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Real-Time Vision-Based Control of a Nonholonomic Mobile Robot

Abstract
This paper considers the problem of vision-based control of a nonholonomic mobile robot. We describe the
design and implementation of real-time estimation and control algorithms on a car-like robot platform using a
single omni-directional camera as a sensor without explicit use of odometry. We provide experimental results
for each of these vision-based control objects. The algorithms are packaged as control modes and can be
combined hierarchically to perform higher level tasks involving multiple robots.
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Abstract 

This paper considers the problem of vision-based control 
of a nonholonomic mobile robot. We describe the design 
and implementation of real-time estimation and control 
algorithms on a car-like robot platj%om using a single 
omni-directional camera as a sen:?or without explicit use 
of odometty. We provide experimental results for  each of 
these vision-based control objects. The algorithms are 
packaged as control modes and can be combined 
hierarchically to per3(brm higher. level tasks involving 
multiple robots. 

1 Introduction 
In this paper we consider the problem of controlling the 
motion of a nonholonomic, car-like robot such as the one 
shown in Figure 1 based on the information from an 
onboard omni-directional camera system [3]. 
More specifically, in the sequel WE: consider three types of 
motion control tasks: a wall following mode where the 
goal is to guide the robot so that it maintains a specified 
orientation and distance from a boundary, a follow the 
leader task where the robot is instructed to maintain a 
prescribed position and orientation with respect to a 
moving target and a position regulation task where the 
robot is required to achieve a particular position with 
respect to a global reference frame. 
In this work we exploit the fact that the wider field of 
view afforded by an omni-directional camera allows us to 
extract more information from the video signal and makes 
it possible to implement a wider range of motion 
strategies on the same platform. 
For each of these tasks we describe the estimation 
schemes which are employed to recover the requisite 
information from the omni-directional video imagery and 
we discuss the control laws that accomplish the regulation 
task. In every case we describe how the non-holonomic 
constraints are accounted for in the design of both the 
estimation and control laws. 

The problem of controlling a vehicle based on the 
information obtained from image data has been 
considered before in a number of contexts. 
Horswill [ 1 I ]  described simple but effective vision-based 
behaviors that could be used to guide a robot safely 
through an obstacle strewn environment. Dickmanns et al 
[9] [17] considered the problem of controlling a motor 
vehicle based on the information obtained from 
conventional cameras mounted onboard. Ma, Kosecka and 
Sastry [15] looked at the problem of guiding a 
nonholonomic robot along a path based on visual input. 
Zhang and Ostrowski [ 181 demonstrated effective 
schemes for controlling a blimp system based on image 
measurements. 
The paper is organized as follows. The experimental test- 
bed (hardware and software) is described in section 2. 
Section 3 discuses the set of visual servo objects we use in 
our work. Experimental results are presented in section 4. 
Finally, some concluding remarks and future work are 
given in section 5. 

2 The Experimental Testbed 

2.1 The Mobile Robot Platform 

The mobile robot we use for our experiments is shown in 
Figure 1. It has been constructed from a commercial 
radio-control truck kit. Some modifications have been 
made to improve shock absorption and to house an omni- 
directional vision system, a 2.4. GHz wireless video 
transmitter, and a battery pack. 'The robot has a servo 
controller on board for steering and a digital proportional 
speed controller for forwardhackward motion. A parallel 
port interface, also designed in our lab, allows driving up 
to 8 mobile robot platforms from a single Windows NT 
workstation. The receiver (located at the host computer) 
feeds the signal to a frame grabber that is able to capture 
video at full frame rate (30 Hz.11 for image processing. 
This yields a video signal in a format for viewing and 
recording, as well as image processing. 
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Fig. 1 The mobile robot platform with Omnicam. 

2.2 The Omnicam Sensor 

A Pnracanzera manufactured by Cyclovision consists of a 
parabolic mirror and a lens assembly mounted on a Pulnix 
%" remote head color CCD camera. 
This omni-directional sensor provides us with a 360" field 
of view. There cxists a simple geometric mapping from 
the i,mage plane to the ground plane or any other plane of 
interest [3] due to the special parabolic shape of the 
reflecting surface. This is useful for doing navigation and 
control. 

2.3 Vision Algorithms 

Color feature extraction: Pixels corresponding to the 
object of interest are extracted from the image using a 
statistical color model in YUV space that provides some 
robustness to variations in viewing and illumination 
conditions. The color detection algorithm is applied to the 
whole image (this process runs at 15-20 Hz for upto three 
colors). If the object of interest is detected, then we switch 
into target tracking mode. 

