as the vector fields

�Z = Z
@

@x
+ !(X;Z)

@

@y

defining the distribution�! on �M . These new objects allow to rewrite
(IV.1) as

L�Z
�H = 0 8 �Z 2 �!

which we interpret as the requirement that vector fields�Z are tangent to
the submanifold( �H)�1(0) of �M . Thus, we see that, in this geometric
interpretation of PDE (IV.1), finding a HamiltonianH is equivalent to
finding a submanifold of�M , implicitly defined by a map�H : �M ! ,
such that��! is contained in the tangent space of( �H)�1(0). Further-
more, �H must also satisfy(@ �H=@y) 6= 0 which ensures, via the im-
plicit function theorem, that�H defines a function onM , the desired
HamiltonianH . Necessary and sufficient conditions for the local ex-
istence of such a map�H are given in the next result which can be
interpreted as providing geometric conditions for the integrability of
PDE (IV.1):

Theorem 4.1:Let F be an affine control system on a smooth man-
ifold M with symplectic form! and denote byC and �C the involutive
closures of�! and�! which we assume to be regular. There exists a
locally defined mapH :M ! and a local feedback transformation
renderingF Hamiltonian with HamiltonianH iff

dim(C) = dim( �C): (IV.2)

Proof: In view of the discussion preceding Theorem 4.1,
it suffices to show that (IV.2) is sufficient and necessary for the
existence of the map�H : �M ! satisfying(@ �H=@y) 6= 0 and
�! � T (( �H)�1(0)). To show necessity assume the existence of
�H = H � y satisfying�! � T (( �H)�1(0)). Let i :M ! �M be the
mapi(x) = (x;H(x)) and note that

Txi � Z(x) = Z(x)
@

@x
+ TxH � Z(x)

@

@y

= Z(x)
@

@x
+ !(X;Z)

@

@y

= �Z(x;H(x))

= �Z � i(x)

where the second equality follows from (IV.1). This shows that the
vector fieldsZ arei-related to the vector fields�Z . Since ifZi is i-re-
lated to �Zi andZj is i-related to�Zj , the bracket[Zi; Zj ] is i-related to
[ �Zi; �Zj ] (see [14]), it follows by induction thatdim(C) = dim( �C).

Sufficiency is proved by applying Frobenius theorem to�C (which
is regular by assumption) to ensure the existence of a submanifold
N of �M to which the vector fields in�! are tangent. Furthermore,
Frobenius theorem also ensures that this submanifold is locally de-
scribed by the zero level of a smooth map�H : M ! [14]. It re-
mains to show that(@ �H=@y) 6= 0. We proceed by contradiction as-
suming thatdim(C) = dim( �C) and(@ �H=@y) = 0. Then the vector
field �Z = 0(@=@x) + 1(@=@y) 2 ker(d �H) = ker((@ �H=@x)dx +
(@ �H=@y)dy). This shows thatdim( �C) is at least greater themdim(C)
by one, a contradiction.

Theorem 4.1 gives necessary and sufficient conditions for the exis-
tence of a solution to PDE (IV.1). However, solving PDEs is, in general,
a hard problem but a necessary one as they appear in several control de-
sign problems for mechanical control systems [2], [3].

As an immediate consequence of Theorem 4.1 we see that in the
casedim(�!) = 1, that is, control systemF has2m � 1 inputs and
dim(M) = 2m, condition (IV.2) is automatically satisfied.

Corollary 4.2: LetF be an affine control system on a smooth man-
ifold M of dimension2m with symplectic form! and2m� 1 inputs.
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Then, there exists a locally defined mapH :M ! and a local feed-
back transformation renderingF Hamiltonian with HamiltonianH .

The discussion so far has assumed that the symplectic form! has
beena priori specified. However, this is not necessary in virtue of
Darboux theorem [10] which asserts that, locally, every symplectic
manifold of dimension2m is symplectomorphic (diffeomorphic by a
diffeomorphism that preserves the symplectic forms) to2m with sym-
plectic form

! =

m

i=1

dxi ^ dyi (IV.3)

expressed in coordinates(x1; x2; . . . ; xm; y1; y2; . . . ; ym) for
2m. Thus, we see that if a control system can be locally rendered

Hamiltonian with respect to the form!, then by a change of coordi-
nates, it is also Hamiltonian with respect to any other symplectic form.

