Changes in Oxygen Tension Rapidly and Reversibly Regulate Macrophage Nitric Oxide Production

Mary A. Robinson
University of Pennsylvania Philadelphia, marobins@vet.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/edissertations
Part of the Cell Biology Commons, and the Cellular and Molecular Physiology Commons

Recommended Citation

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/17
For more information, please contact repository@pobox.upenn.edu.
Changes in Oxygen Tension Rapidly and Reversibly Regulate Macrophage Nitric Oxide Production

Abstract
Macrophage nitric oxide (NO) production and hypoxia coexist during wound healing, and have been implicated in the pathogenesis and pathophysiology of multiple disease states including sepsis and cancer. Macrophages stimulated with pathogen associated molecular patterns (PAMPs) produce NO via inducible nitric oxide synthase (iNOS) from molecular O2, L-arginine, and NADPH. The first aim of this research was to characterize the degree and duration of hypoxia which would limit NO production by PAMPs stimulated macrophages. The second aim was to identify the contributing mechanism(s). Using a novel forced convection cell culture system, we demonstrated that NO production was rapidly (within seconds) and reversibly regulated by physiological and pathophysiological O2 tensions (pO2). The effect of pO2 on NO production was not mediated by changes in iNOS protein concentration or iNOS dimerization, implicating limitation of the reactant(s) as the predominant causative mechanism. In addition to O2 limitation, hypoxia has the potential to affect NADPH and L-arginine availability. In PAMPs stimulated macrophages, NADPH is predominantly produced by the oxidative pentose phosphate cycle (OPPC). NO production directly correlated with OPPC activity over a wide range of pO2, and inhibition of NO production with the specific iNOS inhibitor, 1400W, significantly decreased OPPC activity. OPPC activity increased significantly in response to chemically mediated oxidative stress irrespective of pO2, and NO production was unaffected by increasing cellular oxidative stress, indicating that NADPH availability for NO production was not limited by hypoxia. L-arginine is required for iNOS dimerization, and iNOS dimerization was maintained or increased during hypoxic exposure, suggesting sufficient L-arginine was available. Furthermore, the effect of L-arginine depletion on NO production was much slower than the response observed due to changes in pO2. In conclusion, decreased O2 availability is the predominant mechanism responsible for rapidly and reversibly limiting NO production by PAMPs stimulated macrophages exposed to acute hypoxia.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Pharmacological Sciences

First Advisor
Cynthia M. Otto

Second Advisor
Cameron J. Koch

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/17
Keywords
inducible nitric oxide synthase, substrate limitation, NO consumption, reactive nitrogen mediated stress, oxidative stress, inflammation

Subject Categories
Cell Biology | Cellular and Molecular Physiology
CHANGES IN OXYGEN TENSION
RAPIDLY AND REVERSIBLY REGULATE
MACROPHAGE NITRIC OXIDE PRODUCTION

Mary Elissa Alles Robinson

A DISSERTATION
in
Pharmacological Sciences

Presented to the Faculties of the University of Pennsylvania
in Partial Fulfillment of the Requirements for the Degree
of Doctor of Philosophy

2009

Cynthia M. Otto (Advisor)

Cameron J. Koch (Advisor)

Vladimir R. Muzykantov (Graduate Group Chairperson)
DEDICATION

I dedicate this thesis to my grandmother,

Ms. Dorothy Matern

whose battle with breast cancer ended too soon,

and who inspired me to pursue biomedical research.

And

To my family and friends for all of their love and support.
ACKNOWLEDGEMENTS

This work would not have been possible without the guidance and support of Dr. Cynthia M. Otto, Dr. James E. Baumgardner, Dr. Cameron J. Koch, Dr. Stephen W. Tuttle, Dr. Sydney Evans, Dr. Harry Ischiropoulos, Dr. Vladimir Muzykantov, Dr. Andrew Gow, Dr. Michael Atchison, Ms. Julia Fox, and Ms. Virginia Good. Financial support was provided by the VMSTP program at the University of Pennsylvania, the American Heart Association (AHA 0515359U), and the National Institutes of Health (NIH CA92108 and NIH T32 CA009677-17).
ABSTRACT

CHANGES IN OXYGEN TENSION RAPIDLY AND REVERSIBLY REGULATE MACROPHAGE NITRIC OXIDE PRODUCTION

Mary A. Robinson
Advisors: Cynthia M. Otto and Cameron J. Koch

Macrophage nitric oxide (NO) production and hypoxia coexist during wound healing, and have been implicated in the pathogenesis and pathophysiology of multiple disease states including sepsis and cancer. Macrophages stimulated with pathogen associated molecular patterns (PAMPs) produce NO via inducible nitric oxide synthase (iNOS) from molecular O₂, L-arginine, and NADPH. The first aim of this research was to characterize the degree and duration of hypoxia which would limit NO production by PAMPs stimulated macrophages. The second aim was to identify the contributing mechanism(s). Using a novel forced convection cell culture system, we demonstrated that NO production was rapidly (within seconds) and reversibly regulated by physiological and pathophysiological O₂ tensions (pO₂). The effect of pO₂ on NO production was not mediated by changes in iNOS protein concentration or iNOS dimerization, implicating limitation of the reactant(s) as the predominant causative mechanism. In addition to O₂ limitation, hypoxia has the potential to affect NADPH and L-arginine availability. In PAMPs stimulated macrophages, NADPH is predominantly produced by the oxidative pentose phosphate cycle (OPPC). NO production directly correlated with OPPC activity over a wide range of pO₂, and inhibition of NO production with the specific iNOS inhibitor, 1400W, significantly decreased OPPC activity. OPPC activity increased significantly in response to chemically mediated oxidative stress.
irrespective of pO2, and NO production was unaffected by increasing cellular oxidative stress, indicating that NADPH availability for NO production was not limited by hypoxia. L-arginine is required for iNOS dimerization, and iNOS dimerization was maintained or increased during hypoxic exposure, suggesting sufficient L-arginine was available. Furthermore, the effect of L-arginine depletion on NO production was much slower than the response observed due to changes in pO2. In conclusion, decreased O2 availability is the predominant mechanism responsible for rapidly and reversibly limiting NO production by PAMPs stimulated macrophages exposed to acute hypoxia.
TABLE OF CONTENTS

Introduction
Macrophage NO Production
Coexistence of NO Production and Hypoxia *in vivo*
Hypoxic Affects on iNOS and NO production *in vitro*
Hypoxic Affects on NADPH and L-Arginine Availability
Specific Aims

Chapter 1.
Physiological and Hypoxic O₂ Tensions Rapidly Regulate NO production by Stimulated Macrophages

Chapter 2.
pO₂ Dependent NO Production Determines OPPC Activity in Macrophages

Chapter 3.
Effect of Changing Extracellular L-Arginine Concentration on Macrophage NO Production

Discussion
Acute Hypoxic Regulation of NO Production
Implications for NO Physiology and Pathology
Conclusions

Appendix
Hypoxic Cell Culture

Bibliography
LIST OF TABLES

Chapter 1. Table 1. NO Consumption in DMEM.
Table 2. Cell survival in DMEM and JBMEM.

Chapter 2. Table 1. Effect of 1400W on RAW 264.7 NOx Production, OPPC activity, and TCA activity.
LIST OF ILLUSTRATIONS

Chapter 1.
Figure 1. Forced Convection Cell Culture System.
Figure 2. NO Consumption by Media
Figure 3. Effect of PO$_2$ on NO Production.
Figure 4. Effect of O$_2$ tension on iNOS protein concentration.
Figure 5. Effect of O$_2$ tension on iNOS dimerization.
Figure 6. Effect of NO and O$_2$ tension on cellular NO consumption.
Figure S1. Dependence of cellular NO consumption on NO tension.
Figure S2. Dependence of cellular NO consumption on PO$_2$.

Chapter 2.
Figure 1. Schematic of the relationship investigated between NOx production and OPPC activity.
Figure 2. EF5 binding in Glass Dishes versus Vials.
Figure 3. NOx production, iNOS protein concentration, and iNOS dimerization in LPS and IFN$_\gamma$ stimulated RAW 264.7 cells cultured with Thin Film Cell Culture.
Figure 4. Correlation between OPPC activity and NOx production.
Figure 5. OPPC Challenge with HEDS and PIMO.
Figure 6. NOx production during OPPC challenge with HEDS and PIMO.

Chapter 3.
Figure 1. Effect of Changing Extracellular L-Arginine Concentration on Macrophage NO production.
INTRODUCTION

Macrophage NO Production

Macrophages are found throughout vertebrate and invertebrate tissues at all stages of life. They mediate tissue development and maintenance, and innate (pathogen pattern recognition) and adaptive (antigen presentation to T cells) immunity, but are also implicated in many disease states (208). The mononuclear phagocytic system classifies adult vertebrate macrophages based on their tissue phenotype and currently includes: inflammatory macrophages (M1 macrophages, aka classically activated macrophages), alternatively activated macrophages (M2 macrophages), dendritic cells, and tissue-resident macrophages such as alveolar macrophages (lung), osteoclasts and bone marrow macrophages (bone), microglia (brain), Langerhans cells (dendritic cells in the skin), crypt macrophages (intestine), Kupffer cells (liver), uterine dendritic cells and uterine macrophages (208).

Macrophages are bone marrow derived myeloid cells, and are continuously repopulated (84). Repopulation commonly occurs by extravasation and differentiation of monocytes from systemic circulation; half of the blood monocytes leave systemic circulation daily (84). Two populations of monocytes have been identified in circulation, one which responds to inflammation (M1 and M2 macrophages, dendritic cells), and one which repopulates noninflamed tissues (resident macrophages, some dendritic cells eg. Langerhans cells) (84). Thus, the monocyte lineage and the tissue microenvironment dictate monocyte extravasation, differentiation, and macrophage phenotype.
Macrophages exposed to bacterial and parasitic components, collectively termed pathogen associated molecular patterns (PAMPs), and to cytokines such as interferonγ (IFNγ), were among the first macrophages to be investigated as part of the innate immune system, and are referred to as classically activated or M1 macrophages (123, 208). A key component of the M1 macrophage phenotype is the production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) from molecular \(O_2 \), L-arginine, and NADPH (148, 155, 245). The ability of M1 macrophages to produce NO is essential for the effective elimination of several types of infections (6, 94, 96, 215, 265). However, dendritic cells (233), microglia cells (14, 210, 234), and some tumor associated macrophages (typically thought to be M2 macrophages) (102), have also been demonstrated to upregulate iNOS, suggesting NO production and its effects may not be limited to M1 macrophages. In our studies of NO production, two stimuli known to induce macrophage iNOS were utilized: lipopolysaccharide (LPS) and IFNγ.

LPS is the primary component of the outer membrane of gram-negative bacteria (5). LPS binding to CD14 and TLR4/MD2 on the macrophage cell surface results in signaling through multiple adaptor proteins including Src kinases, protein kinase C, PI3-kinase, mitogen activated protein kinases, phospholipase D, Gi/Go proteins, protein kinase A, FKBP12-rapamycin-associated protein, MyD88, IRAK, and TRAF6 (5, 25). Signaling through these proteins activates the transcription factors, NFκB, C/EBP, AP-1 (5, 25), and even HIF1 in normoxic differentiated macrophages (31, 195). NFκB, NF-IL6 (a C/EBP transcription factor), and HIF1 have been shown to bind to regions in the iNOS promoter and upregulate iNOS transcription (63, 95, 126, 163, 170, 181, 205, 288).
IFNγ is produced by activated T lymphocytes and natural killer cells, and acts in a paracrine manner on macrophages (19, 60). IFNγ binds to the IFNγ receptor, which signals through the adaptor proteins JAK2, MEK1/2, and Erk1/Erk2 to activate the transcription factor STAT1α (19, 29). STAT1α binds to the iNOS promoter (80, 170, 288), and to the IRF-1 promoter (146), at the gamma-interferon activated site. STAT1α and IRF-1 binding to the iNOS promoter is necessary for IFNγ mediated upregulation of iNOS transcription (80, 139, 170, 174).

