Penn

Libraries . University of Pennsylvania
O UNIMERSITY 0f PENNSYLVANIA 4 ScholarlyCommons
Technical Reports (CIS) Department of Computer & Information Science

January 2003

Using XQuery to Build Updatable XML Views
Over Relational Databases

Vanessa P. Braganholo
Universidade Federal do Rio Grande do Sul

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Carlos A. Heuser
Universidade Federal do Rio Grande do Sul

Follow this and additional works at: http://repositoryupenn.edu/cis_reports

Recommended Citation

Vanessa P. Braganholo, Susan B. Davidson, and Carlos A. Heuser, "Using XQuery to Build Updatable XML Views Over Relational
Databases', . January 2003.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-03-18.

This paper is posted at ScholarlyCommons. http://repositoryupenn.edu/cis_reports/28

For more information, please contact libraryrepository@pobox.upenn.edu.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_reports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_reports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports/28
mailto:libraryrepository@pobox.upenn.edu

Using XQuery to Build Updatable XML Views Over Relational Databases

Abstract

XML has become an important medium for data exchange, and is frequently used as an interface to - i.e. a view
of - a relational database. Although much attention has been paid to the problem of querying relational
databases through XML views, the problem of updating relational databases through XML views has not been
addressed. In this paper we investigate how a subset of XQuery can be used to build updatable XML views, so
that an update to the view can be unambiguously translated to a set of updates on the underlying relational
database, assuming that certain key and foreign key constraints hold. In particular, we show how views defined
in this subset of XQuery can be mapped to a set of relational views, thus transforming the problem of updating
relational databases through XML views into a classical problem of updating relational databases through
relational views.

Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-03-18.

This technical report is available at ScholarlyCommons: http://repositoryupenn.edu/cis_reports/28

http://repository.upenn.edu/cis_reports/28?utm_source=repository.upenn.edu%2Fcis_reports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages

Using XQuery to build updatable XML views over relational

databases®

Vanessa P. Braganholo()), Susan B. Davidson® , Carlos A. Heuser(!

1) Universidade Federal do Rio Grande do Sul - UFRGS
Instituto de Informatica

{vanessa, heuser }@inf.ufrgs.br

&) University of Pennsylvania
Department of Computer and Information Science

{susan}@Qcis.upenn.edu

Abstract

XML has become an important medium for data exchange, and is frequently used as an interface to —i.e. a
view of — a relational database. Although much attention has been paid to the problem of querying relational
databases through XML views, the problem of updating relational databases through XML views has not been
addressed. In this paper we investigate how a subset of XQuery can be used to build updatable XML views, so
that an update to the view can be unambiguously translated to a set of updates on the underlying relational
database, assuming that certain key and foreign key constraints hold. In particular, we show how views defined
in this subset of XQuery can be mapped to a set of relational views, thus transforming the problem of updating
relational databases through XML views into a classical problem of updating relational databases through

relational views.

1 Introduction

XML has become an important medium for data exchange, and is frequently used as an interface to — i.e. a
view of — a relational database. Much attention has been paid to the problem of querying relational databases
through XML views [20, 24, 4]: Given a query in some XML query language, how is the query translated to an
SQL query against the relational instance and the result then manipulated to produce an XML result? However,
the problem of updating the relational database through an XML view has not been addressed: Given an update
to an XML view expressed in some XML update language, how is the update translated to an update on the
relational instance? In particular, are there classes of XML views which are updatable for a given type of update
(insertion, deletion or modification) in the sense that the XML update can be translated to an update on the
relational instance where the only tuples affected are those who completely satisfy the update specification?

For example, consider the database of figure 1 which contains information about authors, conferences, papers
and books. An XML view of this database which groups papers published by year for each author is shown in
figure 2(a). Suppose we wish to change the title of Mary Jones’s paper with id "IR", and reference this element

in the update specification by using the path expression /result/author[0id="1"]/papers/paper[@id="IR"]/title.

*Research supported by Capes (BEX 1123/02-5) as well as NSF DBI-9975206.

Author Conference

id name email confld confame
1|Mary Jones maryjonesi@asa.com | [DEXA [Conference on Database and Expert Systems Applications
2|Charles Green |charles@hhbhb.com FODS [Symposium on Principles of Database Systems
3|Michael Kurt kutti@coe.com YLDB |Conference on Very Large Data Bases
Ba Paper
author | isbn | [pid fitle confld | year Eﬁ?aﬂ;‘?;';l?
11 1234| [IR Datab.ases and IR [VLDB 2002 COMSTRAINT CanF'aper
1] 1235] [CAWER [Querying the Web |DERA 20001 foraign key (confld) references Conference
1] 1238] [WEB [Weh Survey YLDH 2001 Ontable Ba:
21234 p Book COMSTRAINT AutharBa
A 1237 auth i '.mh T fareign key (author) references Author
S—773g |oanar | BIE | | ishn B | VRAr | conSTRAINT BookBa
I 1R 1234[Book! | 2000] fareign key (shn) references Book
1] GWER 1235]Boak2 2001 Ontable Pa:
3 1436 TIWED T7I5(Book3 | 2000] COMSTRAINT AuthorPa
e 1737 |Bookd | zoo7| foreion key (author) references Author
COMSTRAINT PaperPa
g ﬁgg 1238]Booka 2001 foreign key {pid) references Paper

Figure 1: Sample database

Since Charles Green is also a co-author of this paper, translating this update to the relational database would
result in Charles Green’s IR paper also being updated in the XML view. This view is therefore not updatable with
respect to the given update. However, if we update the title of the paper with id "IR" using the path expression
//paper[@id="TIR"]/title (i.e. omit the author in the update path) no such side-effects would occur. Since we are
not specifying the author in the update path expression, all titles of papers with id "IR" would be altered in the
view, and no side effects would occur.

In previous work [5], we addressed this problem by considering the nested relational algebra (NRA) [21] as the
language defining the XML view, and showed that an NRA view can be mapped to a relational view. In doing
so, we were able to build upon previous work on updates to relational views [15, 22], and map a new problem
(updating relational databases through NRA views) to a well studied problem.

Although the NRA captures many essential aspects of XML, in particular the notion of tuples and nesting, it
does not capture other aspects of XML, in particular the ability to create heterogeneous sets (or lists). As a simple
example, consider the XML view of figure 2(b), which lists papers and books published by year. Since the nested
set is heterogeneous (papers and books have different attributes), this cannot be specified in the NRA. However,
such a view is easily defined in standard XML query languages.

In this paper, we therefore consider a subset of XQuery [3] which allows nesting as well as heterogeneous sets,
and show how updates over XML views are propagated to the underlying relational database. The key observation
is that XML views with heterogeneous sets can be mapped to a set of nested relational views. For example, the
view in figure 2(b) can be mapped to a set consisting of the nested relational view of figure 2(a) and its counterpart
containing only book information by year for each author. Updates to such XML views can then be mapped to a
set, of updates to the underlying nested relational tables.

We chose XQuery as the XML query language since it is widely accepted, and is becoming somewhat of
a standard. We also borrowed some ideas from SQLX [19], an extension to SQL being developed by INCITS
(http://www.ncits.org/tc_home/h2.htm): we use the SQLX representation for relational tables (row), and
define an input function to XQuery called table to access relational tables. This function, however, is slightly
different, from the one proposed in SQLX.

The structure and contributions of this paper are:

1. Section 2: The definition of a subset of XQuery for extracting updatable XML views from relational
databases. The subset is augmented with two new features: a function table to extract data from rela-
tional sources and transform tuples into a set of XML nodes, and a macro operator nest to facilitate nesting.
Note that nest does not add anything to the language, and that queries containing nest can be mapped to
XQuery.

2. Section 3: A method for mapping XML views to a set of relational views. The relational views can then be

<result>
<author id="1">
<name> Mary Jones </name>
<address>
<email> maryjones@aaa.com </email>
</address>
<papers year="2002">
<paper id="IR">
<title> Databases and IR </title>
<confId> VLDB </confId>
</paper>
</papers>
<papers year="2000">
<paper id="QWEB">
<title> Querying the Web </title>
<confId> DEXA </confId>
</paper>
</papers>
<papers year="2001">
<paper id="WEB">
<title> Web Survey </title>
<confId> VLDB </confId>
</paper>
</papers>
</author>
<author id="2">
<name> Charles Green </name>
<address>
<email> charels@bbn.com </email>
</address>
<papers year="2002">
<paper id="IR">

<result>
<author id="1">
<name> Mary Jones </name>
<address>
<email> maryjones@aaa.com </email>
</address>
<papers year="2002">
<paper id="IR">
<title> Databases and IR </title>
<confId> VLDB </confId>
</paper>
</papers>
<papers year="2000">
<paper id="QWEB">
<title> Querying the Web </title>
<confId> DEXA </confId>
</paper>
<book isbn="1234">
<title> Bookl </title>
</book>
</papers>
<papers year="2001">
<paper id="WEB">
<title> Web Survey </title>
<confId> VLDB </confId>
</paper>
<book isbn="1235">
<title> Book2 </title>
</book>
<book isbn="1238">
<title> Book5 </title>

<title> Databases and IR </title> </book>
<confId> VLDB </confId> </papers>
</paper> </author>
</papers> i
.. </result>
</author>
... (b)
</result> (a)

Figure 2: (a) Nested relational XML view (b) XML view

used to check for XML view updatability.

