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 Abstract— In many devices, wireless network interfaces consume 
upwards of 30% of scarce portable system energy. Extending the 
system lifetime by minimizing communication power consumption 
has therefore become a priority. Conventional energy 
management techniques focus independently on minimizing the 
fixed energy consumption of the transceiver circuit or on scalable 
transmission control. Fixed energy consumption is reduced by 
maximizing the transceiver shutdown interval. In contrast, 
variable transmission rate, coding and power can be leveraged to 
minimize energy costs. These two energy management approaches 
present a tradeoff in minimizing the overall system energy. For 
example, variable energy costs are minimized by transmitting at a 
lower modulation rate and transmission power, but this also 
shortens the sleep duration thereby increasing fixed energy 
consumption. We present a methodology for energy-efficient 
resource allocation across the physical layer, communications 
layer and link layer. Our methodology is aimed at providing QoS 
for multiple users with bursty MPEG-4 video over a time-varying 
channel. We evaluate our scheme by exploiting control knobs of 
actual RF components over a modified IEEE 802.11 MAC. Our 
results indicate that the system lifetime is increased by a factor of 
2 to 5 compared to the gains of conventional techniques. 
 
Index Terms— system design, energy-efficient, power 
management, wireless LAN, QoS, MAC, physical layer. 

I. INTRODUCTION 
Over the past decade, the demand for high data-rate 

standardized wireless systems has been growing at a rapid 
pace. While standards are addressing higher capacity wireless 
links [1], the user is beginning to be inconvenienced by short 
battery lifetimes and increased cost for cooling such power-
hungry battery-based systems [2]. Over the past two decades, 
processor power consumption has increased by 200% every 
four years, while battery energy density has increased at a 
modest 25% over the same interval [3]. Although newer 
battery technologies are being introduced, the disparity is a 
significant challenge for portable system designers. Users 
prefer handhelds to weigh no more than 340 grams (12 oz.) [4] 
and favor devices that require less frequent recharging. Lithium 
ion batteries currently provide the highest capacity of 
approximately 90Whr/Kg [5]. If we require that a battery 
weigh less than 50% of the handheld’s weight, we get a 
maximum of 15Whr of battery energy. The power consumption 
of commercial 802.11 transceivers [6] in all operation modes 
has been increasing with each new standard, as seen in Table I.  

TABLE 1 
WIRELESS TRANSCEIVER POWER CONSUMPTION 

Mode 802.11b 802.11a 802.11g 
Sleep 132 mW 132 mW 132 mW 
Idle 544 mW 990 mW 990 mW 
Receive 726 mW 1320 mW 1320 mW 
Transmit 1089 mW 1815 mW 1980 mW 

Consider an average mobile user’s daily power consumption 
profile of one-half hour in transmit mode, 2 hours in receive 
mode and 4 hours in idle mode [7]. The 802.11a transceiver 
alone consumes approximately 7.5Whr or 50% of the 
handheld’s battery capacity. On an average, the wireless 
interface consumes upwards of 30% of a laptop’s energy [8]. 
While the major drain is during transmission, we notice that the 
idle mode energy consumption must be minimized or 
eliminated altogether by powering-down the transceiver 
(sleeping). An energy-efficient design must therefore jointly 
optimize both the energy consumed during transmission by 
throttling transmission power, rate and coding (scaling) and the 
duration of sleep between transmissions. 
The main challenge for wireless multimedia devices is to 

minimize energy consumption while meeting the dynamic 
application’s performance requirements under varying wireless 
channel conditions. Traditionally, those requirements are met 
by designing the system for maximum receive signal-to-noise 
ratio (SNR) over the worst-case channel conditions and packet 
sizes. For average channel conditions and link utilization, this 
results in excessive energy consumption when transmitting at 
the highest rate or a pessimistic admission control strategy 
when transmitting at the most conservative rate. We consider 
the case of multiple independent users, each with varying 
application demands, transmitting over a shared, slow fading, 
wireless channel. An efficient scheduling algorithm should 
exploit the variations across users, to minimize overall energy 
consumption for given QoS requirements, and over time. For 
the system to be practical, the schedule must be determined at 
runtime with minimal overhead.  
Therefore, the problem explored here is: “Given a shared 

slow fading channel and multiple users with bursty delay-
sensitive data, how does one decide what system configurations 
to assign to each user at runtime to minimize the overall 
energy consumption while providing a sufficient level of 
QoS?” 



  

Our focus is on point-to-multipoint wireless networks where 
all users are within the same collision domain with an access 
point (AP) to arbitrate exclusive channel (Fig. 1). We present a 
Methodology for Energy-Efficient Resource Allocation 
(MEERA) based on systems that can sleep and scale. To 
achieve this, a combination of each approach is leveraged to 
minimize energy consumption depending on the current 
channel conditions and amount of data to be delivered before 
the deadline for each user. Our solution exploits control knobs 
or control dimensions from (a) real radio frequency integrated 
circuit (RFIC) system models, (b) communication theoretic 
trade-offs and (c) link-layer scheduling. The system’s 
configuration is adapted to the current conditions by setting 
system control dimensions or knobs such as the transmission 
power, modulation and code rate. To evaluate MEERA, we 
exploit the energy-performance tradeoff by considering 
additional control dimensions such as the power amplifier (PA) 
back-off, a sleep-aware Medium Access Controller (MAC) 
protocol and packet retransmissions. We finally simulate the 
performance of MEERA using a realistic HIPERLAN/2 indoor 
channel model [9], with full-length MPEG-4 [10] encoded 
movies transmitted over a modified 802.11 MAC protocol 
[30].  

 
A. Related Work 

For the past decade, there have been several initiatives to 
design energy-efficient processors [11, 12] primarily 
employing dynamic voltage scaling and low-power VLSI 
implementations. These methods, however, do not extend well 
for wireless transceivers, as the performance of analog circuits, 
which dominate the energy consumption, does not scale as 
monotonically with lower voltages as digital circuits. In 
addition, wireless communications present non-linear and 
discrete energy-performance tradeoffs between different 
modulation constellations, coding and transmit power [13], 
between modulation and active circuit energy consumption 
[14] and between transmission rates and shutting off the system 
[15]. 