LPS and IFNγ treatment of macrophages results in the upregulation of iNOS mRNA by 3 hours, and protein by 6 hours, with maximal protein concentration and activity observed at 24 hours (4, 61). NO production continues for up to 2 days (9), at which point the cells die via apoptosis (8, 224), most likely mediated by the continued exposure to nitrosative stress (103, 173). iNOS cleavage and degradation by calpain 1 (267, 268) and the ubiquitin-proteosome pathway (189) occurs with a half life of 1 ½ hours in atmospheric O₂ (145), suggesting continuous production of the enzyme is necessary to enable this prolonged NO production. For the experiments described herein, we chose to investigate the effects of acute hypoxia at 24 hours after LPS and IFNγ stimulation of RAW 264.7 cells, a macrophage-like transformed cell line, to ensure robust and reproducible NO production.

Coexistence of Macrophage NO Production and Hypoxia in vivo

Molecular O₂ is a cosubstrate for NO production (148, 155), thus the partial pressure of oxygen (pO₂) has the potential to affect macrophage function in vivo. Physiological tissue pO₂ measurements are 5 to 71 Torr (23, 32, 37, 42, 87, 88, 124, 129,
159, 253, 254, 263, 266, 281, 282), indicating that even in the absence of hypoxia (pO₂ < the normal pO₂ for the tissue), macrophages are exposed to a wide range of pO₂.

Macrophages are exposed to hypoxia when tissue pO₂ decreases due to cardiovascular compromise and/or overwhelming metabolic demand, such as in the wound environment (116, 194, 213, 236) and in multiple inflammatory diseases: sepsis (118, 122), cancer (37, 38, 69, 70, 79, 111, 166), hypoxia-mediated pulmonary hypertension (154, 225), hypoxic brain injury (125, 196, 220), congenital heart defects (72), necrotizing enterocolitis (45), sleep apnea (75, 119, 295), asthma (17, 132, 289), cerebrovascular stroke (160), and atherosclerosis (28, 34, 43). Three examples will be discussed: wound healing, sepsis, and cancer.

The pO₂ measured in the center of the wound environment can be as low as 0 to 2 Torr (225). Wound healing is typically thought to occur in three stages: inflammation, proliferation, and maturation (285). Consistent with this model, macrophages have been shown to express iNOS for the first 24 to 72 hours of healing, and to become the predominant cell type within the wound on days 3 to 5 (211). iNOS knockout mice have delayed wound healing, which can be improved with gene transfer of the human iNOS gene via an adenoviral vector (293), indicating that the presence of iNOS influences wound healing. Nitrite and nitrate, metabolites of NO, are increased in the wound fluid isolated from a sponge model of wound healing during the first 24 to 48 hours (177). However, hypoxia (~ 0 Torr) has been shown to limit wound macrophage NO production in vitro, and to result in the redirection of L-arginine metabolism to arginase (7). Further investigation of NO production by macrophages expressing iNOS in a hypoxic
environment is required to better understand how macrophages produces NO during wound healing.

Improper wound healing and bacterial invasion into systemic circulation can lead to the development of sepsis, a systemic inflammatory response (36). The progression of sepsis to acute respiratory distress syndrome (ARDS) and multiorgan failure (MOF) is one of the most frustrating syndromes to treat in human and animal emergency rooms and intensive care units due to the rapidity of its progression (within 24 to 48 hours), and to the high mortality rate in this patient population (20 to 50% in humans, 60% in dogs) (24, 64, 76, 175, 185, 228, 248). Patients initially become locally hypoxic due to the redirection of blood flow to the vital organs and increased metabolic demand, and subsequently become systemically hypoxic due to circulatory and pulmonary collapse (118). NO production by PAMPs stimulated macrophages has been implicated in this progression (44, 252).

Excessive amounts of nitrosylated and nitrated proteins, markers of endogenous NO production (91, 262), have been detected in urine, plasma, and affected organs from septic patients (86, 89, 140, 197, 243). iNOS has been demonstrated to directly bind, nitrosylate, and increase the activity of cycloxygenase-2, even in the presence of oxyhemoglobin, an extracellular NO scavenger (137). Alternatively, some nitrated proteins have impaired function e.g. surfactant protein A can no longer aggregate lipids (101). The NO metabolite, peroxynitrite, inhibits oxygen consumption by alveolar type II cells (113), and mediates pulmonary cell damage and death (90). The ensuing hypoxia due to impaired pulmonary gas exchange is exacerbated by the concurrent circulatory dysfunction due to macrophage NO production. iNOS has a V_{max} that is 5 fold greater
than the V_{max} for endothelial NOS (eNOS) and neuronal NOS (nNOS) (214). Thus, one of the major mechanisms contributing to generalized vasodilatation and septic shock is the larger amount of NO produced by macrophages in similar tissue microenvironments as endothelial cells (118, 252).

Because of these negative effects of NO production, nonspecific NOS inhibitors (i.e. inhibition of iNOS, eNOS, and nNOS) were tested in animal models of sepsis (55, 77, 133-135, 183, 198, 244, 256, 257), and in human Phase I (97, 117), II (21, 272), and III (167) clinical trials. Although effective in preventing the decrease in blood pressure observed due to septic shock (21, 55, 97, 133-135, 167, 244, 272), in the Phase III clinical trial patient mortality was ultimately increased, and the trial was terminated prior to completion (167). Specific inhibitors of iNOS have been shown to have some benefit in animal models (151, 161, 176, 199, 221, 249). However, bacterial sepsis in iNOS knockouts results in increased mortality (54), or no survival advantage (152, 193), probably due to the role of macrophage NO production in innate and adaptive immunity (6, 94, 96, 215, 265). Thus, even specific inhibition of iNOS needs to be carefully evaluated for its utility in treating septic patients. Macrophage NO production may already be limited due to the tissue hypoxia, and more information is needed to enable the development of NO targeted therapeutic strategies for sepsis.

A third example of macrophage exposure to hypoxia is within tumors. Hypoxia has been documented in 50 to 60% of all solid tumors (166), and has been shown to correlate with poor clinical outcome (37, 38, 69, 70, 79, 111, 166). Chronic inflammation has been linked to the development of cancer (162), and while tumor associated macrophages (TAM) are predominantly thought to have an M2 phenotype,
they have been demonstrated to express iNOS (235). Tumor cells themselves can also express iNOS (12, 104, 261), and increased serum nitrite and nitrate levels correlated with poor survival in lung cancer patients (56). However, some studies have shown that NO can inhibit tumorigenesis and metastasis, and whether NO is beneficial or detrimental has been proposed to depend on the location, degree, and timing of NO production (283, 284).

Anti-tumorigenic properties of NO include inhibition of mitochondrial respiration (65, 246) and the induction of apoptosis (103, 173). Pro-tumorigenic properties include genotoxic effects (71), increased iron uptake (66, 106, 255), promotion of angiogenesis (12, 261), and promotion of tumor growth and metastasis (50, 83, 207, 291). The p53 status of the tumor is one mechanism which appears to determine whether NO is pro- or anti-tumorigenic. p53 positive tumor cells typically undergo apoptosis due to NO exposure, whereas p53 negative cells have increased VEGF production, resulting in the promotion of angiogenesis (283).

In normoxic cells, NO increases VEGF production via HIF-1α stabilization, DNA binding, and transcriptional activity (138, 204, 222, 223). However, in hypoxic cells, NO decreased HIF-1α stabilization and HIF-1 activity (3, 114, 165, 238, 269), suggesting the presence of hypoxia can affect the pro- versus anti-tumorigenic status of NO. Hypoxia also stimulates VEGF production via HIF1 activation (15, 231, 274) and increases iron uptake (51, 255). A better understanding of the hypoxic effects on macrophage NO production is needed to elucidate how hypoxia and NO interact and contribute to cancer development and progression.
In summary, NO producing macrophages are exposed to a wide range of pO$_2$, and the requirement of molecular O$_2$ for NO production (148, 155) suggests that tissue pO$_2$ has the potential to influence macrophage NO generation. The presence of macrophage NO production is a double edged sword for most diseases: some effects are beneficial while others are detrimental to the host. The affect of macrophage NO production on patient outcome (quality of life, and life vs. death) often seems to depend on the location, timing, and degree of NO production, all of which will be affected by tissue pO$_2$. Thus, understanding the effects of pO$_2$ on macrophage NO production is essential to understanding the pathogenesis of multiple diseases.

Hypoxic Affects on NO production and iNOS in vitro

The effect of hypoxia on iNOS activity has been investigated in numerous models (1, 2, 13, 46, 67, 110, 136, 179, 182, 202, 214, 296). Consistent with the role of molecular O$_2$ as a cosubstrate (148, 155), NO production uniformly was decreased during hypoxia. However, the degree and duration of hypoxia required for this decrease, and the mechanisms mediating this effect, have not been clearly defined.

The apparent K_m O$_2$ for isolated iNOS has been reported to be 6.3 ± 0.9 μM (5 ± 0.6 Torr) (214), 130 μM (93 Torr) (1), and 135 μM (96 Torr) (67). There are three possible mechanisms explaining the differences between the studies: 1) the source of iNOS, 2) the method of measurement, and 3) the method of pO$_2$ control. When NO was scavenged with oxyhemoglobin, the apparent K_m O$_2$ was reduced approximately 4 fold from 130 μM (93 Torr) to 42 μM (30 Torr) (1). Abu-Soud et al. propose that the removal of NO feedback inhibition by the scavenging of NO with oxyhemoglobin mediates the
shift they measured in the apparent $K_m O_2$ (1, 247). However, details regarding the contribution of additional O$_2$ by oxyhemoglobin, a factor which could also cause a shift toward a lower apparent $K_m O_2$, are not available.

The apparent $K_m O_2$ in stimulated macrophages has been investigated in two studies. In one study, nitrite was measured following treatment with LPS and IFNγ for 24 hours at various pO$_2$, and a calculated apparent $K_m O_2$ of 10.8 ± 2.0 % (77 ± 1.4 Torr) was reported (179). Under similar culture conditions, Otto and Baumgardner measured a hypoxia mediated decrease in iNOS activity at the conclusion of the exposure period (18 hours) via the citrulline assay in cell lysates at atmospheric O$_2$, suggesting an effect of pO$_2$ on the specific activity and/or the amount of active iNOS, in addition to reactant limitation (202). After normalizing nitrite production for changes in iNOS activity, and accounting for the O$_2$ diffusion gradient from the headspace gas to the cell surface, their estimate for the apparent $K_m O_2$ at the cell surface was 14 Torr (202). Thus, the reported apparent $K_m O_2$ for iNOS spans a wide range (5 Torr to 96 Torr), making it difficult to assess which pO$_2$ could regulate NO production in vivo.

The duration of hypoxia required for decreased macrophage NO production has not been previously investigated. Prior studies relied on indirect measurement of NO after 18 to 24 hours of concurrent exposure to LPS, IFNγ, and hypoxia (179, 202). Therefore, the effects of hypoxia on iNOS upregulation could not be separated from the effects due to reactant limitation. The amount of active iNOS, and the iNOS velocity, during the 24 hour period may vary tremendously because of hypoxic effects on iNOS mRNA, iNOS protein concentration, iNOS dimerization, and reactant availability.
Hypoxic induction of iNOS is mediated by the transcription factor, HIF-1 (126, 205). HIF-1 is a dimer composed of HIF-1α and HIF-1β subunits. Both subunits are constitutively expressed in most tissues (280). However, the HIF-1α protein is rapidly degraded via the ubiquitin-proteosome pathway in the presence of O₂ (59, 229, 230). Hypoxia increases HIF-1 DNA binding to the iNOS hypoxia responsive element (HRE), which upregulates iNOS transcription (126), (205). Upregulation of iNOS in rat primary cardiac myocytes was measured at 12 hours (126). In contrast, hypoxic exposure durations ≤ 24 hours did not increase iNOS mRNA in the CRL-2192 alveolar macrophage cell line or in rat lungs (4). Exposure of rats to hypoxia (10% inspired pO₂) for 3 weeks increased iNOS mRNA in the lung (147, 198). These results suggest the temporal effects of hypoxia on iNOS mRNA depends on the cell type. Co-stimulation of CRL-2192 alveolar macrophages with LPS or IFNγ and hypoxia, or treatment of rats with LPS immediately prior to hypoxia (9% inspired pO₂), expedited the upregulation of iNOS mRNA in the macrophages and in the lung, respectively, with an observed effect as early as 3 hours (4).

