Behavioral Responses in Structured Populations Pave the Way to Group Optimality

Erol Akçay
University of Pennsylvania, eakcay@sas.upenn.edu

Jeremy Van Cleve

Follow this and additional works at: http://repository.upenn.edu/biology_papers

Part of the Behavior and Ethology Commons, Biology Commons, and the Population Biology Commons

Recommended Citation

At the time of publication, author Erol Akçay was affiliated with the University of Tennessee. Currently, he is a faculty member at the Department of Biology at the University of Pennsylvania.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/biology_papers/7
For more information, please contact repository@pobox.upenn.edu.
Behavioral Responses in Structured Populations Pave the Way to Group Optimality

Abstract
An unresolved controversy regarding social behaviors is exemplified when natural selection might lead to behaviors that maximize fitness at the social-group level but are costly at the individual level. Except for the special case of groups of clones, we do not have a general understanding of how and when group-optimal behaviors evolve, especially when the behaviors in question are flexible. To address this question, we develop a general model that integrates behavioral plasticity in social interactions with the action of natural selection in structured populations. We find that group-optimal behaviors can evolve, even without clonal groups, if individuals exhibit appropriate behavioral responses to each other’s actions. The evolution of such behavioral responses, in turn, is predicated on the nature of the proximate behavioral mechanisms. We model a particular class of proximate mechanisms, prosocial preferences, and find that such preferences evolve to sustain maximum group benefit under certain levels of relatedness and certain ecological conditions. Thus, our model demonstrates the fundamental interplay between behavioral responses and relatedness in determining the course of social evolution. We also highlight the crucial role of proximate mechanisms such as prosocial preferences in the evolution of behavioral responses and in facilitating evolutionary transitions in individuality.

Disciplines
Behavior and Ethology | Biology | Population Biology

Comments
At the time of publication, author Erol Akçay was affiliated with the University of Tennessee. Currently, he is a faculty member at the Department of Biology at the University of Pennsylvania.
Behavioral Responses in Structured Populations
Pave the Way to Group Optimality*

Erol Akçay1,† and Jeremy Van Cleve2

1. National Institute for Mathematical and Biological Synthesis (NIMBioS), University of Tennessee, Knoxville, Tennessee, 37996; 2. Santa Fe Institute, Santa Fe, New Mexico 87501
Submitted July 18, 2011; Accepted October 25, 2011; Electronically published December 21, 2011
Online enhancement: appendix.

Abstract: An unresolved controversy regarding social behaviors is exemplified when natural selection might lead to behaviors that maximize fitness at the social-group level but are costly at the individual level. Except for the special case of groups of clones, we do not have a general understanding of how and when group-optimal behaviors evolve, especially when the behaviors in question are flexible. To address this question, we develop a general model that integrates behavioral plasticity in social interactions with the action of natural selection in structured populations. We find that group-optimal behaviors can evolve, even without clonal groups, if individuals exhibit appropriate behavioral responses to each other’s actions. The evolution of such behavioral responses, in turn, is predicated on the nature of the proximate behavioral mechanisms. We model a particular class of proximate mechanisms, prosocial preferences, and find that such preferences evolve to sustain maximum group benefit under certain levels of relatedness and certain ecological conditions. Thus, our model demonstrates the fundamental interplay between behavioral responses and relatedness in determining the course of social evolution. We also highlight the crucial role of proximate mechanisms such as prosocial preferences in the evolution of behavioral responses and in facilitating evolutionary transitions in individuality.

Keywords: goal-oriented behavior, Price equation, two-tiered model, kin selection, multilevel selection, community reciprocity.

Introduction

Among the many debates on the evolution of social behaviors, perhaps none is older or more controversial than the one surrounding the role and importance of group-level selection in the evolutionary process (Wynne-Edwards 1962; Williams 1966; Hamilton 1975; West et al. 2007; Wilson and Wilson 2007; Leigh 2010). There is now at least one important consensus that multilevel-selection processes (which are motivated historically from models of group-level selection) are mathematically equivalent to kin-selection processes (which historically derive from analyses of individual-level selection; Hamilton 1975; Queller 1992). Even though few now dispute that some selection at the group level (between-group selection, in current terminology) occurs (West et al. 2007; Wilson and Wilson 2007; Gardner and Grafen 2009), other issues remain controversial. Among these is the original question in the debate, namely, how likely natural selection is to lead to behaviors that maximize fitness at the group level. It is well known that when selection within a group is completely abolished, between-group selection can lead to maximization of group fitness when appropriate genetic variation exists and other evolutionary forces are weak. Within-group selection disappears when the expected fitness of all individuals within a group is equalized either as a result of clonality within groups or through mechanisms such as policing (in social insects) or fair meiosis (genomes of sexual organisms; Leigh 1977; Alexander and Borgia 1978; Frank 2003). Some taxa, such as eusocial aphids, do live in clonal groups, but this is generally accepted to be a rare condition in nature outside of some prokaryotic lineages (Levin et al. 1999). Repression of competition is much more widespread and is found in social insects, vertebrates, and human societies (Frank 2003 and references therein).

