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Geometry of locating sounds from differences in travel time: Isodiachrons

Abstract

Calling animals may be located from measurements of the differences in acoustic travel time at pairs of
receivers. For inhomogeneous fields of speed, locations can be made with better accuracy when the location
algorithm allows the speed to vary from path to path. A new geometrical shape, called an isodiachron, is
described. It is the locus of points corresponding to a constant difference in travel time along straight paths
between the animal and two receivers. Its properties allow an interpretation for locations when the speed
differs from path to path. An algorithm has been developed for finding the location of calling animals by
intersecting isodiachrons from data collected at pairs of receivers. When the sound speed field is spatially
homogeneous, isodiachrons become hyperboloids. Unlike a hyperboloid that extends to infinity, an
isodiachron is confined to a finite region of space when the speeds differ between the animal and each of two
receivers. Its shape is significantly different than a hyperboloid for cases of practical interest. Isodiachrons can
be used to better understand locations of calling animals and other sounds in the sea, Earth, and air.
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Calling animals may be located from measurements of the differences in acoustic travel time at pairs
of receivers. For inhomogeneous fields of speed, locations can be made with better accuracy when
the location algorithm allows the speed to vary from path to path. A new geometrical shape, called
an isodiachron, is described. It is the locus of points corresponding to a constant difference in travel
time along straight paths between the animal and two receivers. Its properties allow an interpretation
for locations when the speed differs from path to path. An algorithm has been developed for finding
the location of calling animals by intersecting isodiachrons from data collected at pairs of receivers.
When the sound speed field is spatially homogeneous, isodiachrons become hyperboloids. Unlike a
hyperboloid that extends to infinity, an isodiachron is confined to a finite region of space when the
speeds differ between the animal and each of two receivers. Its shape is significantly different than
a hyperboloid for cases of practical interest. Isodiachrons can be used to better understand locations
of calling animals and other sounds in the sea, Earth, and al20@ Acoustical Society of
America. [DOI: 10.1121/1.1804625

PACS numbers: 43.80.EWWA] Pages: 3168—-3177

I. INTRODUCTION lations to describe the properties of this shape, called an
“isodiachron,” from the Greek words “iso” for same, “dia”
Differences in the travel time of acoustic and electro-for gifference, and “chron” for time. It is the locus of points
magnetic waves are commonly used to locate objects. Appligjong which the difference ifravel timeis constant. It re-
cations include the global positioning sysfefGPS and the  yces 10 a hyperboloid when the average speed of the signal

. . . . _9
pgsswg location of calllng anlmazis.. When the speed of the is the same on both paths. The isodiachron is the natural
signal is constant, the difference in travel times can be con-

. R L .. shape to intersect to find the location of an animal when the

verted to the difference in distances by multiplying the dif- . . .
ference in travel times by the speed. Then the method ijee_d differs from p_gth to paf[h. In fac_t, the algonthm n Ref.
location is usually interpreted using hyperboldfti be- - 8 ylelds a probability density function for location using
cause the hyperboloid is the locus of points whose differencisodiachrons. _ . _
in distance from two points is constant. The hyperbola may ~ Unless noted otherwise, the phrase “effective speed” is
have been discovered by the ancient Greek mathematicigiefined to be the time for the acoustic or electromagnetic
Menaechmuscirca 350 B.C). (p. 280-281, Vol II, Ref. 12 signal to propagate from the animal to the receiver divided
but this is not certain as most original writings have beerby the Euclidean distance. Thus the effective speed includes
lost. Other geometrical interpretations of location have als@ll spatially and temporally varying effects including those
been found! 1314 due to refraction, diffraction, and, for acoustic signals, ad-

The single-speed approximation is good enough fowection such as that due to winds or currents. Because of
some but not all applications. For greater accuracy, methodgdvection, the effective speed from the animal to the receiver
are used that allow the speed to differ from path to pathcan be different than from the receiver to the animal. The
while still maintaining the picture of signals traversing yord “speed” will not include effects from advection.
straight line segments. Scientists have developed these ap- Section Il reviews some of the reasons and methods that

pro?ﬂﬁs for appllcan(_)n to acoustic navigation in theave been used to infer location when the effective speed is
sea, and to the passive location of calling animals in the . .

918 . . ~spatially inhomogeneous. There must be other methods that
sea and ait'® Then the question arises as to whether there i ave been used as well, and the list of examples here is not

a geometrical shape, which cannot be a hyperbola, that can . . ,
be used to interpret such locations when a constant speed'l%tended to be complete. What is important about this section

not used. is that it highlights some of the pitfalls in hyperbolic location

The purpose of this paper is to show that such a shap@ethods in situations where the effective speed is not con-
exists and to use it to interpret these methods of location. Thétant from path to path. Section Il provides the calculations
shape appears to have not been shown previously in the s¢hat define the isodiachron and its behavior. The paper ends
entific or mathematical literature, except for a paper thawith a short summary, and provides a speculation as to why
gives its definition without showing its shape or describingthe ancient Greek mathematicians did not apparently con-
its properties® It is therefore necessary to use simple calcu-template an isodiachron.
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Il. HYPERBOLIC LOCATION IS LESS ACCURATE AND locations are significant. Errors in the locations of receivers
SOMETIMES INCORRECT often translate to much larger errors in source locattdn.