3. Section 4: An overview on how updates into XML views are translated to updates on the corresponding

relational views.

Related work is given in section 5, and section 6 concludes the paper with a summary and future research.

2 A subset of XQuery to build XML views

Our goal is to find a subset of XQuery which produces updatable XML views. As shown in [5], this subset should
certainly include queries which produce nested relations. However, we wish to broaden this to queries which allow
multiple sets within a nested component. We call such XML views “well-behaved” in the sense that they can be
mapped to a set of corresponding relational views, whose updatability can be reasoned about using established

techniques.

DEFINITION 1 A well behaved XML view is an XML tree extracted from a relational database with the following
abstract type T:

T =FEo: {E1:1r},....,{En 0}, n =1

7 =B 7, By T, A Bkt o s A Bktm e} (B2 1, m>0) and 7; (1 <i< k) isTg or 7c.

To =[F1:7m,.. By m) (k=21) and 1, (1<i<k)isTs or ¢

(where “...]" denotes a tuple and “{...}" denotes a set). Tr denotes a tuple type, T denotes a non-repeating
complez type and Ts denotes an atomic type (e.g. #PCDATA or CDATA). Ey is an element name denoting the

root of the document, and E; (i > 1) is an element or attribute name.

Note that well behaved views always have a root (Ep), have at least one repeating element (right under the
root), and that repeating elements are always delimited by an element (F4i, ..., E, in the definition of 7 and

Ext1,...Exqm in the definition of 7). We adopt the convention that attribute names start with “@”.
PROPOSITION 1 UXQuery views are always well behaved.

Proof: The proof of this proposition is based on the syntax and semantics of UXQuery. We postpone this proof
until the end of this section. n

In our mapping approach, it will be important to recognize nodes of type 7r all of whose descendants are
non-repeating nodes (7¢ and/or 7¢). For this reason, we will rename such 7 nodes to 7.

For example, the view in figure 2(b) is well behaved. We show the schema of the view below, with the abstract
type of each element shown to the right. Note that the element papers has tuples of two different types (paper
and book). Additionally, paper and book are repeating nodes whose descendants are non repeating nodes. For this

reason, their types are renamed to 7.

result : ()
{author: ()
[@id: CDATA, (1s5)
name: #PCDATA, (1g)
address: (r¢)
[email: #PCDATA], (1g)
{papers: (1)
[@year: CDATA, (1g)
{paper: (tn)
[eid: CDATA, (13)
title: #PCDATA, (15)
confld: #PCDATA]}, (13)
{book: (n)
[@isbn: CDATA, (1g)
title: #PCDATA]} (15)
13
]
¥

Throughout this paper, we use the convention of referring to the abstract type of an element by the abstract
type that was used to generate it followed by the element name. As an example, the abstract type of the element
book is referred to as 7y (book), and its type (DTD) is [@isbn: CDATA, title: #PCDATA].

PROPOSITION 2 The type of any well behaved view must contain at least one TN node.

Proof: The proof of this proposition follows from the definition of well-behaved views (definition 1). Well-behaved
views have abstract type 7, where 7 = Fo: {Ey : 7r},...,{E, : 77}, (n > 1). Since the condition (n > 1) is
imposed, the smallest possible well-behaved view has the form 7 = Ey: {E; : 7r}. Now it is necessary to analyze
the structure of Ej, whose type is 7p. From definition 1, we have that 70 = [Ey : 71,..., Ex : 7k, {Ek+1 :
Tty ee o A EBkpm s r}] (K21, m > 0)and 7; (1 <4< k)is 75 or 7o. Again, lets take the minimal scenario, where
(k=1 and m = 0). We therefore have 7 = [E; : 71], where 7 is 75 or 7¢. Supposing element names A, B and
C, the type of an well-behaved view conforming to this structure would be:

T=A: {B:7mp(B)}

mr(B) = [C : 5]

As defined previously, 7y nodes are nodes of type 77 such that all of their descendants are non-repeating nodes
(ts and/or 7¢). Clearly, this condition is satisfied by node B, and consequently its type is renamed to 7y (B).
Therefore, the simplest possible well-behaved view has one node of type 7.

For more complicated views, it is obvious that there will be at least one node of type 7. It turns out that
a well-behaved view has to have at least one node of type 7. The definition of type 77 is recursive (77 can be
composed of nodes 77, 75 and/or 7¢). The recursion only ends when all children of a node with type 7 are 7g
and/or 7¢. Since this is the condition to a node 77 to be renamed to 7y, this proves that every well-behaved view

has at least one node 7y. n

PROPOSITION 3 There is at most one Ty node along any path from the root to a leaf in the abstract type of a well

behaved view.

Proof: 1In this proof, we consider a bottom-up path from any leaf node to the document root. For this proposition
to hold, there must be at most one node 7 along this path.

Analyzing definition 1, it’s easy to see that:

e Leaf nodes have type 7g. The parent of a leaf node can have types 7¢, 71 or 7.
e Nodes of type 7¢ can have parent of types 7¢, 7p or Ty.

e Nodes of type 7 can only have parent of type 77 or 7, which is the type of the document root. The parent of
a node of type 7y can never have type 7y, since by definition, nodes of type 75 are the ones whose children

have type 75 and/or 7¢.

e Nodes of type 71 can only have parent of type 71 or 7, which is the type of the document root.

Based on these rules, starting from a leaf node, we can have the following path p to the document root (we
show just the types of nodes in p). We denote a step in p by "," (comma), since we are going bottom-up — using
" /" would probably create confusion.

D = TS\TCy 3 sTC,, S TTy 5--5TT,, T (1 2 0 and m > 1).

In this path, the only candidate of having type 7y is the node whose type is 7r,. This node will be renamed
to Tn if all of its children are of type 7 and/or 7g. Despite not being possible to determine the type of the
children of this node just by looking at p, it is enough to know that this is the only node that can have type 7.

Consequently, as we wanted to demonstrate, there is at most one node of type 7 in p. [

XQuery’s syntax is very broad and has lots of operators. Some of these operators - such as order related
operators - do not really make sense when we are producing views of relational databases in which there is no
inherent order. Furthermore, aggregate operators create ambiguity when mapping a given view tuple to the
underlying relational database. We will therefore ignore ordering operators and outlaw aggregate operators. This
means that the use of let in our subset of XQuery must be very carefully controlled, and for this reason we will
allow it only as expanded by a new macro called nest.

The subset we have chosen is called UXQuery (Updatable XQuery), and contains the following:
e FWOR for/where/order by/return expressions (note that we do not allow let expressions).
e Element and attribute constructors.

e Comparison expressions.

e An input function table, which binds a variable to tuples of a relational table that is specified as a parameter
to the function.

e A macro operator called nest, which facilitates the construction of heterogeneous nested sets.

22. <conferencePapers>
<conferencePapers> P

1. ®
2 {for $c in table("conference") 23. {for $c in table("conference")
3. return 24. return
4. <conference id="{$c/confld/text()}"> 25. <conference id="{$c/confld/text()}">
5. {$c/confName} 26. {$c/confName}
6 {nest $p in table("paper") 27. {let $p’ := table("paper")
7. by $year in ($p/year) 28. for $year in distinct-values($p’/year)
) = 29. return
:. :::§:n$P/confId—$c/conf1d 30. <papers year="{$year/text()}">
. 31. {for $p in table("paper")
=n "
12. <pa§ers year="{$year/text)}"> 32. where $c/confId=$p/confld and $p/year=$year
12. <paper> :2 . i‘e:u:g)
Y vt 3. g Pis /pid}
14. {$p/title} . p/pi
15. </paper> 36. {$p/title}
16 3} 37. </paper>
17. </papers> 38. 3
18. 3} 39. </papers>
19. </conference> 40. }
20 } 41. </conference>
. 42. 3}

21. </conferencePapers> 43. </conferencePapers>

Figure 3: Example of a query that uses the nest operator (lines 1-22) and its translation to regular XQuery syntax
(lines 23-45)

The EBNF of UXQuery is shown in appendix A. The formal semantics of UXQuery matches the semantics of
XQuery [18] with the exception of the new input function table and the macro nest, which we discuss next.

Semantics of table(). XQuery has three input functions: input(), collection() and document() [23]. In
UXQuery, the only input function available to the user is table(). This function takes as input a table from a

relational database and returns a set of tuples in the following form:

<row>

<!-- tuple attributes -->

</row>

We translate this input function to XQuery as follows.

define function table($tableName as xs:string) as nodex
{
let $tuples := document(concat($tableName,".xml"))//row

return $tuples

Semantics of Nest. The nest operator is used to specify possibly heterogeneous sets of nested tuples that
agree in the value of one or more attributes. The tuples are clustered according to the value of these nesting
attributes. A simple (non-heterogeneous) example of such a query is shown in figure 3 (lines 1-21). The query
specifies a join of tables conference and paper. For each conference, it shows the conference name, the conference
Id, and the papers for that conference clustered by year.