Hypoxic upregulation of iNOS mRNA has not always resulted in increased iNOS protein concentration. iNOS protein was decreased in LPS, IFNγ, and hypoxia stimulated RAW 264.7 cells (24 hours (202)), and in TNFα, IL1β, and hypoxia stimulated rat pulmonary artery cells (296). In contrast, iNOS protein was increased in LPS or IFNγ and hypoxia stimulated CRL-2192 macrophages (4) and ANA-1 macrophages (182), and in the lungs of rats treated with LPS, and then with 3, 6, or 12 hours of hypoxia (9% O₂) (4). Rats maintained in hypoxia (10% O₂) for 3 weeks were also shown to have increased iNOS protein in their lungs (154). Thus, the degree and duration of hypoxia, cytokine
concentration, combination of cytokines, and/or cell type appear to determine whether
upregulated iNOS mRNA correlates with increased iNOS protein concentration.

Following the upregulation of iNOS mRNA and protein expression, dimerization
is necessary for NO production (20). Dimerization requires BH$_4$ (20, 147, 209, 260,
275), heme (20, 239), and L-arginine (20). Preliminary data in our laboratory measured a
decrease in the iNOS dimer:monomer ratio in RAW 264.7 cells costimulated with LPS,
IFNγ, and hypoxia (24 hours), which was fully reversible by L-sepiapterin, a
pharmacologic source of BH$_4$ (201). Cytokine stimulation increases macrophage BH$_4$
concentration via increased activity of the rate limiting enzyme, GTP cyclohydrolase I (85, 276-278). Thus, these preliminary results suggest hypoxia may limit BH$_4$
availability despite increased activity of GTP cyclohydrolase I.

Hypoxic Affects on NADPH and L-arginine availability

In addition to O$_2$ substrate limitation, hypoxia has been reported to affect NADPH
and L-arginine availability. NADPH is produced by the oxidative pentose phosphate
cycle (OPPC) in LPS and IFNγ stimulated macrophages (58). An association between
NADPH production by glucose 6 phosphate dehydrogenase (G6PD), the rate limiting
enzyme of the OPPC, and NO production has previously been demonstrated in
macrophages (57, 112, 180, 258), and pharmacologic inhibition of OPPC activity or
G6PD deficiency was shown to significantly impair NO production (112, 180, 258).
Classical studies have measured increased [NADPH] in response to short term hypoxia
due to the absence of oxidizing agents (99, 127, 227, 259). More recently, however,
decreased [NADPH] was measured in denuded bovine coronary arteries following brief
exposure to hypoxia (~ 8 to 10 Torr, 20 minutes (100)). The effect of hypoxia on macrophage OPPC activity and [NADPH] has not been investigated.

The concentration of L-arginine in cell culture media (JBMEM: 300 µM, MEM: 700 µM) is well above the apparent K_m for arginine (2.8 µM; (245)), and is not expected to be limiting for these studies. In addition, LPS and hypoxia increase the mRNA of the arginine transporter, MCAT-2B (169), suggesting cellular L-arginine import is increased. However, hypoxia (24 hours) alone and in combination with LPS has also been shown to upregulate macrophage arginase (7, 169), which has been proposed to compete with iNOS for L-arginine as a substrate (48, 108, 250). Inhibition of arginase can increase NO production by stimulated macrophages, and vice versa (109). However, the interplay between iNOS and arginase is cell specific (226), cytokine specific (107, 270), and time dependent (270).

Specific Aims

In summary, hypoxia has the potential to alter macrophage NO production by multiple mechanisms. Due to the difficulties of culturing cells at defined pO$_2$, and the difficulties of measuring NO production directly, previous studies were not able to evaluate the effects of an abrupt change in pO$_2$ on NO production. Therefore, the first aim of this work was to measure macrophage NO production directly, and in real time, during precise and accurate step changes in pO$_2$ using a novel forced convection cell culture system (Chapter 1). A decrease in NO production could be mediated by limitation of the reactant(s) or an effect on iNOS itself. Limitation of molecular O$_2$ is the most intuitive mechanism. However, hypoxic exposure has also been documented to
affect the amount of active iNOS, and the availability of NADPH and L-arginine.

Therefore, the second specific aim of this work was to investigate the contribution of these alternate mechanisms to the regulation of NO production during acute hypoxia (Chapters 1, 2, and 3).
CHAPTER 1.

PHYSIOLOGICAL AND HYPOXIC O$_2$ TENSIONS RAPIDLY REGULATE NO PRODUCTION BY STIMULATED MACROPHAGES

Mary A. Robinson1,2,3, James E. Baumgardner4,5, Virginia P. Good2, and Cynthia M. Otto1,2.

1Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania Philadelphia PA 19104; 2Center for Sleep and Respiratory Neurobiology, University of Pennsylvania Philadelphia PA 19104; 3Department of Radiation Biology, School of Medicine, University of Pennsylvania Philadelphia PA 19104; 4Department of Anesthesiology and Critical Care, School of Medicine, University of Pennsylvania Philadelphia PA 19104; 5Osciillogy, LLC Folsom PA 19033.

Published on February 13th, 2008 in the American Journal of Physiology Cell Physiology Volume 294, Pages 1079 – 1087
ABSTRACT

NO production by inducible nitric oxide synthase (iNOS) is dependent on O₂ availability. The duration and degree of hypoxia which limit NO production are poorly defined in cultured cells. To investigate short term O₂-mediated regulation of NO production, we used a novel forced convection cell culture system to rapidly (response time = 1.6 seconds) and accurately (± 1 Torr) deliver specific O₂ tensions (from < 1 to 157 Torr) directly to a monolayer of LPS and IFNγ stimulated RAW 264.7 cells while simultaneously measuring NO production via an electrochemical probe. Decreased O₂ availability rapidly (≤ 30 seconds) and reversibly decreased NO production with an apparent K_mO₂ of 22 (SD 6) Torr (31 µM) and a V_{max} of 4.9 (SD 0.4) nmol/min·10⁶ cells. To explore potential mechanisms of decreased NO production during hypoxia, we investigated O₂-dependent changes in iNOS protein concentration, iNOS dimerization, and cellular NO consumption. iNOS protein concentration was not affected (p = 0.895). iNOS dimerization appeared to be biphasic (6 Torr (p ≤ 0.008) and 157 Torr (p ≤ 0.258) > 36 Torr), but did not predict NO production. NO consumption was minimal at high O₂ and NO tensions and negligible at low O₂ and NO tensions. These results are consistent with O₂ substrate limitation as a regulatory mechanism during brief hypoxic exposure. The rapid and reversible effects of physiological and pathophysiological O₂ tensions suggest that O₂ tension has the potential to regulate NO production in vivo.
INTRODUCTION

Macrophage NO production via inducible nitric oxide synthase (iNOS) is a key component of the cellular inflammatory response (33, 172). In vivo, in vitro, and isolated enzyme experiments have clearly demonstrated the dependence of NO production on O₂ tension for all 3 of the NOS isoforms (1, 2, 13, 46, 67, 110, 136, 179, 182, 202, 214, 296). Normal non-pulmonary tissue O₂ tensions range from 5 to 71 Torr (23, 37, 42, 124, 129, 263, 282), and systemic and/or tissue hypoxia develops during several inflammatory diseases (42, 75, 122), extending the range for tissue macrophages to even lower levels. Alveolar macrophages can be exposed to O₂ tensions ranging from approximately 30 Torr (mixed venous O₂ tension with atelectasis) to over 650 Torr (with O₂ therapy) (279). Thus, macrophages must function over a wide range of physiologic and pathophysiological O₂ tensions, and O₂ tension has the potential to regulate macrophage NO production (67, 179, 202, 214). It is currently unknown, however, if the macrophage response to changing O₂ tension is rapid enough for O₂ to play a role in the regulation of NO production.

Prior studies have explored the long-term effects (18 and 24 hours) of culture PO₂ (partial pressure of O₂) on nitrite production in LPS and IFNγ stimulated RAW 264.7 cells, but estimates of the apparent K_mO₂ have varied considerably. McCormick et al. reported an apparent K_mO₂ of 10.8% (77 Torr) for the PO₂ in the headspace gas (179). In contrast, Otto and Baumgardner estimated the apparent K_mO₂ at the cell surface to be 14 Torr, after normalizing to iNOS activity and accounting for the O₂ diffusion gradient through the media layer (202). This wide range of reported K_mO₂ may be in part due to
difficulties in accurately controlling headspace (202, 242) and cellular (22, 202) PO$_2$ in conventional cell culture.

No prior studies of macrophage NO production explored the effects of short-term exposure to different O$_2$ tensions, primarily due to the limitations of conventional cell culture and NO analysis methods. First, diffusion of O$_2$ through the media covering cells cultured in dishes can be slow, requiring as long as 30 minutes for a change in headspace PO$_2$ to be translated to the cell surface (10, 22). Second, the sensitivity of nitrite measurement via the Griess method, which integrates NO production over the period of the experiment, is not adequate for short time periods with less NO accumulation (121, 179, 202).

Forced convection cell culture utilizes a continuous flow of media to deliver O$_2$ and nutrients directly to the cell monolayer, and to remove waste products (22). Because this method of cell culture overcomes the limitations of extracellular O$_2$ diffusion, it is ideally suited for measuring the effects of rapid changes in O$_2$ tension. In addition, the system used for the present study controls O$_2$ tensions with an accuracy of about 1 Torr, and permits rapid, direct measurement of changes in NO in the effluent using a sensitive electrochemical probe (216, 217). Thus, the first goal of our current study was to use this recently developed method to accurately define the PO$_2$ dependence of NO production by LPS and IFN$_\gamma$ stimulated RAW 264.7 cells, after brief exposures to a range of physiological and hypoxic O$_2$ tensions.

The second goal of our study was to evaluate three mechanisms that could alter NO production after brief hypoxic exposures. The oxygen atom in NO is derived from molecular O$_2$ (148, 155). Prior cell culture studies which used long term exposures to
varying O\textsubscript{2} tensions, and studies with isolated nitric oxide synthases (NOS), have emphasized the potential role of O\textsubscript{2} as a rate-limiting substrate (67, 179, 202, 214). O\textsubscript{2} has also been shown to participate in more complex interactions with the NOS enzyme than simple substrate dependence (247). These mechanisms could operate on a short enough time scale to alter NO production after brief hypoxic exposures. There are, however, several additional opportunities for changes in PO\textsubscript{2} to rapidly influence NO production. Our goal was to evaluate three of these additional mechanisms: changes in the cellular levels of inducible NOS (iNOS) protein, changes in iNOS dimerization, and changes in cellular NO consumption. We hypothesized that: 1) brief hypoxic exposures would reduce NO production by reducing iNOS protein; 2) brief hypoxic exposures would reduce NO production by reducing iNOS dimerization; and 3) brief hypoxic exposures would reduce NO production and release from the cell by increasing intracellular consumption of NO.

MATERIALS AND METHODS

Forced Convection Cell Culture.

RAW 264.7 cells (American Type Culture Collection, Manassas, VA) were cultured using a novel forced convection cell culture system as described previously (22). Briefly, cells were aspirated through a ProNectin® F-coated (0.1mg/ml; Sigma, St Louis, MO) 0.53 mm diameter, 10 cm long fused-silica capillary column (Alltech, Deerfield, IL), allowed to adhere for 15 minutes, and cultured with forced convection in air with 5% CO\textsubscript{2} for 18 to 22 hours in the presence of 1 µg/ml LPS (E. coli O111:B4; Sigma) and 100
U/ml CHO-derived recombinant mouse IFNγ (Cell Sciences, Canton, MA) in DMEM (Gibco, Carlsbad, CA) supplemented with 5% heat-inactivated FBS (LONZA, Visp, Valais, Switzerland) and 1% antibiotic/antimycotic (penicillin, streptomycin, fungizone; Life Technologies, Gaithersburg, MD). Following stimulation, the column of cells was transferred to the forced convection cell culture system (Figure 1).