To address this, researchers have approached the problem 
either from an information-theoretic perspective [14, 16] or 
from an implementation-specific viewpoint [11, 17]. In [14], 
modulation strategies for MQAM and MFSK are derived for 
delay-bound traffic. It is shown that when the transmit power 
and energy consumed by the circuitry are comparable (for 
short-range communication < 10m), the transmission energy 
decreases with the product of the bandwidth and transmit 
duration. They however only consider an idealized network 

restricted to a single flow with no medium access controller 
(MAC) or link layer retransmissions, and with ideal continuous 
constellation sizes. In [16], the goal of scalable energy is 
framed as a convex optimization problem where multiple users 
lower their transmission rate to minimize energy consumption 
during transmission. They do not consider the fixed circuit 
energy consumed during idle and receive intervals.    

On the other hand, [13] explores the trade-off between 
transmission power control and physical layer (PHY) rate for a 
centrally controlled MAC with retransmissions. Their solutions 
are specific and applicable to the 802.11a PHY [1]. They 
derive bit-error rates based on simple AWGN channel models. 
They also consider only a single flow with no delay constraints 
or system sleep modes.  

A more general framework to exploit the energy scalability 
of transceivers is derived in [15]. They derive the operating 
regions when a transceiver may sleep or use transmission 
scaling for time-invariant and time-varying channels. The 
analysis is based on simplified physical layer energy models 
and only point-to-point file transfer traffic is considered. 
Approaches to trade-off energy and rate performance, taking 
into account implementation-specific aspects and real 
operating conditions are proposed in [11, 17]. An energy-
performance trade-off is presented for a single user pair at 
design-time and depends on the system implementation.   

Offline energy optimizations for energy-scalable systems are 
proposed in [14, 15, 17]. They express the need for a practical 
runtime scheme to determine the configurations for one or 
more users. In order to derive optimal or near-optimal 
operating points, a framework is needed to consider the impact 
of the various control dimensions, the trade-offs between them 
and the overall benefit to the user. In [18], the authors present a 
useful approach to maximize the utility for multimedia 
applications given multiple resources and along multiple 
control dimensions. Our approach to minimize energy 
consumption has a similar basis, incorporating communications 
constraints and extended for use in dynamic wireless systems. 
MEERA first derives the optimal operating points in terms of 
transmission control and sleep durations at design time for a 
range of scenarios. At runtime, a lightweight scheme employs 
the best configurations for each flow’s channel state and 
application timeliness requirement over a MAC protocol.  

B. Organization of the Paper 
In the following section, we provide a formal framework for 

the generalized MEERA energy management technique. 
Section 3 applies the methodology to a system based on real 
RFIC and channel models and derives its energy-performance 
trade-off. In Section 4, we present simulation results for 
multiple users with delay-constrained traffic. Section 5 
presents the concluding remarks.  

II ENERGY-EFFICIENT DESIGN METHODOLOGY 
The design of low-power wireless systems needs to 

encompass RF components, adaptive physical layer algorithms, 
and the MAC protocol. In order to extract significant energy 
savings from the system, implementations and algorithms in 
the three layers must work harmoniously. Therefore, the 
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Figure 1. Centrally controlled LAN/PAN topology with uplink and 
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impact of each local control algorithm should be known on the 
total system energy consumption and user-related performance. 
This requires a sound methodology that can scale with the 
combinatorial explosion of the number of possible 
configurations and with the non-linear and implementation 
specific interaction of a system-dependent set of control 
dimensions. The following three observations show the need to 
integrate the energy-efficient approaches across layers. 

First, state-of-the-art wireless systems such as 802.11a 
devices are built to function at a fixed set of operating points 
and assume the worst-case conditions at all times. Irrespective 
of the link utilization, the highest feasible PHY rate is always 
used and the power amplifier operates at the maximum 
transmit power [8]. Indeed, when using non-scalable 
transceivers, this highest feasible rate results in the smallest 
duty cycle for the power amplifier. Compared to scalable 
systems, this results in excessive energy consumption for 
average channel conditions and average link utilizations. 
Recent energy-efficient wireless system designs focus on 
energy-efficient VLSI implementations and adaptive physical 
layer algorithms where a lower modulation rate requires a 
lower code rate and transmission power while maintaining the 
same receive SNR. For these schemes to be practical, they 
need to be aware of the hardware components’ energy 
efficiency at various operating points.  

Second, to realize sizable energy savings, systems need to 
shutdown the components when inactive. This is achieved only 
by tightly coupling the MAC to communicate traffic 
requirements of each user for scheduling shutdown intervals.   

Finally, there exist intricate tradeoffs between the adaptive 
physical layer schemes and satisfying the requirements of 
multiple users. As all users share a common channel, lowering 
the rate of one user reduces the available time for the second 
delay-sensitive user. This forces the second user to increase its 
rate, consume more energy and potentially suffer from a higher 
bit error rate.  
Our methodology for energy-efficient resource allocation, 

MEERA, therefore needs to address ways to couple these three 
layers to find the optimal setting of the control dimensions and 
provide for a provable efficient scheme to manage system-wide 
power management dimensions at runtime. First, we formally 
state the MEERA Resource Management model, focusing on 
the system design goals and general definition of the control 
dimensions. Next, we formally state the run-time resource 
allocation problem. Finally, we show how we can transform 
the control dimensions into a very efficient form to be handled 
at runtime. In essence, our goal is to present a general and 
flexible platform-independent cost (e.g. energy) optimization 
followed by a mapping to a practical wireless context based on 
actual system models to minimize energy consumption.       
           
A. MEERA Resource Management Model 
Consider a wireless network as in Fig. 1 where multiple nodes 

are controlled centrally by an access point (AP). Each node 
(such as a handheld video camera) desires to transmit or 
receive frames at real-time and it is the AP’s responsibility to 
assign channel access grants. The resource allocation scheme 
within the AP specifies each user’s system configuration 

settings for the next transmission based on the feedback from 
the current transmission. It must ensure that the nodes meet 
their performance constraints by delivering their data in a 
timely manner while consuming minimal energy. The problem 
is stated formally as:  

1) MEERA Definitions 
The network consists of n flows {F1, F2, …, Fn} with periodic 
delay-sensitive frames or jobs. For notational simplicity, we 
assume a one-to-one mapping of flows to nodes, but our design 
methodology is applicable to one or more flows per node. Each 
flow i, 1 ≤ i ≤  n, is described by the following properties: 

(a) Cost Function (Ci): This is the optimization objective, e.g. 
to minimize the total energy consumption of all users in terms 
of Joules/Job. In, for example, a video context, a job is the 
timely delivery of the current frame of the video application. 