Another route for diminishing within-group differences in fitness is behavioral coordination through individuals’ responses to their groupmates’ actions. Virtually all organisms exhibit social behaviors that are flexible or conditional on the behaviors of others, from bacteria (e.g., quorum sensing; Miller and Bassler 2001) to insects (e.g., reproductive strategies depending on social context; West-Eberhard 1987), birds (e.g., responses of parents to each other; Wright and Cuthill 1989), primates (e.g., reciprocal...
altruism; Brosnan and de Waal 2002), and obviously, humans. Not surprisingly, a large theoretical literature focuses on the evolutionary consequences of particular kinds of flexible (or conditional) behavior (e.g., Axelrod and Hamilton 1981; McNamara et al. 1999; Lehmann and Keller 2006; Akçay et al. 2009; Boyd et al. 2010). However, the general question of whether and when flexible behaviors can allow group-optimal outcomes to be evolutionarily stable has not been answered. Another related body of work that deals with “indirect genetic effects” (IGEs; Griffing 1967, 1981a, 1981b; Moore et al. 1997; Wolf et al. 1999; Bijma et al. 2007; Bijma and Wade 2008; McGlothlin et al. 2010) uses quantitative genetics to measure how the response of an individual’s phenotype to the phenotypes of others affects selection pressures in social interactions. However, these models do not consider how the IGEs themselves evolve (Bijma and Wade 2008; McGlothlin et al. 2010). An element missing from both strands of theory is the role of proximate mechanisms: behavioral responses (or IGEs) are produced by proximate mechanisms, which can either constrain or facilitate the evolution of different types of responses. Despite their significance, proximate mechanisms are only infrequently integrated into models of social evolution in structured populations. Thus, we currently lack a general framework for understanding both the selective effect and the evolution of behavioral responses in structured populations based on the proximate mechanisms that generate such responses.

In this article, we demonstrate how such a framework can be built from the Price equation (Price 1970, 1972). Our framework shows that behavioral responses and relatedness due to population structure play exactly symmetric roles in determining the direction of selection on a social trait. When using the multilevel-selection perspective, our framework also shows how cooperative behaviors are always selected against at the within-group level while being selected for at the between-group level, regardless of behavioral responsiveness or relatedness. We then apply our framework to the problem of when natural selection can lead to maximization of fitness at the group level, or group optimality. Our focus on group optimality is motivated in part by the fact that group optimality is intimately related to evolutionary transitions in individuality (ETIs), that is, groups becoming new, higher-level individuals (Maynard Smith and Szathmáry 1995; Michod 2005, 2006). We show that behavioral responses significantly increase the conditions under which group optimality is evolutionarily stable. Using a specific proximate mechanism for the production of behavioral responses, we also show how behavioral responses that lead to group optimality might evolve. The proximate mechanism we employ is the social-preferences, or motivations, model of Akçay et al. (2009), which we extend to the case of N-player public-goods games. Group-optimal outcomes can evolve in this model through the evolution of how much individuals value the public good versus their private costs.

Model

Integrating Behavioral Responses and Kin Selection

We use a central framework of social-evolution theory, the Price equation (Price 1970, 1972), to partition the effect of selection on a heritable trait into components due to the effect of the trait of the focal individual and those due to effects on the traits of others in the population (the so-called kin-selection partition; Price 1970; Queller 1992; Bijma and Wade 2008). The change in the population-average breeding value (additive genetic component) due to the effect of selection can be written as

$$\Delta \bar{G} \propto \text{Var} \left(G_i \beta \right) \left(N - 1 \right) \beta$$

where G_i is the breeding value of the focal individual, N is the size of the social-interaction group, r is scaled genetic relatedness, and β_1 and β_2 are partial-regression coefficients of the focal individual’s fertility (F) on its own phenotype (p_i) and on its neighbors’ phenotypes (p_j), respectively.

In many structured populations, fitness is a function of both fertility and demographic effects such as local competition for limited resources with related individuals (Taylor 1992; Queller 1994). The scaled-relatedness coefficient r is defined to account for these demographic effects (Frank 1998) and can be calculated under a variety of life-history and demographic scenarios (Lehmann and Rousset 2010). As result of this accounting, β_1 and β_2 measure the effects of the phenotypes on fertility only. For example, in appendix A2, available online, we provide a derivation of the scaled-relatedness coefficient r for a population with overlapping generations and an island model of migration between D different demes, each of which has n individuals (Wright 1943). In that case, we find that

$$r = \frac{R - R^*}{1 - R^*},$$

where R is the unscaled-relatedness coefficient defined in terms of probabilities of identity by descent and

$$R^* = \left[\left(1 - m \right)^2 + \frac{m^2}{D - 1} \right] \frac{1}{n} + \frac{n - 1}{n} \frac{R}{1 - R};$$

R in this example is Wright’s F_{ST} coefficient (Wright 1949; Rousset 2004). For an island model with overlapping generations, $r \approx s/n$, where s is the probability that adults survive from one generation to the next and D and n are large and m is small (see app. A2). Finally, we make the
additional assumption that \(r \) is determined only by the demographic parameters of the population and not by individual phenotypes, which implies that \(r \) is a constant. This assumption is justified by our assumption of weak selection below (Rousset 2004).

