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ABSTRACT
The factory of the future is the Wireless Factory - fully pro-
grammable, nimble and adaptive to planned mode changes
and unplanned faults. Today automotive assembly lines
loose over $22,000 per minute of downtime. The systems
are rigid, difficult to maintain, operate and diagnose. Our
goal is to demonstrate the initial architecture and proto-
cols for all-wireless factory control automation. Embedded
wireless networks have largely focused on open-loop sens-
ing and monitoring. To address actuation in closed-loop
wireless control systems there is a strong need to re-think
the communication architectures and protocols for reliabil-
ity, coordination and control. As the links, nodes and topol-
ogy of wireless systems are inherently unreliable, such time-
critical and safety-critical applications require programming
abstractions where the tasks are assigned to the sensors, ac-
tuators and controllers as a single component rather than
statically mapping a set of tasks to a specific physical node
at design time. To this end, we introduce the Embedded
Virtual Machine (EVM), a powerful and flexible runtime
system where virtual components and their properties are
maintained across node boundaries. EVM-based algorithms
introduce new capabilities such as provably minimal grace-
ful degradation during sensor/actuator failure, adaptation
to mode changes and runtime optimization of resource con-
sumption. Through the design of a micro-factory we aim
to demonstrate the capabilities of EVM-based wireless net-
works.

Keywords: Real-time systems, embedded systems, wire-
less sensor networks, virtual machines.

1. INTRODUCTION
Embedded Wireless Sensor-Actuator-Controller (WSAC)

networks are emerging as a practical means to monitor and
operate automation systems with lower setup/maintenance
costs. While the physical benefits of wireless, in terms of
cable replacement, are apparent, automation manufactur-
ers and plant owners have increasing interest in the logical
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benefits.
With multi-hop WSAC networks, it is possible to build

modular systems which can be swapped out for off-line main-
tenance during faults. Modular systems can be dynamically
assigned to be primary or backup on the basis of available
resources or availability of the desired calibration. Modu-
larity allows for incremental expansion of the plant and is
a major consideration in emerging economies. WSAC net-
works allow for runtime configuration where resources can be
re-appropriated on-demand, for example when throughput
targets change due to lower price electricity during off-peak
hours or due to seasonal changes in end-to-end demand.

While WSAC networks facilitate both planned and un-
planned mode changes, runtime programmable WSAC net-
works allow for flexible item-by-item process customization.
For example, a high demand for fuel-efficient Toyota Prius’
will require major retooling of a traditional wired factory
that is designed for the Toyota Camry chassis. With re-
programmable WSAC, the assembly line stations can adapt
to a schedule where every 3 Camrys are interleaved with 2
Prius’ with synchronized changes in operation modes and
assembly line operations.

To this end, we introduce the Embedded Virtual Machine
(EVM), a powerful and flexible runtime system where vir-
tual components and their properties are maintained across
node boundaries. EVMs differ from classical virtual ma-
chines (VM). In the enterprise or on PCs, one (powerful)
physical machine may be partitioned to host multiple vir-
tual machines for higher resource utilization. On the other
hand, in the embedded domain, an EVM is composed across
multiple physical nodes with a goal to maintain correct and
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Figure 1: nano-RK sensor RTOS with interfaces to the

EVM. EVM includes parametric and programmable con-

trol algorithms for runtime logical-task to physical-node

mapping.
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Figure 2: FischerTechnik work-cell module with a conveyor belt and 21 sensors and actuators

high-fidelity operation even under changes in the physical
composition of the network. The goal of the EVM is to
maintain a set of functional invariants, such as a control
law and para-functional invariants such as timeliness con-
straints, fault tolerance and safety standards across a set of
controllers given the spatio-temporal changes in the physi-
cal network. By incorporating EVMs in existing and future
wireless automation systems, our aim is to realize:
1. Predictable outcomes in the presence of controller failure
2. Provably minimal QoS degradation without violating
safety
3. Composable and reconfigurable runtime system
4. Adaptive Resource Re-appropriation and Optimization

2. ARCHITECTURE AND ALGORITHMS
The system under consideration includes a number of wire-

less sensors, actuators and controllers composed into a Vir-
tual Component. The Virtual Component acts as a single
entity for the control algorithm execution. The EVM pro-
vides a flexible runtime system to share state and respon-
sibilities across physical nodes and allows multiple EVM-
enabled nodes to be composed into a single logical entity.

The EVM architecture and algorithms are built on a mod-
ified version of the FireFly sensor network platform [1] and
nano-RK sensor real-time operating system (RTOS) [2]. The
EVM is implemented in the form of a virtual machine ab-
straction layer on top of the RTOS and executes as a special
task within nano-RK. As a special task, the EVM has both
parametric and programmable control of the entire operat-
ing system and hardware resources.

We now consider the design of the EVM within the nano-
RK RTOS framework. The EVM describes its own instruc-
tion set for efficient control, task and fault management be-
tween nodes. As with Mate [3], the EVM is based on a
FORTH-like interpreter. The interpreter runs within nano-
RK as a super task. However, unlike Mate, the EVMs in-
struction set is extensible at runtime. Furthermore, EVM in-
structions are focused on node-to-node communication and
control rather than PC-to-node control. The EVM architec-
ture has two main components - EVM node-specific opera-
tions and object transfers for efficient node-to-node commu-
nication. Both will be explained in the poster and demon-
strated in the micro-factory automation test-bed described
below.

3. EVM EVALUATION
Our focus is on the fault-tolerance of controllers only.

When a particular backup controller detects a series of faults
in the primary controller, it triggers a task migration opera-
tion to the backup controller. This operation includes a ca-
pabilities check and the migration of the task control block,
stack, data and timing/precedence-related metadata. The
backup controller is activated and the primary controller
switches to a passive ‘indicator’ mode.

We have implemented the parametric control capability
of the EVM on the FireFly nodes over the nano-RK sensor
RTOS. This allows remote runtime triggering of individual
sensor drivers, modification of task reservations and network
time-slot assignment. Through a discrete control case study,
we evaluate the programmable control, more specifically the
fault tolerant capability, of the EVM.

We will demonstrate the functioning EVM in a factory
simulation module using the FischerTechnik model factory,
as shown in Fig. 2. Such factory is used by companies such
as BMW prior to building a real factory. Each module
in the model factory consists of 22 sensors and actuators
that are to be controlled in a coordinated and timely man-
ner. All modules use use wireless control with FireFly nodes
controlling all sensors and actuators. This test-bed will al-
low us to evaluate the EVM’s communication, coordination
and adaptation capabilities in a more realistic setting. We
will demonstrate single workflow, multiple interleaved work-
flows and rudimentary fault tolerance as controllers fail. A
workflow is a sequence of event-triggered coordinated con-
trol tasks that act upon the raw material as it moves through
the micro-factory.

In summary, the objectives of this effort are:
1. Ability to deploy control algorithms in a virtual com-

ponent defined over a grid of wireless controllers.
2. On-line capacity expansion/contraction enabling con-

trollers may be added/removed at operation time.
3. Remote algorithm triggering and replication for through-

put adaptation.
4. Fault tolerance to node and communication failures.
5. Control algorithm execution with high-speed operation

(1/4 second or less control cycle) and with a small latency
(≤1/3 of the control cycle).
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