The syntax for nest is defined by the following EBNF:

[31] Nest ::= NestClause ByClause WhereClause "return" Header
[32] NestClause ::= "nest "$" VarName "in" TableExpr ("," "$" VarName "in" TableExpr)*
[33] ByClause r:= "by" "$" VarName "in" UnionExpr ("," "$" VarName "in" UnionExpr)=*
[34] Header ::= "<" QName (QName "=" NestAttValue)+ ">" ("{" ElGroup "}")+ "</" QName S? ">"
I ngn QName nyn (II{II II$II varName II}II I ngn QName nyn II{II II$II varName II/II TextTest II}II Il</ll QName II>II)+
(II{II Elcroup II}II)+ Il</ll QName S? nyn

[35] NestAttValue ::= ">" "{" "$" VarName "/" TextTest "}" "?"

I iny Il{ll Il$ll varName Il/ll TeXtTeSt Il}ll iny
[36] ElGroup ::= ElmtConstructor
[37] UnionExpr ::= "(" "$" VarName "/" QName (("union" | "[") "$" VarName "/" QName)* ")"

A query containing a nest operator can be normalized to one using pure XQuery syntax. The normalized
query corresponding to the query in figure 3 (lines 1-21) is shown in figure 3 (lines 22-43). The normalization
process makes sure that the nest variable (in the example, $year) appears in the Header element as an attribute
or a sub-element. In the example, the Header element is papers. Notice that in the normalized query, we still use
the input function table. This is possible because before processing it, we add the function definition in the top
of the query.

Continuing with the example, the nest operation (lines 6-18) is normalized to the expression shown in lines
27-40. The expression consists of a let/for (lines 27-28) and an additional for (lines 31-38) for each ElIGroup
(lines 11-16) specified in the query. In the normalization process, we introduce new variables in the let clause.
These variables are primed (), and correspond to the variables specified in the nest operator. There will be one
primed variable in the let clause for each variable specified in the nest operator (XQuery does not accept variable
names with (’). However, we use them here for easy of explanation).

The normalization process also makes sure that nested elements are related to the nesting variable. This is
done by adding a new condition in the where clause. In the example (line 32) we added a condition requiring that
the paper was published in the year specified by $year.

Note that this example shows a nesting over a single attribute, but that it is possible to specify nests over more
than one attribute.

A formal specification of the normalization process can be found in appendix B.

Having presented the semantics and syntax of UXQuery, we are now able to prove proposition 1.

Proof of Proposition 1: An UXQuery view always have a root. This root is produced by the first two productions

in UXQuery grammar:

[1] UXQuery ::= QueryBody
[2] QueryBody ::= ElmtConstructor

The ElmtConstructor production produces a node of type 7, which is the document root. By definition 1, 7 =
Ey: {Ey:71r},...,{En: 1}, n 2 1. Ey is the name of the element constructed by ElmtConstructor.
Now it is necessary to make sure that all children of E, are of type 7p. The grammar production of

ElmtConstructor is:

[3] ElmtConstructor ::= "<" QName AttList "/>" | "<" QName AttList? ">" ElmtContent+ "</" QName S? ">"

This production is a choice. However, the first option in this choice ("<" QName AttList "/>") can not be taken

at this point, since AttList is expanded to PathExprAtt:
[8] PathExprAtt ::= "$" VarName "/" QName "/" NodeTest

This production references a variable, and since at this point there is no clause that bounds the variable to a
table, this construction is not semantically correct. Variables are bound only in FWRExpr or Nest productions.

Consequently, the only possible choice in production [3] at this point is "<" QName AttList? ">" ElmtContent+
"</" QName S? ">". Here, AttList will be empty for the same reason explained above. The children of Ey are then
determined by ElmtContent+. Since this production is marked with "+", it is guaranteed that Ej will have at least
one child, that is, the restriction (n > 1) in the definition of Fy’s type is guaranteed by the EBNF. Each repetition
of this production will generate an element F;, children of Ey. Remember that Eo: {E; : 7r},...,{En : 70},
(n > 1). In this case, (1 < < n).

The production that defines ElmtContent is:

[4] ElmtContent ::= ElmtConstructor | EnclosedExpr+

Again, we have a choice. However, choosing the first option would lead to a non well-behaved view. For this
reason, we consider this a semantic error, and the parser raises an exception if this production is chosen at this

point. Thus, the only correct choice is EnclosedExpr.
[10] EnclosedExpr ::= "{" (FWRExpr | PathExpr | Nest) "1}"

E; must be a repeating element of type 7. The repetition is determined by the use of "{ }" in the definition
of Fy. Repeating elements are generated by FWRExpr or Nest. At this point, since we still do not have variable

bindings, the production PathExpr can not be chosen because a path expression contains a variable reference:
[17] PathExpr ::= "$" VarName "/" QName ("/" NodeTest)?
As a result, the children of E are constructed by production FWRExpr or Nest. Let’s analyze both alternatives.

1(a) FWRExpr: A FuRExpr has the form:

Xpr ::= orClause)+ WhereClause? Order ause? "return")* ElmtConstructor
[14] FWRExp ((ForCl)+ WhereCl ? OrderByCl T ")* ElmtC

In this case, the element name of F; is determined by ElmtConstructor.

1(b) Nest: A Nest has the form:
[31] Nest ::= NestClause ByClause WhereClause "return" Header

In this case, the element name of E; is determined by Header.

Let’s review what we have until now: 7 = Eo: {E1 : 71},...,{Ey : 70}, (n > 1). Since each E; (1 <4 < n) has
type 7r, it is necessary to analyze the structure of this type and make sure that UXQuery produces it correctly.

According to definition 1, 7p = [Fy : 71,..., Fi © 7o, {Fht1 : 0}y, {Fhtm : 7r}] (k = 1, m > 0) and 7;
(1<j<k)is7g or1c.

As shown previously, node E; of type 7p is constructed by FWRExpr or Nest. Consequently, the structure of its
type is determined by ElmtConstructor (in case the node was generated by a FWRExpr) or Header (in case the node

was generated by a Nest). Again, we analyze both cases:

2(a) ElmtConstructor: ElmtConstructor is defined as:
[3] ElmtConstructor ::= "<" QName AttList "/>" | "<" QName AttList? ">" ElmtContent+ "</" QName S?

Here, QName corresponds to the name of element F;. Since we have already variables bindings, any of these
two options are valid. In the first case ("<" QName AttList "/>"), the children of F; are generated by AttList.

[6] AttList ::= (S (QName S? "=" S? AttValue)?)+

Attributes are atomic elements, so their type is 7. The "+" in the definition of AttList indicates that there
must be at least one attribute. In order words, F; must have at least one child of type 75. This conforms
to the definition of E;’s type (7p = [F1 : 71, ..., Fi : Tk, {Fit1 : 70}y« o s {Fhtm = 7r}] (kK = 1, m > 0) and
7; (1 < j < k)is 7g or 7¢). In this case, we ensure the restriction (k > 1), and 7; is 7s. Also, there is no
repeating child, so (m = 0).

The second case is ("<" QName AttList? ">" ElmtContent+ "</" QName S? ">"). In this case, if AttList is
present, it generates children of type 7g. However, since AttList is optional, we must analyze the structure

produced by ElmtContent+.

nyn

2(b)

[4] ElmtContent ::= ElmtConstructor | EnclosedExpr+

Again, we have a choice. Let’s analyze EnclosedExpr. According to production [10], it can be FWRExpr,
PathExpr or Nest. As seen before, FWRExpr and Nest produces children of type 7. So in this case, we have
that E; have repeating children, and consequently (m > 0). A path expression produces a leaf node of type
Ts, so we have (k > 1). However, since EnclosedExpr is a choice, it may be the case that its content does not
have any PathExpr, and in this case, our condition (k > 1) would fail. This is a semantic restriction, and it is
enforced by the UXQuery parser. Since ElmtContent has a "+" sign, E; can have several children resulting
from the repetition of this rule. If after the parsing process F; does not have any children of type g or ¢,

the parser raises an exception.

Another option for the content of ElmtContent is ElmtConstructor. This production generates an element
F}, children of Ej;, whose type is determined by production [3]. The determination of F}’s type is done
recursively by rule 2(a). Notice that F; will have type 7¢ if ElmtConstructor derives only PathExprs and/or
AttList. If a single PathExpr is derived from ElmtConstructor, them F} has type 7g.

Header: Header is defined as:

[34] Header ::= "<" QName (QName "=" NestAttValue)+ ">" ("{" ElGroup "}")+ "</" QName S? ">"
| "<" QName ">"
¢ "{" "$" VarName "}")
| ("<" QName ">" "{" "$" VarName "/" TextTest "}" "</" QName ">"))+
("{" ElGroup "}")+ "</" QName S? ">"

In this case, there are two options, but they are equivalent. The first one places the nest values as attributes
of E;, and the second one places the nest values as subelements of E;. These attributes or subelements are
of type 7s. Since they have a "+", we guarantee that (k > 1). When F; is constructed by a Header, it is also
guaranteed that it has at least one child of type 7. This is the child constructed by E1Group (notice the "+"
sign in this production). So we have (m > 1). The name of this child is determined by ElmtConstructor,

since we have:
[36] ElGroup ::= ElmtConstructor

The type of this child is determined recursively by rule 2(a).

As we can see, the EBNF and also the semantics of UXQuery guarantee the production of a view whose type

conforms to definition 1. n

3 Mapping well-behaved XML views to relational views

In order to check the updatability of well-behaved XML views constructed by UXQuery, we map a given XML

view to a set of corresponding relational views and use the techniques of updating through relational views to

determine the XML view updatability. In particular, we use the Dayal and Bernstein technique [14, 15, 16].

