Department of Computer & Information Science

Technical Reports (CIS)

University of Pennsylvania Year 2004

Discrete Abstractions for Robot Motion
Planning and Control in Polygonal
Environments

Calin Belta* Volkan Islerf
George J. Pappas?

*Drexel University
TUniversity of Pennsylvania
fUniversity of Pennsylvania, pappasg@seas.upenn.edu

This paper is posted at ScholarlyCommons.
http://repository.upenn.edu/cis_reports/19



UPENN TECHNICAL REPORT MS-CIS-04-13 1

Discrete Abstractions for Robot Motion Planning
and Control in Polygonal Environments

Calin Belta, Volkan Isler, and George J. Pappas

Abstract—In this paper, we present a computational frame- leading to multi-rate [42] or time varying [29], [9], [34], [28]
work for automatic generation of provably correct control laws  control laws. Finally, discontinuous control laws obtained by
for planar robots in polygonal environments. Using polygon tri- combining different controllers [22] or by applying nonsmooth

angulation and discrete abstractions, we map continuous motion .
planning and control problems specified in terms of triangles to ransformations of the state space [10], [3] have been proposed.

computationally inexpensive finite state transition systems. In this While properly dealing with issues such as under-actuation
framework, powerful discrete planning algorithms in complex and nonholonomy, such approaches face serious algorithmic
environments can be seamlessly linked to automatic generation of challenges in complex environments [41].

feedback control laws for robots with under-actuation constraints In real world applications, the robots have control and

and control bounds. We focus on fully-actuated kinematic robots d tuati traint dth . t b
with velocity bounds and (under-actuated) unicycles with forward under-actuation constraints an € environments can be very

and turning speed bounds. complex. It seems very difficult, if at all possible, to mathe-
Index Terms— Motion planning, control, triangulation, discrete matically formulate and solve (analytically or computation-
abstraction, hybrid system bisimulation. ' ally) such a motion planning problem using either of the

approaches presented abolmegratingthe methods of the
| INTRODUCTION two schools of thought is a very promising an_d chal!engmg
research avenue. In this paper, we advocateiesarchical

M OTION planning for robots in geometrically complexy; compositionalapproach for robot motion planning which
environments is a fundamental problem that receivggiegrates the strengths of algorithmic motion planning in
a lot of attention lately [24], [25], [6]. The vast literature Onyomplex environments with continuous motion generation for
this topic can be divided in two schools of thought. The firsgpots with control constraints. Our integration of discrete and
focuses on the complexity of the environment, while assumigntinuous approaches necessarily results fiylarid systems
that the robot is fully actuated with no control bounds, or "fregamework [1].

flying” [24]. This is the main simplifying assumption in most \we focus on polygonal (planar) environments and start by
of thg path planning metths basgd on navigation technlqugénstructing a triangulation of the environment. The triangu-
Continuous paths from initial to final configurations in theation provides a partition of the environment in a manner that
robot task space can be found using roadmap methods sucl@fpjex environments can be thought of as compositions of
Voronoi diagrams, visibility graphs, and freeway methods [244impe triangles. This geometric decomposition reduces the
potential fields [19], [21], [24], [37], or navigation functionScomplexity of motion generation as it allows focusing on
[20], [36]. Discrete paths can also be built using cellulahe complexity of the robot dynamics defined in triangles. A
decompositions of the configuration space [24] or probabilistityye| technical challenge then arises, as we need to generate
roadmaps [18], [26]. Even though these methods produce paifistion (or design controllers) for robots with actuation and/or
that are perfectly valid from a planning perspective, the robgintro| constraints that are able to steer the robot from one
might fail to accomplish the task because of under—actuatimf}in@e to an adjacent triangle, or keep the robot in a given
and control constraints. _ triangle. If the robot controllers (one per triangle) can achieve
The other school of thought focuses on the detailed dyis independentlyf the initial condition inside the triangle,

namics or kinematics of the robot, while assuming trivighen the partition due to triangulation satisfies the so-called
environments. Most of these methods are continuous afdimylationproperty [2]. This special reachability-preserving
based on nonlinear control theory. To properly deal with N0 tition of the state space allows us to have a formal notion of

holonomic systems, some of these approaches are differen{aliem equivalence, namely bisimulation, between the discrete
geometric [23], [43] or exploit concepts such as flatness [3Ynstraction of the robot used for algorithmic motion planning,

Other approaches use different types of input parametrizatighyy the continuous robot dynamics that is operating under
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between the high-level discrete model and the low-level carentroid coordinates position vectorand orientatiord in a

tinuous model using modern approaches from hybrid contralorld frame, and controlled by driving and steering velocities

theory. v andw, we haveq = {[zT7,0]T |z € R% 6 € [0,27)},
Among all literature on robot planning and control, this: = (v,w) € R?, F(q,u) = [cos v sin v w]”.

work is closest related to [7], [8]. In these papers, the authorsAs is usually the case in practice when dealing with complex

consider a polygonal partition of a planar configuration spaeavironments, we assume that the motion planning task is

and assign vector fields in each polygon so that initial stat&pualitatively” specified. This notion has a dual meaning. First,

in each polygon can only flow to a neighbor through ththe task is specified in terms of a robot "observable”, while

corresponding common facet. The vector fields are defindgk entire internal state of the robot is not of interest. This

as gradients of (temperature-like) scalar functions determinglolservable can be the centroid of the robot, an interesting point

as solutions of Laplace’s equation with boundary conditiorm the robot where a sensor such as a camera is attached, the

imposed so that the integral curves can only leave througénter of a disk capturing the size of the robot, etc. Formally,

a desired facet. The resulting vector field in a polygon halsis can be modelled by defining a map

