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Discrete Abstractions for Robot Motion Planning
and Control in Polygonal Environments

Calin Belta, Volkan Isler, and George J. Pappas

Abstract— In this paper, we present a computational frame-
work for automatic generation of provably correct control laws
for planar robots in polygonal environments. Using polygon tri-
angulation and discrete abstractions, we map continuous motion
planning and control problems specified in terms of triangles to
computationally inexpensive finite state transition systems. In this
framework, powerful discrete planning algorithms in complex
environments can be seamlessly linked to automatic generation of
feedback control laws for robots with under-actuation constraints
and control bounds. We focus on fully-actuated kinematic robots
with velocity bounds and (under-actuated) unicycles with forward
and turning speed bounds.

Index Terms— Motion planning, control, triangulation, discrete
abstraction, hybrid system, bisimulation.

I. I NTRODUCTION

M OTION planning for robots in geometrically complex
environments is a fundamental problem that received

a lot of attention lately [24], [25], [6]. The vast literature on
this topic can be divided in two schools of thought. The first
focuses on the complexity of the environment, while assuming
that the robot is fully actuated with no control bounds, or ”free
flying” [24]. This is the main simplifying assumption in most
of the path planning methods based on navigation techniques.
Continuous paths from initial to final configurations in the
robot task space can be found using roadmap methods such as
Voronoi diagrams, visibility graphs, and freeway methods [24],
potential fields [19], [21], [24], [37], or navigation functions
[20], [36]. Discrete paths can also be built using cellular
decompositions of the configuration space [24] or probabilistic
roadmaps [18], [26]. Even though these methods produce paths
that are perfectly valid from a planning perspective, the robot
might fail to accomplish the task because of under-actuation
and control constraints.

The other school of thought focuses on the detailed dy-
namics or kinematics of the robot, while assuming trivial
environments. Most of these methods are continuous and
based on nonlinear control theory. To properly deal with non-
holonomic systems, some of these approaches are differential
geometric [23], [43] or exploit concepts such as flatness [39].
Other approaches use different types of input parametrization
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leading to multi-rate [42] or time varying [29], [9], [34], [28]
control laws. Finally, discontinuous control laws obtained by
combining different controllers [22] or by applying nonsmooth
transformations of the state space [10], [3] have been proposed.
While properly dealing with issues such as under-actuation
and nonholonomy, such approaches face serious algorithmic
challenges in complex environments [41].

In real world applications, the robots have control and
under-actuation constraints and the environments can be very
complex. It seems very difficult, if at all possible, to mathe-
matically formulate and solve (analytically or computation-
ally) such a motion planning problem using either of the
approaches presented above.Integrating the methods of the
two schools of thought is a very promising and challenging
research avenue. In this paper, we advocate ahierarchical
or compositionalapproach for robot motion planning which
integrates the strengths of algorithmic motion planning in
complex environments with continuous motion generation for
robots with control constraints. Our integration of discrete and
continuous approaches necessarily results in ahybrid systems
framework [1].

We focus on polygonal (planar) environments and start by
constructing a triangulation of the environment. The triangu-
lation provides a partition of the environment in a manner that
complex environments can be thought of as compositions of
simple triangles. This geometric decomposition reduces the
complexity of motion generation as it allows focusing on
the complexity of the robot dynamics defined in triangles. A
novel technical challenge then arises, as we need to generate
motion (or design controllers) for robots with actuation and/or
control constraints that are able to steer the robot from one
triangle to an adjacent triangle, or keep the robot in a given
triangle. If the robot controllers (one per triangle) can achieve
this independentlyof the initial condition inside the triangle,
then the partition due to triangulation satisfies the so-called
bisimulationproperty [2]. This special reachability-preserving
partition of the state space allows us to have a formal notion of
system equivalence, namely bisimulation, between the discrete
abstraction of the robot used for algorithmic motion planning,
and the continuous robot dynamics that is operating under
the influence of a hybrid controller which is switching on
the boundaries of the triangulation. Being equivalent allows
the high-level, discrete model to focus on the complexity of
the environment and ignore the low-level dynamics of the
robot, while having a formal guarantee that the sequence of
triangles generated by (any) discrete algorithm are dynamically
feasible by the robot dynamics.The novelty of our hierarchical
approach is on providing mathematically precise relationships
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between the high-level discrete model and the low-level con-
tinuous model using modern approaches from hybrid control
theory.

Among all literature on robot planning and control, this
work is closest related to [7], [8]. In these papers, the authors
consider a polygonal partition of a planar configuration space
and assign vector fields in each polygon so that initial states
in each polygon can only flow to a neighbor through the
corresponding common facet. The vector fields are defined
as gradients of (temperature-like) scalar functions determined
as solutions of Laplace’s equation with boundary conditions
imposed so that the integral curves can only leave through
a desired facet. The resulting vector field in a polygon has
fixed direction and is determined up to a multiplying scalar,
which can then be used to accommodate speed constraints for
fully actuated kinematic robots. For dynamic robots modelled
as double integrators with speed and acceleration bounds, the
authors use a composition of three hybrid controllers based on
previous results published in [38], [35].

Even though the motivating ideas are the same, in this
paper we use fundamentally different tools, which are much
more suited for computation and composition than the one
presented in [7], [8]. By exploiting some interesting properties
of affine functions in simplexes, we can characterize all affine
vector fields whose integral curves leave the simplex through
a desired facet in finite time. They are parameterized by
polyhedral sets capturing the allowed velocities at the vertices.
We use these degrees of freedom to accommodate general
polyhedral velocity bounds for kinematic robots and to ”stich”
the vector fields in adjacent triangles to produce smooth
trajectories. Moreover, we don’t have to construct any dif-
feomorphism, solve any boundary value problem, and smooth
out any boundary conditions.Given the vertices of a polygon,
the triangulation and generation of provably correct feedback
controllers implementing a high level discrete strategy is fully
automated.

The paper is structured as follows. In Section II, we
formulate the problem, give the necessary definitions, and
present our approach. The main results and the algorithms
for automatic generation of vector fields mapping to discrete
specifications are given in Sections III and IV. These results
are then used in Section V to generate provably correct
feedback control laws for fully actuated kinematic robots and
unicycles. Simulation results are shown in Section VI. The
paper ends with concluding remarks and brief exposition of
future research directions in Section VII.