(b) QoS Constraint (Qi): The optimization has to be carried out 
taking into account a minimum performance or QoS 
requirement in order to satisfy the user. As delivery of real-
time traffic is of interest (e.g. video streaming), we describe the 
QoS in terms of the job failure rate (JFR) or deadline miss rate 
[19]. JFR is defined as the ratio of the number of frames not 
successfully delivered before their deadline to the total number 
of frames issued by the application over the lifetime of the 
flow. The QoS constraint is specified by the user as a target-
JFR (i.e. JFR*), to be maintained over the lifetime of the flow. 

(c) Shared Resource (Ri,l), 1 ≤ i ≤ n, 1 ≤ l ≤ r: Multiple 
resource dimensions, r, could be used to schedule flows or 
tasks in the network, e.g. time, frequency or space. In this 
paper, we consider the restricted case where access to the 
channel is only divided in time. Therefore, time, is the single 
shared resource (i.e. r = 1) and the total available quantity is 
denoted by R. The fraction of resource consumed by the ith 
node is denoted by Ri. The maximum time available for any 
flow is Ri

max, which is the frame period for periodic traffic.   

(d) Control Dimensions (Ki,j), 1 ≤ i ≤ n, 1 ≤ j ≤  k: For a given 
wireless LAN architecture, there are k platform independent 
control knobs or dimensions, such as modulation, code rate, 
PA output power, etc. that control the received SNR related to 
the resource utilization in terms of the transmission time per 
bit, given the current path loss. In our case study presented in 
section III, we identify additional control dimensions such as 
the PA back-off which presents a tradeoff between the 
amplifier linearity and efficiency. The control dimension 
settings are discrete, inter-dependent and together have a non-
linear influence on the cost-function. We define a setting of all 
k knobs for node i to be the configuration point jiK , .We will 
define a relationship between jiK ,  to Qi, Ci and Ri in the next 
section. 

(e) System state (Si,m), 1 ≤ i ≤ n, 1 ≤ m ≤ s: As we are operating 
in a very dynamic environment, the system behavior will vary 
over time. There are s environmental factors independent of the 
user or system’s control that are represented by the system 
state variable, Si,m. Both the system cost-function and resources 
required depend on the system state. In a wireless environment 



  

with say VBR video traffic, the system state is determined by 
the current channel state and the current application frame size. 
The scheduling algorithm within the AP is executed with a 
period based on the channel epoch and the rate at which the 
data requirements change.  

To summarize, each flow Fi is associated with a set of 
possible system states Si,m, which determines the mapping of 
the control dimensions jiK ,  to the cost ( jiK , Ci(Si,m)) and 
resource ( jiK , Ri(Si,m)). It is essential to note that for each 
user, depending on its current state, the relative energy gains 
possible by rate scaling and sleeping are different and should 
hence be exploited differently. Each user experiences different 
channel and application dynamics, resulting in different system 
states over time, which may or may not be correlated with 
other users. This is a very important characteristic which 
makes it possible to exploit multi-user diversity for energy 
efficiency.  

2) MEERA Model Properties 
The key aspects of MEERA are the mapping of the control 

dimensions to cost and resource profiles respectively, and the 
generality of this mapping. A resource (cost) profile describes 
a list of potential resource (cost) allocation schemes needed for 
each configuration point jiK , . A more case-specific mapping is 
provided in Section III. These profiles are then combined, as 
shown in Fig. 2, to give a Cost-Resource trade-off function, 
which is essential for solving the resource allocation problem. 
A Cost-Resource trade-off function represents the behavior of 
the system for one user in a given state.  

Cost profile properties 
• Every flow has a known minimum and maximum cost (e.g. 

Joules/job) over all control dimensions, which is a function 
of the desired JFR* and the system state (e.g. channel state). 
The cost range (difference between maximum and minimum) 
needs to be determined once by measuring the impact of 
each control dimension on the energy consumption over all 
system states. For example, a flow requiring high channel 
utilization, due to a high application data rate or a channel 
with a large packet error rate (PER), would conserve energy 
primarily by scaling transmission rate and power than from 
shutdown.  

• The discrete configuration settings for each control 
dimension can be ordered according to their increasing Cost.  

• The overall system cost, C, is defined as the weighted sum of 
costs of all flows, where each flow can be assigned a certain 
weight depending on its relative importance or to improve 
fairness [19] (e.g. higher weight for flows with higher 
average data rate). 

C  = ∑
=

n

i
iiCw

1

 

Resource profile properties 
• Every flow has a known minimum and maximum resource 

requirement (e.g. allocated frame transmission time) across 
all control dimensions. This is a function of the desired JFR* 

and system state and is calculated from the system model 
(detailed in section III). 

• Depending on the current system constraints and possible 
configurations, each flow has a minimum resource 
requirement Ri

min. We assume the minimum resource 
requirements can be satisfied for all flows under worst-case 
load and channel conditions. Hence, no overload occurs and 
all flows can be scheduled. However, in the delivery of non-
scalable video applications under worst-case conditions, a 
system overload may occur and one or more flows will need 
to be dropped. While the policy to drop flows is out of the 
scope of our optimization criterion, a practical system may 
employ policing that is fair to the users as in [19]. 

• The per-dimension discrete control settings can be ordered 
according to their minimal associated Resource requirement. 

• The overall system resource requirement, R, is defined as the 
sum of the per flow requirements: 

R = ∑
=

n

i
iR

1

 

B. MEERA Resource Allocation Problem 
We recall that our goal is to assign transmission grants via 

the AP, resulting from an optimal setting of the control 
dimensions to each node such that the per-flow QoS constraints 
for multiple users are met with minimal energy consumption. 
For a given set of resources, control dimensions and QoS 
constraints, the scheduling objective is formally stated as: 

smSCw
n

i
miiiC

,...,1,)(min
1

, =∑
=

 

subject to: 
    niJFRJFR ii ,...,1,* =≤           (QoS Constraints) 

    ∑
=

=≤
n

i
lli rlRR

1

max
, ,...,1,               (Resource Constraints) 

    smkjSRK miliji ,...,1;,...,1),( ,,, ==→ (Resource Profiles) 

    )( ,, miiji SCK →       (Cost Profiles) 

The solution of the optimization problem yields a set of 
feasible operating points, {Ki,j}, which fulfill the QoS target, 
maintains the shared resource constraint and minimizes the 
system cost. In order to determine this configuration K, we 
next propose a two-phase solution approach.  