fixed direction and is determined up to a multiplying scalar,

which can then be used to accommodate speed constraints for z=h(q), z€P (2

fully actuated kinematic robots. For dynamic robots modellgghere we assumed that the observabiakes values in a poly-
as double integrators with speed and acceleration bOUﬂdS,éBﬂ'p, which does not change in timie., the environment is
authors use a composition of three hybrid controllers based &&tic. This polygon can be complex, with a large number of
previous results published in [38], [35]. vertices and it can contain polygonal holes modelling obstacles
Even though the motivating ideas are the same, in thig yndesired regions in the environmeftcan be the original
paper we use fundamentally different tools, which are mugllanar environment if the size of the robot is negligible or its
more suited for computation and composition than the of@age through some map which accounts for the size and
presented in [7], [8]. By exploiting some interesting propertieﬁ]ape of the robot [41].
of affine functions in simplexes, we can characterize all affine Second, it is not necessary to have information on the exact
vector fields whose integral curves leave the simplex throughjye of observable:, but rather to be able to decide its
a desired facet in finite time. They are parameterized Ryclusion in certain regions of interests. For example, we need
polyhedral sets capturing the allowed velocities at the verticgg. make sure that the robot does not collide with an obstacle
We use these degrees of freedom to accommodate gengfgjiven geometry. Or, to win the visibility-based game as the
polyhedral velocity bounds for kinematic robots and to "stichgne formulated in [16], [15], the pursuer only needs to make
the vector fields in adjacent triangles to produce smoodiyre that it is in the same triangle as the evader. Throughout
trajectories. Moreover, we don't have to construct any dihjs paper, we assume that these regions are triangles or unions
feomorphism, solve any boundary value problem, and smoghadjacent triangles. There are several supporting arguments
out any boundary condition&iven the vertices of a polygon,for our choice. First, the problem of triangulating a polygon
the triangulation and generation of provably correct feedbagk well studied and computationally efficient algorithms are
controllers implementing a high level discrete strategy is fullyyailable [31]. Second, as we will see later in the paper,
automated triangles have special properties that can be exploited to map
The paper is structured as follows. In Section Il, wgych qualitatively described tasks to discrete transition systems
formulate the problem, give the necessary definitions, agger a finite set of symbols, with automatic generation of
present our approach. The main results and the algorithgigvably correct robot control laws.
for automatic generation of vector fields mapping to discrete\we |abel each triangle using a finite set of symbpls=
specifications are given in Sections Il and IV. These resul{%’lz’ ..., Ia} and use the notatiof(/;) C P to denote the

are then used in Section V to generate provably corrgglgion of P contained by trianglé;, including its boundary.
feedback control laws for fully actuated kinematic robots andjearly

unicycles. Simulation results are shown in Section VI. The P U 1) 3)
paper ends with concluding remarks and brief exposition of

. . . R l;eL
future research directions in Section VII.

This idea is illustrated in Figure 1, where the shaded polygons

are forbidden regions in a task specificatieng(, obstacles),

and the triangulation is achieved by a maximal set of non-
We consider planar robots described in coordinates bytersecting diagonals [31].

control systems of the form: Definition 1 (Dual graph): The dual graphof a triangula-

) tion is a simple graph
§=Flgu), g€ Q, ucl ) ble grap

whereq is the state of the robot and is its control input.

Q and U are subsets of Euclidean spaces of appropriatdose noded = {i1,ls,...,lys} correspond to the symbols
dimensions. For example, for a fully actuated kinematic pointsed for labelling the triangles, and the edge set L x

like robot with position vector: in some world frameg = L denotes an adjacency relation between the corresponding
x € R? and F(q,u) = u. For a planar unicycle described bytriangles.

Il. PROBLEM FORMULATION AND APPROACH

DG = (L,t) (4)
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the languageC(DG). The setd will contain two types of
controllers: (I) feedback controllers driving the robot from any
initial stategy € @ with h(qo) € I(l) so that its observable
x moves in finite time tal (I'), for any!,!’ € L with (I,1') €

t, and (Il) feedback controllers driving the robot so that the
observabler stays inI(l) for all times, for all initial states
qo € I(1), and for alll € L. Indeed, it is easy to see any string
(liy s lin, - .., 1;,,) can be implemented by using controllers of
type (I) for (L, L), (Liy, lig)s - - (L, 1, Li,,) @nd a controller
of type (Il) for ;.. On the other hand, we need controllers
of type (1) and (lIl) to implement all strings of length two and
one, respectively.

We provide a solution to Problem 1 by first constructing
vector fields in the observable polygonal space and then by
generating corresponding robot control laws. We construct a
Fig. 1. Triangulation of a planar polygon and the dual graph. set of (maximum) four vector fields for each triangle: one that

makes the triangle an invariant for the observable, which will
lead to a controller of type (ll), and (maximum) three that

Therefore,(l;,1;) € t for i # j, if the trianglesI(l;) and drive all initial values of the observable in the triangle to each
I(1;) are adjacent,e., if they share a line segment. Naturallyof its neighbors, which will lead to controllers of type (I). The
the edge set is symmetric, that i(if, [;) € t then(l;,1;) € t. natural framework for representing such a construction is that

The dual graphDG defined by (4) serves as our discretef hybrid systemsand is presented below. A more general
modelling abstraction for algorithmic motion planning andlefinition on a hybrid system can be found in [1].
provably correct control of robots with specifications given Definition 3 (Hybrid system)A hybrid system storing vec-
in terms of sets. Its nodes can be seen as "qualitative” roltot fields implementing the languagg DG) is a tuple
states, while its edges model state transitions. More formally,
the task specifications are given in the language of the dual HS = (P, Q, Inv, [, T,0), ()
graph:

Definition 2 (Language of dual graph)The language
L(DG) of the dual graphDG is the set of all strings
(li17liz7---al1lm)a l7,7 € L, ij S {1,...,M}, 7 =1...,m,
with (lq:],lq:]_*_l) et,j=1,...,m—1.

