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Three examples of applied and computational homology

Abstract

Computational algebraic topology has already existed for some decades, with as its main objective the
generation of examples. Nowadays, the field is rapidly changing into an applied branch of mathematics that is
important in its own right. Robert Ghrist, topologist at the University of Illinois and one of the winners of the
2007 Scientific American 50 award, gives us three examples that illustrate this development, each with a
different origin.
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THREE EXAMPLES OF APPLIED &
COMPUTATIONAL HOMOLOGY

Robert Ghrist !

Algebraic Topology as Applied Mathe-
matics?

Mathematics is limitless in its dual capacity for
abstraction and incarnation. To a large degree,
many of the modern revolutions in technology and
information rest on piers of mathematics that assist,
inform, or otherwise catalyze progress. It appears
that those branches of mathematics which are most
easily understood and communicated are precisely
those which find greatest applicability in the mod-
ern world. To conclude from this that deeper or
more difficult fields are inherently less applicable
would be premature.

Consider for example the utility of algebraic
topology. Long cloistered behind formal and cat-
egorical walls, this branch of mathematics has been
the source of little in the way of concrete applica-
tions, as compares with its more analytic or com-
binatorial cousins. In this author’s opinion, this is
not due to a fundamental lack of applicability so
much as to (1) the lack of a motivating exposition of
the tools for practitioners; and (2) an historical lack
of emphasis on computational features of the the-
ory. These two issues are coupled. Advances which
demonstrate the utility of a topological theory spur
the need for good computation. Good algorithms
for computing topological data spur the search for
further applications.

Algebraic topology is the mathematics that arises
in the attempt to describe the global features of a
space via local data. That such tools have utility
in applied problems concerning large data sets is
not difficult to argue. To give a sense of what is
possible, we sketch three recent examples of spe-
cific applications of homological tools. This list is
neither inclusive nor ranked: these examples were
chosen for concreteness, simplicity, and timeliness.
This brief and woefully incomplete sketch is meant
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as an appetizer, for which the truncated bibliogra-
phy serves as a menu for the second course.

On Homology.

Homology is a machine that converts local data
about a space into global algebraic structure. In
its simplest form, homology takes as its argument
simple pieces of a topological space X and re-
turns a sequence of abelian groups Hy(X), k €
N. Homology is a functor, which in practice
means: (1) topologically equivalent spaces (ho-
motopic) have algebraically equivalent (isomor-
phic) homology groups; and (2) topological maps
between spaces f : X — Y induce algebraic
maps (homomorphisms) on homology groups f, :
H,(X) — H.(Y). Numerous homology theories
exist, fine-tuned for different classes of spaces (sim-
plicial, cellular, singular, etc.).

Roughly speaking, homology groups count and
collate holes in a space. The simplest example
of a homological invariant is the number of con-
nected components of a space — dim Hy — the
type of ‘holes’ that a zero-dimensional instrument
can measure. A less trivial example of a homo-
logical invariant is the Euler characteristic. The
Euler characteristic x of a triangulated surface is
the alternating sum of the number of simplices
— vertices minus edges plus faces — and that
this quantity is a topological invariant of the sur-
face. For more general (but tame) spaces, x(X)
can be expressed either as the alternating sum of
the number of k-dimensional cells of X, or, as
> reo(—1)* dim Hy(X). This quantity, being based
on homology, is an invariant. It is a signal exam-
ple of a homological device, being both computable
and invariant. Our first example of applied alge-
braic topology relies on this invariant.

Example 1: “How many people are in the
building?”

Problem: Target Enumeration. Consider a store
whose ceiling tiles, walls, and carpet are embed-
ding with people-counting sensors. How can these
local sensors collaborate to determine the number



of customers in the store?

Tool: Euler Characteristic Integration.

One of the fundamental difficulties in large-scale
sensor networks is data aggregation. A sufficiently
dense collection of nodes will sample an environ-
ment redundantly. The goal of sensing is to com-
press this redundant local data into a global de-
scription of the environment. The operation of
stitching local information over patches is the fun-
damental defining property of a sheaf, a means of
assigning an algebraic object to open subsets of a
space in such a manner that restrictions and over-
laps are respected.

As an example, consider the problem of counting
a collection of targets. Some fixed but unknown
number N of targets lie in a domain D. The do-
main is filled with sensors, each of which can deter-
mine how many targets are nearby. It matters not
how the sensors operate (e.g., via infrared, acoustic,
or optical sensing). Assume simple sensors which
merely detect the number of nearby targets, with no
information about target identity, distance, or bear-
ing. In the continuum limit (where one has a sensor
at each point in D), this yields a counting function
h : D — N. The problem is to determine the num-
ber of targets, given only h.