C. Two-phase Solution Approach 
When considering energy-scalable systems, the number of 

control dimensions is large (even on the order of 106) and leads 
to a combinatorial explosion of the possible system 
configurations.  

Hence, a pragmatic scheme is needed to select the 
configurations at runtime. We achieve this by first determining 
the optimal configurations of all control dimensions at design 
or calibration time. At runtime, based on the channel condition 
and application load, the best operating point is selected from a 
significantly reduced set of possibilities.  



 
1) Design-Time Phase 

A property of our model is that the control dimensions can 
be ordered according to their minimal cost and resource 
consumption, describing a range of possible costs and 
resources for the system. For each additional unit of resource 
allocated, we only need to consider the configuration that 
achieves the minimal cost for that unit of the resource. For 
each possible system state (e.g. for different channel and 
application loads), the optimal operating points are determined 
by pruning the Cost-Resource curves to yield only the 
minimum cost configurations, which will be denoted by Ci(Ri), 
at each resource allocation point. 

We define a function CRpi →: , such that 
))}(())((|)(min{))(( ,,,, miiimiiimiimiii SCKSRKSCSRp →∧→=  

which defines a mapping between the Resource and the Cost of 
a certain configuration, k, for a node in a state, Si, as shown in 
Fig. 2. Considering the resulting points in the Cost-Resource 
space, we are only interested in the ones that represent the 
optimal trade-off between the energy and resource needs for 
our system. Indeed, the trade-off between transmission time 
and transmission energy is convex - a fundamental property for 
wireless communication bounded by Shannon’s channel 
capacity [20]. Although the discrete settings and non-linear 
interactions in real systems lead to a deviation from this 
optimal trade-off, it can be well approximated as follows.  

We calculate the convex minorant [21] (i.e. most energy-
efficient points along both the Cost-Control dimensions and the 
Resource-Control dimension curves) of these pruned curves 
along the Cost and Resource dimensions, and consider the 
intersection of the result. As a result, the number of operating 
points is reduced significantly (Fig. 3).  

We briefly consider the tradeoffs present in our system: 
increasing the modulation constellation size decreases the 
transmission time but results in a higher PER for the same 
channel conditions and PA settings. The energy savings due to 
decreased transmission time must offset the increased expected 
cost of re-transmissions. Also, increasing the transmit power 
increases the signal distortion due to the PA nonlinearity [26]. 
On the other hand, decreasing the transmission power also 
decreases the efficiency of the PA. Similarly, it is not 
straightforward when using a higher coding gain, if the 
decreased SNR requirement or increased transmission time 
dominates the energy consumption. Considering the tradeoff 
between sleeping and scaling, a longer transmission at a lower 
and more robust modulation rate needs to compensate for the 
opportunity cost of not sleeping earlier. Finally, as all users 

share a common channel, lowering the rate of one user reduces 
the available time for other delay-sensitive users. This compels 
one or more of the other users to increase their rate, consume 
more energy and potentially suffer from a higher bit error rate. 
At design time, we derive the convex minorant of the Cost 
(energy consumption) and Resource (time) of the transceiver 
for one user across all system states.  

2) Run-Time Phase 
 As the system state of all the users is only known at runtime, a 
light-weight scheme is necessary to assign the best system 
configurations for each user. We employ a greedy algorithm to 
determine the per-flow resource usage, Ri, for each application 
to minimize the total system cost, C. The algorithm traverses 
all flows’ Cost-Resource curves and at every step consumes 
resources corresponding to the maximum negative slope across 
all flows. This ensures that for every additional unit of 
resources consumed, the additional cost saving is the maximum 
across all flows [21]. We assume that the current channel state 
and application demand are known for each node. If this 
changes, the allocation can be recomputed. This information is 
obtained by coupling the MAC protocol with the resource 
manager and is explained in the next section. We determine the 
optimal additional allocation to each flow, niRi ≤≤> 1,0 , 
subject to ∑ =

≤
n

1i i R  R . Our greedy algorithm is based on Kuhn-

Tucker [21]:  
a. Allocate to each flow the smallest resource possible for the 

given state, Rmin. By assumption, all flows are schedulable 
under worst-case conditions, i.e. ∑=

≤
n

1i min R  R . 

b. Let the current normalized allocation of the resource to flow, 
Fi, be Ri, 1 ≤ i ≤ n. Let the unallocated quantity of the 
available resource be Ravl.    

c. Identify the flow with the maximum negative slope, |Ci’(Ri)| 
– representing the maximum decrease in cost per resource 
unit (i.e. moving right and downward the )( ii RC convex 
minorant in Fig. 3). If there is more than one, pick one 
randomly. If the value of the minimum slope is 0, then stop. 
No further allocation will decrease the system cost further.  

d. Increase Ri by the amount till the slope changes for the ith 
flow. Decrement Ravl by the additional allocated resource and 
increment the cost C by the consequent additional cost. 
Return to step b until all resources have been optimally 
allocated or when Ravl is 0.   

In our implementation, we sort the configuration points at 
design-time in the decreasing order of the negative slope 

Figure 2. At design time, a Cost and Resource profile is determined for each set of control dimensions. This mapping depends on the 
current state of each node. The minimum Cost-Resource tradeoff is derived from this mapping to give operating points used at runtime. 
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between two adjacent points. The complexity of the runtime 
algorithm is O(L.n.log(n)) for n nodes and L configuration 
points per curve. In Section III, we demonstrate that for a 
practical system in each possible system state (i.e. channel and 
frame size), the number of configuration points to be 
considered at runtime is relatively small (~20).  

Taking into account that the relation Ci(Ri) derived at design 
time is a convex trade-off curve, we now prove that the greedy 
algorithm leads to the optimal solution for continuous resource 
allocation. Following that, we extend the proof for real systems 
with discrete working points to show that the solution is within 
bounded deviation from the optimal.   

Theorem 1 For a continuous resource allocation to be 
optimal, a necessary condition  is ∀ i, 1 ≤ i ≤ n, Ri = 0 or for 
any flows {i, j} with Ri > 0 and Rj > 0, the cost slopes Ci`(Rj) = 
Cj`(Rj). 