We must therefore first map an XML view to its set of corresponding relational views. The main idea behind

the mapping process is to unnest the XML view and produce the flat corresponding relational views. In order to

do so, we use an auxiliary query tree that carries information about the structure of XML view, the source of each

XML element/attribute and the restrictions applied to build the view. Each non-leaf node of the auxiliary query

tree has a name and possible annotation, and each leaf node in the tree has a name and a value.

<conferencePapers> name = ‘conferencePapers’

{for $c in table("conference") [$c in table(“conference”)]
return
<conference id="{$c/confId/text()}">
{$c/confName}
{for $p in table("paper") name = ‘conference’ T
where $c/confId = $p/confId and $p/year > 2000 [8p in table(paper™)]
N [where $c/confld=$p/confld
return and $p/year > 2000]
<paper>
{$p/pid} .
{$p/title} S
{$p/year} name = ‘@id’ name = $c/confName _« s
</paper> value = $c/confld value = $c/confName fiame = paper
</conference>
} T T Ts
</conferencePapers> name = $p/pid name = $p/title name = $p/year
value = $p/pid value = $p/title value = $p/year

Figure 4: Example of UXQuery that joins two relations and its auxiliary query tree

DEFINITION 2 An auziliary query tree is a tree whose nodes represent element tags and whose edges are either
simple or *-edges which reflect element-subelement relationships in the result. Fach interior node is annotated with
the variable bindings and conditions that were introduced at that level. Fach leaf node is annotated with a path

from which to construct its value.

To illustrate, we give a simple example that does not have the nest operator. Figure 4 shows a query and
its corresponding auxiliary query tree. Annotations are shown between brackets (“[[’). There are two types of
annotations: "where" annotations and "variable binding" annotations. Each XML element specified in the query is
represented by a node in the auxiliary query tree. When an XML element is generated by an expression containing
a variable, we name the node with the corresponding expression (see node $p/pid). Attributes are represented in
the auxiliary query tree in the same way as subelements, with the difference that their name starts with "@Q" (see
node eid).

Auxiliary query trees are constructed from the view query as follows: For each XML element specified in the
query, a node is created in the tree. For each node, we annotate all variable bindings and where conditions found
between the node and the next non-leaf node in the query. As an example, node conferencePapers in the query
tree of figure 4 has an annotation for the binding of variable $c. Node conference has annotations about the
binding of variable $p and the condition where $c/confId=$p/confId and $p/year > 2000.

In the subset of XQuery we are using, leaf nodes can be constructed in two different ways: We can explicitly
specify an XML element, and the value of its content using a variable (e.g <name>{$c/confName/text ()}</name>),
or we can specify the entire element using a variable (e.g {$c/confName}). Both constructors are mapped to leaf
nodes in the auxiliary query tree.

Connections in the auxiliary query tree represents parent /child relationships. A repeating element is connected
to its parent by an *-edge, while non-repeating elements are connected by a simple edge. Repeating elements are
those returned after a for or a nest. Additionally, the root node of an element group within a nest also receive
an *-edge.

With this auxiliary query tree, we are now able to map an XML view constructed with UXQuery to its set of

corresponding relational views. The generic mapping process is as follows:

SELECT <leaf value> AS <leaf name>, ..., <leaf value> AS <leaf name>

FROM (<relation> AS <variable> LEFT JOIN <relation> AS <variable> ON <joincond>) LEFT JOIN ...
<relation> AS <variable> ON <joincond>

WHERE (<"where" annotation> OR <"where" variable> IS NULL) AND ...
AND (<"where" annotation> OR <"where" variable> IS NULL)

For query of figure 4, the generated relational view is the following;:

10

T
<conferencePapers> name = ‘conferencePapers’
{for $c in table("conference") [$c in table(“conference”)]

return

<conference id="{$c/confId/text()}"> sk Tr
{$c/confName} . ;
{nest $p in table("paper") { name = ‘conference }

by $year in ($p/year)
where $c/confId=$p/confId N T T
return

<papers year="{$year/text()}"> { name = ‘@id’ } { name = $c/confName }

{<paper> value = Sc/confld value = $c/confName [$p in table(paper”)]

name = ‘papers’

{$p/pid} [where $c/confld=$p/confld]
{$p/title}
</paper>}
</ pap Ts k% ™n
papers>
name = ‘@year’ name = ‘paper”
</conference> value = $p/year
Y r&,,////”’////7rs
</conferencePapers>
name = $p/pid name = $Sp/title
value = $p/pid value = $p/title

Figure 5: Example of UXQuery that nests elements, and its corresponding auxiliary query tree

SELECT c.confld AS id, c.confName AS confName, p.pid AS pid, p.title AS title, p.year AS year
FROM conference AS ¢ LEFT JOIN paper AS p ON c.confId=p.confld
WHERE (p.year > 2000 OR p.year IS NULL)

The name of each attribute in the relational view (specified after an AS expression) is generated by the evaluation
of the expression specified in the name of each leaf node. As an example, the node id has name=’@id’, so the name
@id is copied to the SELECT expression without the "@". The node confName specifies name=$c/confName. This
expression is evaluated as the name of the confName attribute pointed by variable $c, which is obviously confName.
The same is done for the other attributes.

The FROM clause is constructed using the source table of each variable annotated in the auxiliary query tree.
The variable name is used as an alias. For example, $c is a variable that is bound to the conference table, so c is
its alias in the FROM clause. We use LEFT JOIN between ancestor-descendant nodes in the tree because it preserves
empty sets in the nesting. For example, if a conference has no papers, the conference will still appear in the XML
view.

The WHERE clause is generated using the annotations in the tree that were not used as join conditions. For each
of these conditions, we add an “OR IS NULL” clause to ensure that empty sets are preserved in the nesting (e.g.
otherwise conferences that have no papers would not appear in the view, because they do not satisfy the WHERE
condition).

The auxiliary tree of queries involving nest are constructed in a slightly different manner. Annotations of
variables and where clauses within a nest expression are placed on the node that represents the header element of
the nest expression. For example, the query in figure 3 is shown again in figure 5 together with its auxiliary query

tree. Proceeding with the mapping process, the query in figure 5 corresponds to the following relational view.

SELECT c.confld AS id, c.confName AS confName, p.year AS year, p.pid AS pid, p.title AS title
FROM conference AS c LEFT JOIN paper AS p ON c.confld=p.confld

There are cases where an XML view is mapped to more than one relational view, as in the query of figure 6 (the
resulting XML instance is shown in figure 8). This XML view is mapped to two relational views: one containing
data about authors and papers, and the other one containing data about authors and books. The decision of
where to “split” the view is based on fors that appear on the same nesting level in the normalized query (the
normalized query for the query in figure 6 is shown in figure 7). Each of these fors creates a new set of tuples,

which should be mapped to distinct relational views. Information on levels above is considered to be common to

11

name = ‘authors’
[$a in table(“author”)] T

<authors> *
{for $a in table("author")

Tr

<author id="{$a/id/text()}"> . z Tr
{$a/name} s s c
<address> name = ‘@id’ name = $a/name — “address’ name = ‘publications’
{$a/email} value =$a/id | | value = $a/name | | "4MC T address [Sba in table(“ba”)]
</address> [$b in table(“book™)]
. I . n ‘ Ts [where $ba/author=$a/id AND
{nest $ba in table("ba"), $b in table("b"), $b/isbn=8ba/isbn]
$pa in table("pa"), $p in table("paper") [$pa in table(“pa”)]
by $year in ($b/year | $p/year) [$p in table(“paper”)]
where $ba/author=$a/id and $b/isbn=$ba/isbn and [where $pa/.aulhot:$.a/id AND
$pa/author=$a/id and $p/pid=$pa/pid $p/pid=Spa/pid]
return
<publications year="{$year/text()}">
{<book>
{$b/title}
{$b/isbn} Tg T
</book>} o= @yt In N
{<conf> { value = $biyear anion $p/year } { name = ‘book’ } { name = “conf’ }
{$p/title}
{$p/pid} TS TS ‘gs/ Ts
</ ?onf?} name = $b/title name = $b/isbn name = $p/title name = $p/pid
</publications> value = $b/title value = $b/isbn value = $p/title value = $p/pid
</author>
}
</authors>

Figure 6: Example of UXQuery that mixes information of different relations in the same nesting level and the
corresponding auxiliary query tree

both set of tuples. The resulting relational views are shown below (we name these views in order to be able to
reference them in next section):
CREATE VIEW VIEWBOOK AS

SELECT a.id AS id, a.name AS name, a.email AS email, b.year AS year, b.title AS title, b.isbn AS isbn
FROM (author AS a LEFT JOIN ba AS ba ON ba.author=a.id) LEFT JOIN book AS b ON b.isbn=ba.isbn

CREATE VIEW VIEWPAPER AS
SELECT a.id AS id, a.name AS name, a.email AS email, p.year AS year, p.title AS title, p.pid AS pid
FROM (author AS a LEFT JOIN pa AS pa ON pa.author=a.id) LEFT JOIN paper AS p ON p.pid=pa.pid

The algorithms described in this section are available in appendix C.