A. Underwater navigation

Hydrophones are sometimes lowered from a ship to the. Solutions for animal location in air
seafloor to locate acoustic emissions from a variety of ob-
jects. There is considerable interest in determining the posi-
tion of each hydrophone on the bottom so that locations o‘l‘o
acoustic emissions can be made accurately.

Naturalists, biologists, acousticians, and others estimate
cations of sounds from differences of travel time on widely
separated microphones in &2 Problems with hyperbolic
) - location are highlighted by considering a geometry where an

Quite oﬂgn, the positions of the hydrophones are eSt!énimaI is located at Cartesian coordiné28,100,7 m and its
mgted by towing an accurately located §ource from the,Sh'Bignals are monitored at five microphone$(6,0, (25,0,3,
vyh|le _the hydrophones on the bottom pick up these gallbra(50,375, (30,40,9, and(1,30,4 m respectively. For definite-
tion signals. Suppose the clock for the hydrophone time Se;e55 assume the animal's call has a rms. bandwidth of 1000
ries has an unknown offset with respect to the clock governy; ang, following the cross correlation of the signal between
ing the towed source. The unknown clock offset is removedyach pair of microphones, the peak signal-to-noise ratio is 20
from the problem by working with differences of signal 4B, The lag of this peak has a standard deviation ofu6
travel time at the hydrophone. The travel times change pritRef. 26, where the lag is the difference in the travel time of
marily because the source transmits from different locationssound between the animal and two receivers. Such accuracy
Until recently, this was usually treated as a standard hypercan be achieved in practice.
bolic location problem. A sequential nonlinear Monte Carlo technique is used to

In the sea, the effective speed of sound between thestimate the probability density function for location from
source and hydrophone varies with source locattoh’ To  simulated lags® The technique can accommodate spatially
explain why, assume for simplicity that the speed of sounchomogeneous or inhomogeneous effective speeds, and al-
varies with depth only. The actual time for sound to reach dows one to account for errors in the locations of the micro-
hydrophone on the bottom from the surface depends on thehones. Realistiprior distributions of errors are permitted
speed of sound along a ray path, which is not straight befor all variables. Distributions of location can be compared
cause it bends due to refraction. If the ray path were straightyith the same statistical assumptions except for the fact that
the effective speed of sound would be the same for all sourci® one case the effective speed is spatially homogeneous, and
locations at the surface. But the bending changes the effed? the other, spatially inhomogeneous. Other algorithms may
tive speed of sound. For cases of interest, this effective speedisO be suitable for generating realistic location distributions,
can be pre-computed in a table of speed versus slant angle 't it does not seem prudent to summarize or compare such

and depth of the receiv&f1"This table can be accessed by g techniques because the main point of this paper is not cen-
location algorithr->16 tered on a review of techniques.

The equations relating location to differences in travel Simulated lags are computed_ without noise fo_r a speed
time are nonlineat® When these equations are IinearizedOf sound of 330 m/s and for a horizontal wind blowing at 10

about a good initial guess for hydrophone location, a Ieast':.n/ s toward the positivg Cartesian axisA priori distribu-

squares problem for hydrophone location and clock OlcfsePons of the remaining variables are taken to be Gaussian but

between the source and hydrophone can be solved by itere}{—u ncated at two standard deviatiofable ). The accurate

ing the linearized equations to minimize the residuals in ocations of the receivers are typical for those surveyed op-
g . q ) 6 atically. It is necessary to accommodate the effects of wind for
determined or overdetermined problémt® The method,

. : hyperbolic location without allowing the effective speed to
called the “inhomogeneous algorithm” here, allows one to vp g P

vary from path to path. This can be done in two ways, neither
assume that different paths have the same or different eﬁ‘e%-f %hich is satisfyr;ng 4

tive speeds. The inhomogeneous algorithm looks up the ef-

) s . The first accommodation is to let the necessarily spa-
fective speed along each path as it iterates for the location qfa”y homogeneous effective speed vary by an amount equal

