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Adaptive Algorithms for Coverage Control

and Space Partitioning in Mobile Robotic

Networks

Jerome Le Ny, Member, IEEE, and George J. Pappas, Fellow, IEEE

Abstract

We consider deployment problems where a mobile robotic network must optimize its configuration

in a distributed way in order to minimize a steady-state cost function that depends on the spatial

distribution of certain probabilistic events of interest. Three classes of problems are discussed in

detail: coverage control problems, spatial partitioning problems, and dynamic vehicle routing problems.

Moreover, we assume that the event distribution is a priori unknown, and can only be progressively

inferred from the observation of the location of the actual event occurrences. For each problem we

present distributed stochastic gradient algorithms that optimize the performance objective. The stochastic

gradient view simplifies and generalizes previously proposed solutions, and is applicable to new complex

scenarios, for example adaptive coverage involving heterogeneous agents. Finally, our algorithms often

take the form of simple distributed rules that could be implemented on resource-limited platforms.

Index Terms

Coverage control problems, dynamic vehicle routing problems, partitioning algorithms, stochastic

gradient descent algorithms, adaptive algorithms, potential field based motion planning.

I. INTRODUCTION

The deployment of large-scale mobile robotic networks has been an actively investigated topic

in recent years [1]–[3]. Applications range from Intelligence, Surveillance and Reconnaissance
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missions for Unmanned Aerial Vehicles to environmental monitoring, search and rescue missions,

and transportation and distribution tasks. With the increase in size of these networks, relying on

human operators to remotely pilot each vehicle is becoming impractical. Attention is increasingly

focusing on enabling autonomous operations, so that these systems can decide online how to

concentrate their activities where they are most critical.

A mobile robotic network should have the capability of autonomously deploying itself in a

region of interest to reach a configuration optimizing a given performance objective [3, chapter

5]. Such problems can be distinguished based on the deployment objective, and among them

the coverage control problem introduced by Cortés et al. [4] has proved to be particularly

important. In this problem, the quality of a given robot configuration is measured by a multicenter

function from the locational optimization and vector quantization literature [5], [6]. A distributed

version of the Lloyd quantization algorithm [7] allows a robotic network to locally optimize the

utility function in a way that scales gracefully with the size of the network [4]. The asymptotic

configuration forms a centroidal Voronoi partition [8] of the workspace. The basic version of the

coverage control problem has inspired many variations, e.g. considering limited communication

and sensing radii [9], [10], heterogeneous sensors [11], obstacles and non-point robots [12],

or applications to field estimation problems [13]. It is also tightly connected to certain vehicle

routing problems, notably the Dynamic Traveling Repairman Problem (DTRP) [14]–[16], as

discussed by Frazzoli and Bullo in [17] and several subsequent papers, see e.g. [18], [19].

Another related problem is the space partitioning problem, see e.g. [20], [21], where the robots

must autonomously divide the environment in order to balance the workload among themselves.

In essentially all the previously mentioned applications, the goal of the robotic network is to

respond to events appearing in the environment. For example in the DTRP, jobs appear over time

at random spatial locations and are serviced by the mobile robots traveling to these locations. The

utility function optimized by the network invariably depends on the spatial probability distribution

of the events, and the optimization algorithms require the knowledge of this distribution [4], [17],

[20], [21]. Hence they are not applicable in the commonly encountered situations where the robots

do not initially have such knowledge but can only observe the event locations over time. It is then

natural to ask how to gradually improve the spatial configuration of the robotic network based

only on the observation of the successive event locations. Recently, coverage control algorithms

[22] and vehicle routing algorithms [19], [23] have been developed that work in the absence of
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a priori knowledge of the event distribution. We call these algorithms adaptive, in analogy with

the engineering literature on adaptive systems [24]. A somewhat different problem is considered

in [13], where the robots can directly measure the values of a field at their at their current

positions, and then optimize a coverage objective for an estimate of this field.

Robotic deployment algorithms rely heavily on concepts and algorithms from geometric and

locational optimization and vector quantization [3], see e.g [6], [25], [26] for general references

on these topics. Indeed, Lloyd’s algorithm [7] optimizes the least-squares coverage utility function

[4]. Its adaptive version, also known as the K-means algorithm of MacQueen [27], the LBG

algorithm [5], or Kohonen’s 0-neighbor self-organizing map [28], is particularly related to the

adaptive coverage control problem discussed in Section III. For example, our algorithm for

the DTRP in light traffic can be viewed as a version of MacQueen’s algorithm for an L1

distortion measure. Non-adaptive partitioning algorithms have also been studied in the geometric

optimization literature [29], [30]. In particular, Aurenhammer et al. [29] present a gradient descent

based least-squares partitioning algorithm, which can be implemented in a distributed way in a

robotic network [21].

Statement of Contributions: An essential idea of our work is that deployment problems with

stochastic uncertainty can often be discussed from the unifying point of view of stochastic

gradient algorithms, thereby clarifying the convergence proofs and allowing to easily derive new

algorithms for complex problems. In this paper we restrict our attention to three related classes

of problems: coverage control, spatial partitioning, and dynamic vehicle routing problems. For

these three applications, we derive distributed stochastic gradient algorithms that optimize the

utility functions in the absence of a priori knowledge of the event distribution. Remarkably, the

algorithms we describe often take the form of simple rules, in fact typically simpler than the

corresponding non-adaptive algorithms. Hence they are easier to implement on small platforms

with constrained computational and communication capabilities.

Specifically, we first discuss in Section III certain stochastic gradient algorithms that adaptively

optimize coverage control objectives. We can then easily derive algorithms for new complex

multi-agent deployment problems and justify this claim by developing solutions to coverage

control problems involving Markovian event dynamics or heterogeneous robots. Additional ap-

plication examples, including deployment under realistic stochastic wireless connectivity con-

straints, can be found in [31]. In Section IV, we describe new adaptive distributed algorithms that
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partition the workspace between the robots in order to balance their workload, using only the

observation of the past event locations. These algorithms exploit the link between generalized

Voronoi diagrams and certain Monge-Kantorovich optimal transportation problems [32]–[34].

Finally in Section V we present an adaptive algorithm for the DTRP. In light traffic conditions,

the algorithm reduces to the coverage control algorithm of Section III, and is simpler than the

algorithm presented in [23]. In heavy traffic conditions, it relies on the partitioning algorithm of

Section IV. This fully adaptive algorithm for the DTRP completes the recent work of Pavone et

al. [19], whose algorithm requires the knowledge of the event distribution in the heavy traffic

regime.

II. PRELIMINARIES

A. Notation

We denote [n] := {1, . . . , n}. Throughout the paper all random elements are defined on a

generic probability space (Ω,F , P ). We abbreviate “independent and identically distributed” by

iid. For q ≥ 1, the Lebesgue measure of a set A ⊂ Rq is denoted |A|. A Borel measure µ on Rq

is said to dominate the Lebesgue measure if |A| = 0 for all Borel sets A such that µ(A) = 0.

We denote the Euclidean norm on Rq by ‖ · ‖. Let (X, d) be a metric space. For a set S ⊂ X ,

we denote the indicator function of S by 1S , i.e., 1S(x) = 1 if x ∈ S and 1S(x) = 0 otherwise.

For x0 ∈ X , the Dirac measure at x0 is denoted by δx0 and defined by δx0(S) = 1S(x0)

for all Borel subsets S of X . We denote the distance from a point x ∈ X to a set S by

dS(x) := d(x, S) := infy∈S d(x, y), and we set d(x, ∅) = +∞. A sequence of points {xk}k≥0 in

a X is said to converge to a set S ⊂ X if d(xk, S)→ 0 as k →∞. For nonempty sets B,C ⊂ X ,

the Hausdorff pseudometric is defined by dH(B,C) := max(supx∈B d(x,C), supx∈C d(x,B)).

The ball of radius r around S ⊂ X is B(S, r) := {x ∈ X|d(x, S) ≤ r}. Also B({x}, r) is just

denoted B(x, r).