B. An Alternative Characterization

The conditions for the existence of a Hamiltonian and a feedback
transformation given in Theorem 4.1 require the computation of sev-
eral objects such as�!;�!; C; �C, etc. However, some of these objects
contain some degree of redundancy and we will now see how one can
verify the conditions of Theorem 4.1 in a more efficient way. In partic-
ular, we shall take advantage of the special form of the vector fields in
�! . From the expression of[Zi; Zj ] in local coordinates

[Zi; Zj ] =
@Z

@x
0

d!(X;Zj) 0

Zi

!(X;Zi)

�
@Z

@x
0

d!(X;Zi) 0

Zj

!(X;Zj)

we see that[Zi; Zj ] is given by

[Zi; Zj ]
@

@x
+ (LZ !(X;Zj)�LZ !(X;Zi))

@

@y
: (IV.4)

We now rewriteLZ !(X;Zj) � LZ !(X;Zi) as

�d(iZ iX!)(Zi)� LZ !(X;Zi)

which by the Cartan magic formula [14] becomes

� (LZ iX! � iZ diX!)(Zi)�LZ !(X;Zi)

= �iZ LZ iX! + iZ iZ diX! �LZ !(X;Zi)

= LZ iZ iX! � iZ LZ iX! + iZ iZ diX!:

Using the fact thatLZ iZ 
 � iZ LZ 
 = 
([Zi; Zj ]) for any
one-form
 we obtain

!(X; [Zi; Zj ]) + iZ iZ diX!: (IV.5)

Expression (IV.5) allows to formulate the following alternative ver-
sion of Theorem 4.1.

Theorem 4.3 (Alternative Characterization):Let F be an affine
control system on a smooth manifoldM with symplectic form!.
There exists a locally defined mapH : M ! and a local feedback
transformation renderingF Hamiltonian with HamiltonianH iff

iZ iZ diX! = 0 8Zi; Zj 2 �!
: (IV.6)

Proof: As we have seen in the proof of Theorem 4.1, existence
of H and the feedback transformation implies that every vector field
Z 2 �! is i-related to the vector field�Z 2 �! for i(x) = (x;H(x)).
This, in turn, implies that[Zi; Zj ] is alsoi-related to[Zi; Zj ] leading
to

[Zi; Zj ] = [Zi; Zj ]
@

@x
+ !(X; [Zi; Zj ])

@

@y
:

Comparing this expression with (IV.5), we see that we necessarily have
iZ iZ diX! = 0.

To show sufficiency we note that if[Zi; Zj ] =
l
alZj for

Zi; Zj ; Zl 2 C and smooth real valued functionsal, it follows by
(IV.5) that [Zi; Zj ] equals

[Zi; Zj ]
@

@x
+ (!(X; [Zi; Zj ]) + iZ iZ diX!)

@

@y

=
l

alZl
@

@x
+ ! X;

l

alZl + iZ iZ diX!
@

@y

=
l

alZl
@

@x
+

l

al!(X;Zl) + iZ iZ diX!
@

@y

=
l

alZl + iZ iZ diX!
@

@y
:

The assumptioniZ iZ diX! = 0 now allows to conclude that
[Zi; Zl] = alZl ) [Zi; Zl] = alZl and an induction argument
shows thatdim(C) = dim( �C) which by Theorem 4.1 implies the
existence ofH and the desired feedback transformation.

This formulation also allows to see that Corollary 4.2 is a simple
consequence of the skew-symmetry of!. If dim(�!) = 1 we have
that for anyZi; Zj 2 �!; Zi = �Zj for a smooth real valued map�
and(diX!)(Zi; �Zi) = �(diX!)(Zi; Zi) = 0.

The necessary steps to determine the existence of a solution to PDE
(IV.1) can now be resumed to the following.