Experiments were performed in a minimal essential media (JBMEM: 140 mM NaCl, 1.4 mM CaCl₂, 5.3 mM KCl, 4.4 mM Dextrose, 25 mM HEPES, 0.3 mM L-arginine, and 0.1% heat-inactivated FBS (LONZA)) equilibrated with 0, 0.7, 3.6, 8.4, 15.2, 25.8, 38.0, 85.3, or 159.6 Torr O₂ (5% CO₂, balance N₂) from certified premixed compressed gas cylinders (AirGas, Allentown, PA). Corresponding estimates of average cellular PO₂, after accounting for cellular O₂ consumption, were 0, < 1, 1, 6, 13, 24, 36, 83, or 157 Torr O₂ (22). Upon completion of experiments, the fluid was briefly switched to PBS equilibrated with the experimental O₂ tension, and then the column of cells was removed from the system and immediately frozen at -70°C.

Measurement of Effluent NO Tension.

NO was detected using a 2 mm NO electrode (NOP, World Precision Instruments, Sarasota, FL) filled with a CO₂ insensitive electrolyte (World Precision Instruments). To enable calibration of the NO electrode, the forced convection cell culture system was adapted to allow defined amounts of NO (input NO) to be added to the fluid stream (Figure 1). Deionized H₂O (dH₂O) was deoxygenated via a membrane equilibrator with certified ultra high purity N₂ (AirGas), then equilibrated via a second membrane equilibrator with 2000 ppm NO in N₂ (AirGas). As in our prior report (6), function of all
membrane equilibrators was tested by confirming flow independence of the measured gas partial pressure in the equilibrator effluent. Defined amounts of 2000 ppm NO-containing dH$_2$O were injected into the fluid stream using a syringe pump (Harvard Apparatus, Holliston, MA). The electrode was calibrated with input P$_{NO}$ of 19, 40, 79, 160, 319, and 500 ppm at the beginning of each day. In the forced convection system, the measured 0-95% time constant for the probe was 27 seconds. Due to NO probe baseline drift during experiments, the NO probe baseline was measured regularly (i.e. ≤ 5 minute intervals) to allow for manual baseline correction of the data.

All NO measurements were performed in JBMEM, which was designed to minimize media NO consumption while maintaining cell viability. To evaluate NO consumption by JBMEM, the forced convection system depicted in Figure 1 was modified by inserting two lengths of fused silica (13 cm and 30 cm) between the NO input site (labeled T in Figure 1) and the outlet valve (labeled B in Figure 1), resulting in exposure of NO to the media for 9 and 18 seconds, respectively. The NO signal was recorded for each exposure duration at two input P$_{NO}$ (160 and 320 ppm), and at three P$_{O_2}$ (0, 40 and 80 Torr). P$_{O_2}$ dependence of NO consumption in JBMEM was further investigated after restoring the system to the configuration of Figure 1 (i.e. 16 cm of tubing between the NO input and the inlet valve, labeled A in Figure 1, and 10 cm of tubing between the inlet valve and the outlet valve) in the absence of cells at five P$_{NO}$ (40, 79, 160, 319, 500 ppm) and six P$_{O_2}$ (0, 15, 26, 38, 85, 160 Torr). To test if JBMEM was sufficient to support cell viability, RAW 264.7 cells were seeded onto 6 well plates (9.5 cm2) and cultured in a humidified incubator (room air, 37°C, 5% CO$_2$) in either DMEM or JBMEM. Viability was measured by Trypan blue staining after 2, 6 or 18 hours of
culture. Cells were evaluated with and without stimulation (1 µg/ml LPS and 100 U/ml IFNγ initiated 18 hours prior to seeding).

Electrophoresis and Immunoblotting.

Cell lysates were prepared from columns by aspirating ice cold protease-inhibitor containing hypotonic lysis buffer (PIB: 10 µM phenylmethylsulfonyl fluoride (ICN Biochemical, Aurora, OH), 5 µg/ml aprotinin (Sigma), and 5 µg/ml pepstatin (Amresco, Solon, OH) in dH2O) through each column. Cell lysate protein concentrations were measured using the Biorad DC protein assay (Hercules, CA).

Proteins (10 µg) were separated on a 7.5% Tris-HCl gel using SDS PAGE or low temperature SDS PAGE (LT SDS PAGE) as previously described (287), except the final β-mercaptoethanol concentration for samples subjected to LT SDS PAGE was 0.1% (v/v). Proteins were transferred to polyvinylidene fluoride (Immobilon™-FL 0.2µm; Millipore, Bedford, MA) and immunoblotted for iNOS (1:1000 to 1:2000; NOS2 M19 sc650, Santa Cruz Biotechnology, Inc., Santa Cruz, CA) and the loading control, Raf-1 (1:200 to 1:500; Raf-1 sc227, Santa Cruz Biotechnology, Inc.). Primary antibodies were immunocomplexed with IRDye™ 800 goat anti-rabbit (1:20,000; Rockland, Gilbertsville, PA). Proteins were detected, documented, and analyzed using an Odyssey Imaging System and software (LiCor Biosciences, Lincoln, NE).

Cellular NO Consumption.

Endogenous NO production by LPS and IFNγ stimulated RAW 264.7 cells cultured in the forced convection system was inhibited by a 36 to 48 minute exposure to
100 μM N-[(3-(aminomethyl)phenyl)methyl]-ethanimidamide, dihydrochloride (1400W; Cayman Chemical, Ann Arbor, MI) in JBMEM lacking L-arginine. Maximal NO inhibition by 1400W (86 SD 7 % of basal NO production; n = 8), was expedited by 3 to 4 periods of stopped flow for 5 minutes followed by 7 minutes of flow. Once maximal inhibition of endogenous NO production was achieved, cells were returned to JBMEM with L-arginine and were sequentially exposed to input P_{NO} of 40, 79, 160, 319, 500, and 0 ppm in the presence of 6, 36, or 83 Torr O_{2}. Average effluent P_{NO} was recorded for each input P_{NO} once steady state was achieved, and was compared to average effluent P_{NO} recorded on the same day for the same input P_{NO} in the absence of cells. The difference between effluent P_{NO} with cells and without cells for each input P_{NO} was assumed to be due to the net result of NO consumption and residual endogenous NO production. Testing for zero order, first order, or higher order dependence of NO consumption on P_{NO} and PO_{2} was performed, and the data were analyzed, by considering a mass balance on the cell column:

(NO entering the column) – (NO leaving the column) = consumption – production

Production represents the small amount of residual cellular NO production that was not inhibited by 1400W treatment. Consumption represents overall cellular degradation of NO from all irreversible and slowly reversible reactions, for example reaction with superoxide to form peroxynitrite (30, 115), conversion to nitrate via the iNOS futile pathway (247), nitrosylation, nitration and oxidation of proteins (92), autoxidation (74, 164), and other reactions (74, 212).
Our analysis assumes that NO production is independent of NO concentration, since the range of NO concentrations we studied is below the range associated with NO feedback inhibition of inducible nitric oxide synthase (iNOS) (1). Consumption is modeled, as a starting point, as first order in both NO and O\(_2\) (251). It is known that autoxidation is second order in NO and first order in O\(_2\) (74), but the reaction is too slow to consume NO before it reaches the electrode. Additionally, our data were calibrated to the effluent P\(_{NO}\) detected for the five input P\(_{NO}\) in JBMEM in the absence of cells and O\(_2\). Therefore, the detected NO consumption in our experiments is expected to be dominated by intracellular consumption reactions. The mass balance on the column of cells becomes

\[
Q\alpha_{NO}(P_{NOi}-P_{NOe}) = k_c N (PO_2)(P_{NO}) - f(PO_2)k_p N
\]

Where:

- \(Q\) is the media flow rate through the column (4.27x10\(^{-6}\) L/sec)
- \(\alpha_{NO}\) is the NO solubility in media at 37\(^\circ\)C (2.13x10\(^6\) pM/Torr) (271)
- \(P_{NOi}\) is the NO partial pressure in media entering the column (Torr)
- \(P_{NOe}\) is the NO partial pressure in media leaving the column (Torr)
- \(k_c\) is the consumption rate constant (pmol NO/cell·sec·Torr\(^2\))
- \(PO_2\) is the average oxygen partial pressure for cells in the column
- \(P_{NO}\) is the average NO partial pressure for cells in the column
- \(f(PO_2)\) is the functional dependence of NO production on \(PO_2\)
- \(k_p\) is the maximal NO production for each column at high \(PO_2\) (pmol NO/cell·sec)
N is the number of cells in the column

Statistics.

Comparison of means were tested by a one way ANOVA for each P_{NO} for PO_2 dependent NO consumption in the absence of cells (Figure 2), a two way ANOVA for the effects of DMEM versus JBMEM over time on cell survival (Table 2), and a three way ANOVA for the effects of input P_{NO}, PO_2 and exposure time on NO degradation in JBMEM using SigmaStat version 3.1. All other statistics were performed using GraphPad InStat version 3.06 for Windows 95, GraphPad Software, San Diego, CA, www.graphpad.com. Changes in NO production with repeated cycling between 0 and 36 Torr O_2 (Figure 3A) were tested by linear regression. The apparent K_m and V_{max} were calculated by SigmaPlot Enzyme Kinetics Module 1.1 using a Michaelis-Menten non-linear analysis (Figure 3C). Comparison of means for iNOS protein concentration data (Figure 4) were tested by one-way ANOVA. Comparison of means for iNOS dimerization data (Figure 5) were tested by pair-wise t-tests with a Bonferroni correction. Testing of the NO consumption model was performed with linear regression as described in Appendix A.
RESULTS

Characteristics of JBMEM.

In the absence of O₂ and cells, NO was rapidly consumed in DMEM by many of its components (Table 1), consistent with previous reports(39, 47, 131). Consumption of 160 and 320 ppm NO in JBMEM was investigated in the absence of cells at 0, 40, and 80 Torr O₂ by varying exposure duration. Exposure duration (9 versus 18 seconds) and PO₂ had no effect on the measured NO signal (n ≥ 2; p = 0.516 and p = 0.201, respectively), indicating negligible consumption by the media for exposures less than 18 seconds. Consistent with these observations, PO₂ dependent NO consumption in JBMEM was not detectable for any of the input PNO investigated with the system in its standard configuration as depicted in Figure 1, with a 15 second transit time from the NO input to the NO electrode (Figure 2; n = 3; 500 ppm, p = 0.152; 319 ppm, p = 0.264; 160 ppm, p = 0.370; 79 ppm, p = 0.951; 40 ppm, p = 0.468). For all subsequent experiments, NO consumption during the approximately 3.5 second average transit time from the cells to the NO electrode was therefore considered negligible.

In unstimulated cells, there was a small but significant reduction of cell viability with JBMEM (Table 2; p = 0.028). There was no detectable effect of time (p = 0.074) or interaction between media type and time (p = 0.601). In cells cultured with LPS and IFNγ, no significant effect of media (p = 0.364) or time (p = 0.894) was detected.

Effect of O₂ tension on effluent PNO.

Steady-state NO release by LPS and IFNγ stimulated RAW 264.7 cells exposed to 36 Torr O₂ was 3.08 (SD 1.14) nmol/min·10⁶ cells (n = 5). Unstimulated cells did not
produce detectable NO (data not shown). Exposure of the cells to 0 Torr O\textsubscript{2} decreased
effluent P\textsubscript{NO} within 30 seconds to an undetectable amount (Figure 3A). Similarly, within
30 seconds of re-exposure to 36 Torr O\textsubscript{2}, effluent P\textsubscript{NO} was greater than or equal to the
initial measured concentration. Repeated cycling between 0 Torr (2 minutes) and 36 Torr
O\textsubscript{2} (3 minutes) consistently produced these rapid changes in effluent P\textsubscript{NO} with a
cumulative 10% increase in effluent P\textsubscript{NO} over a period of 40 minutes (p < 0.0001, n = 2).
Unstimulated cells subjected to identical cycling patterns between 0 Torr and 36 Torr O\textsubscript{2}
for 40 minutes did not produce detectable NO (data not shown).