Both \(\beta_{p,v} \) and \(\delta_{p,v} \) depend on how individuals respond to each others’ actions. To model these behavioral responses, we generalize the modeling approach of a recent series of models (McNamara et al. 1999; Taylor and Day 2004; André and Day 2007; Akçay et al. 2009; Akçay and Roughgarden 2011) that consider the evolution of behaviors in a two-tiered dynamic. Consider a social interaction with \(N \) individuals, where each individual \(i \) carries out an action \(a_i \), which is a real, positive number. For example, \(a_i \) can denote how much individual \(i \) contributes to offspring provisioning in a cooperatively breeding group.

Instead of treating the actions \(a_i \) as being directly determined by the genetic makeup of the individuals, we assume that the actions that each individual carries out are determined through a behavioral dynamic that operates at the time-scale of the social interaction. We assume that this behavioral dynamic is fast and quickly settles on some equilibrium action \(a_i^* \) for each individual \(i \). This “behavioral equilibrium” (denoted by \(a^* = (a_1^*, a_2^*, \ldots, a_N^*) \)) is a function of the decision-making mechanism of the individuals, that is, the proximate mechanism of behavior. For example, McNamara et al. (1999) model the proximate mechanism as a linear-response rule, where the action of an individual is a linear function of its opponent’s action, while Akçay et al. (2009) model the proximate mechanism as a motivation to maximize a behavioral objective or social preference function.

We assume that the proximate mechanism is modulated by a genetically encoded trait that we term the “motivational trait,” since it affects the decision making of the individuals. The motivational trait is the phenotype \(p \), whose evolution we track in equation (1). In our model, the motivational trait \(p \) is a proxy for neurophysiological or endocrinological traits, such as the expression pattern of neuropeptide receptors (e.g., oxytocin or vasopressin in mammals) in key brain regions or the functional responses of specific neural circuits to external stimuli. Recent research has shown that such physiological traits in humans and other animals affect many types of social behaviors, such as pair bonding (Young et al. 2011), parental care (Donaldson and Young 2008), trust in economic games (Baumgartner et al. 2008), and the tendency to aggregate in groups (Goodson and Wang 2006).

By tracking the evolution of the motivational trait \(p \) instead of the equilibrium action \(a^* \), we can study the evolution of the proximate mechanism that generates behaviors instead of the behaviors alone. In principle, different proximate mechanisms (e.g., linear-response rules or behavioral objectives) might produce the same outcome in a specific behavioral context (e.g., parental care). However, in different behavioral contexts (e.g., food sharing), the outcomes produced by these proximate mechanisms can be divergent. Studying the proximate mechanisms underlying behaviors would allow us to understand the evolution of behavioral correlations across different social contexts.

Figure 1 illustrates how, by determining properties of neurophysiology, the motivational trait \(p \) modulates individual decision-making processes and thus affects the actions that individuals choose at the behavioral equilibrium. The behavioral equilibrium is a function of the combination of the social partners’ motivational traits, or mathematically, \(a^*(p_1, \ldots, p_N) \). The action of each individual at the behavioral equilibrium (e.g., the level of helping), in turn, determines the payoff that each individual gets (e.g., the amount of resources an individual has as a result of each partner’s level of helping). We denote as...
at the behavioral equilibrium, \(\ast \), the evolution of \(\ast \) is determined by how individuals settle on their equilibrium motivational trait \(p_j \) (Levin 2009). We emphasize that even though we treat the social norms and systems of rewards and punishments that have evolved to promote prosocial preferences (Levine 1998; Falk and Fischbacher 2006, eq. [4]) and by McGlothlin et al. (2010, eq. [18]) similar to equation (5) are derived by Lehmann and Keller (2006, eq. [4]) and by McGlothlin et al. (2010, eq. [18]) using IGEs, whereas Bijma and colleagues (Bijma et al. 2007; Bijma and Wade 2008) develop a related expression (see eq. [15] in Bijma and Wade 2008) based on a different approach to partitioning the Price equation.

Importantly, equation (5) is exactly symmetric in \(r \) and \(\rho \), meaning that behavioral responses and relatedness play mathematically analogous roles in determining evolutionary stability. This does not mean, however, that one can collapse them into a single index (e.g., an index of assortment) without loss of generality, since the two appear separately in equation (5). Hence, both behavioral responses and relatedness must be considered when determining the total selection pressure on a given social behavior.

The first-order condition (eq. [5]) is necessary but not sufficient for the candidate ESS to be the stable outcome of an evolutionary dynamic; such stability requires that certain second-order conditions hold as well. In particular, the second-order ESS condition must be satisfied to ensure that the candidate ESS is in fact a fitness maximum, as opposed to a minimum. This condition can be difficult to calculate exactly in structured populations, since it re-
Behavioral Responses and the Levels of Selection

In deriving equation (4), we used the kin-selection partition of the Price equation; an alternative partition is the “group-selection” (or “multilevel-selection”) partition that decomposes the effect of selection into within-group and between-group components (Hamilton 1975; Queller 1992; see app. A1, available online). Upon rearranging the terms in equation (4) for $$\Delta \bar{G}$$, we find that

$$\Delta \bar{G} \propto k \left[b(N-1) - c \right] [1 + \rho(N-1)][1 + r(N-1)]$$

$$- (N-1)(b + c)(1 - \rho)(1 - r),$$

(6)

where the within-group component of selection is

$$-(N-1)(b + c)(1 - \rho)(1 - r)$$

(7)

and the between-group component is

$$[b(N-1) - c][1 + \rho(N-1)][1 + r(N-1)].$$

(8)