The high level specifications given in terms of strings in Q = {¢;; |4,j=1,...,M, andi = jor ({;,l;) € t}. (6)
the language of the dual graph are determined at a higher ) )
hierarchical level, which is beyond the scope of this papdi € < are called discrete states, or locations. The overall
For example, such strings can be determined as solutionsSiHte Of the system is therefofg;, «) € Q x P. _
path searching problems on graphs, for which there exist many v : € — 2_73 is @ map which assigns to each discrete
powerful algorithms, such as depth-first search, breadth-firigt€4i; € Q an invariant set defined by
search, etc. Or, these strings can be solutions to coverage or Inv(qi;) = I(L;). @)
motion generation with respect to temporal logic specifications
[40]. Other examples include solutions to discrete games. For f : Q — (P — TP) is a mapping that specifies the
example, in the visibility based game presented in [16], [154pntinuous flow (vector field) in each locatiafy. f,,, keeps
which is the main motivation for the framework proposed ithe system in the trianglé(/;) for all times. f,,,, with i, j
this paper, the wining strategy of the pursuer is to randonsy that(l;,1;) € t, drives all initial continuous states €
generate strings in the languagéDG). The focus of this I(l;) to I(I;) in finite time through the common boundary
paper is not on determining such strings in the languad€;) () I(l;).

L(DG), but rather on creating a computationally efficient - O: Q@ x P — L is an output map defined as

and provably correct framework in which a given string is

automatically translated to robot control laws. More formally, O(gij, ) = li, g5 € Q zeP (8)
we provide a solution to the following problem: the that the number of d|screte states (Iocat@@)of the

Problem 1: Construct a sel/ of state feedback controllersybrid system defined above is at mdsk |L|, since every
so that, for any strindl;, . L, . .., l;, ) € £(DG), there exists Vertex of DG has at most three transitions. _

u € U driving the robot (1), (2) from any initial statg, € Q According to the above dgfmmon, while in locatigpy € 9,
with h(go) € I(l;,) so that its observable moves through the system evolves according to

Fhe regionsI (;,), I(liz)., ..., I(l;,)) in finite time, and stays = f, (2), x € Inv(gy), (9)
in I(l;,,) for all future times. !

In other words, if a solution to Problem 1 exists, then thend outputs;. Similarly to the dual graph, the languagef6t
robot can automatically achieve any discrete specification imydefined as the set of discrete states reached by the system:

where

- P is its (polygonal) continuous state space Bk P is
called continuous state.

- Q is its finite set of locations defined by
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Definition 4 (Language of hybrid systemyhe language A. Affine functions in simplexes
L(115) of the hybrid system/15 is the set of all strings 15 section presents an interesting property of an affine

produced by the output map as H S evolves in time..  g,ti0n defined in a simplex: it is uniquely determined by its
I a hybrid system//5S can be constructed according tQgyes at the vertices of the simplex and its restriction to the

Definition 3, thenDG and HS produce the same languagegimplex is a convex combination of these values.

i.e., they arelanguage equivalent Let N € N and considerV + 1 affinely independent points
Remark 1:The strings in the language of the dual graph, = 4., in the Euclidean spac&”, i.e., there exists no

DG defined by (4) can be seen as transition systems. Tﬁ%erplane ofRYN containingu:, . ..,vx+1. Then the simplex

hybrid systemH .S defined by (5) and constructed as showry, with verticesv:, ..., vn41 is defined as the convex hull
above isbisimilar with all such transition systems. The bisimf ,, ..

ilarity relation, introduced in [33], [27], formally defined for

linear control systems in [32], and for nonlinear systems in N

an abstract categorical context in [13], is the main tool in“N = {zeRY [z = Z Aivi, Z Ai=1, A > 0p (11)

providing a framework in which infinite dimensional con- =1 =1

tinuous and hybrid systems can be collapsed to finite stateFori € {1,..., N+1}, the convex hull off vy, ..., vni1}\

automata. In these works, a continuous or hybrid systef,} is a facet ofSy and is denoted by;. Let n; denote the

is iteratively partitioned until it becomes equivalent with itgorresponding unit outer normal vector. The following Lemma

discrete quotient induced by the partition with respect tstates a well known result:

reachability properties. In this paper, motivated by robotic Lemma 1:In any simplex Sy, for an arbitraryi =

motion planning, we consider the inverse problem: givenia... N + 1, the vectorsnj, j = 1,...,N + 1, j # i are

set of discrete states and allowed transitions in the form m‘ﬁeaﬂy independent. Moreovet, is a strictly negative linear

a dual graph, we construct a hybrid system bisimilar with aflombination ofnj, j=1,....,N+1,j #i.

possible transition systems. However, in the future, we will For € N, let f : RN — R” be an arbitrary affine function

consider refined partitioning as in the bisimulation algorithm

presented in [2] to accommodate different robot dynamics and f(z) = Az + b, (12)

control constraints. _
In this paper, we restrict our attention to affine vector field¥'

with polyhedral bounds:

<y UN41-

N+1 N+1

th A € R"™*Y andb € R". Then we have:

Lemma 2:The affine function (12) is uniquely determined
by its valuesf(v;) = ¢g;, ¢ = 1,...,N + 1 at the vertices
of Sy. Moreover, the restriction off to Sy is a convex

(x)= A,z + by, €V, x € Inv(g), G 10 - M . . > a
fais (%) 0y ® +bg; €V, @ € Invlgyy), ¢ € - (10) combination of its values at the vertices and is given by:

where 4, € R?*?, b, € R? andV C R? is a polyhedral [z

set. For this class of systems, which we ¢dlingular affine flx) =GW [ 1 ] , £ €SN (13)
hybrid systemswe show in Section Il that there is a simple

and computationally efficient method for characterization dfhere

existence and explicit construction @fS. If requirements G=[g1---gnt1 | (14)
such as smoothness of the produced control laws over severeﬁ

triangles or minimization of time spent traversing a set ik

triangles are required, then the algorithm is refined to produce W = { Ull o UNl“ ] (15)
a corresponding solution satisfying the additional requirements o

in Section IV. Finally, depending on the robot kinematicarer x (N + 1) and (N + 1) x (N + 1) real matrices.