B. Robot Network Model

We consider a group of n robots evolving in a workspace Q ⊂ Rq, for some q ≥ 1. The set

Q is assumed to be compact convex with a non-empty interior. We denote the robot positions

at time t ∈ R≥0 by p(t) = [p1(t), . . . , pn(t)] ∈ Qn. For simplicity, we assume that the robots
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follow a simple kinematic model

∀i ∈ [n],∀t ∈ R≥0, ṗi(t) = ui, |ui(t)| ≤ vi, with vi > 0, (1)

where ui is a bounded control input. However, more complex dynamics could be considered since

our analysis only involves the positions of the robots at certain discrete times, see e.g. (13). In

addition, the robots are assumed to perform computations and to communicate instantaneously.

We also define

Dn =
{
x = [xT1 , . . . , x

T
n ]T ∈ (Rq)n

∣∣∣ xi = xj for some i 6= j, 1 ≤ i, j ≤ n
}
. (2)

Hence Dn ∩ Qn is the (unphysical) set of configurations where at least two robots occupy the

same position.

C. Geometric Optimization

For a vector p = [p1, . . . , pn] ∈ (Rq)n \ Dn, we define the Voronoi cell of point pi by

Vi(p) =
{
z ∈ Rq

∣∣∣‖z − pi‖ ≤ ‖z − pj‖,∀j ∈ [n]
}
.

That is, Vi is the set of points in the workspace for which robot i is the closest robot for the

Euclidean distance. The Voronoi cells of the points divide Rq into closed convex polyhedra, and

{Vi}i∈[n] is called a Voronoi diagram [25]. Two points pi and pj or their indices i, j are called

Voronoi neighbors if the boundaries of their Voronoi cells intersect, i.e., if Vi(p) ∩ Vj(p) 6= ∅.

Now let f : R≥0 → R be an increasing function, w = [w1, . . . , wn] ∈ Rn, and p =

[p1, . . . , pn] ∈ (Rq)n \ Dn. We define the generalized Voronoi cell of the pair (pi, wi) with

respect to f by

V f
i (p, w) =

{
z ∈ Rq

∣∣∣f(‖z − pi‖)− wi ≤ f(‖z − pj‖)− wj,∀j ∈ [n]
}
. (3)

The point pi is called the generator and wi the weight of the cell V f
i (p, w), and {V f

i }i∈[n] a

generalized Voronoi diagram. In particular for f(x) = x2, the generalized Voronoi diagram is

called a power diagram [25], [35], and the generalized Voronoi cell a power cell. Power cells are

also (possibly empty) polyhedra, but this property is not true in general for generalized Voronoi

diagrams. Clearly, a generalized Voronoi diagram is a Voronoi diagram if and only if all pairs

have the same weight wi = wj,∀i, j ∈ [n]. In general, the size of a generalized Voronoi cell of

a pair increases as its weight increases with respect to the weights of the other pairs. Similarly

to Voronoi neighbors, we define generalized Voronoi neighbors and power diagram neighbors.
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D. Min-consensus

At several occasions, we need to solve the following problem in a distributed manner in the

robotic network. Robot i, for i ∈ [n], is associated to a certain quantity d̂i ∈ R, which can be

+∞. Each robot must decide if it belongs to arg mini∈[n] d̂i. For simplicity, we assume that each

robot can communicate with some other robots along bidirectional links in such a way that the

global communication network is connected. We also assume that the robots know the diameter

of the network, denoted diam. Alternatively, they know the number n of robots in the system,

in which case we take diam = n below.

In a synchronous network the problem can be solved by the FloodMin algorithm [36, section

4.1.2]. Every robot maintains a record in a variable di of the minimum number it has seen so

far, with di = d̂i initially. At each round, the process sends this minimum to all its neighbors.

The algorithm terminates after diam rounds. The agents that still have di = d̂i at the end know

that they belong to arg mini∈[n] d̂i. This algorithm can also be implemented in an asynchronous

network by adding round numbers to the transmitted messages [36, section 15.2].

III. ADAPTIVE COVERAGE CONTROL ALGORITHMS

A. Coverage Control for Mobile Robotic Networks

In the standard coverage control problem [4], the goal of the robotic network is to reach

asymptotically a configuration where the agent positions limt→∞ pi(t), i ∈ [n], minimize the

following performance measure capturing the quality of coverage of certain events:

En(p) = Ez
[
min
i∈[n]

f(‖pi − Z‖)
]
, (4)

where f : R≥0 → R≥0 is an increasing continuously differentiable function. Here Ez is the

expectation operator corresponding to the probability distribution Pz of the random variable Z,

and we assume that the support of Pz is contained in the workspace Q. The value Pz(A) represents

the probability of an event appearing in the set A ⊂ Q. An event must be serviced by the robot

closest to the location of this event. The cost of servicing an event at location z with a robot at

location pi is is measured by f(‖pi − z‖). For example, in vehicle routing problems, this cost

can be the time it takes a robot to travel to the event location, i.e., f(‖pi−z‖) = ‖pi−z‖/vi, see

Section V. In sensing scenarios, f(‖pi−z‖) measures the degradation of the sensing performance

with the distance to the event [4]. Depending on the application, events are alternatively called
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jobs, demands, or targets. The robots are also called agents or vehicles. Note that the objective

(4) assumes that every time an event occurs, the robotic network is in its desired configuration.

Hence if servicing the events requires that the robots move, e.g. to the event location as in vehicle

routing problems [14], the coverage control framework is only applicable in light load conditions

where enough time separates successive events to let the robots return to their reference position

pi, i ∈ [n].

In [4] and most of the subsequent literature, it is assumed that the event distribution Pz is

known. The network can then reach its desired configuration before any event occurs, and the

minimization of (4) is essentially an open-loop optimization problem. Indeed with Pz known

one can implement a gradient descent algorithm to locally minimize the objective (4). Assuming

for simplicity that the agents are synchronized, and a constant sampling period T > 0, we

denote the agents positions at time kT by pk := p(kT ) = [pT1,k, . . . , p
T
n,k]

T . The robots start at

p0 = [p1,0, . . . , pn,0] at t = 0 and update their positions according to

pi,k+1 = pi,k − γk
∂En
∂pi

∣∣∣
pk
, (5)

where γk is an appropriately chosen sequence of decreasing or small constant stepsizes. Through-

out the paper ∂En/∂pi for pi ∈ Rq denotes the q-dimensional vector of partial derivatives with

respect to the components of pi. Minor modifications might be required to accommodate velocity

constraints in (5) and are discussed in subsection III-C. The agents implementing (5) then

asymptotically reach a configuration that is a critical point of En. No guarantee to reach a

global minimum is offered in general, and indeed global minimization of the function (4) can be

difficult [37]. Nevertheless, an interesting property of the gradient descent algorithm (5) for the

coverage control problem is that it can be implemented in a distributed manner by the robots,

by exploiting the following result.

Proposition 1. Assume that hyperplanes in Rq have Pz-measure zero. Then En is globally

Lipschitz on Qn, and continuously differentiable on Qn \ Dn, with partial derivatives

∂En
∂pi

∣∣∣
p

=

∫
Vi(p)

f ′(‖pi − z‖)
pi − z
‖pi − z‖

Pz(dz). (6)

Here we adopt the convention 0/‖0‖ := 0.

Remark 1. Note that the assumption that hyperplanes in have Pz-measure zero implies that points

also have measure zero, and so in particular the support of Pz is infinite.

October 25, 2010 DRAFT
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The proof of this proposition can be found in [38, Proposition 9], [39]. We then see that each

agent can update its position at each period according to (5) by communicating only with its

current Voronoi neighbors, in order to determine the boundaries of its own Voronoi cell Vi(p)

and compute the integral (6). Even in a large network, a single robot has typically only few

Voronoi neighbors, which allows for a scalable and distributed implementation of the gradient

descent algorithm.

