2010

Energy and Width of the Excited 0^+ stat in ^{12}O

H Terry Fortune
University of Pennsylvania, fortune@physics.upenn.edu

Rubby Sherr
Princeton University

Follow this and additional works at: http://repository.upenn.edu/physics_papers

Part of the [Physics Commons](http://repository.upenn.edu/physics_papers)

Recommended Citation

Fortune, H. T., & Sherr, R. (2010). Energy and Width of the Excited 0^+ stat in ^{12}O. Retrieved from http://repository.upenn.edu/physics_papers/6

Suggested Citation:

Copyright 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

The following article appeared in *Physical Review C* and may be found at http://dx.doi.org/10.1103/PhysRevC.82.034325.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/physics_papers/6
For more information, please contact libraryrepository@pobox.upenn.edu.
Energy and Width of the Excited 0^+ stat in 12O

Abstract
We review predictions for the energy of the excited 0^+ state of 12O and present new calculations of its width. Results are compared with those of a recent experiment.

Disciplines
Physical Sciences and Mathematics | Physics

Comments
Suggested Citation:

Copyright 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

The following article appeared in Physical Review C and may be found at http://dx.doi.org/10.1103/PhysRevC.82.034325.
Energy and width of the excited 0+ state in 12O

H. T. Fortune
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

R. Sherr
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

(Received 11 July 2010; published 27 September 2010)

We review predictions for the energy of the excited 0+ state of 12O and present new calculations of its width.

Results are compared with those of a recent experiment.

DOI: 10.1103/PhysRevC.82.034325 PACS number(s): 21.10.Hw, 21.10.Sf, 23.50.+z, 27.20.+n

PHYSICAL REVIEW C 82, 034325 (2010)

Given the existence of a 2+ state [1–3] at 2.11 MeV in 12Be and an excited 0+ level [4] at 2.24 MeV, the mirrors of these two states are expected near 2 MeV in 12O. For these states not to exist in 12O would require a tremendous level of isospin violation—an amount never before encountered in nuclear physics.

Indeed, in 1985, a pion double-charge-exchange experiment 14C(π+, π−) observed, with reasonable statistics, an excited state at 1.7 MeV in 12O [5]. Because the excited 0+ was not known at that time, this state was referred to as 2+. However, the angular distribution corresponding to that range of excitation [Fig. 7(b) of Ref. 5] appears to contain contributions from both a 0+ and a non-0+ state. So, the peak in Ref. [5] probably contains both 0+ and 2+ states. In the reaction 16O(α, 3He)12O, an excited state was suggested at 1.1 MeV [6].

Recently, in a very difficult experiment Suzuki et al. [7] investigated the 14O(p,t)12O reaction by using a secondary beam of 14O to bombard a thick solid hydrogen target. They observed two peaks—at excitation energies of 0.0(4) and 1.8(4) MeV, with total widths (analyzed as Gaussians) of 1.2(2) and 1.6(3) MeV, respectively. The resolution width was determined to be 1.0(5) MeV from the measured width of the ground state (gs) peak in the reaction 16O(p,t)12O.

Angular distributions of the two peaks appear to be virtually identical in shape, and the absolute cross sections are approximately equal (excited peak slightly weaker). The lower peak is undoubtedly the 0+ gs, which should be reached via angular momentum transfer L = 0. The authors could not choose between L = 0 and L = 2 for the excited peak. As pointed out earlier, from knowledge of 12Be, a 2+ and an excited 0+ state must exist in a reasonably narrow region of 12O. In 12Be, these states are at 2.11 and 2.24 MeV, respectively. Thus, the first two excited states of 12O should be 0+ and 2+, with the order unknown. The interesting physics is contained in the energies, widths, and (relative) cross sections of these two states. The authors did not consider the possibility that the 1.8-MeV peak contains two states. They refer throughout to “an excited state.” If two states indeed exist, treating the peak as a single state does not yield the energy or width of either.

The authors did not compare their results to those of 14C(p,t). By isospin symmetry, the 14O(p,t) reaction should have certain features in common with the reaction 14C(p,t) [8] to the T = 2 states of 12C. It is customary to refer to the 12Be states as parents, to the T = 2 states of 12C as double analogs, and to the 12O states as mirrors.

For clarity, we use that language here. In particular, the 02−/2+ cross-section ratio should be about equal in the two reactions leading to the double analogs and the mirrors. A subsequent analysis [9] of the latter reaction, by fitting the excited peak angular distribution with a sum of L = 0 and L = 2 components, concluded that both 02− and 2+ double-analog states were being populated, with similar cross sections. We would thus expect that both states are being made in the 14O(p,t) reaction.

In Ref. [7] the authors extracted intrinsic widths by subtracting, in quadrature, the resolution width from the total width. Of course, that procedure is appropriate only if the natural line shape of an unbound state were to be a Gaussian. However, it should be a Breit-Wigner shape. (For a single state, the error introduced by this incorrect treatment depends on the ratio of total width to resolution width. For example, if this ratio is 1.1, the extracted natural width is about 2.4 times the true value, while a ratio of 1.5 leads to an extracted value of about 1.4 times the true value.)

Given the near equality of 1.0(5) MeV for the resolution width and 1.2(2) MeV for the total width of the gs peak, it is likely that the gs width is small. This would be consistent with a limit of Γ < 100 keV from 12C(π+, π−) [10], and with several theoretical predictions of about 60 keV [11–13]. For the excited-state peak, convoluting a Gaussian and Breit-Wigner shape could produce an intrinsic width very different from the one obtained [7] assuming a Gaussian natural shape. However, as mentioned earlier, if two states are present, the observed width is not the width of either one. Even if one state is narrow, the peak corresponding to each state would be at least about 1 MeV wide from the resolution width.