Exposure of LPS and IFN\textsubscript{γ} stimulated RAW 264.7 cells to a range of O\textsubscript{2} tensions
elicited corresponding changes in effluent P\textsubscript{NO}, which predominantly followed a
Michaelis-Menten kinetic model (Figure 3B). A non-linear analysis computed an
apparent \(K_{m,O_{2}} \) of 22 (SD 6) Torr and \(V_{max} \) of 4.9 (SD 0.4) nmol/min\cdot106 cells \((n = 5, R^2 = 0.80)\). A slight deviation from a smooth monotonic function is apparent between 6 and
36 Torr O\textsubscript{2} (Figure 3C).

Effect of O\textsubscript{2} tension on iNOS.

O\textsubscript{2} tension did not influence iNOS protein concentration (Figure 4, \(n \geq 4, p = 0.895 \)), but did influence the bands thought to contain iNOS dimers (Figure 5, \(n = 3 \)). In
the western blot derived from the partially denaturing gel, three bands were present: a
band corresponding to the expected monomer molecular weight (~130 kD) (49), a band
corresponding to the expected dimer molecular weight (~260 kD), and an unexpected
band of much higher molecular weight (\(\geq 500 \) kD). Compared to 36 Torr, the ratio of the
260 kD band to the 130 kD band was significantly increased in lysates from samples at 6
Torr (p = 0.003). A similar finding was observed for the ratio of the 500 kD band to the 130 kD band (p = 0.008). The ratios also appeared to increase in lysates from samples at 157 Torr, but the increase did not achieve statistical significance (260 kD ratio p = 0.258, 500 kD ratio p = 0.129).

Effect of NO and O₂ tension on cellular NO consumption.

Following 1400W inhibition of endogenous NO production (Figure 6A), LPS and IFNγ stimulated RAW 264.7 cells at 6, 36, or 83 Torr O₂ were exposed to five input P₇NO (Figure 6B). Data are presented in Figure 6C as the ratio of effluent P₇NO with cells to effluent P₇NO without cells. Net cellular NO consumption, as indicated by a ratio less than 1, was evident at input P₇NO of 160, 319, and 500 ppm in PO₂ of 36 and 83 Torr. Calculations based on known autoxidation rate constants (74, 164) estimated that autoxidation within the cells could account for a maximum of 3% of the measured NO consumption. Cellular consumption was negligible at a PO₂ of 6 Torr, regardless of the input P₇NO. Net cellular NO production resulted in a ratio greater than 1 for the lower two input P₇NO (40 and 79 ppm) delivered in the lower two PO₂ (36 and 83 Torr). The amount of NO production was consistent with the residual cellular NO that was not inhibited by 1400W. Immediately following 1400W treatment, mean cellular NO production was 14% (SD 7) (n = 8) of initial NO production. By the end of the experiment, cellular production increased to 24% (SD 6) (n = 7) of initial NO production. The relationship between net cellular NO consumption and P₇NO was most consistent with 1st order kinetics. NO consumption also correlated positively with PO₂ in a 1st order-dependent manner at all P₇NO. The overall consumption constant (kₐ) for the model was 0.038 pmol NO/sec·10⁶
cells·Torr² [12.7 (mmol NO)/(sec·10⁶ cells·M²)]. Details of the consumption model are presented in Appendix A.
DISCUSSION

Our study examined the effects of brief exposures to O$_2$ tensions, ranging from < 1 Torr to 157 Torr, on the production and release of NO by stimulated macrophages. Decreased PO$_2$ rapidly and reversibly decreased NO production, with an apparent K_{mO_2} of 22 (SD 6) Torr. Short term hypoxic exposures did not affect iNOS protein levels, but did influence iNOS dimerization. Surprisingly, however, iNOS dimerization did not predict NO production. NO consumption was small at high cellular O$_2$ and NO tensions and was negligible at low O$_2$ and NO tensions.

Our measured apparent K_{mO_2} is within the range of values reported previously for long term exposures in macrophage cell culture (179, 202), and for the isolated iNOS enzyme (1, 67, 214). It is also well within the range of PO$_2$ that would be required for O$_2$ tension to regulate NO production in vivo, as has been suggested previously (1, 67, 179, 202, 214). Our study additionally demonstrated, however, that precisely controlled changes in extracellular O$_2$ tension altered NO production by intact isolated cells within seconds, and that this effect was immediately reversible. A slow response, or an irreversible response, would have argued against any role for the regulation of NO production by PO$_2$ changes in intact cells. Instead, the effect on cellular NO production was rapid and reversible, further supporting a significant regulatory role for O$_2$ tension in vivo.

Several studies have investigated PO$_2$ dependence of NO production in intact tissues, and in vivo. NO production has been shown to be rapidly decreased by hypoxia when the primary enzyme responsible for NO production was thought to be endothelial
NOS (eNOS) (110, 136), iNOS (67), or neuronal NOS (nNOS) (292). O$_2$-mediated intracellular kinetics and regulatory mechanisms, however, are difficult to evaluate in vivo and in tissue models due to the complications of tissue structure and O$_2$ delivery dynamics. Tissues are by definition composed of several different cell types with the potential for expression of several different NOS isoforms, and it is often difficult to unequivocally define which isoform is primarily responsible for producing the measured NO. For example, in bronchial airways each isoform is expressed in different cells (35, 67), and in different regions of the same cells (35, 290). This could have important effects on total NO production, as the K_mO$_2$ for each isoform varies markedly in isolated enzyme studies (1, 214). Although tissue and in vivo studies are not directly comparable to our cell culture study, they do support the concept that NO production can be rapidly regulated by changes in O$_2$ tension in vivo.

We are not aware of any prior cell culture studies of NO production during brief exposure to hypoxia for the direct comparison to our results. Two prior studies, however, investigated the effects of long term exposure (≥ 18 hours) to multiple O$_2$ tensions on nitrite production by RAW 264.7 cells concurrently stimulated with LPS and IFNγ (179, 202). McCormick et al. measured cellular nitrite production following 24 hours of exposure to various headspace O$_2$ tensions ranging from 1% to 21% (7 to 150 Torr). The decrease in nitrite production at low O$_2$ tensions was well described by a hyperbolic curve fit, and the apparent K_mO$_2$ for the headspace gas was 10.8% (77 Torr) (179). Otto and Baumgardner measured cellular nitrite production following 18 hours of exposure to various headspace O$_2$ tensions ranging from 1 to 677 Torr. Nitrite production decreased with decreasing O$_2$ tension throughout the entire range. iNOS activity in cell lysates,
defined by citrulline production in room air at 25°C, also showed substantial dependence on cellular PO\textsubscript{2} prior to lysis, suggesting an effect of O\textsubscript{2} tension on specific activity and/or the amount of active iNOS. After normalizing nitrite production for changes in iNOS activity, and accounting for the O\textsubscript{2} diffusion gradient from the headspace gas to the cell surface, their estimate for the apparent K_mO\textsubscript{2} at the cell surface was 14 Torr (202).

Studies of long term exposures to different O\textsubscript{2} tensions are not strictly comparable to the short term exposures of the current study due to the many factors that could change slowly over time. For example, O\textsubscript{2} dependent changes in the transcription and translation of iNOS (4, 126, 179, 181, 182, 202), as well as of other relevant proteins (e.g. mediators of arginine metabolism (169)), would be expected to take several hours (4) and could substantially influence NO production in long term exposures, yet have minimal impact in short term exposures.

Three prior studies have investigated the apparent K_mO\textsubscript{2} for isolated iNOS. Using a steady state kinetics approach, Rengasamy and Johns measured citrulline production at various PO\textsubscript{2} by iNOS within a RAW 264.7 cell lysate. In their system, O\textsubscript{2} tension was rigidly controlled in the headspace gas by use of continuous gas flows, and the reaction mixture was constantly stirred to minimize diffusion gradients. They reported an apparent K_mO\textsubscript{2} for iNOS of 6.3 µM, for a solution temperature of 37°C (214). Using a rapid equilibrium kinetics approach, Abu-Soud et al. and Dweik et al. studied the effects of O\textsubscript{2} tension on purified recombinant mouse iNOS by measuring the rate of NADPH oxidation spectroscopically, in a closed system at 25°C (1, 67). They reported an apparent K_mO\textsubscript{2} of 130 µM (1) and 135µM (67). When the NO produced was scavenged with oxyhemoglobin, however, the measured K_mO\textsubscript{2} was reduced approximately 4 fold to
42 µM (1). The difference between these values was shown to be due to direct feedback inhibition of iNOS by NO, an effect that has been demonstrated for all 3 NOS isoforms (247).

In our experiments using forced convection cell culture, the flowing media continuously removed NO as it was produced, thereby minimizing NO accumulation. Our results, therefore, are most comparable to the isolated enzyme experiments that either continuously removed NO with flowing headspace gas in an open system (Rengasamy and Johns, K_{mO_2} 6.3 µM (214)), or scavenged NO with oxyhemoglobin in a closed system(Abu Soud et al., K_{mO_2} 42 µM (1)). The apparent K_{mO_2} we measured for intact cells was 22 (SD 6) Torr (31 µM based on an Ostwald solubility coefficient of 0.0271 ml O$_2$ BTP/ml water-atm at 37ºC (273)). Unlike the isolated enzyme, within intact cells several mechanisms in addition to substrate dependence and product feedback inhibition could acutely alter NO production after a change in PO$_2$. We investigated 3 potential mechanisms: changes in iNOS protein levels, iNOS dimerization, and cellular NO consumption.

iNOS protein levels were not influenced by brief hypoxic exposures. Hypoxia has been shown to induce increased expression of iNOS mRNA and protein via HIF 1α-dependent regulation (126, 181, 182). Acute changes in PO$_2$, however, would not be expected to acutely increase iNOS protein production because transcription and translation have been shown to take up to 6 hours to change after an appropriate stimulus (4). To our knowledge, the effect of hypoxia on iNOS degradation has not been investigated. The iNOS half life in room air, however, was approximately 1.6 hours in
several cell types (145). Our results showing that brief hypoxic exposures have little impact on iNOS protein are consistent with these previous studies.

iNOS dimerization was influenced by brief exposure to various O\textsubscript{2} tensions, but surprisingly did not correlate with changes in NO production. The changes in dimerization appeared to be biphasic (6 Torr and 157 Torr > 36 Torr), and were consistent for the 260 kD band, the expected size for iNOS dimers (49), and for the 500 kD band, an undefined iNOS-containing protein complex. Our data for NO production as a function of cellular O\textsubscript{2} tension (Figure 3C), and data from a prior study on iNOS activity as a function of O\textsubscript{2} tension (202), show deviations from a smooth monotonic function in that range of PO\textsubscript{2}, that may in part be related to the biphasic changes we observed in dimerization. Decreased NO production despite a large increase in iNOS dimerization during hypoxia could be due to O\textsubscript{2} substrate limitation, limitation of another substrate or cofactor during hypoxia, and/or the generation of inactive dimers.