4 Checking for XML view updatability

In this section, we use the mapping from an XML view to its corresponding relational views as explained in section
3 to exemplify update operations over XML views. We further discuss the intuition of determining the updatability
of XML views constructed by UXQuery. A complete study of updatability of XML views produced by UXQuery
is out of the scope of this paper.

Before presenting our update strategy, it is necessary to define precisely what we mean by side-effects, or
problematic updates.

DEFINITION 3 Let D be a relational database and V' a view query definition over D. Let U be an update over the

view produced by V and t its translation to the relational database. We say that U is a side-effect free update when

U(v(D)) = V(D))

Our syntax for updates is similar to that of [5]. Basically, an update operation is a triple <u,A,ref >, where u

is the type of operation (insert, delete, modify); A is the XML tree to be inserted, or (in case of a modification)

12

<authors>
{for $a in table("author")
return
<author id="{$a/id/text()}">
{$a/name}
<address>
{$a/email}
</address>
{let $bal := table("ba"),
$b1 := table("book"),
$pal := table("pa"),
$p1 := table("paper")
for $year in distinct-values($pi/year | $b1/year)
return
<publications year="{$year/text()}">
{for $ba in table("ba"),
$b in table("book")
where $ba/author=$a/id and
$b/isbn=$ba/isbn and
$b/year=$year
return
<book>
{$b/title}
{$b/isbn}
</book>
¥
{for $pa in table("pa"),
$p in table("paper")
where $pa/author=$a/id and
$p/pid=$pa/pid and
$p/year=$year
return
<conf>
{$p/title}
{$p/pid}
</conf>
}

</publications>

</author>
}

</authors>

Figure 7: Normalized query corresponding to query in figure 6

an atomic value; and ref is a simple path expression in XPath [11] which indicates where the update is to occur.
Note that the path expression may evaluate to a set of nodes in the tree. Deletions do not need to specify a A,
since all the nodes under the evaluation of ref will be deleted.

In the examples of this section, we use the XML view resulting from the query in figure 6 as shown in figure 8.
The update operations are also specified in figure 8.

An attempt to insert a new author in this view would be specified as U;. This would be translated to the

following insertions over the relational views:

INSERT INTO VIEWBOOK (id, name, email)
VALUES (4, "Robert White", "white@zzz.com")

INSERT INTO VIEWPAPER (id, name, email)
VALUES (4, "Robert White", "white@zzz.com")

The translation mechanism also uses the auxiliary query tree of the view definition query. First, the path
expression in ref (without the filters specified between brackets (if any)) is evaluated against the auxiliary query
tree. Then the structure of the view being inserted is “superimposed” on the auxiliary query tree. After this, we
check to see what portions of the tree are referenced by the update operation and decide which relational views
the operation should be translated to. In this first example, the subtree being inserted is on the “common” part of
the tree, so we translate it to both relational views (we discuss alternatives to this method in section 6). Once we
decide which views to map the insertion to, we generate an INSERT SQL statement containing the information
specified in the subtree being inserted, and also with information collected from the leaves under the elements
along the path from ref to the root of the XML tree (this will be clearer in the next example).

13

Uy: u = insert, ref = /authors,

<authors> A = {<author id="4">
<anthor id="1"> :2:1;::::l>:ert White</name>
<name>Mary Jones</name> <email>white@zzz.com</email>
<address> </address>
<email>maryjones@aaa.com</email> </author>}.
</address>

<publications year="2000">
<book><title>Book1</title><isbn>1234</isbn></book>

Us: u = insert,

<conf> ref = //author[@id="1"]/publications[@year="2000"],
<title>Querying the Web</title><pid>QWEB</pid>
. </;;r}f> iones A = {<book>
/publications <title>Book6</title><ishn>9888</isbn>
<publications year="2001"> </book>}.

<book><title>Book2</title><isbn>1235</isbn></book>
<book><title>Book5</title><isbn>1238</isbn></book>
<conf><title>Web Survey</title><pid>WEB</pid></conf>

Us: u = insert, ref = /authors,

</publications>
<publications year="2002">
p<conf> v A = {<author id="5">
< > < >
<title>Databases and IR</title><pid>IR</pid> <::‘;:e::’:es Perez</name
</conf> <email>james@zzz.com</email>
</publications> </address>
</author> <publication year="2000">
<author id="2"> <book>
<name>Charles Green</name> <title>Updating Relational Views</title>
<address> <isbn>999</isbn></book>
<email>charles@bbb.com</email> <conf_> X i
</address> <title>Views and XML</title>
. . <pid>VIEW</pid></conf>
<publications year="2000"> </publication>
<book><title>Book1</title><isbn>1234</isbn></book> </author>}.
</publications>
</author> Us: u = modify, A = {Querying the Web using XML},
- ref = //book[isbn="1234"]/title.
</authors> ! 1/ t 1/

Us: u = delete,
ref = //author[@id="1"]/publications[@year="2000"].

Figure 8: XML view resulting from query in figure 6 and examples of update operations

An example where we use additional information to generate the INSERT SQL statement is specified in Us.
In this example, since ref points to an interior node, the information collected from the leaves under the elements
along the path from ref to the root of the XML tree are also used in the INSERT statement. In this example, we
use the author’s name, email and id. The translation is as follows:

INSERT INTO VIEWBOOK (id, name, email, year, title, isbn)
VALUES (1, "Mary Jones", "maryjonesQaaa.com", 2000, "Book6", 9888)

It is also possible to insert an author with publications (Us). As the structure of the subtree being inserted
matches elements in the auxiliary query tree that are split into separate relational views, we split the subtree being

inserted in the same way. The resulting translation is:

INSERT INTO VIEWBOOK (id, name, email, year, title, isbn)
VALUES (5, "James Perez", "james@zzz.com", 2000, "Updating Relational Views", 999)

INSERT INTO VIEWPAPER (id, name, email, year, title, pid)
VALUES (5, "James Perez", "james@zzz.com", 2000, "Views and XML", "VIEW")

As an example of a modification update, consider Uy which modifies the title of a given book. The attribute
to be modified is the last attribute specified in the path expression in ref. The conditions for the modification are
the filters used in the path expression. This would be translated as:

UPDATE VIEWBOOK SET title="Querying the Web using XML"
WHERE isbn=1234

As mentioned in the introduction, a problematic update operation would occur if we had specified an author
in the path expression of Uy. Consider the previous example, with the following path expression:
/authors/author [@id="1"] /publications/book[isbn="1234"]/title.

14

The translation for this operation would include information about the author too, but it would not be possible
to translate this to the underlying relational database without causing side effects. More specifically, the book
under author with eid="2" would also be changed (see figure 8).

An example of deletion would be specified as Us. As with modifications, we use the filters specified in the path
expression to generate the WHERE clause of the delete statement. This would be translated to the relational view
as:

DELETE FROM VIEWBOOK
WHERE id=1 AND year=2000

DELETE FROM VIEWPAPER
WHERE id=1 AND year=2000

The algorithms for translating updates in the XML view to updates in the corresponding relational views are
presented in appendix C.3.

As we can easily see, view updatability depends on the update operation being applied. However, it depends
also on the structure of the view. We were able to translate most of the update operations specified over the view
above because the view has the following properties: it keeps the primary keys of all the tables involved, and joins
were made over foreign keys. For a view that does not obey these restrictions, we would not be able to translate
most of the sample update operations. For details, please see [5].

We use the technique of Dayal and Bernstein [14, 15, 16] to translate updates on the relational view to updates
on the underlying relational database. Their work presents an algorithm to update the underlying relational
database when a unique, side effect-free translation exists, and detects when such an update does not exits (for a
summary of their algorithms, please refer to [6]).

5 Related Work

There has been a lot of work addressing the problem of building XML views from relational databases [20, 24, 4,
9, 25]. Most of them approach the problem by building a default XML view from the relational source and then
using an XML query language to query the default view [20, 24, 4, 9]. Most of these approaches use extended SQL
to build the default view. The exception is XPERANTO [24], whose default view is an XML document containing
all the database tables represented in XML. This view can then be queried using XQuery augmented with a new
input function called view. This function accesses the default XML view in the same way that our input function
table is used to access relational tables. However, we do not have the concept of a default view. We simply supply
the table function to access the relational tables directly.

Another difference between XPERANTO and our approach is that they generate a single SQL query for each
query over the view. Their translation involves transforming an XQuery into a representation called XQGM, which
is very similar to the internal representation of SQL queries in DB2 (QGM). However, the purpose of transforming
XQuery into SQL is different in our approach. XPERANTO does this transformation with the goal of using the
relational engine to execute the query. We perform the transformation because we want to use the relational view
to check for XML view updatability.

None of the above proposals addresses the problem of updating the resulting XML view and mapping the
updates to the underlying relational database.