The solution lies in an elegant integration theory
which uses Euler characteristic as a measure. For
compact sets A, B, the Euler characteristic satisfies
X(AU B) = x(A) + x(B) — x(AnN B). Note the
similarity of this to the definition of a measure. In-
deed, x is a type of scale-invariant topological vol-
ume, as was known going back to Hadwiger and
Blaschke at least. It is straightforward to construct
a measure dy against which one can integrate cer-
tain functions. The type of piecewise-constant or
constructible function h : D — N that a sensor field
returns is integrable in this theory.

Recent work of Baryshnikov et al. [1] gives a sim-
ple formula for computing the number of targets as
[ hdx, in the setting where each target is detected
by sensors on a topologically trivial (e.g., convex)
neighborhood. Because this is a topological inte-
gration theory, there are no geometric restrictions.
Sensors can, e.g., count the number of vehicles driv-
ing over a domain laced with vibration sensors,
counting subcompacts and SUV’s as equals.

This is the starting point for a broad array of ap-
plications which rely on constructible sheaves and
the sheaf-theoretic properties of dy. Precisely be-
cause the answer is expressed in terms of an inte-
gration theory, one can do the following:

1. For a sparse network of sensor nodes, deter-
mining the number of targets becomes the nu-
merical problem of approximating the topo-
logical integral via a discrete sampling.

Figure 1: Integration with respect to Euler charac-
teristic enumerates redundant data over a sensor
network.

2. Thanks to a version of the Fubini theorem for
dx, one can count moving targets over time
without the need to embed clocks on the sen-
sor nodes.

3. Because integration is a local operation, target-
counting can be performed by the network it-
self with a distributed, local computation.

Moral: “Data aggregation is a topological integra-
tion.”

Example 2: “What does the data look

like?”

Problem: High-Dimensional Data Analysis. Given
a large, high-dimensional data set, how can one de-
termine its shape and structure?

Tool: Persistent Homology.

Though the subject of topology is often intro-
duced in terms of doughnuts, coffee cups, knots,
or other visual icons, the true strength of topology
is the ease with which it analyses high-dimensional
objects. The impact of this strength is perhaps best
asserted in data-analysis, where the incoming rate
of large, high-dimensional data sets currently far
exceeds statisticians’ abilities to analyse and de-
scribe the data sets.

Assume for the sake of argument that one is



Figure 2: Persistent homology of a simplicial approximation finds hidden structures in large data sets.

given a data set that consists of a sampling (per-
haps, though not necessarily random) of a reason-
able subset X C E™ of Euclidean space. Nature has
trained the human brain to reconstructing shapes
from planar projections, but this works only for cer-
tain (small!) values of n.

Knowing the homology of X is a good basis for
asserting the global features of the ‘true’ model X
of the data. Several basic statistical ideas —e.g., clus-
tering — are readily seen to correspond to some-
thing homological, in this example dim Hy. The
natural question presents itself: how can one com-
pute H,(X) from a discrete sampling of points N/ C
X?

The work of Carlsson et al. employs the following
strategy. Fix a parameter ¢ > 0, and build a sim-
plicial complex R, as follows: a k-simplex of R.
is a collection of k + 1 data points in N pairwise
within distance €. Fixing X C E™ a manifold, then
for e sufficiently small and N sufficiently dense, the
complex R has the same homotopy type (and thus
homology) as X. However, one is given a fixed data
set, and further refinement maybe be expensive or
impossible. Thus, one is forced to vary e. Which
e best captures the true topology of the underlying
data set? For € too small, R. is a discrete set; for ¢
too large, R. is a single simplex. In this context, the
golden mean may not exist.

Algebraic-topology suggests a functional ap-
proach. One of the simplest and best insights of
the Grothendieck programme is the notion that the
topology of a given space is framed in the map-
pings to or from that space. With this perspec-
tive as guide, one considers the ordered sequence
of spaces {R.} for ¢ > 0, stitched together by in-
clusion maps 7€ R, — Reo for e < €. The
homology of the family of maps :“~ is the called
the persistent homology of the data set: 15~¢ cap-
tures which homological features (holes in the data

set) persist over the range of parameters [e, €'].

Carlsson et al. use the classification of modules
over a polynomial ring (with field coefficients) to
compute persistent homology and to correlate it
with the birth and death of topological features in
the data [7]. This allows a principled and automatic
distillation of complex data sets into global features
— a method that does not rely on projections or
heuristics.