The within-group component is always negative for $$\rho < 1$$ and $$r < 1$$ and vanishes when either is equal to 1. Hence, selection at the within-group level opposes an increase in the amount of cooperation, but its force gets weaker as $$\rho$$ or $$r$$ increases and disappears when either $$\rho$$ or $$r$$ equals 1. Within-group selection vanishes with $$\rho = 1$$ because this condition eliminates variation in the actions $$a^*$$ and hence within-group variation in fitness. Thus, even when individuals are highly responsive to one another’s actions, within-group selection opposes an increase in the amount of cooperation. The between-group selection component, on the other hand, is positive when $$b/c > 1/(N-1)$$ (assuming that $$r > -1/(N-1)$$ and $$\rho > -1/(N-1)$$; see appendices A1 and A3, available online, for limits on $$r$$ and $$\rho$$), which is true so long as the total benefit of the social trait outweighs the cost. This means that if cooperation is potentially beneficial, then between-group selection always favors an increase in the amount of cooperation, regardless of levels of responsiveness and relatedness. In other words, setting $$\Delta \bar{G} > 0$$ and using equation (6) together imply that the amount of cooperation increases if and only if between-group selection is stronger than within-group selection. A special case of this result was discovered by Wade (1980), who considered fixed altruistic behaviors ($$\rho = 0$$).

In contrast to the group-selection partition, the direct and indirect fertility effects ($$\beta_{x,r}$$ and $$\beta_{y,r}$$, respectively) in the kin-selection partition, equation (1), can each be positive or negative, depending on $$\rho$$ (eq. [4]; app. A1). In the kin-selection terminology due to Hamilton (1964), which defines “altruism” as a behavior with a negative direct fitness effect and positive indirect fitness effects (Rousset 2004; Lehmann and Keller 2006), this means that whether cooperation is “altruistic” depends on both behavioral responsiveness and demographic factors that affect the scaled-relatedness coefficient $$r$$. Thus, cooperation in a public-goods game may be “mutually beneficial” (West et al. 2007) and not “altruistic” when behavioral responsiveness is high, since the direct effect on fertility (and consequently fitness) may be positive. The distinction between mutually beneficial and altruistic cooperation is conceptually important in social evolution, and a number of recent reviews attempt to clarify this issue in detail (e.g., Lehmann and Keller 2006; West et al. 2007), because it has often generated confusion (Kerr et al. 2004). In this regard, the group-selection partition may be a more natural framework for public-goods scenarios than the kin-selection partition, since the direction of between- and within-group selection does not depend on $$\rho$$ or $$r$$. In fact, a public-goods scenario could be defined by payoffs that yield positive between-group selection and negative within-group selection.

Evolutionary Stability of Group-Optimal Behaviors

Exactly Group-Optimal Behaviors

During an ETI, selection within groups is eliminated and between-group selection determines whether social behaviors increase or decrease in frequency. Continued between-group selection will eventually lead to a convergence-stable outcome with social behaviors that maximize the aggregate payoff to the group (see eq. [6]). With a monomorphic population, maximizing the aggregate group payoff implies that

$$\frac{b}{c} = \frac{1}{N-1},$$

(9)

(see app. A6, available online). The $$b/c$$ ratio that satisfies the group-optimality condition (9) will not, in general,
maximize a single individual’s payoff, if one kept all other individuals’ actions constant. For example, a focal individual might selfishly withhold its contribution to a public good and increase its own payoff while hurting the aggregate payoff. However, when the social behaviors are flexible, we also have to take into account how other individuals will respond to any changes in the focal individual’s behavior, which is done in equation (5).

Combining conditions (5) and (9), we can see that a group-optimal outcome can be ES when

\[r + \rho - \rho p = 1. \]

Equation (10) is satisfied only when \(r \) or \(\rho \) or both are equal to 1. In other words, evolutionary stability of a group-optimal behavior requires either perfect relatedness, corresponding to clonal groups, or perfect responsiveness, corresponding to perfect behavioral matching of actions. Either of these conditions is sufficient; that is, group-optimal outcomes can be ES when \(r = 1 \) regardless of \(\rho \), and vice versa. The first condition \((r = 1) \) is well known, while a special case of the second condition has recently been discovered in the two-person continuous prisoner’s dilemma game without population structure (André and Day 2007).