and control constraints, feedback control laws mapping to Proof: Since vi,...,un41 are affinely independent,
these vector fields are determined depending on the robot- ¢, v; —v,...,vx41 —v; are linearly independent, and
kinematics. These results are shown in Section V. therefore, constitute a basisRf'. An immediate consequence

is that, for a givenr € Sy, the \;’s from (11) are uniquely
defined and given by:
I1l. TRIANGULAR AFFINE HYBRID SYSTEMS \
1
In this Section, we characterize all affine vector fields . —w-? { x }7
driving all initial states in a triangle through a facet in finite '
time or keeping all initial states in a triangle forever. We
also provide formulas for the construction of such vectayhere W is defined by (15) and is easily seen to be non-
fields which leads to the construction of the triangular affingingular sincevy — vi,v3 — v1,...,on+1 — vy are linearly
hybrid system (5). Even though in this paper we are onjidependent. Indeed,
concerned with triangles, the results are presented for the
case of an arbitrary dimensional Euclidean space, where thejetj/ — det { vtz — U1 ... UNH1 T UL ]
generalization of a triangle is a simplex. A related exposition 1 0 e 0
of some of the results in this section can be found in [4], [12]. = (-DV"det[ vo—v1 ... uny1—v1 ]

AN+1
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Let f(v;) =gi,i=1,...,N+1. Foranyx € Sy, there exist whereG andW are given by (14) and (15), respectively.
unique); >0, >\ = 1 so thatr = " \ju; and we  Proposition 2 below gives a characterization of all affine

have vector fields driving all initial states in a simplex through a
N+1 N+1 facet in finite time. Without restricting the generality of the
fz) = f(z Aivi) = A Z \vi + b problem, we assume that the exit facetfis
i=1 i=1 Proposition 2 (Exit through a facet)There exists an affine
N+1 N+1 vector field (17) driving all initial states in the simpley
= A Nvi+bY N through the facef? in finite time if and only if the polyhedral
i=1 i=1 setsVe, j=1,..., N + 1 are nonempty, where
N+1 N+1
= D N(Avi+b) =Y A Vi =V (19)
i=1 =1
At Vi=V(\Vf ji=2,...,N+1, (20)
= [g1---9N+1 ] with
A _
P Ve ={geRVnTg<0,j=2,...,N+1,
= [g1 g V7! { 1 ] (16) and nTg > 0}, (21)
and the Lemma is proved. [ | e NIT _ .
Remark 2:Note that the restriction of an affine functigh 77 — (9 ER kg <0k =2,....N+1, k#,
to a facetF; of Sy (i.e. F; itself is a simplex inRN-1) is andnig >0} (22)

affine and for anyr € F;, f(z) is a convex combination of Proof: For sufficiency, if the set¥,¢ are all nonempty,

the values off at the vertices of;. then choose arbitrary; € V¢, i =1,..., N+1 and construct
Proposition 1: Let w € R” andd € R. Thenw” f(z) > d the unique affine function (13) iy satisfying f(v:) = gi,
everywhere inSy if and only if w” f(v;) >d,i=1,..., N+ i=1,...,N + 1. Since for everyr € Sy f(z) is a convex

1. combination ofgy,...,gn4+1 € V, f(z) is contained in the
Proof: The necessity follows immediately from the facconvex hull ofg,, ..., gy 1. This is the smallest convex set
that the vertices, ..., vy41 belong toSy. For sufficiency, containinggi,...,gn+1, and therefore included irv. So,
for anyz € Sy we have: f(x) € V, Vo € Sy, as required. The restriction of(z)
N1 N1 to an arbitrary facetty, £ = 2,..., N + 1 is of course an
T T T affine function, therefore a convex combination of its values
W) =w f(; Aivs) = w ; Aif (vi) g; at the corresponding vertices, j =1,..., N +1, j # k.
Sincen}g; <0, k=2,...,N +1, j # k, using Proposition
1, we conclude that] f(z) < 0 everywhere onF}, so they
cannot leave through the facé}, k =2,..., N + 1. On the
other hand, since?g; >0, j =1,..., N + 1, we conclude

N+1 N+1

> awfv)>d Y Ni=d
i=1 i=1

[ | T . .

. . . tni f(x) > 0, YV € Sy. Therefore, all trajectories of (17)
.It IS easy to see that the result of Propo_sn!on 1 remains vafi have a positive speed of motion towards everywhere
if > is replaced by>, =, <, <. Also, it is obvious that

in Sy which implies that the simplex will eventually be left.
For necessity, assume there is an affine vector field (17)
driving all states inSy throughF; in finite time. Letf(v;) =
B. Affine feedback control laws in simplexes g, i = 1,...,N + 1. We will show thatg; satisfies the
In this section we use the properties of affine functiorivequalities ofV;, i = 1,...,N + 1, so all these sets are
presented above to completely describe the set of all affinenempty. If we assume that there exigts= 2,..., N + 1
vector fields with polyhedral bounds driving all initial stateso thatn]Tgl > 0, then system (17) initialized at; (or very
in a simplex through a desired facet in finite time or makingose tov; on F;) will leave the simplex without hittingF;
the simplex an invariant. We restrict our attention to affinfoy continuity). Thereforen]Tgl <0,Vj=2,....,N+1.
functions (12) withr = N defined on a simple¥y and with  Similarly, for an arbitraryj = 2,...,N + 1, nfg; < 0,
values in a polyhedral subs&t of RY, i.e., to affine vector Vk =2,...,N + 1, k # j because otherwise there will exist
fields with polyhedral bounds: points close tov; on Fj, leaving the simplex. It is obvious
. that we need to have! f(z) > 0 everywhere on the exit
i=f(x), f:Sx = VERY, fl@)=Az+b (A7) et which implies%;jL 0, Vj :y2, ..,N +1. The
whereA € RV*N andb € RY. As stated before, if the vectoronly thing that remains to be provedig g; > 0. Assume
field f is known at the verticesf(v;) = ¢g;,i = 1,..., N+1), by contradiction that: g; < 0. According to Lemma 1y
then in equation (17)A is the matrix obtained by selectingis a negative linear combination @b, ...,n,; and we can
the first N columns of GW !, while b is the last column of write n; = ZN“ win;, wherey; < 0,41 =2,...,N + 1.
This leads tozqv;{1 wint gy < 0. However, we have already

GW1 e, !
proved thatn?g; < 0, for all i = 2,..., N + 1, from which

Proposition 1 remains valid if is restricted to a faceF;.