Cellular NO consumption was negligible at all but the highest PO\textsubscript{2} and P\textsubscript{NO}, with an overall consumption constant of 0.038 pmol NO/sec\cdot106 cells\cdotTorr2 [12.7 (mmol NO)/(sec\cdot106 cells\cdotM NO\cdotM O\textsubscript{2})]. There are many possible intracellular reactants that can directly consume NO, and correspondingly, there are many possible reaction kinetics for cellular NO consumption (93, 150, 212). Our data is most consistent with first order dependence in NO and O\textsubscript{2}, most similar to the findings of Thomas et al. (251). Our consumption rates are at the low end of the reported range for various cell types (0.050 to 1.61 pmol NO/sec\cdot106 cells\cdotTorr2) (81, 251), but are consistent with a previous report of LPS and IFN\gamma stimulated RAW 264.7 cells (0.011 pmol NO/sec\cdot106 cells\cdotTorr2 (190); see Appendix B for conversion of consumption constants to comparable units).
In summary, we used a novel forced convection cell culture system to precisely regulate cellular O$_2$ tensions in the range of < 1 Torr to 157 Torr. In an LPS and IFNγ stimulated macrophage cell line, decreases in cellular PO$_2$ reduced NO production within seconds, an effect which was immediately reversible with restoration of the original PO$_2$. The apparent K_{m}O$_2$ for this oxygen dependence was 22 (SD 6) Torr (31 µM). The changes in NO production were not explained by the effects of cell PO$_2$ on iNOS protein levels, iNOS dimerization, or consumption of NO. The rapid effects of cellular PO$_2$ on macrophage NO production are consistent with regulation of NO production by O$_2$ substrate limitation. The apparent K_{m}O$_2$ in intact cells and the kinetics of the PO$_2$ dependence suggest that O$_2$ substrate limitation could play a dynamic role in the regulation of NO production by iNOS in vivo.
APPENDIX A: NO Consumption Model

For each individual column, studied at a fixed PO₂, $Q\alpha_{\text{NO}}(P_{\text{NO}}-P_{\text{NOe}})$ was plotted against P_{NO} (Figure S1) to assess for linear dependence that would indicate that first order kinetics in NO are appropriate. The negative intercept on this plot is production, i.e. intercept = -$f(PO₂)k_pN$, which could be of any functional form (for example the Michaelis-Menten fit in Figure 3). The only assumption required about production for this analysis of NO consumption is that the production is independent of P_{NO}.

For the experiments at higher PO₂ (36 and 83 Torr) in figure S1, a linear fit is clearly adequate, and the slopes were significantly different from zero. At lower PO₂, as the slope of this relationship approaches zero, the power to detect a slope significantly different from zero is reduced. As expected, the trend for a linear relationship did not result in a slope significantly different from zero ($p \geq 0.122$) for the PO₂ = 6 Torr data sets.

For each column, the best fit slope (b_1) of the $Q\alpha_{\text{NO}}(P_{\text{NO}}-P_{\text{NOe}})$ versus P_{NO} data was divided by PO₂ and plotted against PO₂ (Figure S2). First order dependence in PO₂ predicts that $b_1/PO₂$ should be independent of PO₂. The data of figure S2 are consistent with a constant $b_1/PO₂$ that is independent of PO₂, confirmed by a best fit regression slope not significantly different from zero ($p = 0.422$).

The best estimate of the overall consumption constant k_cN was estimated from a weighted average of the $b_1/PO₂$ values in figure S2 that accounts for the fact that the confidence in parameter estimates is increased at higher PO₂. The weighted average assigned weights in direct proportion to PO₂. The resulting best estimate for k_cN was 0.0186 pmol NO/sec·Torr².
Finally, cell number for these experiments was estimated from representative measurements of total protein after lysis of cells from the columns, combined with a previously established relationship between cell number and protein for RAW 264.7 cells (202):

\[N = -1.99 \times 10^4 + 7.09 \times 10^6 \text{(protein)} \]

where protein is in mg. Average cell number for these experiments was 4.9×10^5.

The overall NO consumption rate constant, normalized to cell number, is

\[
\text{NO consumption} = 0.038 \frac{(\text{pmol NO})}{(\text{sec} \cdot 10^6 \text{ cells} \cdot \text{Torr NO} \cdot \text{Torr O}_2)}
\]

\[= 12.7 \frac{(\text{mmol NO})}{(\text{sec} \cdot 10^6 \text{ cells} \cdot \text{M NO} \cdot \text{M O}_2)} \]
APPENDIX B: Conversion of k_e Units for Comparison to Previous Studies

Thomas et al. reported NO consumption data for cultured rat hepatocytes (251). NO consumption was first order in both NO concentration and O_2 concentration, with a rate constant of $5.38 \times 10^{-4} \text{ M}^{-1} \text{·sec}^{-1} \text{·(cell/ml)}^{-1}$. For an NO solubility at 37°C of 2.13 µM/Torr (271) and an O_2 solubility at 37°C of 1.40 µM/Torr (273), the equivalent rate constant in units compatible with our reported value is $1.61 \text{ pmol/sec} \cdot 10^6 \text{ cells} \cdot \text{Torr}^2$.

Nalwaya and Deen reported NO consumption data for stimulated RAW 264.7 cells (190). NO consumption was treated as first order in NO and zero order in O_2, with a rate constant of 0.6 sec$^{-1}$. They measured NO consumption over a range of P_O_2. Taking as an approximation a P_O_2 in the middle of this range at 100 Torr, with an NO solubility as above, and with their estimate of cell volume of $8.8 \times 10^{-13} \text{ L/cell}$, the equivalent rate constant is $0.011 \text{ pmol/sec} \cdot 10^6 \text{ cells} \cdot \text{Torr}^2$.

Gardner et al. reported NO consumption data for several cell types (81). NO consumption values, in compatible units, ranged from 0.050 to 0.52 pmol/sec·10^6 cells·Torr2.
Forced convection cell culture system. Adherent RAW 264.7 cells were cultured at 37°C on the inside of a fused-silica column (inset). The media, delivered by forced convection via a roller pump, was partially degassed by prewarming to 40°C, and then was equilibrated with calibrated compressed gas mixtures ranging from 0 to 157 Torr O₂ (5% CO₂, balance N₂) inside one of two gas equilibrators (labeled Gas Equilibrator 1 and 2). Rapid changes in O₂ tension or media components were enabled by a switching valve upstream from the column of adherent cells (labeled A). NO in the media stream (effluent NO) was measured by an NO electrode (WPI) located downstream from a second switching valve (labeled B) that permitted assay of media from the cells or a
bypass. The bypass loop allowed for regular electrode baseline measurements. A syringe pump controlled the delivery of deoxygenated, deionized H₂O equilibrated with 2000 ppm NO (balance N₂) into a T connector (labeled T) inserted into the media stream from gas equilibrator 2. The addition of specific NO tensions (input NO) enabled calibration of the NO electrode and evaluation of cellular NO consumption. Figure adapted from Baumgardner and Otto (6).
NO Consumption by Media. Oxygen dependence of the signal at the NO electrode was measured as a function of NO tension in minimal essential media (JBMEM) in the absence of cells. Each bar represents the mean (SD) of the NO probe signal (pA) for JBMEM at five input P_{NO} and six P_{O_2} ($n = 3$). Because the conversion of NO to its stable end products (NO$_2$ and NO$_3$) is O_2 dependent, the results imply that NO consumption by the media is negligible.
Effect of PO₂ on NO Production. A. Representative tracing of NO (ppm) released by LPS and IFNγ stimulated RAW 264.7 cells during rapid switching between 0 and 36 Torr O₂. Cells were repeatedly exposed to 0 Torr O₂ for 2 minutes, then 36 Torr O₂ for 3 minutes for a combined total of 40 minutes (n = 4). Arrows indicate probe baseline, which was measured at the beginning and end of the experiments via the bypass loop. B. Representative tracing from one of five experiments in which LPS and IFNγ stimulated RAW 264.7 cells were exposed to eight O₂ tensions ranging from < 1 to 157 Torr in a
randomized order, while effluent NO (ppm) was measured electrochemically. In between each O$_2$ tension, cells were exposed to 0 Torr O$_2$. The numerical values above each plateau represent the estimated mean cellular PO$_2$. C. Michaelis-Menten plot. The calculated K_mO$_2$ was 22 (SD 6) Torr. The calculated V_{max} was 4.9 (SD 0.4) nmol/min·106 cells.
Effect of O_2 tension on iNOS protein concentration. Representative western blot of SDS-PAGE gel for inducible nitric oxide synthase (iNOS) in LPS and IFNγ stimulated RAW 264.7 cells exposed to 6, 36, or 157 Torr O_2 for 40 minutes. iNOS signal was normalized to RAF-1, a constitutively expressed protein. The bar graph presents the mean (SD) of the iNOS to RAF-1 ratio at each PO_2 ($n \geq 4$). (-) Unstimulated RAW 264.7 cells exposed to 36 Torr O_2 for 40 minutes.
Effect of O$_2$ tension on iNOS dimerization. A. Western blot of low temperature SDS-PAGE gel for inducible nitric oxide synthase (iNOS) in LPS and IFNγ stimulated RAW 264.7 cells exposed to 6, 36, or 157 Torr O$_2$ for 40 minutes. M = Hi-Mark pre-stained molecular weight marker (Invitrogen, Carlsbad CA). RA = RAW 264.7 cells grown in room air. CL = RAW 264.7 cells cultured in room air and treated with 10 μM clotrimazole, an inhibitor of iNOS dimerization (232), for 30 minutes prior to and during stimulation with LPS and IFNγ for 8 hours. Stim = RAW 264.7 cells were unstimulated (-) or stimulated (+) for 18 hours with LPS and IFNγ. Flow = RAW 264.7 cells grown in culture dishes (-) or with forced convection (+). B. Bars represent the mean (SD) of the 260 kD to 130 kD ratio ($n = 3$). * $p = 0.003$ compared to 36 Torr. C. Bars represent the mean (SD) of the 500 kD to 130 kD ratio ($n = 3$). * $p = 0.008$ compared to 36 Torr.
Effect of NO and O$_2$ tension on cellular NO consumption. A. Representative tracing of 1400W inhibition of NO produced by LPS and IFNγ stimulated RAW 264.7 cells ($n = 12$). Cells were switched from JBMEM to 100 μM 1400W in JBMEM lacking L-arginine (labeled 1400W). Effluent P$_{\text{NO}}$ was measured approximately every 10 minutes for 2 minutes (labeled NO). B. Representative tracing showing effluent P$_{\text{NO}}$ measured during sequential exposure of 1400W-inhibited cells to 40, 79, 160, 319, and 500 ppm.
input P_{NO} as labeled, and 0 ppm NO (labeled Cell NO; $n = 8$). O$_2$ tension was 6 Torr. C. Cellular NO consumption by LPS and IFN\textgamma stimulated RAW 264.7 cells treated with the iNOS inhibitor 1400W was measured as a function of O$_2$ and NO tension. Each bar represents the mean (SD) of the ratio of the effluent P_{NO} with cells to the effluent P_{NO} without cells for five input P_{NO} and three PO_2 ($n \geq 2$). Reference line = 1. Ratios < 1 = net NO consumption. Ratios > 1 = net NO production.
Figure S1.
Dependence of cellular NO consumption on NO tension. Plots of $Q_{\alpha \text{NO}}(P_{\text{NO}} - P_{\text{NOe}})$ versus P_{NO} for individual columns at 6, 36, or 83 Torr O_2. The lines represent the linear regression.
Dependence of cellular NO consumption on PO₂. Plot of \(b_1/\text{PO}_2 \) versus \(\text{PO}_2 \) \((n \geq 2)\), where \(b_1 = \) the best fit slope of the \(Q_{\text{NO}}(P_{\text{NO}}-P_{\text{NOX}}) \) versus \(P_{\text{NO}} \) data presented in Figure S1.
Table 1. NO Consumption in DMEM.

<table>
<thead>
<tr>
<th>Component</th>
<th>% Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMEM (Gibco)</td>
<td>99.9</td>
</tr>
<tr>
<td>Gibco™ essential amino acid mixture (1X)</td>
<td>72</td>
</tr>
<tr>
<td>NaHCO$_3$ (3700 mg/L)</td>
<td>48</td>
</tr>
<tr>
<td>Glucose (4500 mg/L)</td>
<td>36</td>
</tr>
<tr>
<td>Glucose (1000 mg/L)</td>
<td>15</td>
</tr>
<tr>
<td>NaCl (6400 mg/L)</td>
<td>7</td>
</tr>
<tr>
<td>deionized H$_2$O</td>
<td>0</td>
</tr>
</tbody>
</table>

Using the forced convection cell culture system and NO electrode, effluent NO was measured in DMEM and select components after a 29 second exposure to 80 ppm input NO in the absence of cells and O$_2$. The signal generated by the exposure of deionized H$_2$O at 0 Torr O$_2$ to 80 ppm NO was designated 0% consumption.
Table 2. Cell survival in DMEM and JBMEM.

