6-20-2015

Channel Shape Study Report

Justin Wen
University of Pennsylvania, jwen@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/scn_protocols

http://repository.upenn.edu/scn_protocols/32

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/scn_protocols/32
For more information, please contact libraryrepository@pobox.upenn.edu.
Channel Shape Study Report

Keywords
SU-8, Channel Shape

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

This technical report is available at ScholarlyCommons: http://repository.upenn.edu/scn_protocols/32
Critical Factors
- When using an SU-8 base layer as a wafer pretreatment, the base layer must undergo a post-exposure bake or else the fabricated channels will take on a rounded characteristic.
- The rounded channels seem to be unique to using a base layer of resist under the feature layer by skipping the post-exposure bake step for the base layer.

Table of Contents
1. Goal
2. Materials
3. Equipment
4. Protocol
5. Results

Goal
Test various wafer pretreatment conditions' effect on exposed and developed channel shape.

Materials
- SU-8 2005 (produced by thinning SU-8 2050)
- SU-8 2025 (produced by thinning SU-8 2050)
- SU-8 thinner
- SU-8 developer
- 3 inch diameter silicon wafers
- Line photomask (transparency film)
 - 10 µm channels, 50 µm troughs ("10x50")
 - 25 µm channels, 50 µm troughs ("25x50")
- Isopropyl alcohol (IPA)
- Acetone
- Buffered oxide etchant (BOE) in HF hood. **You must be HF hood trained before working with BOE. Speak with Eric Johnston or Kyle Keenan to arrange training.**
- PDMS/PDMS Curing Agent

Equipment
- Laurell Spinner
- Hot Plate
- ABM Mask Aligner
- Vacuum Chamber
- Optical microscope
Protocol
Preparation of SU-8 2005/2025 equivalent from SU-8 2050 stock
1. Weighed out SU8-2050
2. Calculated weight of thinner to add via:
 a. \(W_{\text{thinner}} = \frac{\text{(% solids initial / % solids final)}}{1} \times W_{\text{resist}} \)
3. Mixed with glass stirring rod in beaker for ~ 10 min until homogeneous
4. Aliquoted using Teflon funnel into resist bottles
5. Allowed bottles to degas by resting at RT overnight
6. Long-term storage of bottles in resist cabinet

Wafer pretreatments tested
1. 2 min BOE wash + 2 min rinse in overflow bath + nitrogen blow-dry + minimum 10 min dehydration 200 ºC
2. Dehydration for at least 10 minutes at 200 ºC + spinning and blanket exposing a 5 µm base layer of SU-8 of various thicknesses underneath the feature layer
 a. No post-exposure bake after exposing base layer and spinning feature layer
 b. With post-exposure bake after exposing base layer and spinning feature layer

SU-8 spinning (27 µm)
1. Set spin parameters:
 a. Vacuum = “req”
 b. Step 1 of 2: 500 rpm, accel = “100”, 30 sec
 c. Step 2 of 2: 3000 rpm, accel = “300”, 30 sec
 i. F40 Filmetrics measurement indicates these settings result in an approximately 27 um thick layer of resist
2. Mounted wafer and ensured that it is centered
3. Poured SU-8 2025 photoresist without air entrapment to ~ 50 mm diameter
4. Spun the wafer
5. Transferred spun wafer to 95 ºC hot plate for 5 min soft bake
6. If performing multiple spins, wiped spinner hood between wafers to prevent excess SU8 from dripping onto samples

SU-8 spinning (5 µm)
1. Set spin parameters:
 a. Vacuum = “req”
 b. Step 1 of 2: 500 rpm, accel = “100”, 30 sec
 c. Step 2 of 2: 3000 rpm, accel = “300”, 30 sec
2. Mounted wafer and ensured that it is centered
3. Poured SU-8 2005 photoresist without air entrapment
4. Spun the wafer
5. Transferred spun wafer to 95 ºC hot plate for 2 min soft bake
6. If performing multiple spins, wiped spinner hood between wafers to prevent excess SU8 from dripping onto samples
Resist exposure and development

Pretreatments 1
1. Started the ABM UV lamp (channel A) and allowed at least 20 min for warm-up
2. Computed required exposure time based on exposure energy values given on SU-8 data sheets
 a. ABM power output can be measured with the power meter or a recent value can be found in the log located in the ABM Operating Procedure binder
 b. \[Exposure\,\,time = \frac{Exposure\,\,energy\,\,needed}{ABM\,\,power\,\,output}\]
3. Mounted wafer and photomask
4. Contacted to Omega optical filter with leveling
5. Exposed lines for calculated exposure time
6. Post-exposure bake:
 a. 1 min at 65 °C
 b. 5 min at 95 °C
7. Developed in bath of SU-8 developer for 5 min with periodic agitation
8. Rinsed in acetone followed by IPA and nitrogen blow-dried

Pretreatment 2
1. Started the ABM UV lamp (channel A) and allowed at least 20 min for warm-up
2. Computed required exposure time based on exposure energy values given on SU-8 data sheets
 a. ABM power output can be measured with the power meter or a recent value can be found in the log located in the ABM Operating Procedure binder
 b. \[Exposure\,\,time = \frac{Exposure\,\,energy\,\,needed}{ABM\,\,power\,\,output}\]
3. For base layer:
 a. Mounted wafer
 b. Exposed wafer for calculated exposure time
 c. Post-exposure bake:
 i. None for Pretreatment 3a (no PEB)
 ii. 3 min at 95 °C for Pretreatment 3b
4. For feature layer:
 a. Mounted wafer and photomask
 b. Contacted to Omega optical filter with leveling
 c. Exposed lines for calculated exposure time
 d. Post-exposure bake:
 i. 1 min at 65 °C
 ii. 5 min at 95 °C
 e. Developed in bath of SU-8 developer for 5 min with periodic agitation
 f. Rinsed in acetone followed by IPA and nitrogen blow-dried
Figure 1: Schematic of wafer exposure for all pretreatments.

PDMS Casting and Peeling
- Placed wafers in aluminum foil dishes of appropriate depth
- Mixed ~50 g of PDMS at 10:1 base:cure by weight ratio per wafer and degassed under vacuum until clear (~45 min)
- Poured PDMS to a depth of 7 mm over each wafer on a level aluminum block
- Transferred block to preheated 100 °C convection oven
- Cured PDMS for 70 min
- Allowed wafers to cool to RT
- Using a new razor blade manually excised PDMS above the SU8 mastered lines and peeled
- Inspected wafer and peeled PDMS for evidence of resist delamination

PDMS Cross-section Imaging
- Each block of PDMS had a cross-section cut approximately 1 cm in length
- Cross-sections were placed sideways on top of a clean room sticky note (for contrast purposes) such that the cross-section of the molded channels could be visualized
- Images were taken of the focused views
Results

Pretreatment 1

Figure 2: Cross-sectional images of PDMS casts of SU-8 masters fabricated with a BOE wash wafer pretreatment. At left is the image of the "10x50" channels and at right is the image of the "25x50" channels.

Pretreatment 2a

Figure 3: Cross-sectional images of PDMS casts of SU-8 masters fabricated with a 5 µm base layer of SU-8 without post-exposure bake as a wafer pretreatment. At left is the image of the "10x50" channels and at right is the image of the "25x50" channels.
Figure 4: Cross-sectional images of PDMS casts of SU-8 masters fabricated with a 5 µm base layer of SU-8 with post-exposure bake as a wafer pretreatment. At left is the image of the "10x50" channels and at right is the image of the "25x50" channels.