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Abstract
Sounds from a U.S. Navy SSQ-110A source are received at high signal-to-noise ratios at ocean-basin scales at
two Sound Surveillance Systems in the Pacific. The sounds have sufficient pulse resolution to study climatic
variations of temperature. The acoustic data can be understood using ray and parabolic approximations to the
wave equation. Modeled internal waves decrease pulse resolution from 0.01 to 0.1 s, consistent with
observations.
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Sounds from a U.S. Navy SSQ-110A source are received at high signal-to-noise ratios at
ocean-basin scales at two Sound Surveillance Systems in the Pacific. The sounds have sufficient
pulse resolution to study climatic variations of temperature. The acoustic data can be understood
using ray and parabolic approximations to the wave equation. Modeled internal waves decrease
pulse resolution from 0.01 to 0.1 s, consistent with observations. ©2003 Acoustical Society of
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I. INTRODUCTION

Sounds from explosive sources in the ocean have been
identified over long distances using rays since the 1940s.1

Such sources have been used to study acoustic propagation
and to aid in locating underwater volcanoes2 and missiles
that fall into the sea.3 Electronically controlled sources and
the U.S. Navy’s Sound Surveillance System~SOSUS! have
been used to study climatic changes of temperature in the
ocean.4–6 However, scientists may not be able to afford to
deploy enough sources to resolve many important climatic
variations by means of tomography with the available num-
ber of SOSUS stations.7 This paper demonstrates that explo-
sive sources from routine U.S. Navy operations generate suf-
ficiently loud sounds at basin scales so that temporally
resolved echoes can be identified using established models
for sound speed fields and acoustic propagation. These kinds
of data could be used to see if climatic temperature variations
could be detected by means of tomography.

II. DATA

A source ~SSQ-110A! was detonated at 23.589 °N
208.717 °E on 13 November 1997~Fig. 1!. Signals were re-
ceived on two of the nine SOSUS stations shown in Fig. 1 of
Ref. 4 at distances between 1000 and 3000 km. The location
and time of the detonation were known within a few kilome-
ters and a few seconds, respectively. Many pulses arrived at
the receivers with high signal-to-noise ratios in a band from
about 50 to 200 Hz~Fig. 2!.

III. MODELS

Vertical profiles of sound speed are computed along geo-
desics using Del Grosso’s algorithm8 and Levitus’ climato-
logical averages9 of temperature and salinity for Fall. The
depth of minimum speed varies from 760 m at the source to
500 and 600 m, respectively, at receivers one and two. Sound
speeds are transformed to Cartesian coordinates via the Earth
flattening transformation.

Some of the models incorporate sound speed fluctua-
tions obeying a Garrett–Munk spectrum of internal waves.10

These fluctuations are added to the climatological field de-
scribed above. Internal wave modes are computed at range
intervals of 80 km to account for changes in water depth,
buoyancy frequency, and sound speed. The vertical displace-
ments of these modes are set to zero at the surface and bot-
tom. For each 80-km interval, a three-dimensional field of
internal waves is computed in a box of 80 km by 80 km by
D m whereD is the average depth of the ocean in that inter-
val. A vertical slice through the box gives the vertical dis-
placements along the geodesic. Internal wave energy is given
the standard value10 which worked before11 though contro-
versy exists.12–14 Remaining details for constructing internal
waves follow Ref. 11 exactly.

The c0 insensitive parabolic approximation15 is used to
compute a two-dimensional field of sound along a geodesic
from 0- to 8000-m depth. Travel times of pulses are com-
puted with an accuracy of a few milliseconds.15 The field is
modeled at each of 1024 acoustic frequencies from 50 to 150
Hz. The impulse response is synthesized with an inverse
Fourier transform resulting in a time series with a period of
10.24 s. Near regions where the sound interacts with the
bottom, the computational grid has an interval of 25 m in
range and 3.9 m in depth. In other regions, the intervals are
100 m in range in 7.8 m in depth. These values are sufficient
to obtain convergence within a few decibels.

Fans of rays are traced using a program, zray, that is a
modification of ray.16 Eigenrays are found using another pro-
gram. These programs have been used to identify acoustic
paths before.17 Rays reflect specularly from the bottom. Both
geometric and nongeometric arrivals are found. Nongeomet-
ric arrivals are those that provide energy at the receiver on
the shadow sides of caustics. The contribution from a caustic
at any angle is included if it is within 1000 m of the receiv-
er’s depth at the receiver’s range. For lack of a more reliable
value, rays that reflect from the bottom suffer an attenuation
of 3 dB per bounce.