Remark 2. The specific case where f(x) = x2 is considered for coverage control in [4] in more

detail. In this case (6) gives

∂En
∂pi
|p=pk = 2Pz(Vi(pk))pi,k −

∫
Vi(pk)

zPz(dz). (7)

Assuming that Pz(Vi(pk)) 6= 0, define the centroid of the Voronoi region Vi(pk) as

CVi(pk) =
1

Pz(Vi(pk))

∫
Vi(pk)

zPz(dz).

Then control law (5), i.e.,

pi,k+1 = pi,k − γk
∂En
∂pi

∣∣∣
pk

= pi,k − 2γkPz(Vi(pk))(pi,k − CVi(pk)),

is essentially the well-known Lloyd least-squares quantization algorithm [7].

A limitation of the gradient descent algorithm (5) for coverage control is that it does not

include any feedback mechanism that would exploit actual observations of the successive event

locations to correct for potential modeling errors in the assumed target distribution Pz. Moreover,

our goal in this paper is to develop deployment algorithms that work with an unknown event

distribution Pz, in which case the updates (5) simply cannot be computed. We allow instead the

robots to update their positions based on the observed successive event locations. The main idea

for our approach, based on using stochastic gradient algorithms rather than the deterministic

algorithm (5), is described in the next subsection. Subsection III-C applies this idea to the

adaptive coverage control problem.

B. Stochastic Gradient Algorithms

Assume that we wish to minimize a function F of the form

F (x) = Ez[f(x, Z)] =

∫
f(x, z)dPz(z), (8)
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such as En defined in (4) for example. Contrary to the previous subsection, we now assume that

Pz is unknown, so that the expectation cannot be computed directly. Let us assume that f is

differentiable with respect to x, for Pz-almost all z, and denote its gradient ∇xf(x, Z) := ∂f(x,Z)
∂x

.

Finally, assume that we can observe random variables Zk, k ≥ 1, iid with distribution Pz.

Consider then the recursive algorithm

xk+1 = xk − γk∇xf(xk, Zk+1), (9)

which can be rewritten in the form

xk+1 = xk + γk(h(xk) +Dk+1), (10)

with h(xk) = −E[∇xf(xk, Zk+1)|xk] and Dk+1 = −∇xf(xk, Zk+1)+E[∇xf(xk, Zk+1)|xk]. Note

that for Zk+1 a random variable, ∇xf(xk, Zk+1) is a random vector, called a stochastic gradient

of f . Define the increasing family of σ-algebras Fk := σ(x0, Di, 1 ≤ i ≤ k). Then {Dk}k≥1

is a martingale difference sequence with respect to Fk, i.e. E[Dk+1|Fk] = 0, ∀k ≥ 0. Under

broad conditions and with an appropriate choice of stepsizes γk, the ODE method [40] says that

asymptotically the sequence {xk}k≥0 in (10) almost surely approaches the trajectories of the

ODE

ẋ = h(x). (11)

Classical almost sure convergence results are obtained under the condition
∞∑
k=0

γk = +∞,
∞∑
k=0

γ2
k < +∞,

which holds for γk = 1/(1 + k) for example. In many applications however, the stepsizes γk

are chosen to converge to a small positive constant, which allows tracking of the equilibria of

(11) if the problem parameters (e.g. Pz) change with time. In this case, one typically obtains

convergence to a neighborhood of an equilibrium of (11). The selection of proper stepsizes is

an important practical issue that is not emphasized in this paper but is discussed at length in

references on stochastic approximation algorithms [41], [42].

Assuming that it is valid to interchange expectation and derivation in the definition of h, we

have

h(x) = −E[∇xf(x, Z)|x] = −∇F (x). (12)
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Note that proposition 1 precisely says that the differentiation under the integral sign formula

(12) is valid for En under the assumption that hyperplanes have Pz-measure zero. In this case,

the iterates (9) asymptotically approach the limit set of the gradient flow ẋ = −∇F (x), which

are the critical points of F . In general we can in fact expect convergence to the set of local

minima of F . This device allows us to reach these minima in the absence of knowledge of Pz,

as long as we have access to realizations of the random variables Zk.

C. Adaptive Coverage Control

We now consider the following modification of the coverage control problem. The events

appear randomly in the workspace, with event k appearing at time tk > 0 and location Zk ∈ Q,

for k ≥ 1. We let t0 := 0 denote the initial time. Assume in this subsection that the successive

locations of the events Zk, k ≥ 1, are iid with probability distribution Pz on Q. The distribution Pz
is now unknown, and hence the deterministic gradient descent algorithm (5) cannot be computed.

We assume that hyperplanes in Rq have Pz-measure zero, so that the gradient formula (6) holds.

We denote the agent positions at time t−k , i.e., right before the occurrence of the kth event, by

pk−1 = [pT1,k−1, . . . , p
T
n,k−1]T ∈ (Rq)n, for k ≥ 1. These positions are called reference positions

and are updated according to

pi,k+1 = pi,k + ui,k, |ui,k| ≤ vi,k, ∀k ∈ Z≥0,∀i ∈ [n], (13)

where ui,k ∈ Rq is a control input for the interval [tk, tt+1). For example, if the robot dynamics

follow the model (1) and servicing the targets requires no additional travel, we can take vi,k =

vi(tk+1 − tk) for all i ∈ [n]. We assume that there exists a constant v > 0 such that vi,k ≥ v for

all i ∈ [n] and k ≥ 0, so that the robots can update their reference positions by a non-vanishing

positive distance at each period.

When the kth event occurs at time tk and position Zk ∈ Q, k ≥ 1, we assume that at least

the robot closest to that event location can observe it. This robot, say robot i, services the target

starting from its location pi,k−1, and then moves to its new reference position pi,k. Using the

result of Proposition 1, assuming the hyperplanes in Rq have Pz-measure zero, and ignoring for

now the velocity constraints vi,k, it is easy to see that the following reference position updates
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implement the stochastic gradient algorithm (9) to minimize the coverage objective (4)

pi,k+1 =

pi,k + γkf
′(‖pi,k − Zk+1‖) Zk+1−pi,k

‖Zk+1−pi,k‖
if robot i is closest to Zk,

pi,k otherwise.
(14)

Indeed the quantity f ′(‖pi,k − Zk+1‖) Zk+1−pi,k
‖Zk+1−pi,k‖

1{Zk+1∈Vi(pk)} is an unbiased estimate of the

gradient (6). The determination of the closest robot to the target in the first case of (14) can be

done in a distributed way via the FloodMin algorithm described in paragraph II-D, with the

agents initializing their value to d̂i = ‖pi,k − Zk+1‖ if they detect the event, and to d̂i = +∞ if

they are too far away to detect it. If several agents find that they are the closest to the target, which

happens with probability zero under our assumption that hyperplanes have Pz-measure zero, we

can either implement a mechanism to resolve the ties arbitrarily or let all these agents change

their reference position. Clearly there are other ways, depending on the scenario, to implement

rule (14). For example, in the context of the DTRP, we could let all the robots travel to the event

location at the same speed, as in [23], a scheme that does not require any coordination. Then

only the first robot to reach the target changes its reference position for the next period.

We can modify update law (14) slightly, in order to account for the motion constraint vi,k and

to avoid the situation where a robot following (14) lands outside of the workspace Q (this can

happen for certain functions such as f(x) = x). Define, for a vector u ∈ Rq and a scalar b > 0,

the truncation [sat(u)]b by

[sat(u)]b =

u, if ‖u‖ ≤ b,

b u
‖u‖ , if ‖u‖ > b.

Then consider the modified update rule, compatible with (13)

pi,k+1 =


ΠQ

[
pi,k + sat

[
γkf

′(‖pi,k − Zk+1‖) Zk+1−pi,k
‖Zk+1−pi,k‖

]
vi,k

]
if robot i is closest to Zk+1,

pi,k otherwise,
(15)

where ΠQ is the orthogonal projection on the convex set Q.