Almost-Group-Optimal Behaviors

The requirement that either \(r = 1 \) or \(\rho = 1 \) might still seem restrictive, but it is essentially an artifact of requiring exact group optimality. In reality, empirically distinguishing between exactly group-optimal behaviors and those that are almost, but not precisely, group optimal is likely to be difficult. This implies that the scope for what “looks” group optimal might be even broader than previously expected. To see this, we can consider an outcome that is almost, but not precisely, group optimal is likely to be difficult. This implies that the scope for what “looks” group optimal might be even broader than previously expected. To see this, we can consider an outcome that is approximately group optimal and induces a ratio \(b/c = (1 + \epsilon)/(N - 1) \), where \(\epsilon > 0 \). As \(\epsilon \to 0 \), the outcome \(a^* (\epsilon) \) approaches the exact group-optimal outcome. A \(b/c \) ratio that is lower than \((1 + \epsilon)/(N - 1) \) implies an outcome closer to group optimality than is \(a^*(\epsilon) \). We can show that a \(b/c \) ratio smaller than \((1 + \epsilon)/(N - 1) \) will be ES whenever

\[\rho > \frac{1 - r(1 + \epsilon)}{1 - r + \epsilon[1 + r(N - 2)]}. \]

Since the right-hand side is always less than 1 for all \(N \geq 2 \) and \(1 > r > -1/(N - 1) \), we can find \(\rho < 1 \) that will make it possible for an outcome arbitrarily close to the group-optimal outcome to be ES. Furthermore, we can see in figure 2 that the threshold \(\rho \) required to make an outcome ES is strictly decreasing with increased relatedness in the population. Figure 2 also shows that a combination of moderate \(r \) and moderate \(\rho \) is sufficient to bring the ES outcome within 10% of group optimality, suggesting that the scope for approximately group-optimal behaviors can be much wider than previously recognized. This also suggests that partial ETIs with meager amounts of within-group selection require only moderate levels of relatedness and behavioral responsiveness.

The Evolution of Behavioral Responses through Prosocial Preferences

In the previous section, we discussed the effect of the response coefficient \(\rho \) on selection acting on social behaviors, but we did not ask how \(\rho \) itself evolves. Previous work shows that direct selection on \(\rho \) as an independent trait occurs only to second order in the strength of selection (André and Day 2007; Akçay et al. 2009). However, the behavioral response \(\rho \) is independent of the social action \(a^* \): both are produced by the proximate behavioral mechanism. Hence, as the motivational traits underlying the proximate mechanisms evolve, both \(a^* \) and \(\rho \) will co-evolve with the motivational traits. Therefore, to study how the response coefficient \(\rho \) evolves, we have to specify how both the equilibrium actions and the behavioral responses are produced by the proximate mechanism of behavior.

In this section, we do this by using a model for the evolution of prosocial preferences as the proximate cause of social behavior.

In particular, we concentrate on the evolution of the response coefficient \(\rho = 1 \), which ensures the stability of group-optimal behaviors, from lower values of \(\rho \). Our approach in this section is somewhat inverted, relative to
behavioral responses and group optimality

263

conventional ESS analysis. Instead of searching for a general ES and CS outcome and determining when such an outcome is group optimal, we find the conditions under which the group-optimal outcome is ES and CS.

We analyze public-goods games where each individual has the option to invest in an action that benefits everyone in the group (including the focal individual) but incurs a personal cost. Thus, the payoff to an individual \(i \) is given by:

\[
U_i = B(a_1, \ldots, a_n) - C(a_i),
\]

where \(B \) is the public benefit and \(C \) denotes the private cost. (Note that these functions are different from \(b \) and \(c \) defined above.) This model is a stylized description of many important social interactions, including cooperative hunting and defense or provisioning of a common brood of offspring.

Extending a recent model by Akçay et al. (2009), we model individuals’ motivations for investment in the public good as deriving from innate goals. We represent these innate goals mathematically by an objective function, \(x_i(a_1, a_2, \ldots, a_n) \) for individual \(i \). The objective function fulfills a role similar to that of a utility or preference function in economics (e.g., Heifetz et al. 2007b) and is the proximate cause of behavior: each individual “wants” to achieve the maximum value of its objective function, given what others do. The shape of the objective function of individual \(x_i \) is, in turn, determined by the motivational trait \(p_i \) that is the target of natural selection. The behavioral equilibrium \(\mathbf{a}^* \) for this maximization process satisfies

\[
\frac{\partial x_i}{\partial a_i} \bigg|_{a_i = x_i} = 0
\]

(12)

for all \(i \in \{ 1, \ldots, N \} \) (see app. A3 for stability conditions). To obtain the response coefficient, we choose some \(j \neq i \), differentiate \(\partial x_j/\partial a_j = 0 \) with respect to the motivational trait of the focal individual \(p_i \) and solve for \(\rho = (\partial a_j/\partial p_i)(\partial a_i/\partial p_j) \) evaluated at \(\mathbf{a}^* \) in a monomorphic population, to obtain

\[
\rho = -\frac{\partial^2 x_i/\partial a_i \partial a_j}{(N - 2)\partial^2 x_i/\partial a_i \partial a_j + (\partial^2 x_j/\partial a_i)^2}.
\]

(13)

Expression (13) reduces to equation (9) of Akçay et al. (2009) for \(N = 2 \).