the hydrophone on the _bottolrﬁ._mAn estimate of the error 5 the variations from path to path, i.e., a standard deviation
obtained from hyperbolic location has been investigated ags 1o m/s(Table 1, Hyperbolic Location X The second ac-
follows. commodation is to artificially increase the measured error in
Using a realistic profile of sound speed in the Atlantic, aine difference in travel times from 16s to that which would
simulated hydrophone at 1600 m depth is estimated to haveig due to the change in lag due to path speed variations of
depth error of abau3 m when located using hyperbolic sc=+10 m/s over distances of the acoustic paths. An order-
methodg(Table I, case 5, Ref. 26When the effective speed of-magnitude estimate of this effect can be obtained by using
of sound is allowed to vary from path to path from a pre-equal path lengthd,, given by the length scale of the array.
computed database, the inhomogeneous algorithm yields thghe effect is
correct depth for the hydrophorigable |, Case 6, Ref. 16 — s
For real data with a similar geometry, the hyperbolic location ~ 77 V(L aele?)?+(Laclc?)?, @)
algorithm yields a 3 merror compared with the inhomoge- where to first order, the variation in travel time for one path
neous location algorithrtCases 2 and 4 in Table 2.3 of Ref. is L dc/c? and o, denotes the standard deviation of the dif-
15). There are situations wher3 m errors in hydrophone ference in acoustic travel time between the animal and two
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TABLE I. A priori distributions of independent variables involved in determining the location of a calling animal in air via hyperbolic and isodiachronic
methods. Both methods yield distributions for animal location from the differences in simulated arrival times at five microphones. Hypertulicdquaes

the effective speed to be the same for each acoustic path whereas isodiachronic location does not. Distpimkiarikty density functionsare Gaussian

with indicated means and standard deviations except all are truncated at two standard deviations. “True” indicates a variable’s meansisTéreyr-les
component of the wind is modeled for isodiachronic location but cannot be modeled in hyperbolic location. Instead, this wind is accounted fdingy inclu
a variation of 10 m/s for the standard deviation of effective sound speed in hyperbolic logagtmod 1 or by artificially increasing the measured error in

the lag from 16us to 0.006 49 $smethod 2 via Eq.(1). A priori errors are zero for receiver one, th@ndz coordinates of receiver two, and theoordinate

for receiver three. These coordinates merely define the origin and orientation of the coordinate system.

A Priori distributions

Hyperbolic location 1

Hyperbolic location 2 Isodiachronic location

Variable Symbol Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Cartesian ri(x) True 0.02 m True 0.02 m True 0.02 m
Receiver ri(y) ! ” ! ? ! ”
Coordinate ri(2) " " " " " "

Cartesian u(x) 0 0 0 0 0 0

Wind u(y) 0 0 0 0 0 10
Component u(z) 0 0 0 0 0 0
Sound speed c 330 10 330 0 330 0
Lag 7ij True 16 us True 0.006 49 s True 1@s

receivers. FoL=50 m, Sc=10 m/s, andc=330 m/s, we fore at 100% confidence as well. This demonstrates that hy-
get o.=0.00649 s. This artificial increase is about two or- perbolic methods yield incorrect or useless locations whereas
ders of magnitude greater than the 46 accuracy that can the isodiachronic method yields useful and statistically cor-
be obtained for the signal limited by noi¢€able |, Hyper-  rect locations.
bolic Location 2.

There is no difficulty accommodating inhomogeneousC. Global positioning system
effective speeds with isodiachronic location. In this case, the

tion of 10 m/s about a mean of 0 m/Bable I, Isodiachronic

. rror is the variation of the gr f electromagneti
Location. error is the variation of the group speed of electromagnetic

Following application of the sequential nonlinear Monte " <o for different paths through the ionosphefkone uses
Carlo al ritghmppin rect anim Iql tions are obtain da GPS receiver that monitors only the single L1 frequency,
arlo- algo 1, Incorrect :animal focations are obtained, typical residual after correcting for the GPS-broadcasted
when the effective speed is assumed to be spatially homog

?6nospheric correction is 4 m, but could be many times that
neous(Table I, Hyperbolic Location )1 Indeed, the animal’s 7 ' .
100% confidence limits foy are 102.0 to 108.1 m, but its amount®’ These errors translate to location errors of about

. . . 30 m both horizontally and vertically. If one assumes loca-
0,
ac'Fua_lIy coordinate is 100. m. 'I_'he_ 10(.M’ limits do not extendtions are obtained using a hyperbolic technique, no accom-
to infinity because tha priori distributions of error are trun-

cated at two standard deviations. So aieoriori distribu- modation can be made for the differences in effective speed
tions of receiver locations, travel -time%iffeeences and envi—from path to path, and these errors would be difficult to
X ' suppress without further information. In this situation, one

rqnmental variations, this hyperbolic Ipcatlon meth_od alwayscould use an algorithm for location that accommodates varia-
yields incorrect answers for the location of the animal.