GW™ = [A]0], (18)
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we conclude that;n? g, = 0, for alli = 2,..., N+ 1. Since is a negative linear combination af, ..., nx1, it follows
na,...,nn41 are linearly independent, it follows that = 0, thatnlg = ngglumfg, with p; < 0,¢=2,...,N + 1.
i.e.,the vector field at the vertex is zero. This means that theThe left hand side of this equality is 0, while the right hand
system initialized awv, will stay there forever, and, thereforeside is> 0, and sincens, ..., ny11 are linearly independent,
will not leave the simplex in finite time, which contradicts thét follows thatg = 0 and (ii) is proved. ]
hypothesis, and the Proposition is proved. A related proof of Proposition 5 (Constant vector fieldsfi) There exists a
this result can be found in [12], [4] B constant vector field (17) satisfying the requirements of Propo-
Remark 3: The conditions of Proposition 2 guarantee thatition 2 if and only ifV/;* is nonempty. (ii) There does not exist
the trajectories of (17) leave the simpl&x; throughF; first a nonzero constant vector field (17) satisfying the requirements

time they hitF;. of Proposition 3.
The following Proposition characterizes all affine vector Proof: There exists a constant vector field satisfying
fields for which the simplex is an invariant: the requirements of Propositions 2 or 3 if and only if

Proposition 3 (Stay inside a simplexThere exists an (),_;  y . Vi¢ # 0 or N,_;  n. Vi© # 0, respectively.
affine vector field (17) o5y whose trajectories never leavelndeed, f(z) = g, whereg is an arbitrary element from the

Sy if and only if the polyhedral set¥’®, j = 1,...,N + 1 intersection, solves the Problems. This being said, (i) follows
are nonempty, where immediately from the observation that® C V¢, for all
. . j = 2,...,N + 1 and (ii) is an obvious consequence of
VE=VVi=1. N+1, (23)  Proposition 4 (ii). [ |
with Therefore, as expected, there will never exist a non-zero

B constant vector field keeping system (17) inside the simplex
Vi={9eR"Infg<0,i=1,....N+1,i#j}. (24) foralltimes. See Figure 2 for an illustration of these ideas for
Proof: The proof is a simpler version of that given fofihe particular case oV = 2, i.e., the simplexes are triangles.
Proposition 2, and it is omitted. u Proposition 6: (i) There exists a solution to Proposition 2
Remark 4:Each polyhedral sev,”*, k& = 1,...,N + 1 for an arbitrary simplex if and only i/ contains an open
corresponds to a set of linear inequalities that has to Reighborhood of the origin ifR”. (ii) There exists a solution
satisfied by the valug,, of the vector fieldf at vertexvy. to Proposition 3 for an arbitrary simplex if and only ¥
Moreover, these sets of linear inequalities are decoupid, contains the origin ifR" .
V> andV;’ depend only oryx, k =1,..., N + 1. If one of Proof: The sufficiency for (i) is immediate from Proposi-
the sets from Propositions 2 and 3 is empty, then there is fin 4 (i). For the sufficiency of (i), ift’ contains the origin,
affine vector field inSy satisfying the corresponding propertythen all setsV;® contain it, so the zero vector field solves
If they are all nonempty, then any choice of € V*, Proposition 3. For necessity, assume by contradiction that
i=1,...,N+ 1 will give a valid (.e., bounded, as in (17)) does not contain the origin, not even on the boundaries. Since
affine vector field by formula (13). V is convex, there exists a hyperplane, $aypassing through
Proposition 4: (i) The setsV;?, i = 1,...,N + 1 have the origin which leaved’ on one side. Consider a simplex
a nonempty intersection with any open neighborhood of th@th facet F; contained inH and outer normah; oriented
origin in RY. (ii) The intersection of any two sef§®, i = on the opposite side of’. For such a simplex, all sefg,
1,...,N +1is the origin of R". ~_ k=1,...,N+1 are empty, because they are all contained in
Proof: It is easy to see that, in Proposition 27 C V{4 ¢ R¥|nTg > 0}, which has an empty intersection with
(which also impliesVy® C V), for all j = 2,...,N + 1. V. This contradicts that there is a solution to Proposition

Therefore, it is enough to prove (i) fdre. Let 2 and (i) is proved. If we now consider a simplex whose
C={geRVnTg<0j=2. . N+1}. facet 7 is contained inH W|th outer normaln; oriented
{g Injg < 0.9 } towards the hyperspace containifg then all the setd?,

It is easy to see thaf' is a cone with apex 0. Also, k=2,...,N+1 are empty because they are all contained in

Ve — ¢\ {0} (25) {g € R¥|nf g < 0}, which has an empty intersection with
L ’ This contradicts that there is a solution to Proposition 3 and

i.e., V¢ is the coneC’ from which the apex has been removedji) is proved. [
Indeed, anyg € V¢ satisfiesg € C \ {0} sincenTg > 0
guaranteeg # 0. Therefore, Ve C C'\ {%, For an arbitrary C. Construction of triangular affine hybrid systems
g € C\ {0}, by Lemma 1,nfg = Zizgl wintg, where For the particular case df = 2, Proposition 6 leads to the
wi < 0,4 =2,...,N 4+ 1. Each term in this sum is largerfollowing Corollary, which is the main result of this paper.
or equal to zero. The sum can therefore be equal to zero ifCorollary 1: For an arbitrary triangulation of a polygdn
and only if each term is zero, which implieg'g = 0, for (3), there exist a hybrid syste S (5) with affine vector
all ¢ =1,...,N 4+ 1. This can only happen i§ = 0 since fields (10) producing the same language as the corresponding
ni, i = 2,...,N + 1 are linearly independent by Lemma 1dual graph,.e., L(HS) = L(DG), if and only if the setV/
But ¢ # 0, thereforeC' \ {0} C V. (25) is proved which giving the polyhedral bounds of the vector fields contains an
immediately implies (i). open neighborhood of the origin iR2.