The objective function \(x \) allows a natural characterization of the variation in prosocial preferences. First, individuals might vary in how they value the public benefit relative to their private cost. Second, individuals might be more or less cost averse, depending on how much public benefit they receive, and thus vary in the direction and strength of this aversion. To account for these two effects, we assume that the objective function is determined by \(B \) and \(C \) and is parametrized by two motivational traits \(\theta \) and \(\phi \), such that

\[
x_\ast(a_1, \ldots, a_N) = \theta B - (1 - \phi B)C.
\]

(14)

Individuals with higher \(\theta \) place greater value on the public good and are more unconditionally prosocial. Individuals with positive \(\phi \) discount their costs as the provision of the public good increases, similar to the behavior found in some public-goods experiments (Fischbacher et al. 2001). A pattern of conditional discounting of private costs, which results in a conditional willingness to contribute, might be termed “community reciprocity,” reflecting the fact that individuals’ motivations are reciprocal not to any particular individual but to the overall provision of public good. The response coefficient \(\rho \), given by equation (13), evolves as both \(\theta \) and \(\phi \) evolve.

We first determine, for a given payoff function, the values of the phenotypic traits \(\theta^\ast \) and \(\phi^\ast \) that generate an objective function that leads to an ES group-optimal outcome. These traits must satisfy two conditions: first, the group-optimal outcome must be a proper behavioral equilibrium and satisfy equation (12) evaluated at \(\theta^\ast \) and \(\phi^\ast \); and second, the objective functions must yield a response coefficient \(\rho = 1 \) at the group-optimal behavioral equilibrium. These conditions allow us to find a unique \((\theta^\ast, \phi^\ast)\) pair that satisfies the first-order condition for evolutionary stability at the group-optimal behavioral equilibrium.

To illustrate, we set \(N = 3 \) and use the following public-benefit and private-cost functions:

\[
B(a_1, a_2, a_3) = (1 - \nu) \sum_{i=1}^{3} a_i + \nu a_1 a_2 a_3,
\]

\[
C(a) = a^2.
\]

(15)

The parameter \(\nu (-1 < \nu < 1) \) measures how different individuals’ contributions to the public benefit interact with each other. When \(\nu > 0 \), investments by different individuals interact synergistically with each other: the more one individual invests, the more valuable another individual’s contribution becomes. The opposite holds when \(\nu < 0 \) and individuals’ investments become substitutes for each other. The parameter \(\nu \) therefore captures an important aspect of the ecology of the interaction. For example, cooperative hunting might require simultaneous, synergistic efforts from multiple individuals because of the requirement to close all escape routes for the prey. This would make for a positive \(\nu \). Conversely, when provisioning offspring, the increased effort by one individual would increase the food coming into the nest and would decrease value of additional food from another individual. This would create a negative \(\nu \). In economics, these two possibilities are termed complementary and substitutable inputs, respectively; hence, we call \(\nu \) the complementarity parameter. Note that
The American Naturalist

Figure 3: Values of θ^* (solid curve) and ϕ^* (dashed curve) that result in an evolutionarily stable group-optimal outcome, plotted as functions of the parameter ν that modulates whether different individuals’ contributions to the public benefit are substitutes ($\nu < 0$) or complements ($\nu > 0$).

B is always positive (for positive a), regardless of the sign of ν.

Figure 3 shows θ^* and ϕ^* as functions of the parameter ν; the more complementary the inputs from different individuals (higher ν), the higher the valuation of the public benefit relative to the private cost (θ^*). Furthermore, over the entire range of ν, the trait for the interaction between the public benefit and private cost, ϕ^*, is positive and increases with ν. This means that an objective function satisfying $\rho = 1$ at the group-optimal behavioral equilibrium exhibits the community-reciprocity property. As the public benefit becomes more complementary, the level of community reciprocity at the group-optimal outcome also increases.

How do prosocial preferences with community reciprocity maintain a response coefficient of reciprocity r? Suppose a focal individual i has a positive ϕ trait. When its partner j increases investment a_j in the public good, this raises the value of B. From equation (14), one can see that the focal individual i will then discount its own cost more. This, in turn, would make the focal individual more willing to invest and would give rise to a positive response coefficient (the reverse argument applies when the partner invests less). Perfectly matching responses, $r = 1$, simply constitute an extreme case of such positive responses.

However, as mentioned above, the first-order condition for evolutionary stability does not guarantee that a population will in fact evolve to the candidate ESS when it is initially away from it; this requires the convergence-stability (CS) condition to be satisfied as well (Eshel and Motro 1981; Christiansen 1991). Evaluating the CS condition for the group-optimal θ^* and ϕ^* traits found above, we find that whether θ^* and ϕ^* are CS depends on the relatedness coefficient r, which must be above a threshold value to satisfy the CS condition (fig. 4). One interpretation of this result is that even though $\rho = 1$ guarantees that the first-order ES condition is satisfied for a group-optimal outcome, the evolution of ρ to this value crucially depends on the relatedness being high enough. Thus, relatedness still plays an important role in determining whether natural selection can drive a population to reach these trait values. However, one can also observe from figure 4 that the value of r required to render the group-optimal traits CS is much less than 1 and that it decreases as the complementarity parameter ν increases. Hence, the evolution of behaviors that maximize group benefit is possible for a range of organisms much wider than only those that form clonal groups. Furthermore, ecological scenarios with synergistic effects (such as cooperative hunting) permit the evolution of group-optimal outcomes under a wider range of demographic conditions than do those with substitute effects (such as offspring provisioning).