Proof: For a continuous differentiable function, the Kuhn-
Tucker [21] theorem proves such a greedy scheme is optimal. 
Suppose for some i ∫ j, let the optimal resources allocation be 
Ri > 0, Rj > 0, and |Ci’(Ri)| > |Cj’(Rj)|. As the savings in cost 
per unit resource for Fi is larger, we can subtract an 
infinitesimal amount of resource r from Fj and add it to Fi. The 
total system cost is reduced and this contradicts the optimality 
assumption.                                                           � 

For a real system, however, the settings for different control 
dimensions such as modulation or transmit power are in 
discrete units. This results in a deviation, ∆, from the optimal 
resource assignment. We now show that the worst-case 
deviation from the optimal strategy is bounded and small. 

Theorem 2. ∞<∆≤∃ 0 , such that ∆+≤≤ OPTMEERAOPT CCC , 
where COPT is the optimal cost (energy consumed by all users) 
in the continuous case and CMEERA is the cost in the discrete 
case. 
Proof: For each flow, {F1, F2, …, Fn}, the aggregate system 
resources consumed are stored in the decreasing order of their 
negative slope across all per-flow Cost-Resource Ci(Ri) curves. 
Based on this ordering, the aggregate system C(R) trade-off is 
constructed, consisting of segments resulting from individual 
flows. The greedy algorithm traverses segments of the 
aggregate system C(R) curve, consisting of successive 
additional resource consumptions for a unit of data (at 
maximum cost decrease), until the first segment, s, is found 
that requires more resource than the residual resource capacity 
Ravl to realize the extra cost saving at the end of the segment 
(Fig. 3).    

Let the two end points of the final segment s be (rs, cs) and 
(rs+1, cs+1) in C(R). Let (rc, cc) be the optimal resource 
allocation in the optimal combined Cost-Resource curve. 

COPT     ≥   CMEERA - (rc – rs) (cs+1 – cs)/( rs+1 – rs) 
              >  CMEERA - (rs+1 – rs) (cs+1 – cs)/( rs+1 – rs) 

               =   CMEERA - (cs+1 - cs) 

We observe that cs - cs+1 ≤ ∆, therefore CMEERA - COPT < ∆. 
Moreover, we note that with more dimensions (Ki,r) 
considered, a better approximation can be obtained.               �                                                          

 
III. SYSTEM OVERVIEW 

We now illustrate application of MEERA mapped to a 
specific wireless system with periodic and delay-sensitive 
video traffic (Fig. 4). We first model a scalable broadband 
transceiver from actual RF components and define its control 
dimensions. The different environmental dynamics such as the 
channel condition and current application demand are then 
categorized into channel states and packet sizes. Following 
this, the influence of the control dimensions to both cost and 
resource is mapped at design-time, taking into account the QoS 
requirements and system constraints. Finally, we show how at 
runtime, MEERA uses the feedback information of the channel 
state and application demand to select the optimal operating 
point for each node and how this can be embedded in existing 
access schemes. 

A. Energy-Performance Control Dimensions 
For a broadband transceiver, we identify several control 

dimensions that tradeoff performance for energy savings and 
vice versa. Our system modeling is based on an 802.11a [1] 
direct conversion transceiver implementation with turbo coding 
[24] (Fig. 5). Four control dimensions have a significant impact 
on energy and performance for these OFDM transceivers: the 
modulation order (NMod), the code rate (Bc), the power 
amplifier transmit power (PTX) and its linearity specified by the 
back-off (b). We focus on the power amplifier (PA) control 
knob as PA’s generally are the most power-hungry component 
in the transmitter consuming upwards of 600mW [25]. The 
major drawback for 802.11a OFDM modulation is the large 
17dB peak-to-average ratio (PAR) of the transmitted signal. A 
high PAR renders the implementation costly and inefficient 
since efficient PA designs require a reduced signal dynamic 
range [26]. However, reducing the PA’s dynamic range clips 
the transmitted signal and increases the signal distortion.  

A back-off, b, from the peak signal amplitude or saturation 
power, can be used to steer the linearity of the system versus 
the energy efficiency of the PA [17]. The back-off is defined as 
the ratio of the average PA output power to the output power 
corresponding to the 1dB gain compression point (Fig. 6). The 
saturation power and signal distortion for class A amplifiers 
(used with OFDM) are controlled by modifying the bias 
current of the amplifier, and directly influences its energy 
consumption. 

Figure 3. Bounded deviation from the optimal in discrete 
Cost-Resource curves 
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Hence, we save energy from the increased PA efficiency, 
provided we ensure that the received signal to noise and 
distortion ratio (SINAD) is above the required sensitivity and 
do not need to retransmit the packet. For the system to be 
practical only discrete settings of the control dimensions are 
considered (listed in Table 2). 

 We consider the eight PHY rates supported by 802.11a 
based on four modulation and three code rates (Table 2). The 
bit rate (Bbit) achieved for each modulation-coding pair with Nc 
OFDM carriers, NMod bits per symbol and Symbol rate B is 
given by: 

  BBNNB cModcbit ×××=       (1) 
Based on the bit rate, communication performance is 

determined by the bit error rate (BER) at the receiver. When 
transmitter non-linearity is considered, the BER is expressed as 
a function of the SINAD. The SINAD is written as a function 
as the power amplifier back-off, given output power PTx and 
channel attenuation A as: 
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where the constants k, T, W and NF are the Boltzman constant, 
working temperature, channel bandwidth and noise figure of 
the receiver respectively. The relation between the power 
amplifier back-off b and the distortion has been characterized 
empirically for the Microsemi LX5506 [28] 802.11a PA in Fig 
6. The PA power (PPA) can be expressed as the ratio of the 
transmit power (PTx) to the PA efficiency (ηPA) that is related 
to b by an empirical law fitted on measurements (3).  

We assume the energy consumption of the digital baseband 
is a linear function of time and block size for the turbo 
decoding at the receiver [24]. The block size used for the turbo 
coding is 288 bits. Based on current implementations [25], the 
frequency synthesizer, ADC, DAC, LNA and filters are 

assumed to have a fixed front-end power consumption PFE as 
given in Table 2. The time needed to wake-up the system 
(stabilization time for the PLL in the frequency synthesizer) is 
assumed to be 100 µs, which is optimistic but can be achieved 
when designing frequency generators for this purpose. 
Application layer frames are fragmented at the link layer. We 
obtain the following expressions for the energy needed to send 
or receive a fragment of length Lfrag, as a function of the 
current knob settings: 
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where PT
BB and PT

DSP are the base-band and digital signal 
processor’s power consumption. 