For (i), leti,j € {1,...,N+1},i # j. If g€ VNV, Note that, if the condition of Corollary 1 is satisfied, then
thennl g <0, forallk =1,...,N+1. Since by Lemma &, for each locationy;; € Q, there exists a whole set of vector
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(b)

Fig. 2. WhenN = 2, the simplex defined by Equation (11) is a triangle shown in (a). For this example, th&séfs, V3 from Propositions 2 and 3 are
the portions of cones shown in (b) and (c), respectively. The bounding polygon represents the polyhéddrat set(17).

fields f,,, keeping the system in the trianglé/;). Each choice 2 or 3 for a given point, which can be a vertex of several
of g, € V¥ given in Proposition 3 will lead to a differenttriangles, have nonempty intersection.

vector field in/(l;) according to formula (17). Similarly, for |, \yhat follows, we present an algorithm that takes as input
each locatiory,; there exists a whole set of vector fields, 5 set of points and a relation assigning these points to a
driving the system from trianglé(l;) to its neighbor/(l;), sequence of pairwise adjacent triangles and outputs a set of
and each choice afy, € Vy’ as in Proposition 2 will lead to0 a yecior fields guaranteeing smoothness of the corresponding

different vector field in/(l;) according to formula (17). trajectories in as large as possible subsequences of triangles.
In the next Section, we present an algorithm for automajjic, DL, .., pmso € R? denote the coordinates of the vertices
generation of unique vector fields implementing an arbitragy trianglesI(1,),...,I(l,) in a reference framg F'}. Let
string in the language(DG). Ac{l,....m+2} x{1,...,m} x {1,2,3} be a relation
describing the assignment of the poipts. .., p,.2 € R? as
IV. ALGORITHMS FOR AUTOMATIC GENERATION OF vertices of the triangled(l;),...,I(l,,) with the following
UNIQUE VECTOR FIELDS significance(i, j, k) € A means thap; is a vertex of triangle

In this Section, we will use the extra degrees of freedo
resent in the characterization of the vector fields in Corolla ; .
P he vertex of rank 1) of triangleI(l,), j=1,...,m—1

1 to guarantee smoothness of the produced trajectoiigms- .
y . oot $ not a vertex ofl(;+1). For I(/,), the vertex of rank 1

sible, andminimize the time required for the accomplishmer? my d bel , K q
of a taskspecified in terms of a stringl;,,li,,...,l;,. ) € vi") does not. elong to trl_a.ngl.é(lm,.l). Ran 'sz.an 3k
' andvj) are defined so that ifi1, j, 1), (i2, 4, 2), (i3, 4,3) € A,

L(DG). | . .
To simplify the notation and without restricting thelN€NPir» pir, andp;, are coordinates of vertices of triangle

generality, assume that an arbitrary string ii(DGQG) I(l;) in coulntercflock_W|se order. Sge Figure 3 (@) :nd ©) f_or
is denoted by (I1,ls,...,0m). To execute it, from the two examples of point-vertex assignment using the notation

hybrid system HS, we need to select the Iocationsdescrlbed above. Corresponding to this assignment of vertices,

(12,4231 -+ Qm—1)m Gmm- ANy Of the corresponding vectorfojr egch trianglel (1), jj: 1,... ,n},.we define three fgcets
fields fo.5, fasss - -+ fagm—1ym > famm Will definitely accomplish FJ with outer normals}, where ;] is the facet opposite to

the task, as discussed in the previous Section. However, e¥&fex vy, of triangle 7(1;), k = 1,2, 3.

though the produced trajectories will be smooth inside eachLet F;, i = 1,...,m + 2 denote the polyhedral set for
triangle, this property will in general be lost when transitpoint p; and V;/ the polyhedral set obtained by applying
ing between adjacent triangles. Smoothness of trajector®positions 2 or 3 to the vertex] of triangle I(I;). In

is guaranteed everywhere ", I(l;) if and only if the Table I, we present an algorithm that takes as input the
vector fields fy,_,,., fq4,.,,, Match on the separating faceset of coordinates{pi,...,pm+2} and the triangle-vertex
I(l;—1)NI(;) forall i = 2,...,m — 1 and the vector fields relation.A and returns the maximal subsequedde. .., j;}
fan—1ym+ famm match onl(l,,—1)(I(l;n). This guarantees of triangle indexes for which matching conditions can be
the continuity of the vector field everywherelifi” , I(I;) and satisfied,i.e., smooth trajectories can be achieved. The main
therefore the produced trajectories &ré (differentiable with idea is the following: the triangles are visited in the given
continuous derivatives), or smooth. Using Lemma 2 and notilgder starting fromj = 1 and restrictions)}! are added to
that the separating facets a$g triangles (or line segments),sets P; corresponding to the points; which act as vertices
the matching condition everywhere on a separating facetu$ corresponding to Propositions 2 or 3. When in a given
satisfied if and only it is satisfied at the vertices. This impliesiangle j the setP; corresponding to a point becomes empty,
that matching can be achieved for a whole sequence if and otilgn we stop, set; = j and keep the nonempty sets from

if all the polyhedral sets obtained as solutions of Propositiotfse previous step, which guarantees that smooth trajectories

I(1;) with rank k, which we denote byv;. The rankk,
=1,2,3 of a vertexv, of triangleI(,) is defined as follows.
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(b) (d)

Fig. 3. Examples of adjacent triangle sequences: (a) and (b) show an example where the matching condition can be satisfied, (c) and (d) illastrate a situ
when matching is not possible.