Fig. 2 Otnni-directional image and associated edge image 
and range map. 

Range mapping: A Sobel gradient was applied to the 
original omni-directional image. The resulting edges in 
the image were assumed to be features of interest. By 
assuming a ground plane constraint, the distance to the 
nearest feature in  the sector of interest was determined 
from the its relative elevation angle to the mirror. This 
provides a range map to all obstacles at frame rate. A 
similar approach to determining range from image data 
was employed by Horswill [ 1 11. 
We have integrated these vision algorithms in a multi- 
threading software architecture for implementation on the 

hardware platforms for basic functionality like wall 
following, obstacle avoidance, leader following and so on. 

3 Vision-Based Control Objects 
3.1 Wall Follower 

The wall follower operates by taking inputs from 2 
"sensors" - a wall detector and an obstacle detector. 
These are implemented as separately threaded rangemaps 
with different sectors of interest (160-200" and 50-130", 
respectively). The wall detector extracts points from each 
of its nine 5-degree sectors. A line is fit to these points 
using Random Sample Consensus (RANSAC), which 
yields a fit robust to outliers [ 101. From this, the relative 
position and orientation of the wall can be calculated. The 
obstacle detector picks up features in its 80" field of view. 
Since the position and orientation relative to the wall are 
known, the detector is able to discriminate which features 
are actually the wall, and which are truly obstacles that 
must be avoided. T/O feedback linearization techniques 
are used to design a PD controller to regulate the distance 
of the vehicle to the wall. 
Wall following can be considered as a particular case of 
path following. Thus, the kinematics in terms of the path 
variables become [7] 

i = u ,  cosB,,, d = u I  sine, 
tan4 . (2) 

e,, = U ,  - f $ = U ,  
1 

n =- 
' 2  e 

e,, =e-e ,  
7c 0 =e--  

" 2  

Fig. 3 Wall following. 
Assuming the robot is to follow the wall with a piecewise 
constant velocity vl(t), the system output and its time 
derivative are given by 

z(t)  = h(x) = d(t) ,  i = Li(t) (3) 

u 2  
d = u  6 COSO,,  c cos^, t a n 4 E r  

Then, we obtain 

(4) 
1 ' P  

If the desired distance to the wall is do, r is given by 

r=; io+k , ( c i0 -c i )+kp(d , -d )  (5) 
After some work, we have 

r 
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where v2(t) is the steering command, u,(t) is the linear 
velocity, and k,,, k,, are positive design controller gains. 
Usually, we may want a critically damping behavior i.e., 

k,> = 2 K .  

3.2 Velocity Estimator 

The Leader Follower object described next, requires 
reliable estimation of the linear velocity vi(t) and angular 
velocity ~ ( t )  of the leader mobile robot R,, and relative 
orientation (ei - Oj). The velocity estimator algorithm is 
based on an extended Kalman filter [14], [16]. It uses the 
omni-directional vision system tso determine the range 
pii and the bearing pii of the observed leader Ri, see Figure 
4. In addition, the filter requires .a sensor model and the 
relative kinematic equations [8] of the leader Ri and 
follower Rj. The image processing, algorithms provide the 
following observations 

Range: p t  = ( ~ ~ - x ~ ) ~ + ( y ~ - y ~ ) ~  (7) 
n 

Bearing: p.. =-+atan2(yj -?,,xi - x J ) - O j  (8) 

The closed-loop omni-directional vision system for leader 
tracking is depicted in Figure 6. Let us define 

‘I 2 

Then, 

and 

(xj, Yj ,  ej) 

Fig. 4 Robot configuration for velocity estimation. 