It is interesting to note that the stochastic gradient descent update (14) or (15) is typically

much easier to compute than the corresponding deterministic gradient update based on (6). No

Voronoi cell computation or integration is required, only a distributed mechanism to find which

robot is the closest to the target. We also note that this procedure could in fact also be used in
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the situation where Pz is known, by generating random targets artificially, essentially evaluating

the integral (6) by Monte-Carlo simulation. This approach is typically not competitive with the

deterministic integration methods for small values of the dimension q and simple distributions

Pz and functions f , but still useful in general [38].

Special Cases: If we specialize (14) to the least-squares coverage problem with f(x) = x2,

we obtain the update pi,k+1 = pi,k+γk(Zk+1−pi,k) for the closest robot. This particular adaptive

algorithm has been used extensively in various fields, from statistics to quantization to neural

networks [5], [27], [28]. If f(x) = x and all robots travel at unit speed, the service cost for an

event appearing at Zk is the time it takes for the closest robot to travel to the event location.

In this case, the update rule (15) is simply pi,k+1 = pi,k + γk
Zk+1−pi,k
‖Zk+1−pi,k‖

for the closest robot.

It provides a simpler solution to the adaptive DTRP in light load considered recently by Arsie

et al. [23]. In contrast, their algorithm requires the vehicles to keep track of all the past events

they serviced so far and to compute a median of this growing list at each iteration. The DTRP

is discussed in more details in section V.

Remark 3. For certain distributions and initial robot positions outside of the support set of the

distribution, it is possible that by following (15), some agents will never move. The issue also

arises in the deterministic case however, since if Pz(Vi(pk)) = 0 then the gradient (7) vanishes.

A possible solution to avoid this phenomenon is to add an initial transient regime where for

example all agents follow the first case of the rule (15) rather than simply the closest agent. The

goal of this transient modification is thus to bring all the robots within the support set of the

target distribution. It is either stopped at some finite time or discounted by a stepsize decreasing

much faster that γk, thereby not impacting the convergence results.

We now state a convergence result for the update law (15) to the set of critical points of the

objective En, i.e., to

Hode
n = {x ∈ Qn \ Dn|∇En(x) = 0}. (16)

Even though the algorithm is a stochastic gradient algorithm, the discontinuity of ∇En on the set

Dn creates technical difficulties. To the best of our knowledge, the most thorough investigation

of the dynamics of (14) can be found in [38] and leaves open the question of non-convergence

to Dn. Our strategy differs somewhat from that paper. We cope with the non-differentiability on
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Dn by introducing the the Fillipov set-valued map

F (p) =
⋂
δ>0

co

 ⋃
p̂∈B(p,δ)

∇En(p̂)

 , (17)

where co denotes the convex hull. Then for p /∈ Dn, F (p) = {∇En(p)} is a single-valued map

because En is continuously differentiable at p by Proposition 1 [43]. For p ∈ Dn, F (p) is the set

of all convex combinations of the gradient vectors that can be obtained as limits when some of

the robots converge to the same position [43]

∀p ∈ Dn, F (p) = co
{

lim
k→∞
∇En(pk)|pk → p as k →∞

}
.

Theorem 1. Assume that
∑

k≥0 γk = +∞,
∑

k≥0 γ
2
k <∞, p0 ∈ Qn \ Dn, and that hyperplanes

in Rq have Pz-measure 0. Then by following the updates (14) or (15), the sequence {pk}k≥1 of

robot positions converge almost surely to a compact connected subset of Hode
n ∪ H′, invariant

for the differential inclusion ẋ ∈ F (x), where H′ ⊂ Dn.

If in addition Pz dominates the Lebesgue measure on Q, then the robot positions converge

almost surely to a compact connected subset of Hode
n . Hence if En has only isolated critical

points in Qn \ Dn, the sequence {pk}k≥0 converges to one of them almost surely.

The proof of Theorem 1 can be found in appendix A. Note that in the first part of the theorem,

we do not rule out the convergence to equilibria of the differential inclusion ẋ ∈ F (x) situated

on the set Dn of aggregated configurations. These equilibria are in fact critical points of Ek
for k < n, with several agents occupying the same position. It is reasonable to conjecture that

such asymptotic aggregated formations do not in fact occur, at least if the event distribution is

“sufficiently rich”, and this motivates the second part of the theorem, although we do not claim

to provide the most general result. Note that almost-surely the update rule (14) or (15) never

results in two robots landing on the same position as long as q ≥ 2, because this would require

Zk+1 to fall on a line containing these two robot positions. Hence almost surely pk /∈ Dn for

any finite k. This can be achieved for q = 1 as well by a slight perturbation of the sequence

γk subject to the conditions of Theorem 1 being satisfied. The second part of the theorem also

rules out asymptotic convergence of {pk}k≥0 to Dn.

Remark 4. The analysis above extends immediately to the case where vi,k ≥ v > 0 for all i ∈ [n]

for infinitely many k ≥ 0, by not updating the reference positions during the periods where this
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condition in not met, and renumbering the periods to account only for those where the condition

is met.

D. Some Extensions

Before closing this section, we briefly illustrate how stochastic gradient algorithms provide

simple solutions to interesting variations on the coverage control problem.

1) Target Tracking with Markovian Dynamics: In subsection III-C, we assumed that the

successive locations Zk were iid. Instead, let us assume now that we wish to track a single

target in discrete time, whose position at time tk is Zk, where Zk evolves as an ergodic Markov

chain with stationary distribution Pz. The objective is still to optimize En defined by (4), which

represents the steady-state tracking error. We can then use algorithm (15) to optimize the robotic

network configuration, and the convergence result of Theorem 1 is still valid. This tracking

scheme does not require knowledge of the target dynamics nor that of the stationary distribution

Pz.

As an example, consider a target moving on a circle of radius R, with dynamics

θk+1 = 0.95 θk + ξk,

where the variables ξk are iid uniform on [−0.5, 0.5] and Zk = [R cos θk, R sin θk]
T . The result

of the adaptive coverage algorithm for f(x) = x2 is shown on Fig. 1. Note that the target

distribution clearly does not dominate the Lebesgue measure as required in the second part of

theorem 1, yet in practice we do not observe convergence to an aggregated configuration. The

robots aggregate in the region around the point [1, 0]T where the target spends most of its time.

2) A Heterogenous Coverage Problem: As in subsection III-C, an event appears randomly in

the environment at each period and must be serviced. However, let us now assume that there

are two types of agents, with mA robots of type A and mB robots of type B, and three types of

events a, b, ab. Events of type a must be serviced by a robot of type A, events of type B by a

robot of type b, and events of type ab by a robot of type A and a robot of type B. When a new

event appears, it is of type α with some unknown probability λα, α ∈ {a, b, ab}, and the agents

can observe its type. The spatial distribution of events of type α is Pα and is a also a priori

unknown. The corresponding expectation operator is denoted Eα. Finally, denote the vector of

robot positions p = [pA1 , . . . , p
A
mA
, pB1 , . . . , p

B
mB

]. Assume that the asymptotic configuration of the
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Fig. 1. Adaptive coverage algorithm for a target with Markovian dynamics moving on a circle. We show the initial configuration

of the robots (blue circles) and the target (red cross) and the configuration after 5000 time-steps. The stepsizes used were

γk = 1/(1+5×10−3k). The curve on the right shows the evolution of the empirical average cost over time, where the average

is taken over the past 1000 cost measurements.

robots must now optimize the expected cost

EmA,mB(p) =λaEa
[

min
i∈[mA]

fA(‖pAi − z‖)
]

+ λbEb
[

min
j∈[mB ]

fB(‖pBj − z‖)
]

(18)

+ λabEab

 min
i∈[mA]
j∈[mB ]

{
max

{
fA(‖pAi − z‖), fB(‖pBj − z‖)

}} ,
where fA and fB are increasing, continuously differentiable functions. Note that the cost of

servicing an event of type ab is the maximum of the costs of servicing it with one robot of each

type.