1) Compute a basis for the symplectic orthogonal�! of �

�! = fZ 2 TM : !(Z; Y ) = 0 8Y 2 �g:

2) Check ifiZ iZ diX! = 0 for everyZi; Zj in the basis of�!

computed in step 1).
If Theorem 4.1 is satisfied, then a solution to (IV.1) must be ob-

tained in order to determine the feedback transformation. IfH is such a
solution, we determine the feedback transformation by computing the
smooth functionsai satisfying

dH � iX! =

p

i=1

aiiY !:

These functions allow to determine the term�(x) of the feedback trans-
formation�(x)+�(x)v by the equalities�i = ai. The term�(x) can
be taken as the identity onU or any other invertible (pointwise) linear
map fromU to U .

C. Example

We now provide an example of the previously introduced method-
ology. Consider the following control system:

_x1 = x2x3 + x2u1

_x2 = x1x
2

2 +
1

2
x
2

3

_x3 = x1x2x4 + x2x3u2

_x4 = x1x3 (IV.7)

on 4 with symplectic form! = dx1 ^ dx2 + dx3 ^ dx4. In this
case, we have

X =

x2x3

x1x
2

2 +
1

2
x23

x1x2x4

x1x3

Y1 =

x2

0

0

0

Y2 =

0

0

x2x3

0

(IV.8)

and� = spanfY1; Y2g. We now follow the steps outlined in the pre-
vious section.

1) The symplectic orthogonal of� is obtained by first computing

iY ! = x2dx2

iY ! = x2x3dx4 (IV.9)
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and then determining�! as the annihilating distribution of
spanfiY !; iY !g. Distribution�! is then given by the span of

Z1 =

1

0

0

0

Z2 =

0

0

1

0

: (IV.10)

2) We now compute

iX! = �
1

2
x
2

3 + x1x
2

2 dx1 + x2x3dx2

�x1x3dx3 + x1x2x4dx4

which by differentiation gives

diX! = �2x1x2dx2 ^ dx1 � x3dx3 ^ dx1

+ x2dx3 ^ dx2 � x3dx1 ^ dx3

+ x2x4dx1 ^ dx4 + x1x4dx2 ^ dx4

= �2x1x2dx2 ^ dx1 + x2dx3 ^ dx2

+ x2x4dx1 ^ dx4 + x1x4dx2 ^ dx4

and evaluatingdiX! onZ1 andZ2:

iZ diX! = x2dx2

iZ iZ diX! = 0

shows, via Theorem 4.3, that a Hamiltonian and a feedback trans-
formation exist.

To obtainH one has to solve (IV.1), which in this case results in

@H

@x1
= �

1

2
x
2

3 � x1x
2

2

@H

@x3
= �x1x3:

It suffices to solve the first equation to obtain

H = �
1

2
x
2

1x
2

2 + x1x
2

3 :

One now computesdH � iX! = (x21x2 � x2x3)dx2 � x1x2x4dx4
which can be written asdH � iX! = a1iY ! + a2iY ! for

a1 = x
2

1 � x3 a2 =
1

x3
x1x4: (IV.11)

These functions now allow to define the feedback transformation as
�i(x) = ai(x) and for�(x) we simply use the identity onU . The
feedback transformed system is now of the form

_x1 =
@H

@x2
+ x2u1

_x2 = �
@H

@x1

_x3 =
@H

@x4
+ x2x3u2

_x4 = �
@H

@x3

revealing its Hamiltonian structure.

V. CONCLUSION

In this note, we addressed the problem of rendering a nonlinear con-
trol system Hamiltonian by a proper choice of feedback. We showed
that the solution is given by the solution of a PDE and provided suf-
ficient and necessary conditions for the local existence of solutions.

These results enlarge the class of systems to which powerful control
design methods developed for mechanical systems are applicable.

Many related problems remain open. When we cannot perform such
a feedback transformation it may still be possible to extract a quo-
tient (an abstraction, see, for example, [15] and [16]) or a subsystem
that is mechanical, or that can be rendered mechanical by feedback.
This would allow to synthesize controllers for part of the variables by
making use of techniques developed for mechanical control systems.
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