II. PROBLEM FORMULATION AND APPROACH

We consider planar robots described in coordinates by
control systems of the form:

q̇ = F (q, u), q ∈ Q, u ∈ U (1)

where q is the state of the robot andu is its control input.
Q and U are subsets of Euclidean spaces of appropriate
dimensions. For example, for a fully actuated kinematic point-
like robot with position vectorx in some world frame,q =
x ∈ R

2 andF (q, u) = u. For a planar unicycle described by

centroid coordinates position vectorx and orientationθ in a
world frame, and controlled by driving and steering velocities
v and ω, we haveq = {[xT , θ]T |x ∈ R

2, θ ∈ [0, 2π)},
u = (v, ω) ∈ R

2, F (q, u) = [cos θv sin θv ω]T .
As is usually the case in practice when dealing with complex

environments, we assume that the motion planning task is
”qualitatively” specified. This notion has a dual meaning. First,
the task is specified in terms of a robot ”observable”, while
the entire internal stateq of the robot is not of interest. This
observable can be the centroid of the robot, an interesting point
on the robot where a sensor such as a camera is attached, the
center of a disk capturing the size of the robot, etc. Formally,
this can be modelled by defining a map

x = h(q), x ∈ P (2)

where we assumed that the observablex takes values in a poly-
gonP , which does not change in time,i.e., the environment is
static. This polygon can be complex, with a large number of
vertices and it can contain polygonal holes modelling obstacles
or undesired regions in the environment.P can be the original
planar environment if the size of the robot is negligible or its
image through some map which accounts for the size and
shape of the robot [41].

Second, it is not necessary to have information on the exact
value of observablex, but rather to be able to decide its
inclusion in certain regions of interests. For example, we need
to make sure that the robot does not collide with an obstacle
of given geometry. Or, to win the visibility-based game as the
one formulated in [16], [15], the pursuer only needs to make
sure that it is in the same triangle as the evader. Throughout
this paper, we assume that these regions are triangles or unions
of adjacent triangles. There are several supporting arguments
for our choice. First, the problem of triangulating a polygon
is well studied and computationally efficient algorithms are
available [31]. Second, as we will see later in the paper,
triangles have special properties that can be exploited to map
such qualitatively described tasks to discrete transition systems
over a finite set of symbols, with automatic generation of
provably correct robot control laws.

We label each triangle using a finite set of symbolsL =
{l1, l2, . . . , lM} and use the notationI(li) ⊂ P to denote the
region ofP contained by triangleli, including its boundary.
Clearly

P =
⋃

li∈L

I(li) (3)

This idea is illustrated in Figure 1, where the shaded polygons
are forbidden regions in a task specification (e.g.,obstacles),
and the triangulation is achieved by a maximal set of non-
intersecting diagonals [31].

Definition 1 (Dual graph):The dual graphof a triangula-
tion is a simple graph

DG = (L, t) (4)

whose nodesL = {l1, l2, . . . , lM} correspond to the symbols
used for labelling the triangles, and the edge sett ⊂ L ×
L denotes an adjacency relation between the corresponding
triangles.
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Fig. 1. Triangulation of a planar polygon and the dual graph.

Therefore,(li, lj) ∈ t for i 6= j, if the trianglesI(li) and
I(lj) are adjacent,i.e., if they share a line segment. Naturally,
the edge set is symmetric, that is if(li, lj) ∈ t then(lj , li) ∈ t.

The dual graphDG defined by (4) serves as our discrete
modelling abstraction for algorithmic motion planning and
provably correct control of robots with specifications given
in terms of sets. Its nodes can be seen as ”qualitative” robot
states, while its edges model state transitions. More formally,
the task specifications are given in the language of the dual
graph:

Definition 2 (Language of dual graph):The language
L(DG) of the dual graphDG is the set of all strings
(li1 , li2 , . . . , lim), lij ∈ L, ij ∈ {1, . . . , M}, j = 1, . . . , m,
with (lij , lij+1 ) ∈ t, j = 1, . . . , m − 1.

The high level specifications given in terms of strings in
the language of the dual graph are determined at a higher
hierarchical level, which is beyond the scope of this paper.
For example, such strings can be determined as solutions of
path searching problems on graphs, for which there exist many
powerful algorithms, such as depth-first search, breadth-first
search, etc. Or, these strings can be solutions to coverage or
motion generation with respect to temporal logic specifications
[40]. Other examples include solutions to discrete games. For
example, in the visibility based game presented in [16], [15],
which is the main motivation for the framework proposed in
this paper, the wining strategy of the pursuer is to randomly
generate strings in the languageL(DG). The focus of this
paper is not on determining such strings in the language
L(DG), but rather on creating a computationally efficient
and provably correct framework in which a given string is
automatically translated to robot control laws. More formally,
we provide a solution to the following problem:

Problem 1: Construct a setU of state feedback controllers
so that, for any string(li1 , li2 , . . . , lim) ∈ L(DG), there exists
u ∈ U driving the robot (1), (2) from any initial stateq0 ∈ Q
with h(q0) ∈ I(li1) so that its observablex moves through
the regionsI(li1), I(li2), . . . , I(lim) in finite time, and stays
in I(lim) for all future times.

In other words, if a solution to Problem 1 exists, then the
robot can automatically achieve any discrete specification in

the languageL(DG). The setU will contain two types of
controllers: (I) feedback controllers driving the robot from any
initial stateq0 ∈ Q with h(q0) ∈ I(l) so that its observable
x moves in finite time toI(l′), for any l, l′ ∈ L with (l, l′) ∈
t, and (II) feedback controllers driving the robot so that the
observablex stays inI(l) for all times, for all initial states
q0 ∈ I(l), and for alll ∈ L. Indeed, it is easy to see any string
(li1 , li2 , . . . , lim) can be implemented by using controllers of
type (I) for (li1 , li2), (li2 , li3), . . ., (lim−1 , lim) and a controller
of type (II) for lim . On the other hand, we need controllers
of type (I) and (II) to implement all strings of length two and
one, respectively.

We provide a solution to Problem 1 by first constructing
vector fields in the observable polygonal space and then by
generating corresponding robot control laws. We construct a
set of (maximum) four vector fields for each triangle: one that
makes the triangle an invariant for the observable, which will
lead to a controller of type (II), and (maximum) three that
drive all initial values of the observable in the triangle to each
of its neighbors, which will lead to controllers of type (I). The
natural framework for representing such a construction is that
of hybrid systems, and is presented below. A more general
definition on a hybrid system can be found in [1].