Discussion

In this article, we provide a general analysis, based on the Price equation, of the evolution of flexible social behaviors in structured populations. We show that behavioral responses and genetic relatedness (or similarity) have symmetric but independent effects on evolutionary stability; thus, they cannot be collapsed into a single index (e.g., an index of assortment; Fletcher and Doebeli 2009). Incorporating behavioral responses into a group-selection perspective elegantly emphasizes that social behaviors, such
as cooperation, that benefit others at a cost to self are always counterselected at the within-group level and positively selected at the between-group level, regardless of how tightly coordinated individuals’ actions are. We also show that the classic result that cooperation increases in populations if and only if between-group selection is stronger than within-group selection (Wade 1980) generalizes to the case with behavioral responses. Furthermore, we show that behavioral responses and relatedness can interact synergistically in promoting the evolution of social behavior and specifically the evolution of group-optimal traits that might lead to ETIs. This synergistic relationship becomes particularly apparent in considerations of whether or not a group-optimal outcome is convergence stable, since relatedness must exceed a threshold value in order for convergence stability to be achieved. By applying our general model to a proximate mechanism based on behavioral objectives or social preferences, we also show how behavioral responses can evolve through the evolution of the valuation of public goods versus private costs and how this evolution depends on the level of synergism in contributions to the ecological benefit.

The Scope for Group Optimality

Our model provides a new analysis of the conditions that can lead to group optimality. In this respect, it is useful to compare our model to recent work by Gardner and Grafen (2009), who analyze the premise that natural selection is always expected to lead to group-optimal outcomes. Linking optimization of group fitness to a Price equation formalism, they find a formal justification for this premise only with clonal groups when \(r = 1 \). In the general case when \(r \neq 1 \), their analysis finds that group adaptations are not expected but are also not ruled out. Since Gardner and Grafen focus exclusively on genetically fixed behaviors, their analysis does not include the possible effects of evolving behavioral responses. In contrast, our model explicitly incorporates the effects of behavioral responses generated by proximate mechanisms, which allows us to consider the evolution of proximate mechanisms that eliminate within-group conflict (by yielding \(p = 1 \)) even without complete clonality. This allows us to derive more specific conditions for when group-optimal behaviors are evolutionarily and convergent stable; such behaviors satisfy Gardner and Grafen’s definition of a group adaptation (for an alternative definition, see Sober and Wilson 2011). We find that group adaptations sensu Gardner and Grafen are possible without clonal groups so long as relatedness meets a threshold that depends on the ecology of the interaction. Thus, we argue that their conclusion that “between-group selection can lead to group adaptation, but only in rather special circumstances” (Gardner and Grafen 2009, p. 668) underestimates the scope for group optimality. It is true that there is no unqualified justification for group fitness maximization, but as we show, there exists ample scope for the evolution of traits that result in either exactly or approximately group-optimal outcomes without requiring clonal groups.

One of the reasons that group optimality is important is its connection to ETIs. In order for an ETI to occur, either a demographic mechanism that ensures high relatedness (such as group formation by single propagules; Rainey and Kerr 2010) or a behavioral mechanism that ensures high behavioral responsiveness (such as strong prosocial preferences or policing) is needed to eliminate within-group selection. Once within-group selection is eliminated, extended between-group selection can drive a population toward a convergence-stable outcome with social behaviors that maximize group fitness. By illuminating the synergistic relationship between behavioral responsiveness and relatedness in determining when group optimality is convergence stable, our work suggests conditions under which ETIs themselves might be stable. Of course, a complete model of an ETI must detail how individuals specialize on different tasks (Gavrilets 2010) or how some types reproduce and others do not, such as in the germ-soma distinction (Michod et al. 2006); explicitly incorporating behavioral responses into models of task specialization is thus an important next step in future work.

Proximate Mechanisms and Objective Functions

The distinction between proximate and ultimate causes of behavior has been much emphasized in evolutionary biology with the recognition that proximate mechanisms can constrain adaptation of social behaviors (West et al. 2007). However, there has been little explicit modeling of the role of proximate mechanisms in social evolution. In this regard, our model provides a connection between social-evolution theory and the conceptual work in evolutionary genetics that focuses on dissecting the genotype-phenotype map and determining how this map evolves (i.e., the evolution of epistasis and pleiotropy; Hansen 2006; Wagner and Zhang 2011). In our model, the genotype-phenotype map is produced by the proximate behavioral mechanism, which translates heritable motivational traits (e.g., prosocial preferences) into actions. Given that the phenotype of interest is often fitness, the map also includes how actions translate into fitness through ecological payoffs. Just as the structure of gene regulatory networks determines how mutations affect gene expression, the cognitive and ecological constraints produced by a particular behavioral mechanism determine how responsive individuals can be to one another, given a particular demographic context.
and relatedness. At the same time, our results also highlight the fact that behavioral responses through proximate mechanisms not only can constrain but also can facilitate the evolution of certain behaviors, such as those that maximize group benefit.