If the second hyperbolic location model is used with tions in the effective speed on a path-by-path basis. Such
large errors in the lagéTable I, Hyperbolic Location g the algorithms would yield more accurate estimates of location

100% confidence limits arex between—312 and+ 207 m, than hyperbolic algorithms.
y between 55 and 12000 m, armbetween—1200 and
+410 m. These bounds contain the correct location of thé!" GEOMETRY OF ISODIACHRONS
animal, but they are so large as to be useless. The 95% con- Since there is a need for locating signals with high ac-
fidence limits arex between 13 and 33 ny,between 57 and curacy in spatially inhomogeneous fields of effective speed,
540 m, andz between—66 and+ 15 m. These bounds are it would be desirable to develop a geometrical interpretation
about the same scale as the array itself, and still quite largef the problem as has been done when the effective speed is
and probably not useful. spatially homogeneou§:*+1314

With isodiachronic location, 95% confidence limits for A hyperboloid is the locus of pointswhose difference
the animal arex:16.6—20.5m,y:98.8-101.7 m,z:3.5— in distance,d;;, from two points is constant. These points
40.5 m. These are statistically consistent with the correct losatisfy
cation at(20,100,7 m. The large variation irz stems from
the fact that the animal and receivers are nearly coplanar. ”r‘_ﬂ_””_j':d” ' @
Other confidence limits could be given but they are notwhere the coordinates of the point®ceivers hereare r;
shown because the point is that isodiachronic location yieldand r;. Let t; andt; denote the time for sound to travel
a correct answer at a stringent confidence of 95%, and therdetween the source and each receiver, respectively, and de-

j
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FIG. 1. A, B: Two-dimensional hyperbola@ashedl compared with two-dimensional isodiachrésvlid). Locations of the two receiver@steriskg are at
Cartesian coordinates—1,0) and(1,0). The effective speeds of sound between the calling animal and receivers one and two are 330 and’340ms
respectively. The lagr;,, is +0.0015 s. The hyperbola is computed for an effective speed of 330 G D: Same except the lag 150.0015 s.

fine the lag as;=t; —t;. When the effective speedés Eq.  achrons contain no points at infinity wher(s) is unequal to
(2) is the same as ¢;(s) and when the receivers are separated by a finite dis-
Iri—s| —IIrj —4 =cr, 3) tgnce.. Instead, the assumption that the diﬁgrence in propaga-
tion time be constant and that the effective speeds differ,
which is described in Cartesian coordinates with a polynO'Constrains Such isodiachrons to f|n|te regions of sﬂm

mial of degree two. _ 1). The proof which follows is true for isodiachrons af
. .An ISOdIaChron IS deﬁned to be the |OCUS Of pOIntS Sat'c|asses and for a” rea“stic effective Speeds as |Ongi($
isfying andc;(s) differ.
ti—tj=m;, (4) We write the definition of an isodiachron
where the effective speed depends on the spatial coordinates ot _t= d; B d; ®)
of the paths. Then Ed4) is TiTHTUT () ci(9)’
lIri—s B lIr;—sl whered; andd; are the distances between the animal and

= Tij» (5) receiversi andj, respectively. By assumptioi;(s) is un-

ci(s)  ¢ci(9)
equal toc;(s). For all points in space we have

wherec;(s) andc;(s) denote the effective speeds to receivers
i andj, respectively, as a function &f di=d;+A, (7)
In some of what follows, it is useful to consider isodi-
achrons where;(s) andc;(s) do not depend on locatios
This is called a “class one isodiachron.” Isodiachrons of
other classes are those given by E5). for which c;(s) and A§|ri—rj|<oc' (8)
c;(s) depend ors. Paradoxically, class one isodiachrons are ) ) o )
useful for estimating probability density functions for the SiNCe the receiver separatign,—r|, is finite. Substitute Eq.
location of an animal in all realistic situations whergs)  (7) into Eq.(6) and simplify to get
andc;(s) do depend ors because of another algorithm that 1 1 A
uses class one isodiachrons in a particular Wahis para- 7ij =dj(c'(s) - c-(s)) + c()"
dox is resolved in Sec. Il A. : ] :
The two-dimensional isodiachron approximates a hyperAll measured lagsr;; , are finite and the only way to obtain
bola in a limited region(Fig. 1). Unlike a hyperbola, isodi- these finite values foc;(s) #c;(s) is to demand thatl; be

whereA must be less than or equal to the distance between
the receivers, so

©)
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finite becausa\ is finite [Eq. (8)]. Therefore, all points on an C;(X+Xg) + Ci(X—Xo)

isodiachron are a finite distance from the receivers when  7ij ce ;T XgSXsXgp, (19
(]
ci(s) #cj(9).
Several facts concerning class one isodiachrons are use- Cj(X+Xg) = Ci(X—Xp)
i i i i T = ;o Xo<X. (20
ful. We derive an expression fg(x), the locations of theix ij cic;

intercepts, and the bounds for their lags. Some of the more i
complicated algebraic expressions were obtained from §OF the first caseX<—Xo), 7; equals —2xo/c; as x—

symbolic mathematical software program.