Definition 3 (Hybrid system):A hybrid system storing vec-
tor fields implementing the languageL(DG) is a tuple

HS = (P ,Q, Inv, f, T, O), (5)

where
- P is its (polygonal) continuous state space (3).x ∈ P is

called continuous state.
- Q is its finite set of locations defined by

Q = {qij | i, j = 1, . . . , M, and i = j or (li, lj) ∈ t}. (6)

qij ∈ Q are called discrete states, or locations. The overall
state of the system is therefore(qij , x) ∈ Q × P .

- Inv : Q → 2P is a map which assigns to each discrete
stateqij ∈ Q an invariant set defined by

Inv(qij) = I(li). (7)

- f : Q → (P → TP) is a mapping that specifies the
continuous flow (vector field) in each locationqij . fqii keeps
the system in the triangleI(li) for all times. fqij , with i, j
so that (li, lj) ∈ t, drives all initial continuous statesx ∈
I(li) to I(lj) in finite time through the common boundary
I(li)

⋂
I(lj).

- O : Q×P → L is an output map defined as

O(qij , x) = li, qij ∈ Q, x ∈ P (8)
Note that the number of discrete states (locations)|Q| of the

hybrid system defined above is at most4 × |L|, since every
vertex ofDG has at most three transitions.

According to the above definition, while in locationqij ∈ Q,
the system evolves according to

ẋ = fqij (x), x ∈ Inv(qij), (9)

and outputsli. Similarly to the dual graph, the language ofHS
is defined as the set of discrete states reached by the system:
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Definition 4 (Language of hybrid system):The language
L(HS) of the hybrid systemHS is the set of all strings
produced by the output mapO asHS evolves in time.

If a hybrid systemHS can be constructed according to
Definition 3, thenDG and HS produce the same language,
i.e., they arelanguage equivalent.

Remark 1:The strings in the language of the dual graph
DG defined by (4) can be seen as transition systems. The
hybrid systemHS defined by (5) and constructed as shown
above isbisimilar with all such transition systems. The bisim-
ilarity relation, introduced in [33], [27], formally defined for
linear control systems in [32], and for nonlinear systems in
an abstract categorical context in [13], is the main tool in
providing a framework in which infinite dimensional con-
tinuous and hybrid systems can be collapsed to finite state
automata. In these works, a continuous or hybrid system
is iteratively partitioned until it becomes equivalent with its
discrete quotient induced by the partition with respect to
reachability properties. In this paper, motivated by robotic
motion planning, we consider the inverse problem: given a
set of discrete states and allowed transitions in the form of
a dual graph, we construct a hybrid system bisimilar with all
possible transition systems. However, in the future, we will
consider refined partitioning as in the bisimulation algorithm
presented in [2] to accommodate different robot dynamics and
control constraints.

In this paper, we restrict our attention to affine vector fields
with polyhedral bounds:

fqij (x) = Aqij x + bqij ∈ V, x ∈ Inv(qij), qij ∈ Q (10)

whereAqij ∈ R
2×2, bqij ∈ R

2, andV ⊆ R
2 is a polyhedral

set. For this class of systems, which we calltriangular affine
hybrid systems, we show in Section III that there is a simple
and computationally efficient method for characterization of
existence and explicit construction ofHS. If requirements
such as smoothness of the produced control laws over several
triangles or minimization of time spent traversing a set of
triangles are required, then the algorithm is refined to produce
a corresponding solution satisfying the additional requirements
in Section IV. Finally, depending on the robot kinematics
and control constraints, feedback control laws mapping to
these vector fields are determined depending on the robot
kinematics. These results are shown in Section V.

III. T RIANGULAR AFFINE HYBRID SYSTEMS

In this Section, we characterize all affine vector fields
driving all initial states in a triangle through a facet in finite
time or keeping all initial states in a triangle forever. We
also provide formulas for the construction of such vector
fields which leads to the construction of the triangular affine
hybrid system (5). Even though in this paper we are only
concerned with triangles, the results are presented for the
case of an arbitrary dimensional Euclidean space, where the
generalization of a triangle is a simplex. A related exposition
of some of the results in this section can be found in [4], [12].

A. Affine functions in simplexes

This section presents an interesting property of an affine
function defined in a simplex: it is uniquely determined by its
values at the vertices of the simplex and its restriction to the
simplex is a convex combination of these values.

Let N ∈ N and considerN + 1 affinely independent points
v1, . . . , vN+1 in the Euclidean spaceRN , i.e., there exists no
hyperplane ofRN containingv1, . . . , vN+1. Then the simplex
SN with verticesv1, . . . , vN+1 is defined as the convex hull
of v1, . . . , vN+1:

SN = {x ∈ R
N |x =

N+1∑
i=1

λivi,

N+1∑
i=1

λi = 1, λi ≥ 0} (11)

For i ∈ {1, . . . , N +1}, the convex hull of{v1, . . . , vN+1}\
{vi} is a facet ofSN and is denoted byFi. Let ni denote the
corresponding unit outer normal vector. The following Lemma
states a well known result:

Lemma 1: In any simplex SN , for an arbitrary i =
1, . . . , N + 1, the vectorsnj , j = 1, . . . , N + 1, j 6= i are
linearly independent. Moreover,ni is a strictly negative linear
combination ofnj , j = 1, . . . , N + 1, j 6= i.

For r ∈ N, let f : R
N → R

r be an arbitrary affine function

f(x) = Ax + b, (12)

with A ∈ R
r×N andb ∈ R

r. Then we have:
Lemma 2:The affine function (12) is uniquely determined

by its valuesf(vi) = gi, i = 1, . . . , N + 1 at the vertices
of SN . Moreover, the restriction off to SN is a convex
combination of its values at the vertices and is given by:

f(x) = GW−1

[
x
1

]
, x ∈ SN (13)

where
G = [ g1 . . . gN+1 ] (14)

and

W =
[

v1 . . . vN+1

1 . . . 1

]
(15)

arer × (N + 1) and (N + 1) × (N + 1) real matrices.
Proof: Since v1, . . . , vN+1 are affinely independent,

v2 − v1, v3 − v1, . . . , vN+1 − v1 are linearly independent, and
therefore, constitute a basis ofR

N . An immediate consequence
is that, for a givenx ∈ SN , the λi’s from (11) are uniquely
defined and given by:


λ1

...
λN+1


 = W−1

[
x
1

]
,

where W is defined by (15) and is easily seen to be non-
singular sincev2 − v1, v3 − v1, . . . , vN+1 − v1 are linearly
independent. Indeed,

detW = det
[

v1 v2 − v1 . . . vN+1 − v1

1 0 . . . 0

]

= (−1)N+2det
[

v2 − v1 . . . vN+1 − v1

]
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Let f(vi) = gi, i = 1, . . . , N +1. For anyx ∈ SN , there exist
uniqueλi ≥ 0,

∑N+1
i=1 λi = 1 so thatx =

∑N+1
i=1 λivi and we

have

f(x) = f(
N+1∑
i=1

λivi) = A

N+1∑
i=1

λivi + b

= A

N+1∑
i=1

λivi + b

N+1∑
i=1

λi

=
N+1∑
i=1

λi(Avi + b) =
N+1∑
i=1

λigi

= [ g1 . . . gN+1 ]




λ1

...
λN+1




= [ g1 . . . gN+1 ]V −1

[
x
1

]
(16)

and the Lemma is proved.
Remark 2:Note that the restriction of an affine functionf

to a facetFi of SN (i.e. Fi itself is a simplex inR
N−1) is

affine and for anyx ∈ Fi, f(x) is a convex combination of
the values off at the vertices ofFi.