For this problem, one can verify that the stochastic gradient update rule takes the following

surprisingly simple form [39]. When an event of type a appears at zk+1, the closest robot of type

A, say i, services it and changes it reference position by moving it toward zk+1 by a (possibly

truncated) step γkf
′
A(‖zk+1 − pAi,k‖)

zk+1−pAi,k
‖zk+1−pAi,k‖

, and similarly for a target of type b and a robot

of type B. If the target is of type ab, the closest A and B robots service it. To update their

reference positions for the next period, they first find which of the two is the farthest from

the event. Then only this robot moves its reference position by the same step. In view of the

complicated expression of the objective function, such a simple rule based update law is quite

appealing. We illustrate its behavior on Fig. 2 for fA(x) = fB(x) = x. In regions where events
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Fig. 2. Heterogeneous coverage control for a system with two types of robots, A (green circles) and B (gray squares). Events

requiring service from type a appear with probability 30% and a distribution approximately centered at [20; 20]T (star on Fig.

(a)). Targets of type b appear with probability 30% and a distribution approximately centered at [8; 20]T (cross on Fig. (a)).

Finally targets of type ab appear with probability 40% and a distribution approximately centered at [20; 8]T (triangle on Fig.

(a)). Fig. (a) shows the initial robot configuration and Fig. (c) the configuration reached after 1000 targets, together with the

history of target locations. The Voronoi cells of each robot are indicated but not computed by the algorithm (separate Voronoi

diagrams are drawn for the two robot types). Note how robots of type A and B tend to pair in the lower right corner in order

to service the targets of type ab efficiently (here fA(x) = fB(x) = x). Fig. (b) shows the empirical average cost incurred by

the targets of each type, where the average is taken over all the past targets of the same type seen so far.

of types ab appear most frequently, we observe in general that a pair of robots of different types

will aggregate toward the same position in order to service these events efficiently. Of course,

this does not necessarily happen if other events of type a or b can appear in the region, since

each robot must then balance its requirements to serve two types of events.

IV. ADAPTIVE SPATIAL LOAD-BALANCING AND PARTITIONING

In this section, we design distributed adaptive algorithms that partition the workspace Q into

n cells, one for each robot, so that the steady-state probability that an event falls in cell i
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has a prespecified value ai. Here we have ai ≥ 0, i ∈ [n], and
∑n

i=1 ai = 1. By letting each

robot service only the events occurring in his cell, these algorithms allow us to specify the

steady state utilization of the different agents. Such spatial load balancing algorithms have

important applications in multi-robot systems and location optimization, see e.g. [20], [21],

[29]. An application to the DTRP is described in Section V.

As in Section III-C, events occur at times tk and iid locations Zk, k ≥ 1, and the unknown

distribution Pz has support included in Q. Based on the observation of the successive event

locations, we design a sequence of partitions of Q into regions {Ri,k}i∈[n], k ≥ 0, such that at

period k ≥ 1, agent i is responsible for servicing the event if and only if Zk ∈ Ri,k−1. Here we

slightly abuse terminology and allow our partitions to have Ri,k ∩Rj,k 6= ∅ for i 6= j. Then if Zk

falls in the intersection of several regions, any of the corresponding agents can service the event.

Our algorithms produce regions whose intersections have Pz-measure zero, hence this case has

no influence on the final result. After the kth event occurs, the agents can change the boundaries

of their respective regions to form the partition {Ri,k}i∈[n] used to decide which agent services

the (k + 1)th event.

Our sequence of partitions {Ri,k}i∈[n] converges to a partition {Ri}i∈[n], i.e., dH(Ri,k, Ri)→ 0

as k → ∞, such that Pz(Ri) = ai for all i ∈ [n]. Let G = {g1, . . . , gn} be n fixed points

in Rq, with point gi associated to robot i. We call the point gi the generator of region Ri.

Designing a partition {Ri}i∈[n] is equivalent to choosing an assignment of event locations to

region generators, i.e., a measurable map T : Q → G, by taking Ri = T−1(gi), i ∈ [n]. Let us

denote the set of all such assignments by T . We then look for an assignment T ∈ T satisfying

the constraint Pz(T−1(gi)) = ai, i ∈ [n], and design recursive algorithms producing such an

assignment asymptotically.

There are many ways of designing such regions or assignments. In particular, consider the

following optimization problem

inf
T∈T

∫
Q

c(z, T (z))Pz(dz) (19)

subject to Pz(T−1(gi)) = ai, i ∈ [n], (20)

where c : Q×G → R is a given cost function. For w ∈ Rn a parameter, define by analogy with

October 25, 2010 DRAFT



18

(3) the generalized Voronoi regions

Ṽ c
i (G, w) := {z ∈ Q|c(z, gi)− wi ≤ c(z, gj)− wj, j 6= i}, ∀i ∈ [n].

The following theorem generalizes some results in [20], [21], [29] by imposing weaker conditions

on Pz and c. A proof is provided in appendix B, based on results from optimal transportation

[32]–[34]. To give an indication of the generality of the possible results [32], we also remove

our assumptions on Q from section II-B.

Theorem 2. Consider problem (19), (20), where (Q,Pz) is a probability space with Q, and

assume that

A1) For all i ∈ [n], z → c(z, gi) is lower semi-continuous on Q and z → maxi∈[n] c(z, gi) is

Pz-integrable.

A2) For all i 6= j ∈ [n], for all r ∈ R, the set {z ∈ Q : c(z, gi)− c(z, gj) = r} has Pz-measure

zero.

Then the problem admits an assignment T ∈ T that attains the infimum in (19). The value of

the optimization problem is equal to

max
w∈Rn

h(w) :=

∫
Q

min
i∈[n]
{c(x, gi)− wi} Pz(dz) +

n∑
i=1

aiwi, (21)

and this maximum is attained for some w∗ ∈ Rn. An optimal assignment T is then given by the

generalized Voronoi regions

∀z ∈ Q, T (z) = gi ⇔ z ∈ Ṽ c
i (G, w∗).

Finally, h is a concave function, and a supergradient of h at w is given by

[−P(Ṽ c
1 (G, w)) + a1, . . . ,−P(Ṽ c

n (G, w)) + an]T . (22)

Hence the following supergradient optimization algorithm

w0 = 0,

wi,k+1 = wi,k + γk[−P(Ṽ c
i (G, wk)) + ai], i = 1, . . . , N, (23)

where γk is a sequence of positive stepsizes decreasing to 0 such that
∑∞

k=0 γk = +∞,
∑∞

k=0 γ
2
k <

∞, converges to an optimal set of weights maximizing h.

October 25, 2010 DRAFT



19

In other words, there is a set of weights w∗ ∈ Rn, maximizing of the dual function defined in

(21), for which the corresponding generalized Voronoi cells {Ṽ c
i (G, w∗)}i∈[n] satisfy the constraint

of interest (20). In addition, the assignment corresponding to these regions minimizes (19). In

practice, we make additional assumptions on the function c to obtain reasonably shaped regions.

In particular, if c(z, gi) = ‖z−gi‖2, then the abstract Voronoi diagrams become power diagrams.

Because the boundaries of the power cells are hyperplanes in Rq [25], our assumption A2 on

Pz in Theorem 2 is satisfied if hyperplanes have Pz-measure zero, as in Section III.

In our case, since Pz is unknown, we replace the supergradient (22) by a stochastic super-

gradient. Let us specialize the discussion to c(z, gi) = f(‖z − gi‖), where f is increasing. In

this case we have denoted the generalized Voronoi cells in (3) by V f
i (G, w). If, at period k, the

event is located at Zk, a possible choice for this stochastic supergradient is simply

[−1{V f1 (G,wk−1)}(Zk) + a1, . . . ,−1{V fn (G,wk−1)}(Zk) + an]T . (24)

Note that it is much easier to test if Zk ∈ V f
i (g, wk−1) than to compute the generalized Voronoi

cell, and this is all that is required to compute (24). Assuming that at least the robot associated

with the region Ri,k−1 where the kth event occurs detects the event, the agents can simply run

the FloodMin algorithm (see subsection II-D) with d̂i = f(‖Zk − gi‖) − wi,k (and d̂i = +∞

if agent i did not detect the event).