—Xp. FOorx<—xg,

When the effective speeds; andc;, do not depend on Imj  Ci—C;
s, the isodiachron can be expressed in Cartesian coordinates —_ = — -, X<—Xo, (22)

with a polynomial of degree fodf The polynomial coeffi-

X Cicj '

cients of degree three and four go to zero wigrand c; so whenc;<c;

approach the same valge leaving a second degree polyno-
mial describing a hyperbola. For class one isodiachrons in

two spatial dimensions, E@5) reduces to

a,y*+a,y’+az=0,

_2X0/CJ$’T”<OC; X<—Xp; Ci<cj' (22)
Similarly whenc;>c;

(10 —o< 1S —2X/Cj; X<—Xg; Ci>Cj. (23

where For the second case-Xo<X<Xp), 7;; equals—2xq/c;
4_5e2c2y b and +2xgy/c; at x equal to —xy and xq, respectively. In
_ G AGiG TG between, we have
al—Ty (11)
Ci'C;
ol (97'”'
— —_—= 4+ Lt — =X
a,=2(c'c)) "H(cix?+¢xg+ cix?+ cixg— 2¢x%c? ox Het e mXe=x=Xo, 24
+20fxx0—20120izxé—cfrﬁ c2— Tﬁ Ci“cjz_zci“xxo), which is positive. Thus the values af; increase linearly in
this line segment and
(12)
—2Xo/Ci < T <2Xp/Ci; —Xg=X=<Xg. (25
— A A4 2.2 4 4_4 4.4\ —1, 4,4 07%j ij 0l i 0 0
az=Xx"(cj—2cici+ci)/(ci'cy) +(ci'c) " (cjxg _
For the third casexp<x), 7;; equals Xy/c; at Xx=Xg.
4,3 4.,2,,2 4,3 2.,4.2 4 4.4 1] 0/ %i 0
+4CX"Xo+ 6CX X+ 4C X X5 2CXoCi + 7 €y C; For xq<X
—4c!x3xo+ 6¢iXxG — A xxg — 2¢)x? 7 ¢f T _G=G. 26
—=——— Xe<X.
+A4cIX2CixG— Acixxo T ¢f — 2¢{X5 7 ¢+ ¢ xg IX GG
So whenc;<c;,
—27fcleix+arfcleixxo— 275 cleixg), (13 b
X . ) 2X0/Ci<’7'ij<oc; X0<X; Ci<Cj (27)
where the receivers are at Cartesian coordinateg(0) and
(x0,0) andxo>0. The solution fory in terms ofx can be and whenc;>c;
. . . . _ 2 . . .
simplified by substitutinggz=y<“ in Eq. (10) which yields a —o <1 <2X/Cii Xo<X: G>C. (29)

guadratic equation ia. If z is real valued and non-negative,

solutions fory are given by+z for a given value ofx. ~ We see thatr; has a minimum value of-2xq/c; whenc;

Equation(10) describes a hyperbola whep=c; .

<¢j and that thex axis is crossed twice except whey is

The intersection of a class one isodiachron with xhe the minimum value in which case the class one isodiachron

axis occurs whely is zero in Eq.(5) which yields

touches thex axis once at-X, (Fig. 2). Similarly, 7;; has a
maximum value of &;/c; whenc;>c;, and the isodiachron

CjlX+Xo| —Cilx=Xo| = cicj i, (14 crosses thex axis twice except wherr;; is maximum in
wherex is thex coordinate ofs. The solutions are which case the isodiachron touches thexis once atxg
(Fig. 3.
o CiCiTi +(Ci+ci)xo; X< —Xo, (15) We now prove that the lag bounds on thexis (r;=
Ci—Cj —2Xg/c;j for c¢;<c; and 7;;<2x,/c; for c;>c;) are the
bounds for all points on a class one isodiachron. This can be
w— JiCiTii +(C‘_C1)X°; — Xo=X=Xq, (16)  proved by showing that all such isodiachrons intersecixthe
G+ axis because then the lag is constant everywhere on an iso-
cicim — (Ci+Ci)X diachron. We know that all class one isodiachrpns are sym-
x=— AP0y <x. (17)  metric about thex axis because all class one isodiachrons
€~ Ci have values of given by = \/z [see sentences following Eq.
We now investigate the possible values fgrgivenx,, (13)]. The isodiachron is a continuous functionyifx) be-

¢ andc;. These are derived from Eqd5)—(17)

—Cj(X+Xg) +Ci(X—Xo)
Tij: ) X<—X0,
CiCj

3172 J. Acoust. Soc. Am., Vol. 116, No. 5, November 2004

cause it is a polynomial. For two points on an isodiachron

given by *y(x), there must then either be a curve joining
(19 them through infinitywhich is impossible as shown abgye

or the curve must join them through finite values and thus
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FIG. 2. The lagsy; , for isodiachrons as a function of theirintercepts.
Receivers andj are at Cartesianx(y) coordinates { x,,0) and &g,0),
respectively. The effective speeds of the signal between recéiaed and
the isodiachron are; andc;, respectively, and;<c; . 7j;=t;—t; where the
times for the signal to travel between the isodiachron and receivens j

aret; andt; respectively. Note that the lags must occur in the interval

—2Xolcj=m;j<= [EQs.(22), (25), and(27)].

cross thex axis at a value given by Eq§15—17. Thus the
lag bounds given for class one isodiachrons onxtlagis are _ .
valid for all class one isodiachrons because all class ongorithm needs to do an extra step because the effective speed

isodiachrons touch the axis.

case, a fifth receiver is needed to determine which of the four
points is correct.