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Media</th>
<th>2</th>
<th>6</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMEM (U)</td>
<td>95.1 (2.7)</td>
<td>97.4 (0.9)</td>
<td>90.2 (3.9)</td>
</tr>
<tr>
<td></td>
<td>DMEM (S)</td>
<td>94.8 (0.9)</td>
<td>94.5 (1.3)</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>JB MEM (U)</td>
<td>91.2 (4.7)</td>
<td>90.9 (2.3)</td>
<td>88.0 (5.1)</td>
</tr>
<tr>
<td></td>
<td>JB MEM (S)</td>
<td>94.0 (0.4)</td>
<td>94.4 (0.5)</td>
<td>ND</td>
</tr>
</tbody>
</table>

RAW 264.7 cells were cultured for 2, 6, or 18 hours in DMEM or JBMEM with (S) or without (U) stimulation (1 Ìg/ml LPS and 100 U/ml IFNγ initiated 18 hours prior to seeding; n = 3). Percent survival was measured via Trypan blue staining. Data are presented as mean (SD). ND = not determined.
CHAPTER 2.

pO2 Dependent NO Production Determines OPPC Activity in Macrophages

Mary A. Robinson1,2,3, Stephen W. Tuttle1, Cynthia M. Otto2,3, and Cameron J. Koch1

1Department of Radiation Oncology, School of Medicine, University of Pennsylvania Philadelphia PA 19104; 2Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania Philadelphia PA 19104; 3Center for Sleep and Respiratory Neurobiology, University of Pennsylvania Philadelphia PA 19104.

Manuscript Submitted for Publication to Free Radical Biology and Medicine on April 9th, 2009.
ABSTRACT

Stimulated macrophages produce nitric oxide (NO) via inducible nitric oxide synthase (iNOS) using molecular O$_2$, L-arginine, and NADPH. Exposure of macrophages to hypoxia decreases NO production within seconds due to limitation of the reactant(s). Conflicting data exist regarding the effect of pO$_2$ on NADPH production via the oxidative pentose phosphate cycle (OPPC). Therefore, the present studies were developed to determine whether NADPH could be limiting for NO production under hypoxia. Production of NO metabolites (NOx) and OPPC activity by RAW 264.7 cells was significantly increased by stimulation with lipopolysaccharide (LPS) and interferon γ (IFNγ) at pO$_2$ ranging from 0.07% to 50%. OPPC activity exhibited a linear dependence on NOx production at pO$_2 > 0.13%$. Increased OPPC activity by stimulated RAW 264.7 cells was significantly reduced by 1400W, an iNOS inhibitor. OPPC activity was significantly increased by concomitant treatment of stimulated RAW 264.7 cells with chemical oxidants, hydroxyethyl disulfide or pimonidazole, at 0.07% and 50% O$_2$, without decreasing NOx production. These results are the first to demonstrate the relationship between NO production and OPPC activity over a wide range of pO$_2$, and to rule out limitations in OPPC activity as a mechanism by which NO production is decreased under hypoxia.
INTRODUCTION

Nitric oxide (NO) production is a key component of the macrophage response during inflammation (33, 172). Macrophages stimulated by pathogen associated molecular patterns (PAMPs) produce NO from molecular O$_2$, L-arginine, and NADPH via inducible nitric oxide synthase (iNOS) (245). NO production clearly depends on the partial pressure of O$_2$ (pO_2) (179, 202, 218), and the estimated cellular K_mO$_2$ (14 Torr (202) to 77 ± 1.4 Torr (179)) is within the physiological range (5 to 71 Torr (23, 37, 42, 124, 129, 263, 282)). Systemic and/or tissue hypoxia develops during several inflammatory diseases (42, 75, 122), extending the pO_2 range for tissue macrophages to even lower levels, and potentially limiting NO production in vivo. Acute exposures to hypoxia have been shown to rapidly (within seconds) and reversibly decrease NO production by PAMPs stimulated macrophages without decreasing iNOS protein or assembly (218), providing evidence for the dynamic regulation of NO production by substrate limitation. While molecular O$_2$ is clearly limiting, an effect of hypoxia on the electron donor NADPH represents a second potential mechanism that has not been investigated in macrophages.

NADPH is constitutively produced by NADP+ dependent malic enzyme and isocitrate dehydrogenase. When NADPH oxidation exceeds the capacity of these enzymes to reduce the substrate, however, the increase in [NADP+] activates glucose-6-phosphate dehydrogenase (G6PD), the initial and rate limiting enzyme of the oxidative pentose phosphate cycle (OPPC) (68). An association between NADPH production by G6PD and the production of NO has previously been demonstrated in endothelial cells (156-158), an insulin-producing pancreatic beta cell line (RINm5F) (98), and
macrophages (57, 112, 180, 258). In macrophages, stimulation with PAMPs was found to elicit a parallel increase in OPPC activity (153, 177, 191) and NO production (57), by increasing G6PD activity and metabolic flux through the OPPC, rather than via the malic enzyme (58). Moreover, pharmacologic inhibition of OPPC activity or G6PD deficiency was shown to significantly impair NO production by stimulated macrophages (112, 180, 258).

Reduction of NADP+ via the OPPC does not require molecular O$_2$. Classical studies have measured increased [NADPH] in response to short term hypoxia due to the absence of metabolically-generated oxidizing agents (99, 127, 227, 259). More recently, however, [NADPH] was found to be significantly decreased in denuded bovine coronary arteries following brief exposure to hypoxia (~ 8 to 10 Torr, 20 minutes (100)). This effect was attributed to increased glycolytic flux, resulting in the redirection of substrate (glucose-6-phosphate) away from the OPPC. However, OPPC activity was not directly measured in these experiments. These results suggest NADPH availability may be limited during acute hypoxia in some tissues and/or cell types.

NADPH production via the OPPC maintains the cellular redox equilibrium (16). Therefore, to investigate whether OPPC activity was limited during acute hypoxia, the cells were simultaneously exposed to hydroxyethyldisulfide (HEDS) or pimonidazole (PIMO) to pharmacologically induce oxidative stress by two distinct mechanisms. HEDS is a low molecular weight, cell permeable disulfide that is reduced by exchange reactions with glutathione and other cellular thiols. These oxidized cellular thiols are subsequently reduced by NADPH-dependent glutathione and thioredoxin reductases (18, 26, 27).
PIMO is reduced by cytochrome P450 enzymes, which also utilize NADPH to provide reducing equivalents (264).

The primary goal of this study was to investigate the relationship between pO$_2$ (0.07% to 50%), NO production, and OPPC activity in PAMPs stimulated and unstimulated macrophages (Figure 1). We chose to study RAW 264.7 cells due to the extensive literature on the pO$_2$ dependence of NO production in these cells (179, 202, 218), and due to their abundant and persistent NO production (61). We hypothesized that 4 hours of hypoxia would decrease NO production and OPPC activity without affecting iNOS concentration or iNOS dimerization. Second, we hypothesized that pO$_2$ would not affect the response of OPPC activity to chemically-induced oxidative stress via HEDS or PIMO. Our results suggest that pO$_2$, and not NADPH availability, affects NO production by PAMPs stimulated macrophages during acute hypoxia.
METHODS

Cell Culture

RAW 264.7 cells (American Type Culture Collection, Manassas, VA) were maintained at 37°C 5% CO₂ in DMEM (Invitrogen, Carlsbad, CA) supplemented with 10% FBS (HyClone, Logan, Utah) and 1% antibiotic/antimycotic (penicillin, streptomycin, amphotericin B; Invitrogen) for up to 10 passages. For experiments, 10⁶ cells were plated on 20 mL glass vials (inner diameter ~ 24 mm), or 1.5 x 10⁶ cells were spot plated on 50 mm glass dishes (143). Glass dishes and vials were cleaned and fired at 420°C, then treated with 75 mM sodium carbonate (Fisher, Fair Lawn, NJ) and 15% FBS for 1 hour at 37°C, treated with 0.2% gelatin (BioRad, Richmond, CA) for 20 minutes, and dried under UV light prior to plating the cells. Cells were then cultured overnight with 3 mL of MEM (Invitrogen, 11095) supplemented with penicillin, streptomycin, 15% FBS, non-essential amino acids, and 1 mM pyruvate. Stimulation of RAW 264.7 cells was performed by treating cells overnight (at least 18 hours) with 1 µg/mL LPS (E. coli O111:B4; Sigma) and 100 U/mL CHO-derived recombinant mouse IFNγ (Cell Sciences, Canton, MA). Immediately prior to experiments, the media was replaced with 1 mL of low glucose (2 mM) MEM buffered with 25 mM HEPES (i.e. instead of sodium bicarbonate to prevent saturation of the filter paper with unlabeled CO₂ during the measurement) and containing 5% FBS, non-essential amino acids, 1% penicillin and streptomycin, and 2 mM glutamine. HEPES-buffered media pH was not affected by pO₂ or any of the other treatment conditions (data not shown). Where indicated, NOx production was inhibited by treating cells with 100 µM N-[[3-(aminomethyl)phenyl]methyl]-ethanimidamide, dihydrochloride (1400W; Cayman
Chemical, Ann Arbor, MI) in the absence of L-arginine for one and one half hours immediately prior to switching to low glucose media. To chemically induce oxidative stress, 2 mM hydroxyethylidisulfide (HEDS) or 2 mM pimonidazole (PIMO) were added to the low glucose media.

pO₂ Control with Thin Film Cell Culture

RAW 264.7 cells were cultured at 0.07%, 0.13%, 0.24%, 0.61%, 2%, 10%, or 50% O₂ for 4 hours at 37°C in vials or dishes contained in leak proof aluminum chambers, which enabled precise control of headspace pO₂ as previously described (142-144, 259). Briefly, glass vials were capped with a rubber stopper containing a center well (Kimble Chase, Vineland, NJ) with a 1 × 0.5 cm Whatman GF/B glass-fiber filter soaked with 100 µL 5% KOH (259). A 25G 5/8 inch needle was inserted into the stopper to enable slow gas exchange during the evacuations and pressurizations for oxygen control, while limiting gas exchange under the constant pressure conditions during the subsequent incubation (259). Vials or dishes were placed in aluminum chambers and subjected to a series of gas exchanges with N₂ or O₂ to produce the desired headspace pO₂. Chambers were warmed to 37°C and shaken continuously to ensure adequate gas exchange between the headspace and the media throughout the experiment (4 hours). The pO₂ in the chambers was measured at the end of the incubation period using a polarographic oxygen electrode. However, the pO₂ in the headspace of each vial was not directly accessible. Additionally, the depth of the medium layer in the vials did not conform to the “thin-layer” model that was originally developed in 50 mm glass dishes (143). Thus, in separate experiments, we added 100 µM EF5 to both dishes and vials, and assayed for
EF5 adducts using flow cytometry as previously described (141, 142) in order to directly assess cellular pO$_2$. Note that in the experiments presented, pO$_2$ is defined as the % of oxygen in 1 atmosphere of dry gas at 37°C (i.e. 100% = 760 mm of Hg).

NOx Measurement

Nitrite, nitrate, and nitrosothiols (NOx) were measured in media or cell lysates by injecting 20 µL into a reaction chamber containing a VCl$_3$/HCl mixture (0.4 g VCl$_3$ in 50 mL 1 N HCl) heated to 90°C. The resulting NO was continuously flushed with helium into a Sievers Nitric Oxide Analyzer 280i (GE Analytical Instruments, Boulder, CO) for reaction with ozone and measurement via chemiluminescence. Quantification was performed by comparison to standards prepared with NaNO$_2$.