The energy of the excited 0+ state provides an important test of different wave functions for the T = 2 0+ states in A = 12. We have previously predicted [9] the energy of the excited 0+ state of 12O to be 1.95 MeV. This prediction was based on calculation of its Coulomb energy using a set of 0+ wave functions derived [14] from a variety of experimental considerations, but primarily 10Be(t,p) [1] and the Coulomb energy of the 12O(gs) [14]. For the two 0+ states, these wave functions are orthogonal linear combinations of a pure p-shell 12Be(gs) and a p-shell 10Be(gs) coupled to two

0556-2813/2010/82(3)/034325(2) 034325-1 ©2010 The American Physical Society
and width—the latter newly calculated here—of the excited have been frequently used [13,17,18]. Predictions of the energy correcting (see Refs. [16,17] for an obvious typo in Ref. [9]).

Because of these two difficulties, the theoretical \(/\Gamma_1\) are restricted to the \(1^d_s\) and \(2^d_s\)–shell neutrons. In most models the two \(sd\)-shell neutrons are restricted to the \(1d_{5/2}\) and \(2s_{1/2}\) orbitals, referred to here as \(d\) and \(s\), respectively. In our model the \(s^2/d^2\) ratio is taken to be the same in the two lowest \(0^+\) states [where by \(s^2/d^2\) ratio we mean the ratio of \((2s_{1/2})^2\) intensity to that for \((1d_{5/2})^2\) in the \(sd\)-shell part of the two-neutron wave function]. Wave-function intensities are listed in Table I (after correcting (see Refs. [16,17]) for an obvious typo in Ref. [9]).

For comparison, we also list another set of wave functions that have been frequently used [13,17,18]. Predictions of the energy and width—the latter newly calculated here—of the excited \(0^+\) state of \(^{12}\)O are given in Table II.

The expected energy of the excited \(0^+\) state in \(^{12}\)O depends sensitively on the amount of \(s^2\) in its wave function. One set (FS) of \(0^+\) wave functions, that agrees with a wide range of experimental information, gives a \(0^+_2\) energy of 1.95 MeV [9,16] Another set [19] has even more \(s^2\) in the gs (and hence less in the excited state) than we do. A further set (B) has most of the \(s^2\) configuration in the excited \(0^+\) state and would predict [9,16,17] a \(0^+_2\) energy of 1.19 MeV. We have calculated for both sets the \(0^+_2\) width to be expected if its energy is 1.8 MeV, using the expression \(\Gamma_1 = S\Gamma_\text{sp}\), where \(S\) is the spectroscopic factor for \(\ell = 0\) decay to \(^{11}\)N(gs) and \(\Gamma_\text{sp}\) is the single-particle width for that decay. (Decay to the \(1/2^+\) first-excited state via \(\ell = 1\) makes a negligible contribution to the width.) Here, \(S\) is twice the \(s^2\) intensity in the \(0^+_2\) state. Obtaining \(\Gamma_\text{sp}\) has two difficulties: (i) The state is near the \(^{11}\)N \(+\ p\) barrier top, and (ii) the calculation must include integration over the natural width of \(^{11}\)N(gs) in a manner previously described [12,15]. Because of these two difficulties, the theoretical \(\Gamma_\text{sp}\) has a large uncertainty. The single-particle width can be as small as 1.4 MeV or as large as 2.0 MeV. We have chosen to use 1.7(3) MeV for \(\Gamma_\text{sp}\). The FS wave functions have \(S = 0.50\), while for B \(S\) is 1.33. Thus, we would predict \(\Gamma_1 = 0.85(15)\) MeV for the \(0^+_2\) level, while B would give about 2.3 MeV. The B width of 2.3 MeV is clearly incompatible with the data of Ref. [7] if any of the peak observed in Ref. [7] is from the \(0^+_2\). However, the data are consistent with our width.

A more precise value of the measured width should allow a test of other models. These predicted widths are both for a state assumed to be at 1.8 MeV. Recall that wave function set B puts the \(0^+_2\) state at 1.19 MeV, while FS would give 1.95 MeV. For any \(0^+_2\) energy in \(^{12}\)O, set B will predict a width that is 2.7 times the width predicted with set FS. Furthermore, this ratio of the two calculated widths is independent of the value of \(\Gamma_\text{sp}\). For the \(^{14}\text{C}(p,t)\) reaction, Barker has suggested [18] that the observed excited \(T = 2\) peak is all \(2^+\), because “the large width given by B would make the \(0^+_2\) level indistinguishable from the background.” And the width in \(^{12}\)O will be larger than in \(^{12}\)C.

Experiments of this type are extremely difficult and may seldom (or never) be repeated. However, repeating the \(^{14}\text{O}(p,t)\) reaction with better statistics (and perhaps better resolution) should be able to determine whether both \(0^+_2\) and \(2^+\) states are being populated and, if so, whether the \(0^+_2\) width is about 0.85 MeV or closer to 2.3 MeV.

To summarize, we have presented predictions for the energy and width of the excited \(0^+\) state of \(^{12}\)O. Width calculations are new here. We have compared the results with recent measurements of Ref. [7]. We have pointed out what we perceive as inadequacies in the treatment of Ref. [7], and we emphasize the need for a better measurement of the width.

We thank D. Suzuki for helpful correspondence.