Commercial databases also provide ways of exporting relational data as XML. IBM DB2 XML Extender [10]
uses a mapping file called DAD (Data Access Definition) to specify how a given SQL query is mapped to XML.
This mapping file is very complex, and is generally built using a wizard. Oracle 9i release 2 uses SQL/XML [19].
SQL Server extends SQL with a directive called FOR XML [13]. As we can see, most commercial databases have their
own way of dealing with XML, which makes it difficult to use them for accessing legacy databases. As for updates,

DB2, which allows the creation of XML documents from relational tables, requires that updates be issued directly

15

to the relational tables. In SQL Server an XML view generated by an annotated XML Schema can be modified
using updategrams. Instead of using INSERT, UPDATE or DELETE statements, the user provides a before image
of what the XML view looks like and an after image of the view [12]. The system computes the difference between
these images and generates corresponding SQL statements to reflect changes on the relational database. Oracle
offers the option of specifying an annotated XML Schema, but the only possible update operation is to insert
XML documents that agree with an annotated XML Schema.

There has been a significant amount of work in querying XML documents stored in relational databases
[20, 17, 27]. Proposals for updating XML documents stored in relational databases include [26, 27]. These
approaches are different from ours because they consider a different question: they query XML documents stored
in relational databases, while we query relational databases to extract XML views. Therefore, the underlying
assumptions used are different. For example, querying XML documents stored in relational databases must
preserve document, order, while in our case, order is not important, since the relational model is unordered. On
the other hand, the flat nature of relational databases may cause redundancy when translated to XML views,
which may cause problems regarding updates as illustrated in the introduction. That is, a well designed relational
database does not imply a redundancy-free XML view. This problem is not critical for XML documents stored
in relational databases since well designed XML documents [1] tend not to be redundant. Additionally, existing
proposals for updating XML documents stored in relational databases do not consider updates through views.

6 Discussion and Future Work

In this paper we propose a subset of XQuery, UXQuery, to build updatable XML views over relational databases.
The main contribution of the paper is a mapping from an XML view constructed using UXQuery to a set of
corresponding relational views, which are then used to translate updates over the XML view to updates over the
corresponding relational views. The approach therefore reduces the problem of updating XML views to a well
studied problem, that of updating relational views.

There are a few open problems in our approach. The first is related to translating insertions to “common”
parts of the view. Our present method maps insertions to common parts of the view to one insertion in each
corresponding relational view (recall the first example of section 4 which inserts the author "Robert White"). When
translating these updates to the underlying relational database, redundant insertions are generated. However, the
relational system will only perform one of them and the others will fail. Thus, we rely on the relational system to
eliminate redundant updates. An alternative to this approach is to detect these cases when generating the INSERT
statements - choose one of the views and translate the insertion only once. Another alternative is to generate all
the insertions and analyze the generated SQL statements (over the base tables) to remove redundancy. We leave
this to future work, since both alternatives need careful reasoning about how to correctly detect redundancy.

The second open issue is related to the allowed update operations. Currently, we are allowing only up-
dates that can be unambiguously mapped to the relational database without causing side effects. Problem-
atic updates are not allowed. A possible solution to this limitation is to obtain user input for problematic
updates. This solution would be based on dialogs with the user, in a way similar to Keller’s proposal [22,
2]. These dialogs could occur at view definition time, or when a problematic update is issued. As an ex-
ample, if a user attempted to update a book title by specifying a path that also includes an author (as in
/authors/author [@id="1"]/publications/book [isbn="1234"]/title), we would ask the user if he wants to modify
all the titles of the book with isbn="1234". If so, the operation would be performed, otherwise, the operation
would be cancelled.

UXQuery is obviously less expressive than XQuery. In particular, it is not capable of expressing aggregations
and arbitrary restructuring in the XML view. Although this is a trade-off imposed by our goal of updating the

relational database through XML views, it may be possible to recognize updatable portions of views expressed in

16

a more general language. For example, if the view presented author information and the total number of papers
they had written, it is still possible to update author information even if updating the total number of papers is
not, allowed.

References

[1] ARENAS, M., AND L1BKIN, L. A normal form for XML documents. In Proceedings of PODS 2002 (Madison,
Wisconsin, Jun 2002).

[2] BAarsaLou, T., SiaMBELA, N., KELLER, A. M., AND WIEDERHOLD, G. Updating relational databases
through object-based views. In Proceedings of SIGMOD (Denver, Colorado, 1991), pp. 248-257.

[3] Boag, S., CHAMBERLIN, D., FERNANDEZ, M. F., FLORESCU, D., ROBIE, J., AND SIMEON, J. XQuery
1.0: An XML query language. W3C Working Draft, May 2003. http://www.w3.org/TR /2003 /WD-xquery-
20030502/

[4] BouANNON, P., GANGULY, S., KORTH, H., NARAYAN, P., AND SHENOY, P. Optimizing view queries in
ROLEX to support navigable result trees. In Proceedings of VLDB 2002 (Hong Kong, China, Aug. 2002).

[5] BRAGANHOLO, V., DAVIDSON, S., AND HEUSER, C. On the updatability of XML views over relational
databases. In Proceedings of WEBDB 2003 (San Diego, California, June 2003), pp. 31-36.

[6] BRAGANHOLO, V., DAVIDSON, S., AND HEUSER, C. Reasoning about the updatability of XML views over
relational databases. Tech. Rep. MS-CIS-03-13, Department of Computer and Information Science, University
of Pennsylvania, 2003.

[7] BrAY, T., HOLLANDER, D., AND LAYMAN, A. Namespaces in XML. W3C Recommendation, Jan 1999.
http://www.w3.org/TR/1999/REC-xml-names-19990114.

[8] Bray, T., PaoLl, J., SPERBERG-MCQUEEN, C. M., AND MALER, E. Extensible markup language (xml)
1.0 (second edition). W3C Recommendation, Oct 2002. http://www.w3.org/TR/2000/REC-xml-20001006.

[9] CHAUDHURI, S., KAUSHIK, R., AND NAUGHTON, J. On relational support for XML publishing: Beyond
sorting and tagging. In Proceedings of SIGMOD 2008 (San Diego, California, Jun 2003).

[10] CHENG, J., AND XU, J. XML and DB2. In Proceedings of ICDE’00 (San Diego, California, 2000).

[11] CLARK, J., AND DEROSE, S. XML Path Language (XPath) Version 1.0. W3C Recomendation, Nov 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116.

[12] CoNRAD, A. Interactive Microsoft SQL Server & XML Online Tutorial. Available at http://www.topxml.
com/tutorials/main.asp?id=sqlxml.

[13] ConrAD, A. A Survey of Microsoft SQL Server 2000 XML Features. MSDN Library.
Available at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxm}l/html/
xml107162001.asp, July 2001.

[14] DavaL, U., AND BERNSTEIN, P. A. On the updatability of relational views. In Proceedings of VLDB 1978
(West Berlin, Germany, Sep 1978), pp. 368-377.

[15] DAYAL, U., AND BERNSTEIN, P. A. On the correct translation of update operations on relational views.
ACM Transactions on Database Systems 8, 2 (Sep 1982), 381-416.

[16] DAYAL, U., AND BERNSTEIN, P. A. On the updatability of network views - extending relational view theory
to the network model. Information Systems 7, 2 (1982), 29-46.

[17] DEHAAN, D., ToMAN, D., CoNSENs, M., AND Ozsu, M. T. A comprehensive XQuery to SQL translation
using dynamic interval encoding. In Proceedings of SIGMOD 2003 (San Diego, California, Jun 2003).

[18] DRAPER, D., FANKHAUSER, P., FERNANDEZ, M., MALHOTRA, A., Rosg, K., Rys, M., SIMEON,
J., AND WADLER, P. XQuery 1.0 and XPath 2.0 formal semantics. W3C Working Draft, May 2003.
http://www.w3.org/ TR /2003/ WD-xquery-semantics-20030502// .

[19] EISENBERG, A., AND MELTON, J. SQL/XML is making good progress. SIGMOD RECORD 31, 2 (2002).

17

[20]

[21]

22]
23]

[24]

[25]

[26]

27]

A

FERNANDEZ, M., KADIYSKA, Y., Suciu, D., MorisHIMA, A.; AND TAN, W.-C. Silkroute: A framework
for publishing relational data in XML. ACM Transactions on Database Systems (TODS) 27, 4 (Dec 2002),
438-493.

JAESCHKE, G., AND SCHEK, H.-J. Remarks on the algebra of non first normal form relations. In PODS
(Los Angeles, CA, March 1982), pp. 124-138.

KELLER, M. The role of semantics in translating view updates. IEEE Computer 19, 1 (1986), 63-73.
MALHOTRA, A., MELTON, J., AND WALSH, N. XQuery 1.0 and XPath 2.0 functions and operators. W3C
Working Draft, May 2003. http://www.w3.org/TR/2003/WD-xpath-functions-20030502/.
SHANMUGASUNDARAM, J.; KIERNAN, J., SHEKITA, E., FAN, C., AND FUNDERBURK, J. Querying XML
views of relational data. In Proceedings of VLDB 2001 (Roma, Italy, Sept. 2001).

SHANMUGASUNDARAM, J., SHEKITA, E. J., BARR, R., CAREY, M. J., LINDsAY, B. G., PIRAHESH, H.,
AND REINWALD, B. Efficiently publishing relational data as XML documents. The VLDB Journal (2000),
65-76.

TATARINOV, 1., IVES, Z., HALEVY, A., AND WELD, D. Updating XML. In Proceedings of SIGMOD 2001
(Santa Barbara, California, May 2001).

TATARINOV, 1., VIGLAS, E., BEYER, K., SHANMUGASUNDARAM, J., AND SHEKITA, E. Storing and querying
ordered XML using a relational database system. In Proceedings of SIGMOD 2002 (Madison, Wisconsin, Jun
2002).