Because class one isodiachronic and hyperbolic surfaces
can deviate significantly from one another in the vicinity of
the receivers, hyperbolic locations can yield incorrect an-
swers while isodiachronic locations are correct, even when
accounting for errors.

A. Class one isodiachrons are useful when the
effective speed is spatially inhomogeneous

The paradox is that class one isodiachrons are useful for
estimating the probability density function for an animal’'s
location when the effective speed varies in any realistic man-
ner, including effects from advection. Understanding the
paradox comes from the way this isodiachron is used by a
Monte Carlo algorithnt®

A constellation is the minimum number of receivers
needed to yield unambiguous solutions for location. For
three-dimensional locations without prior knowledge of the
animal’s location, the constellation consists of four or five
receivers, depending on the location of the aniffial.

An analytical solution for the animal’s location is avail-
able for any constellatiolf The solution requiregl) the
effective speeds between the animal and each recdRjer,
locations of the receivers, an@) the values of the lags.
When the effective speed includes advective effects, the al-

depends on the location of the animal, but one does not ini-

Athree-dimensional isodiachron can be formed by rotatdially know the location of the animal without using the ana-
ing the two-dimensional isodiachron around thexis (Fig.
1). The closed form solution for isodiachronic location canfor now it is important to state that no first guess for the
yield four solutions from four receivers. This can be under-animal’s location is made by any hyperbolic location tech-
stood geometrically as follows. The first pair of receiversnique. The relevant part of the Monte Carlo algorithm is
constrains the source to a class one isodiachron. A third reexplained next?

ceiver introduces a second isodiachron which can intersect

the first one along two different closed curv@sg., in the
region betweex between 0.5 and 1 in panel B of Fig.. A
fourth receiver introduces a third isodiachron which can in-the animal and each receivéR) the errors in the Cartesian
tersect the two closed curves at at most four points. In thigoordinate of each receiver in the constellation, &)dthe

C>C.

+2x0/ci

FIG. 3. Same as Fig. 2 except>c; . In this case all isodiachrons have lags
7jj<2Xo/c; [Egs.(23), (25), and(28)].
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lytical solution. A solution to this problem is given later, but

When the effective speeds are unaffected by advection,
the Monte Carlo algorithm adopts any realispigor prob-
ability density functions for1) the effective speed between

measured lags. A sample is drawn from each of the distribu-
tions yielding a set called a “configuration.” A configuration
that does not yield at least one real-valued solution for loca-
tion is discarded because the samples could not have jointly
occurred. A “valid configuration” is one where there is at
least one real-valued analytical solution for location. Each
real-valued analytical solution for location is a point at which
class one isodiachrons from all possible receiver pairs inter-
sect. The Monte Carlo algorithm has established one set of
effective speeds between the animal and each receiver in the
constellation from the valid configuration. The Monte Carlo
algorithm continues to find a sufficient number of valid con-
figurations such that convergence is obtained for the prob-
ability distribution of the animal’s location. The collection of
effective speeds from all Monte Carlo runs provides an esti-
mate for all the effective speeds that are consistent with the
data, the cloud of possible animal locations, and the clouds
of possible receiver locations.

Class one isodiachrons are a mathematically and com-
putationally convenient and efficient means for obtaining the
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distribution of the animal’s location because they accommosound speed are accounted for in the probability distribution
date an analytical solution for location when the effectiveof the animal’s location.

speed differs from path to path and they accommodate mod-

els for sound speed and advection that are realistic wheg Example in air

used with the Monte Carlo algorithfi.More specifically, ) ) ) ] .
the analytical solution for location is derivEdby using the Consider a two-dimensional geometry where five receiv-
fact that||r,—s|2=c?t?, and then subtracting the equation €rS are located at Cartesian coordind®$), (25,0, (50,3,

for i=1 from the equations for>1 wherec; is a specified (30,40, and(5,30 m (Fig. 4. An animal is located a22,2)
effective speed that is independent of the animal’s location™- The speed of sound is assumed to be a typical 330 m/s,
When the equation for=1 is subtracted from any other an_d a wind is blowing in the positive direction at 10 m/s.
equation fori>1, the resulting equation specifies that the With R receivers there are

animal resides somewhere on the locus of points for which N =R(R—-1)/2, (32)

the difference in travel time to receivers1 andi=1 is a ) i o

constant. This is a class one isodiachron. With a constella0Ssible lags £ ,i=1,...R—1;j=i+1,...R) so forR=5,

tion, one has enough difference equations to yield an analytiV® 96tN-=10. All ten lags are computed without error and,
cal solution for locatiort® for each, the isodiachron and hyperbola are drawn. The hy-