Algorithm 1 Adaptive partitioning algorithm
Require: for robot i: its desired utilization rate ai, and the function f such that c(z, gi) =

f(‖z − gi‖) in (19).

Robot i initializes its weight to wi = 0, i ∈ [n].

When the kth new event appears at location Zk, for k ≥ 1:

Run the FloodMin algorithm with d̂j = f(‖Zk − gj‖)− wj, j ∈ [n].

If robot i has di = d̂i, it updates its weight as wi ← wi + γk−1(ai − 1)

Otherwise, it updates its weight as wi ← wi + γk−1ai.

Algorithm 1 is then a stochastic supergradient algorithm computing the optimal weights of

the generalized Voronoi partition, and asymptotically this partition satisfies the constraints (20)

almost surely. The behavior of this algorithm is illustrated on Fig. 3. The following theorem is
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now a direct application of well known convergence results for stochastic subgradient algorithms,

see e.g. [41].

Theorem 3. Choose the stepsizes γk in algorithm 1 so that
∑∞

k=0 γk = ∞,
∑∞

k=0 γk < ∞.

Assume that condition A2 of Theorem 2 is satisfied for c(z, gi) = f(‖z − gi‖). Then almost

surely, the weights updated following algorithm 1 converge to a maximizer w∗ of (21), and the

resulting generalized Voronoi diagram {V f
i (G, w∗)}i∈[n] satisfies the utilization constraints (20).
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Fig. 3. Partition for 10 robots after 1000 events for the quadratic cost c(z, gi) = ‖z − gi‖2. The partition at each step is a

power diagram. The desired utilization rates are shown for each agent on the figure. The power diagram generators used are

represented as black dots in the lower left corner. Note that fixing their positions determines the directions of the cell boundaries.

The power cells shown in red are computed using CGAL [44], but need not be computed by the agents running the stochastic

gradient algorithm. The top left figure shows the evolution of the empirical utilization frequencies over the first 1000 events,

and the top right figure the evolution of the weight vector wk. The chosen stepsizes were γk = 10/(1 + 0.01k).

V. AN ADAPTIVE DYNAMIC VEHICLE ROUTING ALGORITHM

We now combine the algorithms of Section III-C and Section IV to design an adaptive

algorithm for the Dynamic Traveling Repairman Problem (DTRP). Assume for simplicity in
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this section that the environment is planar, i.e., q = 2. The DTRP was initially studied in [14],

[16], and more recently in e.g. [17]. In these references, the proposed algorithms require the

knowledge of the event distribution. The recent references [19], [23] propose algorithms for the

DTRP that work without knowledge of Pz in the light traffic regime, but left open the adaptive

problem in heavy traffic. We solve this open problem using the adaptive partitioning algorithm of

section IV. In light traffic conditions, we use the adaptive coverage control algorithm of section

III-C, simplifying the solution of [19], [23].

In the DTRP [14], events appear in the workspace Q according to a space-time Poisson process

with rate λ and spatial distribution Pz. When the kth event appears at time tk, a robot needs to

travel to its location Zk to service it. The robots travel at velocity v according to the kinematic

model (1). The time that the kth event spends waiting for a robot to arrive at its location is

denoted Wk. The robot then spends a random service time Sk at the event location, where the

Sk are iid with finite first and second moments s̄, s2. The system time of event k is defined as

Σk = Wk+Sk, k ≥ 1. The goal is to design policies for the robots that minimize the steady-state

system time of the events Σ = lim supk→∞E[Σk]. Let ρ = λs̄/n denote load factor, i.e., the

average fraction of time a robot spends in on-site service. Policies for the DTRP are usually

analyzed in two limiting regimes, namely in light traffic conditions (ρ→ 0+) and heavy traffic

conditions (ρ→ 1−).

A. Light Traffic Regime

Note that we always have [15]

Σ ≥ min
p
En(p) + s̄, (25)

where En(p) is defined by (4) for f(x) = x/v. This bound is tight in light traffic conditions

[14], [16], and achieved by the following policy. Let p∗ = [p∗1, . . . , p
∗
n] ∈ Qn denote a global

minimizer of En, called a multi-median configuration. In the absence of events, vehicle i waits

at the reference position p∗i . When an event occurs, the agent whose reference position is closest

to the event location services it. It then travels back to its reference position p∗i . As ρ → 0+,

with high probability the agents are at their reference configuration p∗ when a new event occurs,

and this policy achieves the bound (25).
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Assume that En has isolated critical points. The adaptive coverage control policy of Section

III-C can then be used to find one of the corresponding robot configurations. In other words, in

the absence of event, each robot waits at its reference position pi,k. When the kth event occurs

at Zk, the robot whose current reference position is closest to Zk, say robot j, services the

event, and then updates its reference position to pj,k = ΠQ

[
pj,k−1 + γk

1
v

Zk−pj,k−1

‖Zk−pj,k−1‖

]
. It then

travels back toward pj,k. Reasoning as in [14], [16], [23], in light traffic the agents are at their

reference positions with high probability when an event occurs, and the resulting policy achieves

a steady-state system time of En(p̂) + s̄, where p̂ is a critical point of En to which the stochastic

gradient algorithm (15) converges under the assumptions of Theorem 1. Hence we obtain an

adaptive policy, which does not achieve the globally minimum system time in general however,

unless n = 1 since E1 is convex. The same local optimization is performed adaptively by the

light traffic policy described in [23], but an advantage of the stochastic gradient algorithm is

that the update rule for the reference positions is simpler to compute. Note that this policy does

turns out to be unstable as the load factor ρ increases even if other policies can stabilize the

system [16].

B. A Stabilizing Adaptive Policy

Policies adequate for the heavy-traffic regime but requiring Pz to be known are described in

e.g. [16], [19], [45], [46]. The following non-adaptive policy [19], [45], [46], although not the

best available, stabilizes the system in heavy-traffic (i.e., as ρ→ 1−). We divide the workspace

Q into n regions {Ri}i∈[n] such that Pz(Ri) = 1/n, i ∈ [n]. Robot i only services the events

occurring in region i. It does so by forming successive traveling salesman tours (TSP tours)

through the event locations falling in his region, and servicing the events in the order of the

tours. Recall that a TSP tour through a set of points is the shortest (here, for the Euclidean

distance) closed tour through this set of points. While servicing the events in a given tour, new

events can occur in region Ri and are backlogged by the robot. Once a tour is finished, the robot

forms a new tour through the backlogged events and starts servicing them. When a robot does

not have any outstanding event to service, it moves toward the median of its region Ri and stays

there as long as no new event occurs in Ri. Note that unless {Ri}i∈[n] is a Voronoi partition,

which is not compatible in general with the equiprobability property, the resulting configuration

in light traffic is not a multi-median configuration, except in the case n = 1, and does not offer
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any performance in the multi-robot case in light traffic. Assuming that Pz has a density φz, it

is known that under this policy achieves we have the following bounds on the system time in

heavy-traffic [19, theorems 4.2, 6.4]

C∗

n2
≤ lim

ρ→1−
(1− ρ)2Σ ≤ 2C∗

n
, (26)

where C∗ = C
λ
( ∫

Q
φz(z)1/2dz

)2

v2
and C ≈ 0.253.

The factor C∗/n2 is in fact a lower bound on the performance achievable by any policy satisfying

a certain fairness condition (called unbiased policies [16]), namely that the steady-state waiting

time of an event be independent of its location in the workspace. The policy described above is

unbiased. In addition, the right-hand side of (26) can be changed to 2C∗/n2 if Pz is the uniform

distribution.

The following adaptive version of this policy stabilizes the system if ρ < 1. It does not require

the knowledge of any event process parameter such as λ or Pz. To robot i, we associate a fixed

point gi ∈ Q and a weight wi ∈ R as in Section IV, a reference position pi as in Section III-C,

and a set of outstanding events to service denoted Di. We initialize wi to 0, gi and pi to some

arbitrary points in Q, and Di to ∅. The point gi remains fixed. The other quantities are updated

only at the times where a new event occurs, as follows. When the kth event appears at location

Zk, then

• The robots run the FloodMin algorithm with d̂j = ‖Zk − gj‖2 − wj, j ∈ [n].