Proposition 1: Let w ∈ R
r andd ∈ R. ThenwT f(x) > d

everywhere inSN if and only if wT f(vi) > d, i = 1, . . . , N +
1.

Proof: The necessity follows immediately from the fact
that the verticesv1, . . . , vN+1 belong toSN . For sufficiency,
for any x ∈ SN we have:

wT f(x) = wT f(
N+1∑
i=1

λivi) = wT
N+1∑
i=1

λif(vi)

N+1∑
i=1

λiw
T f(vi) > d

N+1∑
i=1

λi = d

It is easy to see that the result of Proposition 1 remains valid
if > is replaced by≥, =, <, ≤. Also, it is obvious that
Proposition 1 remains valid iff is restricted to a facetFi.

B. Affine feedback control laws in simplexes

In this section we use the properties of affine functions
presented above to completely describe the set of all affine
vector fields with polyhedral bounds driving all initial states
in a simplex through a desired facet in finite time or making
the simplex an invariant. We restrict our attention to affine
functions (12) withr = N defined on a simplexSN and with
values in a polyhedral subsetV of R

N , i.e., to affine vector
fields with polyhedral bounds:

ẋ = f(x), f : SN → V ⊆ R
N , f(x) = Ax + b (17)

whereA ∈ R
N×N andb ∈ R

N . As stated before, if the vector
field f is known at the vertices (f(vi) = gi, i = 1, . . . , N +1),
then in equation (17),A is the matrix obtained by selecting
the firstN columns ofGW−1, while b is the last column of
GW−1, i.e.,

GW−1 = [A | b], (18)

whereG andW are given by (14) and (15), respectively.
Proposition 2 below gives a characterization of all affine

vector fields driving all initial states in a simplex through a
facet in finite time. Without restricting the generality of the
problem, we assume that the exit facet isF1.

Proposition 2 (Exit through a facet):There exists an affine
vector field (17) driving all initial states in the simplexSN

through the facetF1 in finite time if and only if the polyhedral
setsV e

j , j = 1, . . . , N + 1 are nonempty, where

V e
1 = V

⋂
V̄ e

1 (19)

V e
j = V

⋂
V̄ e

j , j = 2, . . . , N + 1, (20)

with

V̄ e
1 = {g ∈ R

N |nT
j g ≤ 0, j = 2, . . . , N + 1,

and nT
1 g > 0}, (21)

V̄ e
j = {g ∈ R

N |nT
k g ≤ 0, k = 2, . . . , N + 1, k 6= j,

and nT
1 g > 0} (22)

Proof: For sufficiency, if the setsV e
i are all nonempty,

then choose arbitrarygi ∈ V e
i , i = 1, . . . , N +1 and construct

the unique affine function (13) inSN satisfyingf(vi) = gi,
i = 1, . . . , N + 1. Since for everyx ∈ SN f(x) is a convex
combination ofg1, . . . , gN+1 ∈ V , f(x) is contained in the
convex hull ofg1, . . . , gN+1. This is the smallest convex set
containing g1, . . . , gN+1, and therefore included inV . So,
f(x) ∈ V , ∀x ∈ SN , as required. The restriction off(x)
to an arbitrary facetFk, k = 2, . . . , N + 1 is of course an
affine function, therefore a convex combination of its values
gj at the corresponding verticesvj , j = 1, . . . , N + 1, j 6= k.
SincenT

k gj ≤ 0, k = 2, . . . , N + 1, j 6= k, using Proposition
1, we conclude thatnT

k f(x) ≤ 0 everywhere onFk, so they
cannot leave through the facetFk, k = 2, . . . , N + 1. On the
other hand, sincenT

1 gj > 0, j = 1, . . . , N + 1, we conclude
that nT

1 f(x) > 0, ∀x ∈ SN . Therefore, all trajectories of (17)
will have a positive speed of motion towardsF1 everywhere
in SN which implies that the simplex will eventually be left.

For necessity, assume there is an affine vector field (17)
driving all states inSN throughF1 in finite time. Letf(vi) =
gi, i = 1, . . . , N + 1. We will show that gi satisfies the
inequalities ofVi, i = 1, . . . , N + 1, so all these sets are
nonempty. If we assume that there existsj = 2, . . . , N + 1
so thatnT

j g1 > 0, then system (17) initialized atv1 (or very
close tov1 on Fj ) will leave the simplex without hittingF1

(by continuity). Therefore,nT
j g1 ≤ 0, ∀j = 2, . . . , N + 1.

Similarly, for an arbitraryj = 2, . . . , N + 1, nT
k gj ≤ 0,

∀k = 2, . . . , N + 1, k 6= j because otherwise there will exist
points close tovj on Fk leaving the simplex. It is obvious
that we need to havenT

1 f(x) > 0 everywhere on the exit
facet F1, which impliesnT

1 gj > 0, ∀j = 2, . . . , N + 1. The
only thing that remains to be proved isnT

1 g1 > 0. Assume
by contradiction thatnT

1 g1 ≤ 0. According to Lemma 1,n1

is a negative linear combination ofn2, . . . , nn+1 and we can
write n1 =

∑N+1
i=2 µini, whereµi < 0, i = 2, . . . , N + 1.

This leads to
∑N+1

i=1 µin
T
i g1 ≤ 0. However, we have already

proved thatnT
i g1 ≤ 0, for all i = 2, . . . , N + 1, from which
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we conclude thatµin
T
i g1 = 0, for all i = 2, . . . , N +1. Since

n2, . . . , nn+1 are linearly independent, it follows thatg1 = 0,
i.e., the vector field at the vertexv1 is zero. This means that the
system initialized atv1 will stay there forever, and, therefore
will not leave the simplex in finite time, which contradicts the
hypothesis, and the Proposition is proved. A related proof of
this result can be found in [12], [4]

Remark 3:The conditions of Proposition 2 guarantee that
the trajectories of (17) leave the simplexSN throughF1 first
time they hitF1.