Consider an effective speed that is affected by advecPerbolas are drawn for an effectjve ;peed of 330 m/s. Some
tion, such as wind. A configuration is drawn from prior dis- of the hyperbolas look like the isodiachrons and others do

tributions of the(1) wind, (2) speeds(3) receiver coordi- not (Fig. 5). Isodiachrons all intersect the_animal chation

nates,(4) lags, and(5) the location of the animals. This exactly, but the hyperbolz_is _do not, as |_t is impossible for
configuration contains draws from tieior wind and source them to accommodate variations in effective speed from path
distributions. These were not drawn when advection was unl© Path with the hyperbolic assumption. No attempt has been
important. One can always form a prior distribution for the made to find a single effective speed that minimizes the re-

location of the animal because one can use a uniform distriSiduals from a central intersection point, but this is not im-

bution in space with boundaries that are so large as to erportant to do in this context because the hyperbolas would

compass every possible location. For example, one coulflOt intérsect at a point anyway, and some of their shapes are
know that sounds from a cricket would originate within 200 Auite different than the isodiachrofiig. 5.

m of a receiver. Next, the effective speed between the animal _ | "€ location of the animal in Fig. 4 coincides with the
and each receiver is obtained from point of intersection of the isodiachrons because this ex-

ample uses error-less values for the variables that determine
c;=C;+Us(s—r;)/d;, (29)  location(lags, receiver locations, and effective speedse

presence of errors dictates that there are an infinite number of
whereC; is the draw from the speed distributi¢the scalar possible animal locations consistent with measurements.
field), U is the draw from the vector wind distribution and With truncated prior distributions of error for the pertinent
the open circle denotes dot product. Note that this draw fowariables(lags, receiver locations, and effective spgetise
the effective speed depends on a random guess for the locifinite number of possible locations can be confined to a
tion of the animal. The analytical solution for location is now finite region. The nonlinear Monte Carlo algorittfhdraws
obtained as before, yielding locati. The closest real- from the prior distributions of these variables to find animal
valued solutions;, to the randomly chosen location for the locations for which all ten isodiachrons intersect at one

animal,s, is accepted if point. These locations form clouds of feasible locations of
the animal. The feasible locations near the animal have sets
|si—9|<e, (30 of 10 isodiachrons that look like those in Fig. 4.

wheree is some small value such as 0.1 m. If all analyticalc Example in ocean
solutions,s;, are complex, they are discarded and a fresh™ P
draw is made for a configuration. Otherwise, the effective = Consider a two-dimensional geometry where five receiv-
speed is updated from E¢R9) usings,; in place ofs. This ers are located at Cartesian coordinatesd), (4000,0,
procedure iterates a maximum number of times. On eackl500,3000, (—50,—2000), and (20006; 3000) m(Fig. 6).
iteration the analytical solution for location is accepted if theSuppose these receivers are located near a zonal front where
difference between the analytical solution foand the most  the speed of sound is 1500 m/s to the south and 1525 m/s to
recent guess fos is less thare. We then have a valid con- the north of thex axis (Fig. 6). Suppose a whale calls at
figuration. The configuration is discarded if the maximum(3960,—20) m. Then the effective speed of sound is 1500
allowed number of iterations is exceeded, and one starts witm/s for all receivers except the one(a600,3000 m where

fresh draws for the five categories of variables until one had is 1524.8 m/s because the signal crosses the front to the
sufficient numbers of valid configurations to yield accuratenorth. Hyperbolic locations assume the effective speed is
estimates of the distribution of the animal’'s location. Be-1512.5 m/s. This is the average of the speeds on either side
cause effects from advection are incorporated into the effeosf the front. Isodiachrons and hyperbolas are drawn without
tive speed, the geometrical interpretation for the analyticatlata error.

solution for location is based on class one isodiachrons as Some of the hyperbolas look like isodiachrons, and oth-
before. We see that realistic variations of advection anders do not(Fig. 6). When isodiachronic locatidfiis used to
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ISODIACHRONS HYPERBOLAS

40 \ X 40 X

X b 4
20 \ ] 20
FIG. 4. Left column The ten isodiach-

—_ | —

£ 0 X E 0 X rons corresponding to the ten lags de-
> > rived from an animal at Cartesian co-

ordinate (22,2 m (circle) in air and
-20 -20 recorded at five receivefX’'s). One of
the receivers a25,0 m is close to the
animal so its X is not resolved but is
visible in Fig. 5. The bottom shows the
_20 0 20 40 60 _20 0 20 40 60 isodiachrons within a few meters of
X (m) X (m) the animal.Right column Same ex-
cept these are the ten hyperbolas. The
BLOW-UP ISODIACHRONS BLOW-UP HYPERBOLAS speed of sound is 330 m/s and a spa-
4 4 tially homogeneous wind is blowing in
the positivey direction at 10 m/s. The
/ hyperbolas are derived by assuming
3 the effective speed of sound is 330
m/s. Note the hyperbolas do not inter-
sect at the same point nor do they in-
tersect the animal(bottom righ}.
> Some of the isodiachrons are similar
to the hyperbolas, and some are quite
different (Fig. 5).