• If robot i has di = d̂i, it updates its weight to wi ← wi − γk−1(n− 1)/n and its reference

position to pi ← ΠQ

[
pi + γk−1

Zk−pi
‖Zk−pi‖

]
. It then adds Zk to its set Di.

• The other robots j 6= i update their weight as wj ← wj+γk−1/n and leave pj, Dj unchanged.

Each robot i ∈ [n] then operates according to the following policy

1) As long as Di = ∅, travel toward pi and stay there if pi is reached.

2) If Di becomes nonempty

a) Compute a TSP tour through the points of Di and set Di back to ∅. Start servicing the

events in the order of the tour.

b) Upon completion of a tour, if Di 6= ∅, then return to step 2a. If Di = ∅, return to step 1.

Theorem 4. The previously described adaptive policy achieves a steady-state system time sat-
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isfying the heavy traffic performance bound (26), hence stabilizes the system as long as ρ < 1.

Moreover if n = 1, this adaptive policy is optimal in the light traffic regime.

Proof: As ρ→ 1, with high probability the region of each robot is never empty and hence

the robot never enters the mode where it goes toward its reference position pi. By Theorem 3, the

partitions {Ri,k}i∈[n] converge to a power diagram {Ri}i∈[n] such that Pz(Ri) = 1/n. Hence the

adaptive policy behaves in steady-state as the non-adaptive policy and satisfies (26). In the light

traffic regime, in steady state each agent is at the median of its region Ri with high probability

when a new event occurs. In particular if n = 1 the policy achieves the performance bound (25).

VI. CONCLUSIONS

We have discussed robot deployment algorithms for coverage control, spatial partitioning

and dynamic vehicle routing problems in the situation where the event distribution is a priori

unknown. By adopting the unifying point of view of stochastic gradient algorithms we can

derive simple algorithms in each case that locally optimize the objective function (globally in

the case of the partitioning algorithms). The coverage control and space partitioning algorithms

are combined to provide a fully adaptive solution to the DTRP, with performance guarantees in

heavy and light traffic conditions.

Among the issues associated with stochastic gradient algorithms, we point out that they can

be slower than their deterministic counterparts and that their practical performance is sensitive

to the tuning of the stepsizes γk. Many guidelines are available in the literature on stochastic

approximation algorithms for the selection of good stepsizes and possibly iterate averaging, see

e.g. [41], [42]. In addition, if some prior knowledge about the event distribution is available, it can

be leveraged in a straightforward hybrid solution that first deploys the robots using a deterministic

gradient algorithm as in the previous work described in the introduction. Once the robots have

converged, the adaptive algorithm is used to correct for the modeling errors and environmental

uncertainty, exploiting actual observations. Note that the stochastic gradient algorithms can also

be used if the distribution Pz is known, essentially by evaluating integrals such as (6) by Monte-

Carlo simulations [38], but this method is only advantageous for q sufficiently large.

Our future work will continue to explore various applications of stochastic approximations to
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adaptive multi-robot systems, and focus on the experimental evaluation of these algorithms on

physical mobile platforms.

APPENDIX A

CONVERGENCE OF THE COVERAGE CONTROL ALGORITHM

In this appendix we collect a number of useful properties of the gradient system

ṗ = −∇En(p), p(0) ∈ Qn \ Dn, (27)

where the distortion function En is defined in (4). As discussed below, this ODE is well defined

on Qn \ Dn. We also consider its extension to Qn in the form of the differential inclusion

ṗ ∈ F (p), p(0) ∈ Qn, (28)

where the the set-valued map F is defined in (17). Following the ODE method [40], we can

characterize the asymptotic behavior of the algorithms (14) and (15) as in theorem 1 by studying

the properties of these continuous-time dynamical systems. We assume as in section III-C that

f : R≥0 → R≥0 is increasing and continuously differentiable. We refer the reader to [8], [9],

[25], [38] for previous work on the gradient system (27). In particular, [38] discusses some

convergence results for algorithm (14). As pointed out in that paper, the non-differentiability

of En creates technical difficulties in the convergence proofs. We handle these difficulties by

initially considering the differential inclusion (28) instead of the ODE (27). When the results

presented below follow from arguments that can be found in previous work, we simply provide

the reference and refer to the detailed proofs in our technical report [39].

Remark 5. Note that even for the ODE (27), we only prove continuity of the right-hand side on

Qn \ Dn. Hence, both for this ODE and the differential inclusion (28), we interpret a solution

in the sense of Caratheodory, i.e., an absolutely continuous function p(t) satisfying

p(t) = p0 +

∫ t

0

y(s) ds, for all t ∈ R,with y(s) ∈ F (p(s)) for all s.

A. Differentiability Properties of En

Recall that proposition 1 states that En is continuously differentiable on Rn \ Dn. In general

however, ∇En is discontinuous on the set Dn, see Fig. 4. To discuss more precisely the behavior
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Fig. 4. Vector field for the gradient system (27), with two agents evolving on [0, 1] and Pz uniform on [0, 1]. The discontinuity

on the line x1 = x2 occurs when the two agents switch side, from x1 < x2 to x1 > x2. Note that the vector field is symmetric

with respect to this line. The equilibrium occurs at a unique geometric point on the line, namely (1/4, 3/4), corresponding to

two stationary points for the flow, one for each ordering of the generators.

of the gradient of En as we approach the set Dn, define

N(x) =

‖∇En(x)‖ if x ∈ Qn \ Dn

lim infy∈Wn\Dn,y→x ‖∇En(y)‖ if x ∈ Dn.

Note that because ∇En is continuous on Qn \Dn, the two definitions of N coincide on this set.

The proof of the next proposition follows that of [38, lemma 30].

Proposition 2. Assume that hyperplanes have Pz-measure zero and that Pz dominates the

Lebesgue measure. Then we have N(x) > 0 for all x ∈ Dn. Hence there exists δ0 > 0 such that

inf
x∈B(Dn,δ0)\Dn

‖∇En(x)‖ =: κ > 0.

B. Trajectories of the Gradient System

We now turn to the study of the trajectories of the ODE (27) and the differential inclusion

(28). The following general result follows from [38, lemma 33], see also [39].

Proposition 3. If x0 ∈ Qn \Dn, a trajectory t→ x(t) of the ODE (27) with x(0) = x0 remains

in Qn \ Dn, i.e., for all t <∞, x(t) ∈ Qn \ Dn. Moreover, it converges to a compact connected

subset of {x ∈ Qn \ Dn : ∇En = 0}.

We can now show that the trajectories of the ODE never stay in B(Dn, δ0) for a long time.
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Corollary 1. Assume that hyperplanes in Rd have measure zero, and that Pz dominates the

Lebesgue measure on Qn. Let δ0 > 0, κ > 0 be defined as in proposition 2, x0 ∈ B(Dn, δ0), and

let T =
maxx∈Qn∩B(Dn,δ0)

En(x)

κ2
. Then a trajectory of the ODE passing through x0 at time t1 must

exit B(Dn, δ0) at some time t2 ≤ t1 + T .

Proof: We have, for t ≥ t1 and as long as the trajectory remains in B(Dn, δ0) \ Dn

0 ≤ En(x(t)) = En(x0)−
∫ t

t1

‖∇En(x(s))‖2ds ≤ max
x∈B̄(D,δ)

E(x)− κ2(t− t1).

Hence the trajectory must exit B(Dn, δ) \Dn at or before the time t2 given in the theorem. But

we know by proposition (3) that it cannot hit Dn at t2 <∞. Hence it must in fact exit B(Dn, δ).