The following Proposition characterizes all affine vector
fields for which the simplex is an invariant:

Proposition 3 (Stay inside a simplex):There exists an
affine vector field (17) onSN whose trajectories never leave
SN if and only if the polyhedral setsV s

j , j = 1, . . . , N + 1
are nonempty, where

V s
j = V

⋂
V̄ s

j , j = 1, . . . , N + 1, (23)

with

V̄ s
j = {g ∈ R

N |nT
i g ≤ 0, i = 1, . . . , N + 1, i 6= j}. (24)

Proof: The proof is a simpler version of that given for
Proposition 2, and it is omitted.

Remark 4:Each polyhedral setV e,s
k , k = 1, . . . , N + 1

corresponds to a set of linear inequalities that has to be
satisfied by the valuegk of the vector fieldf at vertexvk.
Moreover, these sets of linear inequalities are decoupled,i.e.,
V e

k and V s
k depend only ongk, k = 1, . . . , N + 1. If one of

the sets from Propositions 2 and 3 is empty, then there is no
affine vector field inSN satisfying the corresponding property.
If they are all nonempty, then any choice ofgi ∈ V e,s

i ,
i = 1, . . . , N + 1 will give a valid (i.e., bounded, as in (17))
affine vector field by formula (13).

Proposition 4: (i) The setsV̄ e
i , i = 1, . . . , N + 1 have

a nonempty intersection with any open neighborhood of the
origin in R

N . (ii) The intersection of any two sets̄V s
i , i =

1, . . . , N + 1 is the origin ofRN .
Proof: It is easy to see that, in Proposition 2,V̄ e

1 ⊆ V̄ e
j

(which also impliesV e
1 ⊆ V e

j ), for all j = 2, . . . , N + 1.
Therefore, it is enough to prove (i) for̄V e

1 . Let

C = {g ∈ R
N |nT

j g ≤ 0, j = 2, . . . , N + 1}.
It is easy to see thatC is a cone with apex 0. Also,

V̄ e
1 = C \ {0}, (25)

i.e., V̄ e
1 is the coneC from which the apex has been removed.

Indeed, anyg ∈ V̄ e
1 satisfiesg ∈ C \ {0} since nT

1 g > 0
guaranteesg 6= 0. Therefore,V̄ e

1 ⊆ C \ {0}. For an arbitrary
g ∈ C \ {0}, by Lemma 1,nT

1 g =
∑N+1

i=2 µin
T
i g, where

µi < 0, i = 2, . . . , N + 1. Each term in this sum is larger
or equal to zero. The sum can therefore be equal to zero if
and only if each term is zero, which impliesnT

i g = 0, for
all i = 1, . . . , N + 1. This can only happen ifg = 0 since
ni, i = 2, . . . , N + 1 are linearly independent by Lemma 1.
But g 6= 0, thereforeC \ {0} ⊆ V̄ e

1 . (25) is proved which
immediately implies (i).

For (ii), let i, j ∈ {1, . . . , N + 1}, i 6= j. If g ∈ V̄ s
i

⋂
V̄ s

j ,
thennT

k g ≤ 0, for all k = 1, . . . , N +1. Since by Lemma 1n1

is a negative linear combination ofn2, . . . , nN+1, it follows
that nT

1 g =
∑N+1

i=2 µin
T
i g, with µi < 0, i = 2, . . . , N + 1.

The left hand side of this equality is≤ 0, while the right hand
side is≥ 0, and sincen2, . . . , nN+1 are linearly independent,
it follows that g = 0 and (ii) is proved.

Proposition 5 (Constant vector fields):(i) There exists a
constant vector field (17) satisfying the requirements of Propo-
sition 2 if and only ifV e

1 is nonempty. (ii) There does not exist
a nonzero constant vector field (17) satisfying the requirements
of Proposition 3.

Proof: There exists a constant vector field satisfying
the requirements of Propositions 2 or 3 if and only if⋂

i=1,...,N+1 V e
i 6= ∅ or

⋂
i=1,...,N+1 V s

i 6= ∅, respectively.
Indeed,f(x) = g, whereg is an arbitrary element from the
intersection, solves the Problems. This being said, (i) follows
immediately from the observation thatV e

1 ⊆ V e
j , for all

j = 2, . . . , N + 1 and (ii) is an obvious consequence of
Proposition 4 (ii).

Therefore, as expected, there will never exist a non-zero
constant vector field keeping system (17) inside the simplex
for all times. See Figure 2 for an illustration of these ideas for
the particular case ofN = 2, i.e., the simplexes are triangles.

Proposition 6: (i) There exists a solution to Proposition 2
for an arbitrary simplex if and only ifV contains an open
neighborhood of the origin inRN . (ii) There exists a solution
to Proposition 3 for an arbitrary simplex if and only ifV
contains the origin inRN .

Proof: The sufficiency for (i) is immediate from Proposi-
tion 4 (i). For the sufficiency of (ii), ifV contains the origin,
then all setsV s

i contain it, so the zero vector field solves
Proposition 3. For necessity, assume by contradiction thatV
does not contain the origin, not even on the boundaries. Since
V is convex, there exists a hyperplane, sayH , passing through
the origin which leavesV on one side. Consider a simplex
with facet F1 contained inH and outer normaln1 oriented
on the opposite side ofV . For such a simplex, all setsV e

k ,
k = 1, . . . , N +1 are empty, because they are all contained in
{g ∈ R

N |nT
1 g > 0}, which has an empty intersection with

V . This contradicts that there is a solution to Proposition
2 and (i) is proved. If we now consider a simplex whose
facet F1 is contained inH with outer normaln1 oriented
towards the hyperspace containingV , then all the setsV s

k ,
k = 2, . . . , N + 1 are empty because they are all contained in
{g ∈ R

N |nT
1 g ≤ 0}, which has an empty intersection withV .

This contradicts that there is a solution to Proposition 3 and
(ii) is proved.

C. Construction of triangular affine hybrid systems

For the particular case ofN = 2, Proposition 6 leads to the
following Corollary, which is the main result of this paper.

Corollary 1: For an arbitrary triangulation of a polygonP
(3), there exist a hybrid systemHS (5) with affine vector
fields (10) producing the same language as the corresponding
dual graph,i.e., L(HS) = L(DG), if and only if the setV
giving the polyhedral bounds of the vector fields contains an
open neighborhood of the origin inR2.