UXQuery EBNF

In the definitions of this section we use a set of grammar definitions available in the XML documentation. The basic tokens

Letter, Digit, and S (whitespace) are defined in [8]. The identifier QName is defined in [7]. Literals and numbers are defined

in [3] (IntegerLiteral, DecimalLiteral, DoubleLiteral, StringLiteral).

[1]
[2]

UXQuery = QueryBody
QueryBody = ElmtConstructor
ElmtConstructor ::= "<" QName AttList "/>" | "<" (QName AttList? ">" ElmtContent+ "</" QName S7? ">"
ElmtContent = ElmtConstructor | EnclosedExpr+
AttList = (S (QName S? "=" S? AttValue)?)+
AttValue 1= (°"? AttValueContent ’"?) | ("’" AttValueContent "’")
AttValueContent ::= "{" PathExprAtt "}"
PathExprAtt = "$" VarName "/" QName "/" NodeTest
VarName = (Name
EnclosedExpr = "{" (FWRExpr | PathExpr | Nest) "}"
Expr = OrExpr
OrExpr = AndExpr ("or" AndExpr)*
AndExpr = ComparisonExpr ("and" ComparisonExpr)=*
FWRExpr = ((ForClause)+ WhereClause? OrderByClause? "return")* ElmtConstructor
ComparisonExpr = ValueExpr (GeneralComp ValueExpr)?
ValueExpr = PathExpr | PrimaryExpr
PathExpr = "$" VarName "/" QName ("/" NodeTest)?
NodeTest = TextTest
TextTest = "gext" "(" ")
ForClause = "for" "$" VarName "in" TableExpr ("," "$" VarName "in" TableExpr)x*
TableExpr = "table (" ?"? QName "2 ")V | "table (" "’" QName "’" ")"
WhereClause = "where" Expr
GeneralComp = n=m | omp=n | omgn | mgon | nyn o | onyzn
OrderByClause = "order" "by" OrderSpeclList
OrderSpecList = OrderSpec ("," OrderSpec)*
OrderSpec = PathExpr
PrimaryExpr = Literal | ParenthesizedExpr
Literal = NumericLiteral | StringLiteral
NumericLiteral = IntegerLiteral | DecimalLiteral | DoubleLiteral
ParenthesizedExpr ::= "(" Expr? ")"
Nest ::= NestClause ByClause WhereClause "return" Header
NestClause : "nest "$" VarName "in" TableExpr ("," "$" VarName "in" TableExpr)*
ByClause : "by" "$" VarName "in" UnionExpr ("," "$" VarName "in" UnionExpr)x*
Header ::= "<" (QName (QName "=" NestAttValue)+ ">" ("{" ElGroup "}")+ "</" QName S7 ">"
| ngn QName NG ((n{u u$n VarName u}u) | (n<u QName uyn n{n n$u VarName n/u TextTest u}u u</u QName u>n))+
(u{u ElGroup n}u)+ n</n QName g7 nyn
NestAttValue ::= """ "{" "$§" VarName "/" TextTest "}" "’"
| swy n{n wgn YarName "/" TextTest "}" "
ElGroup := ElmtConstructor
UnionExpr ::= "(" "$" VarName "/" QName (("union" | "|") "$" VarName "/" QName)* ")"

18

B Normalization process for the nest operator

The notation for the normalization process is the same adopted in [18].

[nest Variable; in TableExpry, ..., Variable,, in TableExpr,,
by NestVariable; in (Variable;, /QName;, | ...| Variable;,, /QName,,,),
..., NestVariabley in (Variabley, /QNamey, | ...| Variable,, /QNamey,,)

where Expr return
<EIName AttName;="{NestVariable; /text()}" ... AttName,="{NestVariabley /text()}">
{ElGroup;} ... {EIGroup,,} </EIName>]muc

let Variable| := TableExpry, ..., Variable], := TableExpr,

for NestVariable; in distinct-values(Variable;, /QNamey, | ...| Variable;,, /QName;,,),

..., NestVariable, in distinct-values(Variabley, /QNamek1 | ...| Variabley,, /QNamey,,)
return

<EIName AttName;="{NestVariable; /text()}", ..., AttName,="{NestVariable, /text()}">

{for fs:SubVariable(1)
where fs:SubExpr(1) and (Variable;; = NestVariable; and ...and Variable,, = NestVariabley)

return ElGroup; }

{for fs:SubVariable(m)

where fs:SubExpr(m) and (Variable;,, = NestVariable; and ...and Variabley,, = NestVariabley)
return ElGroup,,, }

</EIName>

This normalization process supposes that:

e {Variable;, ..., Variables,, ..., Variableg,, ..., Variableg, } C {Variable;,

..., Variable, }

e The auxiliary function fs:SubVariable(i) returns all variables V, referenced in ElGroup; and also all variables V,

appearing in a condition of the form "V,/QName, cmp V,/QName," in
OperatOI‘; cmp€{77 :77’77 <77’77 >77777!:77’77 <: 77’77 >: 77}‘

Ezpr in the where clause of the nest

e The auxiliary function fs:SubEzpr(i) returns every expression specified in Ezpr in the where clause of the nest

operator that references a variable in fs:SubVariable(i).

C Algorithms

This section presents the algorithms described in section 3.

C.1 Auxiliary query tree

The algorithm auziliary-tree(el) constructs the auxiliary query tree from a given UXQuery. The parameter el is the XML

element specified as the root of the query. The algorithm is recursive, and each execution builds a single node of the

auxiliary query tree.
auxiliary-tree(el)

Create node(n)
if el is element then

n.name = el
else

n.name = ’Q° + el;
end if
Let X denote the set of XML elements constructed as a direct child or attribute of el
if X is empty then

if el contains a nesting variable V then

n.value = expression that V is bound to

19

else
if el is element then
n.value = el
else
n.value = el - "/text()"
end if
end if
else
Let A denote all variable bindings bellow el and above the next non-leaf element, ignoring variables inside nests
for each a in A do
annotate n(a)
end for
Let W denote all where conditions bellow el and above the next non-leaf element, ignoring conditions inside nests
for each w in W do
annotate n(w)
end for
if el is a header of a nest then
Let N denote the nest expression of which el is the header
Let A denote all variable bindings in N
for each a in A do
annotate n(a)
end for
Let W denote all where conditions in N
for each w in W do
annotate n(w)
end for
end if
for each z in X do
ny1 = auxiliary-tree(z)
ni.parent = n
end for
end if

return n

C.2 Mapping an auxiliary query tree to a set of relational views

The map(auz) algorithm maps a given auxiliary query tree to a set of corresponding relational views. It works as follows:
generates one sub-tree for each relational view that should be produced. Then it calls the procedure generate-relational-view
for each one of these subtrees.

The parameter for the map algorithm is the root of the auxiliary query tree produced by the auziliary-tree algorithm.

map(auz)

Let ¢ be the number of subtrees corresponding to the auxiliary tree aux
Initialize ¢ with O
Let Z denote the set of nodes in aux
for each node z in Z do
Let X be the set of non-leaf direct children of aux
if size(X) > 1 then
for each z in X do
inc ¢
n = x.parent
Create node(n;) = clone(n)
x.parent = n;
delete-annotation(n;,x)
T = n.parent
while r; <> root(auz) do
Create node(c) = clone(r;)
{clone r;’s children}
Let Y be the set of direct children of the node r; (except n)
for each y in Y do
Create node(c’) = clone(y)
c.parent = ¢
end for
{if it’s the first time, connect n; with c}
if r; = n.parent then

20

n;.parent = c
end if
r; = r;.parent
end while
Create note(c’) = clone(r;)
c.parent = ¢’
Ti = C
{Deal with nest attributes}
Let Nest be the set of all leaf children of n
for each nest in Nest do
Create node(z) = clone(nest)
z.parent = n;
delete-value(z,n;)
end for
end for
end if
end for
if i = 0 then
generate-relational-view(aux)
else
for j from 1 to i do
generate-relational-view(r;)
end for
end if

The algorithm map uses the sub-routines delete-annotation(n,z) and delete-value(n,xz).

delete-annotation(n,z)

{deletes all the annotations in n that are not related with =}
Let W be the set of annotations of where clauses in n
Let C be the set of children of n
Let V be the variables referenced in the value of the nodes in C
Let V! =V
for each w in W do

if (w has the form V,/QName, cmp V,/QName,,

where V, V,, are variables, V, € V,

Cmp G {ll:" |l<|l |l>|l ||‘:|l |l<:|| ||>:|l}) then
s s P)
Vi=V' 4+V
end if
end for

for each w that does reference a variable in V' do

delete-where-annotation(w,W)
end for
Let A be the set of annotations of variable bindings in n
Let W' be the set of where clauses in n {this set was modified by the previous loop}
for each a in A do

if a does not reference a variable in W’ then

delete(a)

end if

end for

The algorithm delete-annotation uses the algorithm delete-where-annotation.

delete-where-annotation(w,W)

if size(W) > 1 then
if w is connected in W by an expression e of the form e; and w then
replace e by e;
else
if w is connected in W by an expression e of the form w and e; then
replace e by e;
else
if w is connected in W by an expression e of the form w or e; then
replace e by e;
else
if w is connected in W by an expression e of the form e; or w then
replace e by e1