On a more practical level, our approach provides a tool-kit to answer empirically salient questions about how specific behavioral mechanisms evolve. Here, we illustrate this by considering a proximate mechanism based on social preferences and asking how individuals evolve to value public goods and private costs in a public-goods game. We find that the objective functions that result in group-optimal outcomes involve discounting of the private cost of each individual as the provision of the public good increases (i.e., a positive ϕ trait). We also show that relatedness and complementarity of benefits enhances this discounting. Although direct measurements of motivations are scarce to nonexistent, some indirect evidence for such a pattern exists. For example, Fischbacher et al. (2001) performed an experiment that asked for a contribution schedule to a public good as a function of the average contributions of others and found that the most common pattern among Swiss undergraduates was monotonically increasing contributions; this is consistent with the pattern that would be produced by a positive ϕ trait. We believe that experiments in humans and animals directly aimed at capturing motivational states will be helpful in elucidating the underlying mechanism of decision making in social dilemmas.

Indirect Genetic Effects and Behavioral Responses in Structured Populations

There are important connections between our model and indirect-genetic-effects (IGE) models of quantitative genetics (e.g., Moore et al. 1997; Wolf et al. 1999; Bijma and Wade 2008; McGlothlin et al. 2010). The IGE approach measures the strength of selection on social behaviors by modeling the trait value of a focal individual as the sum of a direct genetic effect due to the focal individual and an IGE due to social partners. Using this framework, McGlothlin et al. (2010) derive an expression for the change in the mean phenotype due to both individual and social effects on fitness analogous to our equation (4). In appendix A9, available online, we show that their coefficient of IGE, ψ, fulfills a role similar to ρ and that the change in mean phenotype from our equation (4) and that from equation (18) of McGlothlin et al. (2010) become equivalent when $\psi = \rho/[1 + \rho(N - 2)]$, their nonsocial-selection gradient β_n is the cost $-c$, and their social-selection gradient β_s is the benefit b. Thus, it is possible to map between our model and the IGE framework without changing the first-order evolutionary-stability predictions. However, our formulation highlights the exact symmetry between the scaled relatedness r and ρ. In contrast, r and ψ are not symmetric for $N > 2$ in phenotypic IGE models (McGlothlin et al. 2010), and other IGE models wrap behavioral responses into effects on variance components (see app. A9; Griffing 1981, a; Bijma et al. 2007; Bijma and Wade 2008). The exact symmetry between r and ρ is an important feature because it reflects the fact that correlations between individuals’ behavior have the same structural effect on selection regardless of whether those correlations are due to behavioral responses on the timescale of an interaction or to demographic factors that operate on a longer timescale. Moreover, we explicitly model the dependence of ρ on the proximate mechanisms that generate behavioral responses (such as the mechanism modeled in eq. [12]). This approach allows us to directly address the evolution of the phenotypic correlations given by ρ rather than treating it as an exogenously determined index, as the IGE literature has done so far.

In simple panmictic populations, there has been much work in both biology and economics on the evolution of flexible, responsive, or contingent behaviors. The most closely related models in biology are models of the continuous iterated prisoner’s dilemma (CIPD; McNamara et al. 1999; Wahl and Nowak 1999; André and Day 2007) that look at the evolution of linear-response rules; given a behavioral mechanism of linear responses, the response slope is analogous to ρ. In economics, the most related field is that of “indirect evolution” (Güth 1995; Dekel et al. 2007; Heifetz et al. 2007a; Alger and Weibull 2010), which allows individuals to choose actions based on individual preferences and studies the evolution of those preferences. This work has focused mostly on the informational constraints required for players to act in a way that does not maximize their immediate self-interest. Unlike either the CIPD approach or most of the indirect-evolution literature, we embed the behavioral model in a structured population that allows for multiple levels of selection and selection among kin. Importantly, our general framework can be used with any behavioral model that allows one to calculate expected equilibrium behavioral outcomes and behavioral responses at that equilibrium.

In addition, our unified framework can also be used to study how group size and demographic parameters separately affect behavioral responsiveness and relatedness. For example, although larger groups are often less cooperative than smaller ones because of the decrease of relatedness with increasing group size, we can show that the opposite may be true under special conditions (app. A8, available online). Future work should therefore focus on how group-beneficial outcomes might evolve in response to environmental variability and a number of demographic
variables, including population size, dispersal rate, extinction risk, and carrying capacity (Lehmann and Rousset 2010).

Conclusion

We show that behavioral responses can significantly expand the scope for group-optimal behaviors that are associated with ETIs. Our results emphasize the important interplay between behavioral responses and relatedness and show that the two can reinforce each other to sustain higher levels of group benefit than would result from each in isolation. Our model also highlights the crucial role of proximate mechanisms of behavior in determining the magnitude and evolution of behavioral responses. A promising direction for future work is to combine models such as this one and experiments in humans and animals aimed at capturing motivational states; experiments can elucidate the underlying neurological mechanisms of decision making in social dilemmas, whereas models can illuminate relevant selection pressures that shape the evolution of these mechanisms.

Acknowledgments

E.A. was supported as a Postdoctoral Fellow at the National Institute for Mathematical and Biological Synthesis (NIMBioS). J.V. is supported as an Omidyar Fellow at the Santa Fe Institute. This work was also supported by a NIMBioS short-term visitor grant. NIMBioS is sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture through National Science Foundation award EF-0832858, with additional support from the University of Tennessee, Knoxville.

Literature Cited

Associate Editor: Peter D. Taylor
Editor: Ruth G. Shaw