Note that, if the condition of Corollary 1 is satisfied, then
for each locationqij ∈ Q, there exists a whole set of vector
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Fig. 2. WhenN = 2, the simplex defined by Equation (11) is a triangle shown in (a). For this example, the setsV1, V2, V3 from Propositions 2 and 3 are
the portions of cones shown in (b) and (c), respectively. The bounding polygon represents the polyhedral setV as in (17).

fieldsfqii keeping the system in the triangleI(li). Each choice
of gk ∈ V s

k given in Proposition 3 will lead to a different
vector field inI(li) according to formula (17). Similarly, for
each locationqij there exists a whole set of vector fieldsfqij

driving the system from triangleI(li) to its neighborI(lj),
and each choice ofgk ∈ V e

k as in Proposition 2 will lead to a
different vector field inI(li) according to formula (17).

In the next Section, we present an algorithm for automatic
generation of unique vector fields implementing an arbitrary
string in the languageL(DG).

IV. A LGORITHMS FOR AUTOMATIC GENERATION OF

UNIQUE VECTOR FIELDS

In this Section, we will use the extra degrees of freedom
present in the characterization of the vector fields in Corollary
1 to guarantee smoothness of the produced trajectories, if pos-
sible, andminimize the time required for the accomplishment
of a taskspecified in terms of a string(li1 , li2 , . . . , lim) ∈
L(DG).

To simplify the notation and without restricting the
generality, assume that an arbitrary string inL(DG)
is denoted by (l1, l2, . . . , lm). To execute it, from the
hybrid system HS, we need to select the locations
q12, q23, . . . , q(m−1)m, qmm. Any of the corresponding vector
fieldsfq12 , fq23 , . . . , fq(m−1)m , fqmm will definitely accomplish
the task, as discussed in the previous Section. However, even
though the produced trajectories will be smooth inside each
triangle, this property will in general be lost when transit-
ing between adjacent triangles. Smoothness of trajectories
is guaranteed everywhere in

⋃m
i=1 I(li) if and only if the

vector fieldsfq(i−1)i , fqi(i+1) match on the separating facet
I(li−1)

⋂
I(li) for all i = 2, . . . , m − 1 and the vector fields

fq(m−1)m , fqmm match onI(lm−1)
⋂

I(lm). This guarantees
the continuity of the vector field everywhere in

⋃m
i=1 I(li) and

therefore the produced trajectories areC1 (differentiable with
continuous derivatives), or smooth. Using Lemma 2 and noting
that the separating facets areS1 triangles (or line segments),
the matching condition everywhere on a separating facet is
satisfied if and only it is satisfied at the vertices. This implies
that matching can be achieved for a whole sequence if and only
if all the polyhedral sets obtained as solutions of Propositions

2 or 3 for a given point, which can be a vertex of several
triangles, have nonempty intersection.

In what follows, we present an algorithm that takes as input
a set of points and a relation assigning these points to a
sequence of pairwise adjacent triangles and outputs a set of
vector fields guaranteeing smoothness of the corresponding
trajectories in as large as possible subsequences of triangles.
Let p1, . . . , pm+2 ∈ R

2 denote the coordinates of the vertices
of trianglesI(l1), . . . , I(lm) in a reference frame{F}. Let
A ⊂ {1, . . . , m + 2} × {1, . . . , m} × {1, 2, 3} be a relation
describing the assignment of the pointsp1, . . . , pm+2 ∈ R

2 as
vertices of the trianglesI(l1), . . . , I(lm) with the following
significance:(i, j, k) ∈ A means thatpi is a vertex of triangle
I(lj) with rank k, which we denote byvj

k. The rank k,
k = 1, 2, 3 of a vertexvj

k of triangleI(lj) is defined as follows.
The vertex of rank 1 (vj

1) of triangleI(lj), j = 1, . . . , m − 1
is not a vertex ofI(lj+1). For I(lm), the vertex of rank 1
(vm

1 ) does not belong to triangleI(lm−1). Ranks 2 and 3 (vj
2

andvj
3) are defined so that if(i1, j, 1), (i2, j, 2), (i3, j, 3) ∈ A,

then pi1 , pi2 , and pi3 are coordinates of vertices of triangle
I(lj) in counterclockwise order. See Figure 3 (a) and (c) for
two examples of point-vertex assignment using the notation
described above. Corresponding to this assignment of vertices,
for each triangleI(lj), j = 1, . . . , m, we define three facets
F j

k with outer normalsnj
k, whereF j

k is the facet opposite to
vertexvj

k of triangleI(lj), k = 1, 2, 3.

Let Pi, i = 1, . . . , m + 2 denote the polyhedral set for
point pi and V j

k the polyhedral set obtained by applying
Propositions 2 or 3 to the vertexvj

k of triangle I(lj). In
Table I, we present an algorithm that takes as input the
set of coordinates{p1, . . . , pm+2} and the triangle-vertex
relationA and returns the maximal subsequence{1, . . . , j1}
of triangle indexes for which matching conditions can be
satisfied,i.e., smooth trajectories can be achieved. The main
idea is the following: the triangles are visited in the given
order starting fromj = 1 and restrictionsV j

k are added to
setsPi corresponding to the pointspi which act as vertices
vj

k corresponding to Propositions 2 or 3. When in a given
trianglej the setPi corresponding to a point becomes empty,
then we stop, setj1 = j and keep the nonempty setsPi from
the previous step, which guarantees that smooth trajectories
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Fig. 3. Examples of adjacent triangle sequences: (a) and (b) show an example where the matching condition can be satisfied, (c) and (d) illustrate a situation
when matching is not possible.

bring all initial conditions from triangleI(l1) to I(lj1) in finite
time. Then the algorithm can be reiterated starting fromj1 to
produce another subsequence and finally provide a solution
to Problem 1 with a minimum number of subsequences. Of
course, at the facet separatingI(lj1) andI(lj1+1), the vector
field will be discontinuous.

There are two important points we need to make with regard
to the matching condition. First, as stated in Proposition 5, if
Proposition 2 is used in just one triangle and the constraint set
V is such that the setsV e

1 , V e
2 , andV e

3 are nonempty, then it is
always possible to construct a constant vector field solving the
problem based on the fact thatV e

1 ⊂ V e
2 andV1 ⊂ V e

3 always.
However, if matching is desired with subsequent triangles in a
sequence, then the inclusion above might not be valid anymore
and affine feedback controllers with explicit state dependence
are necessary. A graphical illustration of this ideas is given in
Figure 3 (a) and (b), where pointp3 is a vertex of rank 3 in
I(l1) and of rank 1 inI(l2). If just the problem of reaching
facetF 1

1 of I(l1) was considered, thanV 1
1 ⊂ V 1

3 . However, if
matching is required for the sequenceI(l1), I(l2), I(l3), then
the allowed set ofp3 is P3 = V 1

3

⋂
V 2

1 , which has an empty

intersection withP1. Therefore, the affine vector fieldfq12 in
I(l1) cannot be chosen constant anymore.