 
B. System State 
To determine the Job Failure Rate and total expected energy 
consumption, the system dynamics must be considered. For 
this case study, the channel and the traffic are considered to 
vary independently in discrete states.  

1)  Traffic Model  
Both constant bit rate (CBR) and variable bit rate (VBR) traffic 
are studied. VBR traffic consists of MPEG-4 flows. A 
Transform Expand Sample-based MPEG-4 traffic generator 
[29] that generates traffic with the same first and second order 
statistics as an original MPEG-4 trace is used. MPEG-4 traffic 
is extremely bursty with the peak-to-average frame size 
ranging from 3 to 20. All fragmentation is done at the link 
layer and if a frame is not completely delivered to the receiver 
by its deadline, it is dropped. All applications employ UDP 
over IP. 
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Figure 7(a) Performance across different channel states. 
(b) Channel states histogram 
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Each frame size maps to a different system state. A frame size 
is determined in a number of MAC layer fragments, which is 
assumed to be 1024 bytes long for this experiment. From our 
results, we observe that for a given frame size, extrapolating 
the results for a curve within five fragments results in a very 
low approximation error. As the maximum frame size is 
assumed to be within the practical limit of 50 fragments long, 
we only construct Cost-Resource curves for 1, 2, 3, 4, 5, 10, 
20, 30, 40, 50 fragments per frame.  

2) Channel Model 
We use a frequency selective and time varying channel 

model to compute the PER for all transceiver settings. An 
indoor channel model based on HIPERLAN/2 [9] was used for 
a terminal moving uniformly at speeds between 0 to 5.2 km/h 
(walking speed). Experiments for indoor environments [27] 
have found the Doppler spread to be approximately 6Hz at 
5.25GHz center frequency and 3Hz at the 2.4GHz center 
frequency. This corresponds to a coherence time of ~166ms for 
802.11a networks. A set of 1000 time-varying frequency 
channel response realizations (sampled every 2ms over one 
minute) were generated and normalized in power. Data was 
encoded using a turbo coder model [24] and the bit stream was 
modulated using 802.11a OFDM specifications. For a given 
back-off and transmit power, the SINAD at the receiver 
antenna was computed by equation (2). We assume a path-loss 
of 80dB at a distance of 10m.  

The signal was then equalized (zero-forcing scheme), 
demodulated and decoded. From the channel realization 
database, a one-to-one mapping of SINAD to receive block 
error rate was determined for each modulation and code rate. 
The channel was then classified into 5 classes, determined by a 
2dB difference at turbo code block error rate (BlER) 10e-3 
(Fig. 7(a)). We use a similar 2dB discrete step for the PA 
profile (Fig. 6). In order to derive a time-varying link-layer 
error model, we associate each channel class to a Markov state, 
each with a probability of occurrence based on the channel 
realizations database (Fig. 7(b)). Given this five-state error 
model, we are able at runtime, to efficiently model the PER for 
different configurations. The PER is obtained in equation (6) 
by assuming the block errors follow a binomial process for a 
packet size of Lfrag bits and a block size of 288 bits: 
                       ])1(1[ 288/fragLBlERPER −−=   (6) 

C. Cost and Resource Profile Mapping 
In the previous sections we determined, for each system state, 

expressions for the energy to send (4) or receive (5) a 
fragment, and the PER experienced by this fragment (6), based 
on the system configuration setting. From these expressions 
and the system state, we now derive the exact mapping of the 
set of control dimensions K to the cost and resource 
dimensions. This mapping should take into account the 
protocol and system constraints, and the QoS requirements.  
For the protocol constraints, the IEEE 802.11e MAC scheme 

[30] is considered as it is an emerging standard for QoS 
support (Fig. 8). From [19], we observe that the contention-free 
burst or transmit opportunity (TXOP) grant of 802.11e Hybrid 
Coordination Function (HCF) can significantly improve the 
network QoS. A TXOP is defined as an interval of time when a 
user has exclusive channel access and is defined by a start time 
and a maximum duration. All TXOPs are contention free and 
are assigned by the AP. The shared resource is time, and 
therefore the resource allocation problem is to determine the 
optimal TXOP for each flow. We now incorporate the protocol 
overhead and timing into the resource consumption. 
Let EACK and TACK be the energy and time needed to receive an 

ACK packet. EHeader and THeader are the energy and time for the 
MAC and PHY headers. The energy and time needed for a 
successful and failed1 frame transmission is then be determined 
using parameters based on 802.11e, listed in Table 2: 

ACKIdlesifsHeaderKgood EPTEEKE +××++= )2()(       (7) 

))(()( IdleACKsifsHeaderKbad PTTEEKE ×+++=        (8) 

ACKsifsHeaderKgood TTTTKT +×++= )2()(                 (9) 

sifsgoodbad TKTKT −= )()(                                                   (10) 

The QoS metric of interest is the target Job Failure Rate 
(JFR*). A job is the delivery of an application layer frame. A 
job failure occurs when the entire frame is not delivered by its 
deadline. We assume the deadline is equal to the flow period. 
For successful transmission of a frame, we adopt the policy 
that each fragment of a frame should be transmitted or 
retransmitted using the same configuration 

jiK ,
, which we will 

                                                 
1 For a failed transmission, we wait the propagation time, SIFS time and the 
time normally needed to receive (decode) the ACK. Only after that time we 
can be sure the ACK is not received and the packet transmission has failed.  
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Figure 8. Timing of successful and failed uplink frame transmission with 
802.11e HCF. 

denote by K for notational simplicity. This is a good 
approximation to the optimal transmission approach which 
adapts the control dimensions depending on the outcome of the 
previous fragment’s transmission (conditional recursion which 
is complex to solve at runtime). For the approximation, we 
derive a recursive formulation to compute the expected energy 
EK, the timeslot needed TXOPK, and the expected failure rate 
JFRK, for each system state determined by the frame size of m 
fragments and channel state. For notational simplicity, we will 
also omit the channel state index.  