Y (m)
N
(m
N

0 0
20 21 22 23 24 20 21 22 23 24

X (m) X{(m)

locate the whale, thM =10 isodiachrons always intersect at D. Other examples
the same point. The hyperbolas can never intersect at the

it d their mi tches indicate the inability of Isodiachrons could be used to locate animals when the
same point, an er mismatches indicate the nabliity Olyge iy e speeds are greatly different from path to path. For
hyperbolic geometry to find a correct location when the ef-

. . example, a modeling stuéfindicates that low-frequency
fective ?peed dlﬁgrs fr:om f?ath. o path.dEver:] V\I/hen on% aﬁ’sounds from a fin whale could travel to hydrophones through
counts for errors in the effective speeds, the 1ags, and e o paths. Some receivers close to the whale could pick
locations of thg hydrophones, isodiachrons always mterse(i}p only the first acoustic path through the sea, while other
at the same point and hyperbolas do Hot. distant receivers could pick up only the acoustic path that
propagates below the sea floor because the paths through the

s0r ] water could be blocked by seamounts. The effective speed
through the water and solid Earth can differ by more than a
o1 x 1 factor of 228

There are other possibilities. Sounds created by some
animals can reach receivers through both the air and the solid
sol | Earth?®®° Seals flap their flippers on the surface and the
sound propagates in air and water to distant receftfehd.

. these animals could be located with isodiachrons.

301 x b

IV. CONCLUSION

-1or -~ 1 When one seeks accurate locations for a calling animal
-~ from measurements of the time differences of signals, con-
L sideration must be paid to the differences in effective speed
along different paths if such differences exist. Differences in
effective speed are significant enough in air and water to
_40} i have led researchers to adopt models for location that allow
the effective speeds to differ from path to path'®Path-to-
20 10 o 10 20 s 40 s e 70  pathvariations in effective speed are inconsistent with a geo-
X {m) metrical interpretation based on a hyperbola. Instead, one
FIG. 5. Same as Fig. 4 except only the isodiachfsalid) and hyperbola ~ Can Visualize a new geometrical shape, called an isodiachron,
(dashedl corresponding to one particular lag are shown. to interpret location in this situation. The isodiachron is the
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ISODIACHRONS HYPERBOLAS

8000 8000
FIG. 6. Left column The ten isodiach-
4000 4000 x rons corresponding to the ten lags de-
2000 2000 rived from a simulated call at Carte-
_ _ sian coordinate (3966,20) m(circle)
E 0 E oL —x —= —_— in water and recorded at five hydro-
> > phones(X’s). One of the hydrophones
—2000 —2000 at (4000,0 m is close to the animal
X and can barely be made out on the bot-
—-4000 -4000 tom row where the isodiachrons are
shown within a few hundreds of
—-8000 5 000 70000 -6000 o 5000 70000 meters of the animalRight column
X (m) X (m) Same except these are the ten hyper-

bolas. The speed of sound is 1500 and

BLOW-UP ISODIACHRONS BLOW-UP HYPERBOLAS 1525 m/s on the lower and upper re-
gions of the figures, respectively. The

frontal region separating these speeds

200 200 occurs aty=0 (dashed The hyperbo-
100 100 las are derived by assuming the effec-
tive speed of sound is 1512.5 m/s, the
T 0 T 0 average of the speeds on either side of
g g _the front. Note the hype_rbolas do not
~100 ~100 intersect at the same point nor do they
intersect the animal(bottom righj.
200 —200 Some of the isodiachrons are similar
to the hyperbolas, and some are quite
300 300 different.
3800 4000 4200 3800 4000 4200
X (m) X (m)

locus of points corresponding to a constant difference in  The idea of measuring location from the propagation
travel time along straight paths between the animal and twdéime of signals is conveniently done using electronic equip-
receivers. Isodiachrons differ significantly in shape from hy-ment developed in the modern age. It is plausible that ancient
perboloids for many problems of practical interéfigs.  Greeks would not consider the isodiachron because it would
4-6). perhaps have been too distant from the problems of their day,
It seems interesting to speculate why ancient Greekhough they may have had the mathematical tools needed to
mathematicians did not think about isodiachrons. The hyperderive the geometrical shape.
bola was discovered by thefpp. 280, 281, Vol Il, Ref. 1P Besides allowing a general physical interpretation for
Why did they conceive of hyperbolas? Perhaps the answer tocation in spatially inhomogeneous media of effective
this question is not currently known due to the loss of ancienspeed, isodiachrons are the geometrical shapes that are inter-
documents. But something is known about the motivation fosected for an analytical solution for locatiSr(Figs. 4, 6.
geometry and in the use of a hyperbola during these timedsodiachrons revert to hyperboloids when the effective speed
The word “geometry” comes from the Greek words geo for is spatially homogeneous.
Earth and metron which means to measure. The emphasis on
measuring the Earth was a principal motivation for theaACKNOWLEDGMENTS
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