Second, for the particular case of triangles in plane that
we consider in this paper, there is a simple geometrical
interpretation of the matching condition: it is violated if and
only if there exists a sequence of adjacent triangles which
”rotates” around a common vertex with more thanπ. See
Figure 3 (c),(d) for a graphical illustration of such a situation.

To minimize the time spent on the produced trajectories,
from the polyhedral setsPi corresponding to each pointpi in
a subsequence where the matching condition is satisfied, we
select a velocity vector which has a maximum projection along
a weighted sum of all outward normals of all exit facets of
which the point is a vertex. This problem is a linear program
and has a unique solution. A lower bound for the projection of
velocity at vertices along a constant vector is a lower bound
for the projection of the affine vector field everywhere in the
triangle by the convexity property of Lemma 2. The algorithm
shown in Table II also returns the corresponding vector fields
which guarantee smoothness of trajectories in the subsequence
and maximization of speed.
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Determine maximal smooth subsequence (p1, p2, . . . , pm+2,A)

Pi ← R
2, for all i = 1, . . . , m + 2 (* initialize polyhedral sets for all points*)

j ← 1 (* start with first triangle*)
while Pi is nonempty, for alli = 1, . . . , m + 2

vj
k ← pi, for all (i, j, k) ∈ A (* identify the vertices of trianglej *)

if j = m (* last triangle *)
apply Proposition 3 in trianglej with verticesvj

k to obtainV j
k , k = 1, 2, 3

else(* not last triangle*)
apply Proposition 2 in trianglej with verticesvj

k to obtainV j
k , k = 1, 2, 3

endif
Pi ← Pi

T

V j
k , for all (i, j, k) ∈ A (* update allowed polyhedral sets forpi’s which are vertices of trianglej *)

j ← j + 1 (* move to the next triangle*)
endwhile
S ← {1, 2, . . . , j − 1} (* sequence of triangles for which smooth trajectories can be designed*)
(* Pi, (i, j, k) ∈ A, j ∈ S are nonempty polyhedral sets for the points which are vertices
of the triangles in sequenceS *)

TABLE I

ALGORITHM FOR DETERMINING A MAXIMAL SEQUENCE OF TRIANGLES FOR WHICH SMOOTH TRAJECTORIES CAN BE GENERATED.

Construction of continuous vector fields (S)
for all i so that(i, j, k) ∈ A and j ∈ S do

ci ←
P

j∈S,(i,j,k)∈A nj
1 (* sum of all outer normals to exit facets to whichpi is a vertex*)

the velocitygi at pi is the solution to the following LP:maxgi cT
i gi, gi ∈ Pi

endfor
for all j ∈ S do

using (13) constructfqj(j+1) (x) so thatfqj(j+1) (v
j
k) = gi, (i, j, k) ∈ A

endfor

TABLE II

ALGORITHM FOR CONSTRUCTION OF VECTOR FIELDS IN A SMOOTH SEQUENCE OF TRIANGLES.

V. ROBOT CONTROL

In this section, we show how the computational framework
developed above can be used for automatic generation of
provably correct robot control laws for motion plans specified
in terms of strings in the language of a dual graph describing
the triangulation of a polygon, as required in Problem 1. As
already suggested in Section II, we consider two types of
planar robots: fully actuated with control bounds and unicycles
with bounded driving and steering controls.

A. Fully-actuated kinematic planar robot

Following the notation introduced in Section II, the stateq
of a fully actuated kinematic robot is its position vector in a
world frame, which coincides with its observablex. For such
a robot, its velocity is directly controllable,i.e., the robot is
described by:

q̇ = u, q ∈ P ⊂ R
2, u ∈ U ⊆ R

2 (26)

whereP is a polygon andU is a polyhedral set capturing
control (velocity) constraints. In this case, the feedback con-
trollers solving Problem 1 are given by the vector fields of the
hybrid system constructed as shown in the previous sections.
From Corollary 1, we have the following:

Corollary 2: For a fully actuated robot (26) with polyhedral
control boundsU , there exists a solution to Problem 1 for
arbitrary polygons and triangulations if the polyhedral setU
contains an open neighborhood of the origin inR

2.

Note that the necessary and sufficient condition in Corollary
1 becomes sufficient in the above Corollary, since the results
only hold for the class of affine feedback control systems.
Also, the condition of Corollary 2 is in accordance with
one’s intuition: if the robot is able to move in all directions,
then it can execute arbitrary strings. However, the robot can
execute certain strings under affine feedback even if the
above condition is not satisfied. The equivalent conditions
and analytical formulas for automatic generation of feedback
control laws are presented in the previous Sections.

An example showing the assignment of maximally smooth
vector fields in a sequence of adjacent triangles and corre-
sponding simulated trajectories is shown in Section VI.

B. Unicycle

Consider a differentially driven wheeled robot as the one
shown in Figure 4. In the world frame{F}, the robot is
described by(R, d) ∈ SE(2), whered ∈ R

2 gives the position
vector of the robot center andR ∈ SO(2) is the rotation of
the robot frame{M} in {F}.

The controlu = [u1, u2]T ⊂ U ⊆ R
2 consists of driving

(u1) and steering (u2) speeds, whereU is a set capturing
control bounds. The kinematics of the robot are described by
the well known equations of the unicycle:

ḋ = R

[
u1

0

]
(27)

Ṙ = RE1u2 (28)
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whereE1 is defined in equation (32).
If the 1-dimensional rotationR is parameterized byθ ∈

[0, 2π), i.e.,

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
, (29)

then equation (28) is obviously equivalent toθ̇ = u2. Fol-
lowing the notation from Section II, the state of the robot is
thereforeq = {[θ, dT ]T }.