21

end if
end if
end if
end if
end if

delete-value(n,z)

{deletes variable references in n that is not in z}
Let n.value be v1/QName union vy/QName union ... union vy /QName
Let A be the set of variable bindings in x
for i from 1 to k do

if v; ¢ A then

delete (v;)

end if
end for
Delete words "union" {in the end, there will be only one variable in n.value - this is guaranteed by the nest normalization process}

The algorithm generate-relational-view generates an SQL statement corresponding to a relational view. The parameter

t is a sub-tree produced be the map algorithm.

generate-relational-view(t)

String view, select, from, where
select = "SELECT "
Let L denote the set of leaf nodes children of ¢
for each [in L do
if [is attribute then
delete "@" from l.name
else
delete "$*/" from l.name
end if
replace "/" by "." in l.value
if select <> "SELECT " then
select = select + ", " + l.value + " AS " + l.name
else
select = select + " " + l.value + " AS " + l.name
end if
end for
from =" FROM "
Let J =""
Let newJoin = false;
Let nl = t;
Let A be the set of variable bindings in nl
Let a be a variable in A
if nl has a non-leaf child ¢ then
if size(A) > 1 then
a = first variable binding in A
end if
from = "(" + a.tablename + " AS " + a.variablename + " LEFTJOIN "
mark(a); {mark a as already used}
while ¢ is not NULL do
Let VC be the set of variable bindings in ¢
Let W be the set of where annotations in nl and ¢
while there is an unmarked variable vc in VC do
Let joinCond = ""
if not(newJoin) then
v = findJoinTable(a, W, VC, joinCond)
{joinCond returns with the join condition found by the procedure findJoinTable}
from = from + v.tablename + " AS " + wv.variablename + " ON " + joinCond + ") "
newJoin = true

a=v

mark(v)

J = J + joinCond
else

v = findJoinTable(a, W, VC, joinCond)
from ="(" + from + " LEFT JOIN " + v.tablename + " AS " 4 v.variablename + " ON " + joinCond + ")

a =v

22

mark(v)
J = J + joinCond
end if
end while
nl=c
¢ = non-leaf child of nl
end while
else
if size(A) = 1 and nl has no leaf child then
from = a.tablename + " AS " + wv.variablename
else
if size(A) > 1 and nl has no leaf child then
Let W be the set of where annotations in nl
a = first variable binding in A
from = "(" + a.tablename + " AS " + a.variablename + " LEFTJOIN "
mark(a)
Let newJoin = false
while there is an unmarked variable in A do
if not(newJoin) then
v = findJoinTable(a,W,A,joinCond)
from = from + v.tablename + " AS " + wv.variablename + " ON " + joinCond + ")"

newJoin = true

a=v

mark(v)

J = J + joinCond
else

v = findJoinTable(a,W,A,joinCond)
from ="(" + from + " LEFT JOIN " + v.tablename + " AS " + wv.variablename + " ON " + joinCond + ")"
a=wv
mark(v)
J = J + joinCond
end if
end while
end if
end if
end if
where = "WHERE "
Let W be the set of where annotations in all the tree
for each w in W that is not in J do
where = where + w;
end for
view = select + " " + from + " " + where

return view

The generate-relational-view algorithm calls the subroutine findJoinTable.

findJoinTable(a,W,VC,joinCond)

joinCond = ""
for each v in VC do
if there is a w in W of the form V,/QName, cmp V, /QName,,
(where Vg, V,, are variables, V, € a, V,, € v
emp € {"=", "<", NS0 M=t et s} then
for each w in W that involves variables a and v do
joinCond = joinCond + w + ";"
end for
exit {exit the for loop}
end if
end for
{treats the join expression including ANDs and ORs}
for each w; ; wa in joinCond do
if w; and wy are connected in W by an expression of the form "w; and e and w2" then
replace ; by and
else

if w; and w2 are connected in W by an expression of the form '

'wy or e or wy" then
replace ; by or
else
if w; and wy are connected in W by an expression of the form "w; or e and wy" then
replace ; by or

23

else

1

if w; and wo are connected in W by an expression of the form "w; and e or ws" then

replace ; by and
end if
end if
end if

end if
end for
return joinCond
return v

C.3 Mapping updates on the XML view to updates in the relational views

C.3.1 Insertions

The algorithm translateInsert takes an insertion specification against the XML view and translates it to insertions on the

corresponding relational views. The parameters are:
e V: the XML view
e qux: the auxiliary query tree
e ref: the update path
e A: the subtree to be inserted

The procedure supposes that the update specification was already checked for schema conformance. The subroutine
type(n) returns the type of a given node (7n, 7r, 7¢ or 7s). The subroutine wiew(n) returns the name of the relational

view associated with node n, assuming that n is of type 7.

translateInsert(V, aux,ref,A)

Insert A in V using ref as insertion point. A must be inserted under every node resulting from the evaluation of ref in V'
Let p be the unqualified portion of ref
Let m be the node resulting from the evaluation of p against aux
Let N be the set of nodes resulting from the evaluation of ref in V'
for each n in N do
if type(m) = 7n then
generateInsertSQL (view(m), root(A), n, V)
else
Let X be the set of nodes of type 7y in A
for each z in X do
generatelnsertSQL (view(x), x, n, V)
end for
end if
end for

The algorithm translateInsert calls the subroutine generateInsertSQL, which generates a single SQL insert statement.

The parameters are:
e RelView: the relational view where the insertion is to take place
e r: the root of the subtree being inserted
e InsertionPoint: the node in V under which the subtree is being inserted

e V: the XML view

generatelnsertSQL(RelView, r, InsertionPoint, V)

sql = "INSERT INTO" + RelView + getAttributes(RelView)
sql = sql + " VALUES ("
for i = 0 to getTotalNumberAttributes(RelView) - 1 do
att = getAttribute(RelView, 1)
if att is a child n of r then
sql = sql + getValue(n)
else
Find att in V, starting from InsertionPoint examining the leaf nodes until V’s root is found

24

Let the node found be m
sql = sql + getValue(m)

end if

if i < getTotalNumberAttributes(RelView) - 1 then
sql = sql + ", "

else
sql = sql + ")"

end if

end for

C.3.2 Deletions

The algorithm translateDelete takes a deletion specification against the XML view and translates it to deletions on the

corresponding relational views. The parameters are:
e V: the XML view
e aqux: the auxiliary query tree
e ref: the update path

The procedure supposes that the update specification was already checked for schema conformance. The subroutine
type(n) returns the type of a given node (7n, 7r, 7¢ or 7s). The subroutine wview(n) returns the name of the relational

view associated with node n, assuming that n is of type 7n.

translateDelete(V, auz,ref)

Let p be the unqualified portion of ref
Let m be the node resulting from the evaluation of p against aux
if type(m) = 7n then

generateDeleteSQL (view(m), ref)
else

Let X be the set of nodes of type 7 under m

for each z in X do

generateDeleteSQL (view(x), ref)

end for

end if

The algorithm translateDelete calls the subroutine generateDeleteSQ)L, which generates a single SQL delete statement.
The parameters are:

e RelView: the relational view where the insertion is to take place

e ref: the update path

generateDeleteSQL(RelView, ref)

sql = "DELETE FROM " + RelView + " WHERE "
for each filter f in ref do
if f is the first filter in ref then

sql = sql + f
else
sql = sql + "AND " + f
end if
end for

C.3.3 Modifications

The algorithm translateModify takes a modification specification against the XML view and translates it to modifications
on the corresponding relational views. The parameters are:

e V: the XML view
e qux: the auxiliary query tree

e ref: the update path

25

o A: the new value

The procedure supposes that the update specification was already checked for schema conformance. The subroutine
type(n) returns the type of a given node (7n, Tr, 7¢ or 7s). The subroutine view(n) returns the name of the relational
view associated with node n, assuming that n is of type 7n.

translateModify(V, auz,ref,A)

Let p be the unqualified portion of ref
Let m be the node resulting from the evaluation of p against aux
Let r be the ancestor of m whose type is 7 or 7n
Let N be the set of nodes resulting from the evaluation of ref in V'
for each n in N do
if type(r) = 7y then
generate ModifySQL (view(r), A, ref)
else
Let X be the set of nodes of type 7y under r
for each z in X do
generate ModifySQL (view(z), A, ref)
end for
end if
end for

The algorithm translateModify calls the subroutine generate ModifySQL, which generates a single SQL update statement.
The parameters are:

e RelView: the relational view where the insertion is to take place
e Delta: the new value

e ref: the update path

generateDeleteSQL(RelView, A, ref)

sql = "UPDATE " + RelView + " SET "
Let t be the terminal node in ref
sql =sql +t+"="4+ A+ " WHERE "
for each filter f in ref do

if f is the first filter in ref then

sql = sql + f
else
sql = sql + "AND " + f
end if
end for

26

	University of Pennsylvania
	ScholarlyCommons
	January 2003

	Using XQuery to Build Updatable XML Views Over Relational Databases
	Vanessa P. Braganholo
	Susan B. Davidson
	Carlos A. Heuser
	Recommended Citation

	Using XQuery to Build Updatable XML Views Over Relational Databases
	Abstract
	Comments

	sbbd.dvi