Specific successes of the method include the fol-
lowing.

1. Persistent homology was used [2] to find sig-
nificant features hidden in a large data set of
pixellated natural images compressed onto a
7-dimensional sphere; most notable is a persis-
tent Klein bottle in H,, which in turn yields
insights into the structure of the space of natu-
ral images.

2. Recent work [3] uses persistent homology to
find hidden structures in experimental data as-
sociated with the V1 visual cortex of certain
primates.

Moral: “The shape of the data lies not in a single
space, but in a diagram of spaces.”

Example 3: “It looks chaotic to me!”

Problem: Experimental Verification of Chaotic Dy-
namics. An experiment (physical or numerical)
yields data that looks chaotic. Is it rigorously
chaotic, or just noisy?

Tool: Conley Index Theory.

One of the great scientific lessons of the 2
century was that when a physical system exhibits
erratic temporal behaviour, it may not be due to
randomness or poor measurement — determinis-
tic systems can exhibit well-defined chaos. How-
ever, it is a persistent challenge to demonstrate that

Oth



a given system is chaotic. The Lorenz equations —
themselves a cartoon model of fluid flow — were
only recently shown to be rigorously chaotic, af-
ter more than thirty years’ inquiry. Still more in-
tractable remain data coming from physical experi-
ments, in which system noise and instrument errors
conspire to frustrate analysis. There seems to be lit-
tle recourse for the experimentalist beyond saying,
“It looks chaotic to me.”

A prime feature of topological methods is that,
being global, they are typically impervious to the
noise inherent in physical systems. Such is the case
here. Work of Mischaikow et al. [5] uses a homo-
logical invariant of dynamics combined with a pri-
ori bounds on the noise amplitudes to determine
the rigorous dynamics of an experimental system
based on noisy time-series data.

The mathematical tool used is the Conley index,
an algebraic-topological extension of the Morse in-
dex. Consider the flow of rainwater falling on a
mountainous terrain D: this flow is that of —Vh,
where h : D — R is the height function of the ter-
rain. The Morse index of a critical point of & is an
integer that classifies the type of critical point: min-
ima have index 0, saddle-passes have index 1, and
maxima have index 2. The homological Conley in-
dex enriches the Morse index from integers to (ho-
mology types of) spaces: for a Morse function, the
Conley index of a critical point is a sphere of di-
mension the Morse index. The Conley index, unlike
the Morse index, applied to non-gradient and non-
smooth vector fields, as well as to discrete-time dy-
namics. It is efficacious, even to the point of detect-
ing chaotic dynamics. This index is computable for
realistic systems, thanks to recent progress in com-
putational homology [4].

Work of Mischaikow et al. takes (noisy) time-
series data and represents the dynamics as a multi-
valued map on a cubical complex. By adapting the
Conley index to this setting and computing the ho-
mological index, it is possible to verify the under-
lying dynamics, so long as the noise tolerances re-
spect the discretization assumptions. Rigorous re-
sults about experimental or numerical data include
the following:

1. For experimentally-generated data on the dy-
namics of a magneto-elastic ribbon in an os-
cillating magnetic field, a Conley index ap-
proach proves that the experimental system is
chaotic (has positive topological entropy) [5].
The method is robust, and works even when
environmental noise alters the appearance of
the data significantly.

2. Numerical simulations of the Kuramoto-
Sivashinsky partial differential equation indi-
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Figure 3: The Conley index C'H.. of experimental
time series data can rigorously verify chaotic dy-
namics.

cate various stationary solutions. A Conley
index computation [6] proves that these solu-
tions exist, with a computational effort of the
same order as a re-run of the numerical solu-
tion at a finer resolution.

Moral: “It's hardly more expensive to prove the dy-
namics than to simulate it.”

Looking Forward:

The three examples here surveyed are all appli-
cations of homological tools to problems of large
and often noisy data sets. However, there are nu-
merous other examples of a different nature un-
der the same aegis of applied algebraic topology.
Many of these are obstruction-theoretic in nature
— topological measures of complexity of coordinat-
ing robots, synchronizing a network, or performing
distributed asynchronous computation.

The list of mathematical ideas which were once
erroneously derided as useless abstractions (uni-
form convergence, matrix algebra, group theory,
etc.) is sufficiently long and embarrassing so as
to suggest patience in the case of applied algebraic
topology. Given that the (hard) work of generat-
ing good algorithms for computing topological in-
variants for realistic systems is so recent [4], it can
be successfully argued that the current spate of ad-
vances in applied algebraic topology is neither co-
incidental nor terminal.
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