The state vector to be estimated is given by 
x = f(X,U,W) 

r 

where ~ ( t )  is the process noise, assuming G, = O,w, = 0.. 
The system output with sensor noise is given by 

z ( t )  = h(x) + rl(t) = b,, P,J I (13) 

The discrete system becomes 
~ ( k  + 1) = F(x(k),u(k))+ w ( k ) ,  ~ ( k )  - N(O,Q(k))  

1 + tulAT 

where F(x(k),u(k)) is the nonlinear state transition 
function. The input vector is given by U = [v, mi] . 
w(k) is a noise source assumed to be zero-mean Gaussian 
with covariance Q ( k ) .  AT is the sampling interval (-50 
ms). The discrete (observation) output is given by 

R(k) is experimentally determined. The goal of the EKF 
algorithm is to estimate ?(k +Ilk + 1) and its covariance 
P(k + 1 I k + 1) given, Ei(klk) , P(k I k )  at time k,  and the 
current observation Z ( k + l ) .  We use a standard estimation 
algorithm, see for instance [13], [15], where the 
observation vector and measurement prediction are given 

by z(k + 1) = b(k + 1) p ( k  + l)] ’ (16) 

z (k )  =h(x(k))+tl(k), t l (k )  - N(O,R(k)) (15) 

0 0 0 1 0  

0 0 0 0 1  
2 ( k  + 1) = Hi(k + 1 I k) with H = 

3.3 Leader Follower 

Details of this controller are given in [8]. The Velocity 
Estimator object provides the follower with necessary 
information about the velocity of the leader for feed- 
forward control. This eliminates the need for explicit 
communication. The basic structure for’ this object is 
shown in Fig 6. 

Fig. 6 Leader Follower structure. 
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Fig. 7 Overhead view of leader following. These are 
actual data points collected from a single run. 

3.4 Localization 

We have implemented a localization algorithm for our 
mobile robot. The algorithm also employs an extended 
Kalman filtcr (EKF) to match landmark observations to an 
a priori map of landmark locations [14]. The Localizer 
object uscs a BlobExtrclctor sensor to determine the range 
and the bearing of an observed landmark. If the observed 
landmark is successfully matched, i t  will be used to 
update the vehicle position and orientation. Figure 8 
depicts a typical image used for localization. 
The algorithm is similar to the one used for velocity 
estimation. The main differences are explained bellow. 
The kirietnatic triode1 of the mobile robot, in this case, is 
given by 

x = U I  cos6 

4 =A$&? -4) 
where 1 is the body length, u2 is the steering command, IQ1 
< 70' is [he steering angle, and 1, = 4 s-' is a parameter 
that depcnds on the steering servo time constant and 
wheel-ground friction. The control vector is given by U = 
[MI U 2 1 T .  

Landmarks 

Fig. 8 linage used for localization. 

The linearized kinematics become 

1 0 - u I  ( k )  sin(&k I k))AT 0 

0 1 u I  (k)cos(&k I k))AT 0 

l o  O 0 1 - A,AT 

(19) 
We use a map that consists of np landmarks. The landmark 
position is given by p i  = (Px, p J ,  and the output function 
becomes 

1 
When the image processing is completed, we obtain a set 
of observations Z ( k )  = { z , ( k )  I j = 1,2 ,...., no)  . 
To compute the variance of the innovation we need the 

observation Jacobian for each prediction 
( .?(k+1 l k ) - p r ) r p  ( j (k+I  l k ) - p , ) r p  

O O1 p , - j ( k + ~ ~ k )  ~ ( k + ~ ~ k ) - p ,  - r i  o 
(21) 

rp = ,/(pi - i ( k  t 1 I k ) ) ~  + ( p r -  j ( k<  1 I k),Z (22) 

where rp is the distance from the sensor to the ith detected 
landmark. 
The following expression is used to validate and match 
each sensor observation. The innovation is v , ~ ,  and SI, is its 
variance. 

v,(k + 1)S;'(k +l)v:(k +1) 5 x 2  (23) 
Measurements not satisfying the above criteria are ignored 
for localization. Finally, the Kalman gain is computed and 
the robot's position vector and the associated variance are 
updated over all matched landmarks. 

3.5 Go To Goal Controller 

The GoToCoal controller is derived from the leader 
follower controller [8] considering the goal configuration 
(xJyg,Og) to be a virtual leader robot with zero linear and 
angular velocities. The kinematic model of the robot is 
again given by (18). The final orientation will depend on 
the initial conditions (choice of desired w) Then, the 
controller takes the form - 

where, 

v = 1, cosy- qglg sin y 

w = -[l, sin y+  qglR cosy] 
(24) 1 ' .  

d 

y = 6 ,  +w,  -6 
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The Localizer gives estimates of self configuration 4.2 Velocity Estimator and Leader Follower 
(i, j ,  e) ,  which is then used to Icalculate position of the The omni-directional system provides the range 

and bearing of the observed leader robot. This information 

0 1 5  

0 1 

005 

control point (with offset d from axle). 