bring all initial conditions from triangld ({,) to I(l;,) in finite intersection withP;. Therefore, the affine vector fielf,,, in
time. Then the algorithm can be reiterated starting frgnto  I(/;) cannot be chosen constant anymore.
produce another subsequence and finally provide a solutiorBecond, for the particular case of triangles in plane that
to Problem 1 with a minimum number of subsequences. @& consider in this paper, there is a simple geometrical
course, at the facet separatifig,, ) andI(l,, +1), the vector interpretation of the matching condition: it is violated if and
field will be discontinuous. only if there exists a sequence of adjacent triangles which
There are two important points we need to make with regahebtates” around a common vertex with more than See
to the matching condition. First, as stated in Proposition 5, Figure 3 (c),(d) for a graphical illustration of such a situation.
Proposition 2 is used in just one triangle and the constraint seffo minimize the time spent on the produced trajectories,
V is such that the setg?, V°, andV3* are nonempty, then it is from the polyhedral set®; corresponding to each poipt in
always possible to construct a constant vector field solving thesubsequence where the matching condition is satisfied, we
problem based on the fact théf C Vi andV; C Vi always. select a velocity vector which has a maximum projection along
However, if matching is desired with subsequent triangles ineaweighted sum of all outward normals of all exit facets of
seguence, then the inclusion above might not be valid anymavkich the point is a vertex. This problem is a linear program
and affine feedback controllers with explicit state dependenaed has a unique solution. A lower bound for the projection of
are necessary. A graphical illustration of this ideas is given uglocity at vertices along a constant vector is a lower bound
Figure 3 (a) and (b), where poipt is a vertex of rank 3 in for the projection of the affine vector field everywhere in the
I(ly) and of rank 1 inI(l2). If just the problem of reaching triangle by the convexity property of Lemma 2. The algorithm
facet ! of I(l;) was considered, thavi! C V3. However, if shown in Table Il also returns the corresponding vector fields
matching is required for the sequenkié,), I(l2), I(l3), then which guarantee smoothness of trajectories in the subsequence
the allowed set ops is P3 = V! (| V2, which has an empty and maximization of speed.
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[ Determine maximal smooth subsequencep(, p2, - - ., pmt2,A)
P, — R? foralli=1,...,m+ 2 (* initialize polyhedral sets for all point¥)
j < 1 (* start with first triangle*)
while P; is nonempty, for alk =1,...,m + 2

v], «— pg, for all (i,5,k) € A (* identify the vertices of trianglg *)
if j =m (* last triangle*)
apply Proposition 3 in trianglg with verticesv], to obtainV//, k =1,2,3
else(* not last triangle®)
apply Proposition 2 in trianglg with verticesv], to obtainV//, k =1,2,3
endif
P, — PN V,j, for all (¢, 7,k) € A (* update allowed polyhedral sets fp;’s which are vertices of trianglg *)
7 < j+ 1 (* move to the next triangl&)
endwhile
S —{1,2,...,5— 1} (* sequence of triangles for which smooth trajectories can be designed
* P, (i,4,k) € A, j € S are nonempty polyhedral sets for the points which are vertices
of the triangles in sequencg *)

TABLE |
ALGORITHM FOR DETERMINING A MAXIMAL SEQUENCE OF TRIANGLES FOR WHICH SMOOTH TRAJECTORIES CAN BE GENERATED

Construction of continuous vector fields ) |
for all i so that(s, j, k) € Aandj € S do
Ci = D25eS, (5,5, k)EA nj (* sum of all outer normals to exit facets to whiph is a vertex*)
the velocity g; at p; is the solution to the following LPmaxg, ciTgi, gi € P;
endfor
for all j € S do )
using (13) construcfy; ., (z) so thatfy, ;) (v]) =gi (i,45,k) € A
endfor

TABLE Il
ALGORITHM FOR CONSTRUCTION OF VECTOR FIELDS IN A SMOOTH SEQUENCE OF TRIANGLES

V. ROBOT CONTROL Note that the necessary and sufficient condition in Corollary

In this section, we show how the computational framewo& becomes sufficient in the above Corollary, since the results

developed above can be used for automatic generationofﬂy hold for the class of affine feedback control systems.

provably correct robot control laws for motion plans specifie sc3, .the'(.:OI’1.d'IftIOhn of bcofo”ag 2 1s in gccolrldglnce.wnh
in terms of strings in the language of a dual graph describirf} es_mtumon. It the ro _Ot IS able to move in all directions,
the triangulation of a polygon, as required in Problem 1. A en it can exgcute_arbltrary stnng_s. However, the robqt can
already suggested in Section II, we consider two types gxecute certain strings under affine feedback even if the

planar robots: fully actuated with control bounds and unicycl@OVve condition is not satisfied. The equivalent conditions
with bounded driving and steering controls. and analytical formulas for automatic generation of feedback

control laws are presented in the previous Sections.
_ _ An example showing the assignment of maximally smooth
A. Fully-actuated kinematic planar robot vector fields in a sequence of adjacent triangles and corre-

Following the notation introduced in Section I, the state Sponding simulated trajectories is shown in Section VI.
of a fully actuated kinematic robot is its position vector in a
world frame, which coincides with its observableFor such B, ynicycle
a robot, its velocity is directly controllablé.e., the robot is

X ) Consider a differentially driven wheeled robot as the one
described by:

shown in Figure 4. In the world framéF'}, the robot is
j=u,gePCR? uwelUCR? (26) described by R,d) € SE(2), whered € R? gives the position
vector of the robot center anl € SO(2) is the rotation of
where P is a polygon andU is a polyhedral set capturingthe robot frame{M} in {F}.
control (velocity) constraints. In this case, the feedback con-The controlu = [u1,u)” C U C R? consists of driving
trollers solving Problem 1 are given by the vector fields of th@l) and steering «,) speeds, wherd/ is a set capturing
hybrid system constructed as shown in the previous sectioggntrol bounds. The kinematics of the robot are described by

From Corollary 1, we have the following: the well known equations of the unicycle:

Corollary 2: For a fully actuated robot (26) with polyhedral
control boundsU, there exists a solution to Problem 1 for d = R { U1 } (27)
arbitrary polygons and triangulations if the polyhedral Eet 0

contains an open neighborhood of the originRif. R RE us (28)
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tracking, when a proportional derivative (PD) controller is
necessary. The original controls driving the robot so that
the specifications in terms af are met are eventually found
using

u=Ey;'R"v(x) (34)

It is easy to see that the map in (34) is well defined whenever
e # 0, i.e., the reference point used to specify the task is
different from the robot center.