Each packet is transmitted with configuration K, for which 
we can determine the PERK, based on equation (6). The 
probability that the frame is delivered successfully with exactly 
(m + n) transmissions (including n retransmissions), is given by 
the recursion: 
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in which m

iC  denotes the number of possibilities to select i 
fragments out of m. Hence, the probability to deliver the frame 
consisting of m fragments correctly with maximum n re-
transmissions is 
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Therefore, the failure to deliver an entire application layer 
frame before the deadline is marked as a job failure. As control 
frames are much shorter and less susceptible to errors, we 
assume they do not suffer packet errors.   

The time needed to send m fragments with maximum n 
retransmissions, for configuration K, is then: 

)]([)]([)( KTnKTmKTXOP badgood
m

n ×+×=       (14) 
The average energy needed to transmit m fragments, with 
maximum n retransmissions, and configuration K considers the 
expected energy of retransmissions for the given configuration: 
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The expected energy for a given configuration is the sum of the 
probabilities that the transmission will succeed after m good 
and j bad transmissions multiplied by the energy needed for 
good and bad transmissions. In order to have the correct 
expected energy consumption, a second term should be added 
to denote the energy consumption for a failed job, hence when 
there are less than m good transmissions, and (n+1) bad ones: 
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As a result, we determine the E, TXOP, and JFR as a 

function of frame size, channel state and number of 
retransmissions for each configuration K. This specifies the full 
cost and resource profile for the system, taking into account the 
protocol constraints. In Fig. 9, the impact of the PA control 
knobs (PA back-off and PA transmit power) on the resource 
(TXOP) and cost (energy) is illustrated.  

 

 

Figure 9. The mapping for the PA output power & back-off control dimension  
for a fixed setting of the modulation & code rate control dimensions 

Figure 10.(a) Ci(Ri) curve for different channel states (CS),  
(b) Ci (Ri) curves for different frame sizes
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Only the mapping that corresponds to the smallest TXOP 

and Energy consumption for given constraints is plotted. Fig. 
10 shows the merged and pruned Energy-TXOP curves for (a) 
different channel states and (b) different frame sizes. We can 
see that the total range in energy consumption is large, both 
within and across system states. The large tradeoff proves our 
conjecture that traditional systems designed for a fixed and 
worst- cast scenario, result in significant energy wastage. 

D. Link Layer Resource Management 
Based on the Energy and TXOP curves for each node, the 

scheduler in the AP can derive a near-optimal resource 
allocation at run-time using the greedy scheme described in 
Section II. The scheduler requires feedback on the current state 
of each user and then communicates the TXOP and 
transmission configuration decisions to the users.  

The MAC is responsible for resource allocation of the shared 
channel. The packet-scheduling algorithm in the AP decides 
which node is to transmit, when, and for how long. In order to 
instruct a node to sleep for a particular duration, the AP needs 
to know when the next packet will be scheduled. Waking a 
node earlier than the schedule instance will waste energy in the 
idle state. Waking the node later than the schedule instance, 
will cause it to miss the packet’s deadline or waste system 
resources by transmitting at a higher rate. Our sleep-aware 
MAC protocol therefore buffers two frames to eliminate data 
dependency due to the application and channel.  

Buffering just two frames informs the AP of the current 
traffic demand but also the demand in the next scheduling 
instance. As shown in Fig. 11, the AP now needs to 
communicate with each node only at scheduling instances. As 
the real-time stream’s packets are periodic, we eliminate all 
idle time between transmission instances. The scheduler 
ensures in every frame period all flows are scheduled to meet 
their deadlines, each with the best TXOP to minimize overall 
energy consumption.   

This is accomplished by adding just three bytes in the MAC 
header for the current channel state and the two buffered frame 
sizes. Protocols such as 802.11e [30] provide support for queue 
sizes and therefore require only minor modifications. In every 
transmission to the AP, each node communicates its channel 
state and packet sizes of the two head of the line packets. In the 
ACK, the AP instructs the node to sleep until the time of the 
next scheduling instance and also assigns it the duration of its 
next TXOP. The scheduling decision is hence be made every 

frame period (e.g. 30 ms for high-quality video) of the flow in 
the system with the highest frame rate. We assume the channel 
is slow fading such that the channel state used to make the 
scheduling decision is still valid during the servicing of the 
TXOP. In [27], channel measurements show coherence times 
of up to 166ms for stationary objects and moving scatterers.  

IV. NUMERICAL RESULTS 
Based on the MEERA methodology and the transceiver 

system model, we would like to verify the energy savings over 
a range of practical scenarios. For all results presented here, the 
target JFR* is set to 10e-3 which is a reasonable value for 
wireless links. The focus is on real-time streaming media 
applications to show the Energy-Performance tradeoff. To keep 
the system simple, we are not application-aware and do not 
differentiate frames based on frame type.  
In order to evaluate the relative performance of MEERA, we 

consider four comparative transmission strategies: 
1. MEERA: This is the optimal operating scheme considering 

the energy tradeoff between sleep and scaling, exploiting 
multi-user diversity. The operating point is determined from 
the Ci(Ri) curves derived in Section III, and the runtime 
algorithm described in section II. C.  

2. MEERA-no sleep: This scheme uses the Ci(Ri) curves to 
determine the optimal TXOP when no sleeping is supported. 
The same runtime algorithm is used and the nodes remain 
in the idle state after completion. The purpose of this case is 
to show the contribution of sleeping.  

3. Fixed: The transceiver uses the PA back-off and output 
power at the highest setting with the highest feasible 
modulation and code rate that will successfully deliver the 
packets. After successful transmission, it switches to sleep. 
This approach is proposed by commercial 802.11 interfaces 
[8], which only aim to maximize the sleep duration.   

4. Fixed–no sleep: Similar to Fixed, the transceiver here 
remains in the idle mode after successful transmission. This 
is the base operating scheme of current wireless LAN 
transceivers with no power save features enabled. 

For each of these schemes, the Cost-Resource curves were 
determined and used by the scheduling scheme implemented in 
the Network Simulator ns-2. This simulator has been extended 
with transceiver energy and performance models, and a slow 
fading channel model. All results given below are based on the 
total energy consumed by a node to deliver its flow over a 
duration long enough to statistically capture the dynamics 
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present in the scenario. Our simulation model implements the 
essential functions of the 802.11e with beaconing, polling, 
TXOP assignment, uplink, and downlink frame exchange, 
fragmentation, frame retransmission and variable super-frame 
sizing. All nodes can hear and interfere with each other.                                                   
A. Impact of the System State 
Consider the scenario where a single user has to deliver a 

fixed one-fragment frame each scheduling period. In Fig. 
12(a), the relative energy consumption (normalized by the 
maximum energy consumed by Fixed over all cases), is plotted 
for the four schemes over different fixed channel states.  