The set Hode
n defined in (16) is the set of limit points of the ODE (27) by proposition 3. From

the definition of F , the set L of limit points of the differential inclusion (28) consists of the set

of limit points of the ODE (27) together with the limit points of the sliding trajectories that start

and remain on Dn (since a trajectory leaving Dn does not converge to Dn by proposition (3)).

Hence L ⊂ Hode
n ∪Dn. Moreover, we know by proposition (2) that Hode

n ⊂ Qn \B(Dn, δ0) if Pz
dominates the Lebesgue measure.

C. Convergence of the Adaptive Coverage Control Algorithms

We now prove the main convergence theorem 1 for adaptive coverage control.

Proof of theorem 1: We focus on the iterates (14) first. The fact that with probability one,

a sequence converges to an compact connected invariant set of the differential inclusion (28) is

standard, see e.g. [47, chapter 5]. Consider a sample ω such that {pk(ω)} converges to such a set,

denoted S. Suppose that S is not entirely contained in Dn, and take a ∈ S \Dn. Then a trajectory

of the differential inclusion passing through a at t = 0 is in fact a trajectory of the ODE (27),

by proposition 3. Because S is invariant, we must then have Ėn(a) := −‖∇En(a)‖2 = 0, i.e.,

a ∈ Hode
n . This proves the first part of the theorem.

If Pz dominates the Lebesgue measure, then we know that Hode
n and Dn are disconnected

by Proposition 2, so S is contained in one of these sets. Choose the sample ω above in the

set of probability 1 where the sequence {pk}k≥0 never hits Dn, and recall the definitions of

δ0 and T from corollary 1. Suppose now that S ⊂ Dn. Then there exists k0 such that for

all k ≥ k0, pk ∈ B(Dn, δ0/4). For any k ≥ 0, denote by xk(·) the solution of the ODE
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(27) starting at pk (i.e., xk(0) = pk). Also, denote by p̄ the piecewise linear interpolation of

the sequence pk with stepsizes γk. Then by [47, chapter 2, lemma 1], there exists k1 ≥ k0

such that for all k ≥ k1, we have supt∈[tk,tk+T ] ‖p̄(t) − xk(t)‖ ≤ δ0/4, where tk :=
∑k−1

l=0 γl.

In particular, ‖p̄(tk + T ) − xk(tk + T )‖ ≤ δ0/4. Now remark that by Corollary 1, we have

d(xk(tk + T ),Dn) > δ0. By possibly increasing k1, we can assume that there is an iterate pk̃
with k̃ ≥ k such that ‖pk̃ − p̄(tk + T )‖ ≤ δ0/4. So we have ‖pk̃ − xk(tk + T )‖ ≤ δ0/2, hence

d(pk̃,Dn) > δ0/2. But this contradicts our assumptions that pk̃ ∈ B(Dn, δ0/4). Hence we cannot

have S ⊂ Dn and so S ⊂ Hode
n . This finishes the proof of the theorem for the algorithm (14).

For the projected version (15) of the algorithm, the proof above remains in fact valid. The

analysis can indeed be carried in terms of a corresponding projected ODE or differential inclu-

sion, see [41], [47, chapter 5]. But note from proposition 3 that the trajectories of the unprojected

ODE never leave Qn. Hence the projection has no influence on the continuous-time dynamics and

the convergence properties remain the same as for the unprojected case. Moreover, the saturation

function does not change the convergence properties [41].

APPENDIX B

SPACE PARTITIONING AND OPTIMAL TRANSPORTATION

In this section we prove theorem 2, which forms the basis for the stochastic gradient Algorithm

1 partitioning the workspace between the agents. Compared to the results presented in the recent

papers [9], [20], this theorem places weaker assumptions on the cost function c(x, y) and on the

target distribution Pz. The main tool on which theorem 2 relies is Kantorovich duality [32]. See

also [33], [48], [49] for related results.

proof of theorem 2: We start by relaxing the optimization (19), (20) to the following

Monge-Kantorovich optimal transportation problem. Let P2 =
∑n

i=1 aiδgi , so that (20) can be

rewritten Pz ◦ T−1 = P2. We consider the minimization problem

min
π∈M(Pz ,P2)

∫
Q×Q

c(z, g)dπ(z, g),

where M(Pz, P2) is the set of measures on Q× Q with marginals Pz and P2, i.e.,

π(A× Q) = Pz(A), π(Q×B) = P2(B),

for all Borel subsets of A,B of Q. In other words, we are considering the problem of transferring

some mass from locations distributed according to Pz to locations distributed according to P2,
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and there is a cost c(x, y) for moving a unit of mass from x to y. Then π is a transportation

plan from the initial to the final locations, assuming that we allow a unit of mass to be split.

The case where this splitting is not allowed, i.e., where we restrict π to be of the form

dπ(z, g) = dPz(z)δT (z)(g),

for some measurable function T , was initially considered by Monge [50], and is exactly our

problem (19), (20). In general, the Monge Problem (MP) is more difficult to solve that the

Monge-Kantorovich Problem (MKP), but in our case where the target distribution P2 is discrete,

[51, Theorem 3] shows that solving the MKP gives a solution in the form of a transference

function T , i.e., a solution to the MP, under the assumption A2 of the theorem.

Next, by Kantorovitch duality [32], we have

min
π∈M(Pz ,P2)

∫
Q×Q

c(z, g)dπ(z, g) = sup
(φ,w)∈Φc

{∫
Q

φ(z) dPz(z) +
n∑
i=1

aiwi

}
, (29)

where Φc is the set of pairs (φ,w) with φ : Q→ R in L1(Q,Pz), w ∈ Rn, such that

φ(z) + wi ≤ c(z, gi), (30)

for Pz-almost all z in Q and for all i in [n]. Now for any w ∈ R, define the function wc : Q→ R

such that

wc(z) = min
i∈[n]
{c(z, gi)− wi}.

From the definition of Φc, we can then without loss of generality restrict the supremum on the

right-hand side of (29) to pairs of the form (wc, w). Combining this with the previous remark

on the Monge solution to the Monge-Kantorovitch problem, we get

min
T :Q→{g1,...,gn}

∫
Q

c(z, T (z))P(dz) = sup
w∈Rn

{∫
Q

min
i∈[n]
{c(z, gi)− wi} Pz(dz) +

n∑
i=1

aiwi

}
. (31)

Hence the value of the optimization problem is equal to the supremum of the function h defined

in (21). The fact that the supremum is attained in the right hand side of (31) follows from e.g.

[32, Theorem 2.3.12] under our majorization assumption A1 for c.

define c̃(z) = mini∈[n]{c(z, gi)}, and to note that c̃(z) is bounded on Q compact.

It is easy to see that h is concave since w → mini∈[n]{c(z, gi)−wi} is concave for all z as the

minimum of affine functions, and the integration with respect to z preserves concavity. Finally,
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for w1, w2 ∈ Rn, we have

h(w2)−h(w1) =

∫
Q

min
i∈[n]
{c(z, gi)−w2

i } Pz(dz)−
∫
Q

min
i∈[n]
{c(z, gi)−w1

i } Pz(dz)+
n∑
i=1

ai(w
2
i −w1

i ).

Denoting T 1 an assignment that is optimal for w1, we have then, for all z ∈ Q,

min
i∈[n]
{c(z, gi)− w2

i } ≤ c(z, T 1(z))− w2
i ,

and so

h(w2)− h(w1) ≤ −
n∑
i=1

Pz(Ṽ c
i (w1))(w2

i − w1
i ) +

n∑
i=1

ai(w
2
i − w1

i ).

But this inequality exactly says that [a1−Pz(Ṽ c
1 (w1)), . . . , an−Pz(Ṽ c

n (w1))]T is a supergradient

of h at w1.
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[32] S. T. Rachev and L. Rüschendorf, Mass Transportation Problems. Springer Verlag, 1998, vol. 1: Theory.

October 25, 2010 DRAFT



32

[33] W. Gangbo and R. McCann, “The geometry of optimal transportation,” Acta Mathematica, vol. 177, no. 2, pp. 113–161,

1996.
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