As in the fully actuated casey(z) is determined by the
construction of the hybrid system (5), and particular strings can
be implemented as shown in Section IV. Using equation (34),
it is easy to see that bound@son the velocity of the reference
point v easily translate to bounds$ on the original control
u, by noting that they are related by a rotation and a scaling
factor dependent on If V' is polyhedral, the/ is guaranteed
to be contained in an ellipse obtained by rescaling the disc
Fig. 4. Unicycle. determined by applying all planar rotations ¥ If v(z) is
constantj.e., V is a point, thenU is an ellipse. However, in
practice, the bound¥ are usually imposed. The s&t used
in our algorithms will then be a polyhedron contained in the
image ofU through the map (34).

By applying Corollary 2 to the reference pointand using
R() [ cosf —sinf ] (34), we have the following:

where F; is defined in equation (32).
If the 1-dimensional rotatior? is parameterized by €
[0,27), i.e.,

(29) Corollary 3: For a unicycle (27), (28) with control bounds
) U, there exists a solution to Problem 1 for arbitrary polygons
then equation (28) is obviously equivalent fo= u». Fol- and triangulations if the séf contains an open neighborhood
lowing the notation from Section II, the state of the robot isf the origin inRR2.
thereforeq = {[, d"]"}. Indeed, for any sel/ containing the origin ofR2, one can

It is well known that the under-actuated system (27), (28)ways find a polyhedral sét containing the origin whose
with state (6, d) and controlu = [u1,us]” is uncontrollable image through given positive scaling and all planar rotations
[14]. For this reason, as in [11], we define a reference poiRt included inU. Again, the intuition works here as well:
different from the robot center and with coordinates)) in  a unicycle can execute arbitrary strings over the dual graph
the robot frame{M} (see Figure 4). The coordinates= induced by a triangulation of its polygonal observable space
[z1,22]" of this reference point (or observable, as defined ifit can rotate both left and right and translate both forward
equation (2)) in the world framéF'} are used to formulate and backward.
the motion planning tasks. Using frame transformation rules,
we have:

sinf  cosf

. VI. SIMULATION RESULTS

0

which, by differentiation with respect to time, and using (2
and (28), becomes:

x:R[ ]er, (30)

Consider a unicycle with driving and steering speeds
nd us limited to 1 and 2, respectively. In other words,
= [-1,1] x [-2,2]. Assume that the displacement of the

reference point in the unicycle frame és= 0.5 (see Figure

& = REpu (31) " 4). Then, it is easy to see that, with a bit of conservatism, the
where E, is defined by: rectangular bound¥ = [—v/2/2,1/2/2)? for the reference
point will guarantee the imposed control bounds Indeed,
[ 0 -1 o 10 (32) under all planar rotation®, V' becomes a disk centered at 0
! 1 0 |7°7? 0 with radius 1, which is then scaled to an ellipse with semi-

Note that equations (27), (28), (30), and (31) represe%xes 1 and 2, according to (34). The actual controls of the

. / . robot are inside an ellipse centered at O with semi-axes 1 and
an input output feedback linearization problem [14] for th o : : e
. . , which is contained in the rectangle Therefore, the initial
system with statéR, d), inputw, and outpute. The next step, .
. . . cantrol bounds are guaranteediifis chosen as above.
as usually in such a problem, is to define a feedback contro
law v(z) so that the system evolving corresponding to

A. Simple environment
& =v(x) (33) . ; i i
To illustrate the assignment of vector fields and the satis-

satisfies given requirements specified in terms of the outdattion of matching conditions and control bounds, we first
x. Such requirements usually include stabilization to a poirdpnsider a simple polygonal environment consisting of the se-
when a proportional (P) controller is enough, and trajectoguence of adjacent triangles shown in Figure 5. This example
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can be also be interpreted as the execution of a string fraaols from hybrid systems theory. Future work includes exten-
the language of a dual graph of larger triangulated polygasions on the discrete side resulting in more complicated plans
A; denotes the initial triangle andl,, is the final triangle.  such as temporal logic planning [40] or games on graphs [17].
By applying the algorithm given in Table |, we deterOn the continuous side we will extend the framework towards
mined that the maximal smooth sequence startinghatis more complicated dynamics. This may force us to reconsider
A1, Ao, ..., Ag, with stop inAy. Indeed, it is easy to see thatthe discrete abstraction used for planning, but even if it does,
if exit through the common facet aky and Ay was desired, our goal is to provide formal relationships between the discrete
then the rotation around the common vertexXof, Ag, Ao, abstraction and the continuous model, leading to planning
and Ao would be larger thanr. The produced vector fields verified by construction.
guaranteeing smooth motion in the sequedge A, ..., Aq
are plotted in Figure 6 (a). Then the algorithm is reiterated, and
the vector fields corresponding to the next smooth sequence
Ag, Ao, ..., A1, With stop in Ay, are shown in 6 (b). [1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
Note that the vector fields on adjacent triangles match on the X. Nicollin, A. Oliviero, J. Sifakis, and S. Yovine. The algorithmic
separating facet in each of the subsequences shown in Figure analysis of hybrid systemsTheoretical Computer Scienc&38:3-34,
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Fig. 5. A sequence of adjacent triangles and an example of unicycle motion.
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The vector fields obtained by applying the algorithms in Tables | and Il to the sequence of triangles given in Figure 5: (a) smooth sequence

Fig. 6.
A1, Ag, ..., Ag, with stop inAg; (b) smooth sequencAg, Ajg, ..., A4, with stop inAi4.
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