........ : ....... : ....... : ....... : ....... : ....... : ....... : ....... : 

......... 

............................................... 1... .... 

1 1 1 1 1 1 1 1  

, , , ,  , , , ,  , ,  
I , , , , ,  . .  , 
, , , , , , , ,  
, , I I I , . ,  I 

0 ~ i i ; ~ i ~ ~  

x = i + d  cos e 
y = j + d  sin 6 

y,  = n - arctan( y - y ,  , X - x, ) - 8, 
Now, 

The linearized system for (20) becomes 

l g  = J m q g  -U)* 

I ,  = - k , l ,  

@, =k* (y i  -v,) 

Robot + Omnicam 

Landmark I I Locations Map: 

Ima e: 

to landmark 
I Ran e,#earing 

Fig. 10 The GoToGoal structure 

4 Experimental Results 
4.1 Wall Following 

- 
is fed to the velocity estimator. Control velocities for the 
follower robot are computed and sent to the driving and 
steering servos. 

(25) 

0 6  

In this experiment we start the robot off near a wall with 
an obstacle (box) midway along the length of the wall. 

30cm (12in) from the wall unless it encounters an 
obstacle, in which case it switches to obstacle avoidance 
until it sees a clear wall along-side again. The results are 
shown below with the ground truth from the overhead 

0 5  

The aim of the wall follower is to maintain an offset of 04 

0: 
m - 
$ 7 0 2  

camera and the relevant mode switches. The units on the x 
and y axes are inches. 

0 1  

Confiuuration 1 .Ground Plane Position vs. Mode Data C 

, , , ,  , , , I I  , , , ,  

-120 -100 -BO -60 -40 -20 o 20 40 60 a0 

Fig. 11 The Wall Follower showing both modes 

Estimated anaular velocity lleaderl _ .  . 
. . . . . . . .  . . . . . . . .  , , , , , , , ,  

. . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  
. . . . . . . .  , , , , , , , ,  
I I I I I I I I  . . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . . .  , , , , , , , ,  
1 1 1 1 1 1 1 1  . . . . . . . .  . . . . . . . .  

20 40 60 80 1011 120 140 160 180 
Time (s)  

-0 1 

Fig. 12b Angular velocity estimation of leader from follower 

Finally, it is worth noting that control velocities are 
computed using the leader's velocity estimates i.e., there is 
no explicit communication between the follower and the 
reference robot. 

4.3 Mobile Robot Localization 

In this experiment we let the robot trace an open loop 
circular trajectory in a measured area with fixed 
landmarks. Due to the windowed tracking approach, the 
robot usually sees very few landmarks. The overhead 
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camera gives us an idea of the actual ground trajectory of 
the robot. The average error is -2 cm. This is particularly 
challenging as we use a simplified kinematic model, and 
we lack odometry. 

Localization Results 

, , , , ,  

, . , , , ,  , , , , , ,  
...... 1 ....................................... , , , . , ,  , . , , , ,  

, , , , , ,  , , , , , ,  .. .............................................. 
, . . , . ,  ................................................ 
1 1 1 1 1 1  
, I I , , ,  , , , , , ,  
, / , , ,  ..........,...............,.......,...... 
, , , ,  

0 2  0.4 0 6  0 8  1 1 2  1 4  1 6  1 8  2 
X axis (m) 

Fig. 13 Localization results for a circular trajectory. 

4.4 Goal Acquisition 

We are in thc process of implementing this controller on 
the robots. The following are the results from simulations 
using this controller. In figure 14 the virtual leader robot 

Trajectories of CB (psi, = 190) 

........ ........ ........ .... ........ ..... + thetag = go 
..*. thelag=O 

........ ............................................................. , /  

0 I 
0 1 2 3 4 5 5 7 8  

X (m) 
Fig. 14 Trajectories of robot for go to goal (55) 
starting from (1,l) with orientation 180”. 

at the goal is at orientations of 0, 90 and 180”, while the 
desired bearing for the follower is 180” from the heading 
of the leader. 

5 Conclusions 
In this paper, we have presented a framework for real-time 
control using an omni-directional vision system. 
Experimental results verify the validity of our approach. 
Velocity estimation and localization techniques based on 
an EKF have been integrated in the closed loop system. 
The experimental results are being extended to more 
complex scenarios. Moreover, sophisticated visual control 
modes are being implemented in our nonholonomic 
mobile platforms. These include planning, collaborative 
mapping, and formation keeping. 
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