As expected, MEERA outperforms the other techniques in 
each system state since it takes advantage of the energy that 
can be saved by both sleeping and TXOP scaling. The energy 
needed to transmit a unit of data increases from best to worst 
channel state due to a combination of (a) the lower modulation 
rate necessary to meet the higher SINAD requirement (hence 
smaller sleep duration), (b) a higher required output power to 
account for the worse channel and (c) the increased cost of 
retransmissions. We observe, for example, for the best channel 
state, the energy consumption is low for both the Fixed and 
MEERA approaches. The energy gains for this channel state 
primarily result from sleeping. On the other hand, for the worst 
channel state, the transmission energy becomes more dominant 
and TXOP scaling is more effective.      

We now look at the energy gains contributed by sleeping and 
scaling over a range of link utilizations by varying the frame 
size over a fixed channel state. For larger frame sizes, the 
TXOP scaling in MEERA-No sleep contributes significantly to 
the energy saving. This observation is illustrated in Fig. 12(b), 
where the relative gain for the different techniques – compared 
to the Fixed-no sleep case – are plotted over a series of frame 
sizes, for channel state 3.  
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B Impact of Link Utilization 
We now consider a multiple user scenario where the TXOP 

assignments are based on the user’s application data-rate 
requirement and the constraints enforced by other users sharing 
the same link. In this subsection, we present simulation results 
for CBR and MPEG-4 traffic over a static channel. We study 
the influence of the aggregate link utilization on the per-flow 
energy consumption for CBR flows over a static channel. The 
effective throughput of 802.11e, after considering protocol 
overheads for the first channel state, is approximately 30Mbps 
when the highest modulation constellation is used. In the 
experiment described by Fig 13(a), the link utilization is 
increased in steps of 2.1Mbps for CBR flows up to the 
maximum link capacity. We observe the per-flow energy 
consumption of MEERA increases as the aggregate system load 
increases. At higher loads due to a large number of flows, a 
smaller TXOP (with a higher rate and transmission power) 
from the Ci(Ri) curve is assigned to each flow resulting in 
higher per-flow energy consumption. The difference with 
MEERA-No sleep is most noticeable since the possibility to 
scale is reduced with increasing system load. For multiple 
users, it is always beneficial to enable sleeping as it is 
influenced to a lesser extent by the utilization of other flows.  

In Fig 13(b), we analyze the energy consumption for bursty 
MPEG-4 flows by increasing the number of simultaneous 
flows, each with an average rate of 2Mbps and peak-to-mean 
frame size ratio of ~3.5. It is important to note that as we do 
not force the system into overload, we consider only moderate 
link utilization (< 70% avg. load at the highest transmission 
rate). Job failures due to overload should be smaller than the 
target JFR*. MEERA consumes the least energy as it efficiently 
exploits scaling for the larger peak-to-average frame size ratio 
with sleeping.  

 Figure 12(a). Expected energy consumption across different channel 
states for 1 fragment. (b) Relative energy consumption by sleeping 
and scaling for different system loads in best channel state 

Figure 13 (a). Energy consumption per flow as a function of the aggregate 
system load for CBR traffic (b) Energy consumption per flow as a function 
of mean per-flow data rate for MPEG traffic 



  

 
 

 
Compared to the CBR case, MEERA consumes more energy 
for the same average rate but MEERA-no sleep consumes lower 
energy showing that it is important for the energy management 
scheme to utilize rate scaling to leverage the multiplexing gain 
with bursty traffic.   

C. Impact of Channel Dynamics 
We now consider a 5-user scenario to understand the impact 

of dynamic channel variations on energy consumption. The 
channel varies independently over all the users on a frame-by-
frame basis. In Fig 14, as the total system load is increased 
from 2.5 Mbps to 10 Mbps for five CBR flows, we make two 
observations: First, for the same system load, we see an 
increase in energy consumption when compared to the static 
channel in the best state. This is because during every 
scheduling cycle, the flows experiencing worse channel states 
require more transmission time (due to lower constellation) and 
therefore consume more energy. In addition, they force the 
other flows to transmit in a smaller TXOP and increase their 
energy consumption too. Second, the contributions to energy 
saving are almost evenly split between sleeping and scaling. 
This suggests that it is possible to do at least twice as better 
than schemes that just propose maximizing the sleep duration. 
The combination of sleep and scaling in MEERA delivers an 
overall system gain factor from 2 to 9 compared to Fixed (with 
sleep) and 2 to 5 compared to MEERA-no sleep (with scaling).  

V. CONCLUSION 
We propose a methodology for energy efficient resource 
allocation, MEERA, to minimize energy consumption of a 
wireless transceiver while meeting the timeliness requirements 
for multiple users. MEERA is a cross-layer optimization 
scheme that fully exploits the possible energy savings by 
jointly considering the characteristics of RF components, the 
energy-performance tradeoffs presented by adaptive physical 
layer algorithms and a sleep-aware medium access controller. 
MEERA’s system-wide resource allocation consumes 2 to 9 
times less energy than current adaptive schemes. These savings 
arise from two unique contributions.  

First, we develop a methodology that is platform independent 
and provably near-optimal. By partitioning the combinatorial 
explosive problem space into a design-phase and a run-time 
phase, a practical approach where packet-scheduling decisions 
consider the users’ throughput requirements and channel state. 
The design-time phase derives an energy-performance 
representation for each user that captures the relevant tradeoffs. 

At run-time, a fast greedy algorithm selects operating points 
with a bounded worst-case deviation from the optimal strategy.   

Second, we verify the performance of our scheme over a 
broad range of scenarios with delay-sensitive constant bit rate 
and MPEG-4 traffic over a time-varying wireless channel using 
real RFIC models. MEERA requires minimal modification to 
the 802.11 protocol to realize significant energy savings. 

In the future, we aim to extend MEERA to environments with 
shorter coherence times where coarse-grain resource allocation 
decisions made by the AP are complemented by fine-grained 
adaptation at the node.       
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