It is well known that the under-actuated system (27), (28)
with state(θ, d) and controlu = [u1, u2]T is uncontrollable
[14]. For this reason, as in [11], we define a reference point
different from the robot center and with coordinates(ε, 0) in
the robot frame{M} (see Figure 4). The coordinatesx =
[x1, x2]T of this reference point (or observable, as defined in
equation (2)) in the world frame{F} are used to formulate
the motion planning tasks. Using frame transformation rules,
we have:

x = R

[
ε
0

]
+ d, (30)

which, by differentiation with respect to time, and using (27)
and (28), becomes:

ẋ = RE2u (31)

whereE2 is defined by:

E1 =
[

0 −1
1 0

]
, E2 =

[
1 0
0 ε

]
(32)

Note that equations (27), (28), (30), and (31) represent
an input output feedback linearization problem [14] for the
system with state(R, d), inputu, and outputx. The next step,
as usually in such a problem, is to define a feedback control
law v(x) so that the system evolving corresponding to

ẋ = v(x) (33)

satisfies given requirements specified in terms of the output
x. Such requirements usually include stabilization to a point,
when a proportional (P) controller is enough, and trajectory

tracking, when a proportional derivative (PD) controller is
necessary. The original controlsu driving the robot so that
the specifications in terms ofx are met are eventually found
using

u = E−1
2 RT v(x) (34)

It is easy to see that the map in (34) is well defined whenever
ε 6= 0, i.e., the reference point used to specify the task is
different from the robot center.

As in the fully actuated case,v(x) is determined by the
construction of the hybrid system (5), and particular strings can
be implemented as shown in Section IV. Using equation (34),
it is easy to see that boundsV on the velocity of the reference
point v easily translate to boundsU on the original control
u, by noting that they are related by a rotation and a scaling
factor dependent onε. If V is polyhedral, thenU is guaranteed
to be contained in an ellipse obtained by rescaling the disc
determined by applying all planar rotations toV . If v(x) is
constant,i.e., V is a point, thenU is an ellipse. However, in
practice, the boundsU are usually imposed. The setV used
in our algorithms will then be a polyhedron contained in the
image ofU through the map (34).

By applying Corollary 2 to the reference pointx and using
(34), we have the following:

Corollary 3: For a unicycle (27), (28) with control bounds
U , there exists a solution to Problem 1 for arbitrary polygons
and triangulations if the setU contains an open neighborhood
of the origin inR

2.
Indeed, for any setU containing the origin ofR2, one can

always find a polyhedral setV containing the origin whose
image through given positive scaling and all planar rotations
is included in U . Again, the intuition works here as well:
a unicycle can execute arbitrary strings over the dual graph
induced by a triangulation of its polygonal observable space
if it can rotate both left and right and translate both forward
and backward.

VI. SIMULATION RESULTS

Consider a unicycle with driving and steering speedsu1

and u2 limited to 1 and 2, respectively. In other words,
U = [−1, 1] × [−2, 2]. Assume that the displacement of the
reference point in the unicycle frame isε = 0.5 (see Figure
4). Then, it is easy to see that, with a bit of conservatism, the
rectangular boundsV = [−√

2/2,
√

2/2]2 for the reference
point will guarantee the imposed control boundsU . Indeed,
under all planar rotationsR, V becomes a disk centered at 0
with radius 1, which is then scaled to an ellipse with semi-
axes 1 and 2, according to (34). The actual controls of the
robot are inside an ellipse centered at 0 with semi-axes 1 and
2, which is contained in the rectangleU . Therefore, the initial
control bounds are guaranteed ifV is chosen as above.

A. Simple environment

To illustrate the assignment of vector fields and the satis-
faction of matching conditions and control bounds, we first
consider a simple polygonal environment consisting of the se-
quence of adjacent triangles shown in Figure 5. This example
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can be also be interpreted as the execution of a string from
the language of a dual graph of larger triangulated polygon.
∆1 denotes the initial triangle and∆14 is the final triangle.

By applying the algorithm given in Table I, we deter-
mined that the maximal smooth sequence starting at∆1 is
∆1, ∆2, . . . ,∆9, with stop in∆9. Indeed, it is easy to see that,
if exit through the common facet of∆9 and∆10 was desired,
then the rotation around the common vertex of∆7, ∆8, ∆9,
and ∆10 would be larger thanπ. The produced vector fields
guaranteeing smooth motion in the sequence∆1, ∆2, . . . ,∆9

are plotted in Figure 6 (a). Then the algorithm is reiterated, and
the vector fields corresponding to the next smooth sequence
∆9, ∆10, . . . ,∆14, with stop in ∆14, are shown in 6 (b).
Note that the vector fields on adjacent triangles match on the
separating facet in each of the subsequences shown in Figure
6 (a) and (b).

The motion of a unicycle arbitrarily initialized in∆1 is
shown in Figure 5. The corresponding velocityv of the
reference pointx and the controlsu are shown in Figure 7 (a)
and (b), respectively. It is easy to see that each component of
v andu are continuous everywhere, except for a time close to
2500, when the vector field in∆9 is switched from a stopping
one as in Figure 6 (a) to a driving one as in Figure 6 (b). Also,
note that the polyhedral bounds forv and u are satisfied for
all times during the produced motion.

B. Complex environment

To illustrate the computational efficiency of the devel-
oped algorithms and the utility of the created framework,
we consider a more realistic example as the one shown in
Figure 8. The outer polygonal line represents the boundaries
of the environment, while the inner closed polygonal lines
model obstacles. The obtained polygon, which has 44 vertices,
was triangulated using the algorithm available at [30]. The
resulting triangulation, which consists of 46 triangles, and
the corresponding dual graph are shown in Figure 8. Sample
trajectories of the unicycle described at the beginning of this
Section implementing strings in the language of this dual graph
are shown in Figure 9.

Note that the triangulation procedure is computationally
inexpensive, since it scales linearly with the number of vertices
[5]. The generation of vector fields is done according to
the algorithms described in Tables I and II. For a sequence
of adjacent triangles in which smooth trajectories can be
generated, we solved a number of linear programs equal to
the number of polygon vertices pertaining to the triangles.
The number of linear constraints in each of these LPs varies,
and depends on how many triangles in the sequence share the
corresponding vertex.

VII. C ONCLUSION

In this paper we proposed a method for algorithmically
generating and verifiably composing affine feedback control
laws that solve various robot motion planning problems. In ad-
dition to being computationally efficient, our solution formally
relates the high level plans and low level motions using modern

tools from hybrid systems theory. Future work includes exten-
sions on the discrete side resulting in more complicated plans
such as temporal logic planning [40] or games on graphs [17].
On the continuous side we will extend the framework towards
more complicated dynamics. This may force us to reconsider
the discrete abstraction used for planning, but even if it does,
our goal is to provide formal relationships between the discrete
abstraction and the continuous model, leading to planning
verified by construction.
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