IV. IDENTIFYING ACOUSTIC PATHS

As shown below, the most reliable models use the para-
bolic approximation and Levitus’ climatology9 with a spec-a!Electronic mail: johnsr@sas.upenn.edu
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FIG. 1. The explosive source used in
this experiment is an SSQ-110A. It is
used in normal U.S. Navy operations.
Signals are received at two of the nine
Sound Surveillance Systems~SOSUS!
shown in Fig. 1 of Ref. 4.

FIG. 2. Comparison of data with models at both receivers. A constant arrival time is added to the model to align with the data and a value of about one is
added to the amplitudes of the data so they do not overlap the model. Models are computed using thec0 insensitive parabolic approximation15 and a
Garrett–Munk10 spectrum of internal waves superimposed on Levitus’ climatological average conditions for Fall.9 Top: Arrivals except for H are predicted by
the model. Bottom: Arrivals except for perhaps E are predicted by the model. Note the time scale differs from the top panel.
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trum of internal waves10 ~Fig. 2!. At receiver one, arrivals
A–G appear in the data and model. The last arrival atH is
not in the model. At receiver two, arrivalsA–D appear in the
data and model. The last arrival atE is probably not in the
model. Except for the last arrivals, the relative travel times in
the models resemble the data. None of the rays reflect from
the bottom or surface.

The received pulses have widths from 0.1 to 0.2 s, simi-
lar to those modeled. Since the bandwidth of the model is

100 Hz, the emitted width is 1/(100 Hz)50.01 s. This is ten
times too small. Internal waves are responsible for the broad-
ening to 0.1 s at both receivers~Figs. 3 and 4!.

The correspondence between the arrival times of the
data and ray models is good~Figs. 3 and 4!. However, the
relative amplitudes from rays are much less reliable than
those from the parabolic approximation.

Arrival A at receiver one appears in the parabolic ap-

FIG. 3. Three models for the acoustic
data at receiver 1. The top two models
use the c0 insensitive parabolic
approximation15 with and without a
spectrum of internal waves.10 The ray
model uses the same sound speed field
as the parabolic approximation with-
out internal waves on the computa-
tional grid used by the parabolic ap-
proximation. Arrivals A–G are the
same as Fig. 2~top!. Travel times of
all three models are shifted by identi-
cal amounts so that travel times be-
tween models can be compared. Am-
plitudes from the parabolic
approximation are normalized to unity.
Amplitudes from the ray model are
unnormalized.

FIG. 4. Three models for the acoustic
data at receiver 2. The top two models
use the c0 insensitive parabolic
approximation15 with and without a
spectrum of internal waves,10 respec-
tively. The ray model uses the same
sound speed field as the parabolic ap-
proximation without internal waves on
the computational grid used by the
parabolic approximation. Arrivals
A–E are the same as the bottom panel
of Fig. 2. Travel times of all three
models are shifted by identical
amounts so that travel times between
models can be compared. Amplitudes
from the parabolic approximation are
normalized to unity. Amplitudes from
the ray model are unnormalized.
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proximation with internal waves~Fig. 3!. These waves scat-
ter the sound down to the depth of the receiver. Without
scattering, the caustic from arrivalA is too far above the
receiver to detect an arrival in the parabolic approximation.
The ray model yields arrivalA without scattering because
amplitudes from the ray model are not as reliable.

At receiver one, the rays have upper turning depths of
about 100 to 400 m near the source. Some rays have upper
turning depths near the surface at the receiver. At receiver
two, upper turning depths are about 50 to 400 m near the
source and receiver. As has been noted in other experiments,
the rays composing each arrival have slightly different turn-
ing depths and quite different turning ranges.14,17,18

V. CONCLUSION

Sounds from U.S. Navy operations can be identified
with ray and parabolic approximations of the wave equation
over basin-scales at Sound Surveillance stations. The fidelity
is adequate for detecting climatic changes of about 1 s from
El Niño and the Southern Oscillation.7 The next step in-
volves a tomographic inversion to estimate the accuracy with
which temperature variations are estimated at climatic scales
given the navigational@O(1) km# and timing uncertainties
@O(1) s# associated with the source. Models19–21 indicate
that climatic signals can be detected in the presence of these
errors. An experimental demonstration is needed.

Although success has been had using rays to identify
paths over basin-scales in the ocean,4,22–24it appears that the
relative amplitudes of the arrivals are estimated with better
accuracy from a parabolic approximation11 and a field of
internal waves.10 This field spreads the pulse resolution from
ideal values of about 0.01 s to 0.1 to 0.2 s as observed.

Neither the ray nor parabolic approximations of the
wave equation yield the last arrival at either receiver~Figs.
2–4!, even with a realistic spectrum of internal waves. A
similar problem was solved in another experiment by includ-
ing a realistic mesoscale.11 There, the mesoscale created a
bias of about10.6 s for sounds traveling near the depths of
minimum speed in the waveguide.
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