Electrophoresis and Immunoblotting

Cell lysates were prepared by washing cell monolayers with ice cold cell rinse (6.8 g/L NaCl, 400 mg/L KCl, 122 mg/L NaH$_2$PO$_4$ anhydrous, 1 g/L glucose, 25 mM HEPES, pH 7.2), and then scraping cells into 0.4 mL ice cold protease-inhibitor containing hypotonic lysis buffer (1:1000 Protease Inhibitor Cocktail P8340 (Sigma-Aldrich, St. Louis, MO), 10 µM phenylmethylsulfonyl fluoride (Sigma-Aldrich) in dH$_2$O). Lysates were subjected to 3 freeze/thaw cycles (-70°C). Cell lysate protein concentration was measured using the Biorad DC protein assay (Hercules, CA). Proteins (5 µg) were separated on a 7.5% Tris-HCl gel using SDS PAGE or low temperature SDS PAGE (LT SDS PAGE) as previously described (218), transferred to polyvinylidene fluoride (Immobilon™-FL 0.45 µm; Millipore, Bedford, MA), and immunoblotted for
iNOS (1:2000; NOS2 M19 sc650, Santa Cruz Biotechnology, Inc., Santa Cruz, CA). β-actin (1:20,000; Monoclonal anti-β actin Clone AC-15 A5441, Sigma-Aldrich) was used as the loading control. Primary antibodies were immunocomplexed with IRDye™ 800 goat anti-rabbit or goat anti-mouse (1:10,000; Rockland, Gilbertsville, PA). Proteins were detected, documented, and analyzed using an Odyssey Imaging System and software (LiCor Biosciences, Lincoln, NE).

OPPC and TCA Activity

RAW 264.7 cells were cultured in the presence of 2 mM glucose labeled in either the 1-14C or 6-14C position at a specific activity of 200 μCi/mmol glucose in 1 ml of bicarbonate-free MEM. At the completion of each experiment, the vials were removed from the aluminum chambers, the needle was removed from the rubber stopper, and cellular metabolism was stopped by injection of 100 μL 6 N acetic acid into the media; the acidification step also releases CO2 from the medium into the gas phase. 14CO2 was collected on a 5% KOH saturated filter overnight at room temperature. The filter was removed and the 14CO2 was counted with a Packard liquid scintillation counter. TCA activity leads to release of 14CO2 from either the 1-14C or 6-14C position of glucose, while OPPC activity causes release of 14CO2 only from the 1-14C position. Thus, OPPC activity was calculated using parallel vials and subtracting 14CO2 produced in the presence of 6-14C glucose from the 14CO2 produced in the presence of 1-14C glucose.
Statistics

The apparent K_m and V_{max} values were calculated by SigmaPlot Enzyme Kinetics Module 1.1 using a Michaelis-Menten non-linear analysis. Comparison of means were tested by ANOVA for the effect of pO$_2$ on measured values, and by two way ANOVA for the effect of pO$_2$ and treatment on measured values. Data presented are mean ± SD.
RESULTS

Control of Cellular pO₂

Cellular pO₂ was regulated using a modified version of the Thin Film Culture Method developed in our laboratory (143). To ensure the modified method (i.e. glass vials with rubber stopper and needle) provided the same pO₂ at the cellular level, we compared the cellular pO₂ in glass dishes with the cellular pO₂ in glass vials via the measurement of EF5 protein adducts (Figure 2). The formation of EF5-protein adducts increases as the pO₂ decreases in a quantitative manner, thus permitting an accurate measurement of cellular pO₂ because the pO₂ is constant between the gas and liquid phases (143). The pO₂ dependence of EF5 binding for RAW 264.7 cells incubated on glass dishes was similar to results from other cultured cell lines (141). Importantly, the EF5 binding for cells in glass vials closely paralleled EF5 binding for cells on glass dishes (Figure 2).

pO₂ dependence of NOx production

NOx, iNOS protein levels, and iNOS dimerization were measured using the thin film cell culture method and low glucose media required for the OPPC measurements. The results obtained in low glucose media were similar to previous cell culture systems (Figure 3 and references (202, 218)). Cumulative NOx released into the media by LPS and IFNγ-stimulated RAW 264.7 cells fit a Michaelis-Menten kinetic model with a K_m of $0.66 \pm 0.12 \% (5 \pm 1 \text{Torr})$ and a V_{max} of $25.2 \pm 1.0 \text{nmol/10}^6 \text{cells}$ ($R^2 = 0.91$, Figure 3A). NOx measured in cell lysates from LPS and IFNγ-stimulated RAW 264.7 cells exposed to 50% O₂ for 4 hours was $3.5 \pm 1.1 \text{nmol/10}^6 \text{cells}$, 13% of NOx detected in the...
media. In the absence of LPS and IFNγ stimulation, RAW 264.7 cells did not produce detectable NOx (data not shown). pO₂ did not alter iNOS protein concentration (Figure 3B) or iNOS dimerization (Figure 3C). Stimulation of RAW 264.7 cells with LPS and IFNγ decreased total protein isolated from the vials by 30%, consistent with previous reports (200, 218). pO₂ alone did not affect cell adhesion as visualized by light microscopy, or the amount of total protein isolated from the vials (data not shown).

pO₂ dependence of OPPC Activity

Unstimulated RAW 264.7 OPPC activity exhibited a biphasic response to pO₂ (Figure 4A), with a decrease between 0.07% and 2% O₂ and a 2.5 fold increase between 10% and 50% O₂. Stimulation of RAW 264.7 cells with LPS and IFNγ for 18 hours significantly increased OPPC activity at all pO₂ (p < 0.001). OPPC activity correlated directly with NOx production for pO₂ greater than 0.13% O₂ in LPS and IFNγ stimulated cells (Figure 4B). Treatment of LPS and IFNγ stimulated RAW 264.7 cells with 1400W, an iNOS inhibitor, completely inhibited NOx production (Table 1), and significantly decreased OPPC activity to levels observed without LPS and IFNγ treatment (p < 0.001; Figure 4A, Table 1). 1400W also decreased OPPC activity in unstimulated RAW 264.7 cells (Table 1) and unstimulated RAW 264.7 cells treated with PIMO (data not shown) at 50% O₂, but not 2% and 0.07% O₂, suggesting possible nonspecific effects of the treatment at 50% O₂. Treatment of RAW 264.7 cells with LPS and IFNγ decreased TCA activity (Table 1), consistent with NOx-mediated respiratory inhibition (reviewed by (40)). Treatment with 1400W, however, did not reverse the observed affect on TCA activity at any pO₂ (Table 1).
OPPC Challenge with HEDS and PIMO

To further increase oxidative challenge, RAW 264.7 cells were treated with HEDS or PIMO, two chemical oxidants, which operate by distinct mechanisms. HEDS or PIMO both increased OPPC activity significantly in RAW 264.7 cells at either 0.07% O$_2$ and 50% O$_2$ (p < 0.001, Figure 5). Stimulation of RAW 264.7 cells with LPS and IFNγ did not alter the magnitude of the increase in OPPC activity induced by HEDS or PIMO treatment. NOx production was measured during OPPC challenge to determine whether NO production was maintained despite chemical oxidant stress (i.e. to assess whether OPPC capacity was able to accommodate both processes). NOx production by LPS and IFNγ stimulated RAW 264.7 cells was not affected by HEDS treatment at 0.07% O$_2$ or 50% O$_2$ (Figure 6). PIMO, a nitroimidazole, was detected by the nitric oxide analyzer (2 mM PIMO in media generated the equivalent signal of 3.6 µM NaNO$_2$). Even after correcting for this signal, however, NOx measurements were significantly increased in PIMO treated LPS and IFNγ stimulated RAW 264.7 cells at 0.07% O$_2$ (p < 0.05) and 50% O$_2$ (p < 0.001), suggesting PIMO might be metabolized to nitrite, nitrate, or nitrosothiols (178).
DISCUSSION

Increased NOx production and increased OPPC activity were observed over a wide range of pO$_2$ (0.07% to 50% O$_2$) in LPS and IFN$_\gamma$ stimulated RAW 264.7 cells, consistent with previous reports of a relationship between NO production and NADPH oxidation in atmospheric O$_2$ (57, 98, 112, 156-158, 180, 258). Moreover, inhibition of NO production significantly decreased OPPC activity at all pO$_2$ investigated, suggesting that the majority of the increased OPPC activity observed in stimulated RAW 264.7 cells was directly related to NO and/or reactive nitrogen species production. Hypoxia did not inhibit the ability of the OPPC to respond to chemically mediated oxidative stress induced by HEDS or PIMO, and HEDS did not inhibit NOx production in stimulated cells. These results demonstrate that OPPC activity is not limiting for NO production by stimulated RAW 264.7 cells irrespective of pO$_2$.

The pO$_2$ dependence of NOx production was well fit by a Michaelis-Menten model, and the measured K_mO$_2$ (0.66% or 5 Torr) was within the range reported previously (5 Torr to 96 Torr) (1, 67, 179, 202, 214, 218). Despite substantial differences in experimental methodology, these data are consistent with our previous results using forced convection cell culture (22 Torr) (218), and our previous data from cell monolayers grown in dishes for 18 hours, after correction for iNOS activity and media depth (14 Torr) (202). The data are also consistent with measurements made by Rengasamy and Johns using RAW 264.7 cell lysates and a steady state system (5 Torr) (214). In contrast, rapid equilibrium studies with recombinant iNOS reported apparent K_mO$_2$ values of 93 Torr (1) and 96 Torr (67). At present, the reasons underlying the > 10 fold higher apparent K_mO$_2$ measured with recombinant iNOS are unclear. Regardless, the
range of pO$_2$ found in vivo (5 to 71 Torr (23, 37, 42, 75, 122, 124, 129, 263, 282)) has the potential to significantly and rapidly affect NO production, as suggested previously (1, 67, 179, 202, 214, 218).

The pO$_2$ dependence of NOx production was not due to changes in iNOS protein levels or iNOS dimerization, consistent with our previous studies of short-term hypoxia (40 minutes) (218). Multiple studies have documented the affects of long-term (18 to 24 hours) hypoxia on iNOS upregulation via HIF 1α (126, 181, 182). Increased expression of iNOS protein due to hypoxia, however, requires incubations greater than or equal to 6 hours (4). The half-life of iNOS in atmospheric O$_2$ is approximately 1.6 hours (145), but the effect of hypoxia on stability of the protein has not been investigated. Based on the present study, we conclude that short-term hypoxia (i.e. < 4 hours) has negligible effects on the balance between transcription, translation, assembly, and degradation of iNOS.

Several previous studies have investigated the effects of short term hypoxia on NADPH and/or OPPC activity (99, 100, 127, 227, 259), but we have found no prior studies that examined the pO$_2$ dependence of OPPC activity in macrophages. Interestingly, OPPC activity in unstimulated RAW 264.7 cells exhibited a biphasic pO$_2$ dependence in contrast to our previous work in HT1080 (human fibrosarcoma) and A549 (human lung carcinoma) cells (259). One potential source of NADP+ under hypoxia is the mitochondrial transhydrogenase. The decrease in mitochondrial respiration observed under severe hypoxia results in elevated glycolytic flux, to maintain [ATP]. Hypoxic glycolysis produces lactate and NAD+. Mitochondrial transhydrogenase couples reduction of NAD+ to oxidation of NADPH (128). This reaction has been shown to increase under anaerobic conditions (241). We propose that the NADP+ produced by the
mitochondrial transhydrogenase catalyzed reaction resulted in the stimulation of OPPC activity that we observed under hypoxia. While we are examining this hypothesis more thoroughly, it is important to note that the increase of OPPC activity between 2% and 0.07% for unstimulated RAW 264.7 cells under hypoxia, though statistically significant, is relatively small compared to the increase observed between 10% and 50% O₂, or compared to the increase observed in LPS and IFNγ stimulated cells.

Stimulation of RAW 264.7 cells with LPS and IFNγ significantly increased OPPC activity at all pO₂, thus extending previous reports for PAMPs stimulated macrophages in atmospheric O₂ (58, 153, 191, 192). These results are consistent with our results previously obtained in tumor cells (259), and conform with the classical view of decreased metabolic flux through the OPPC under hypoxia (99, 127, 227), whereby removal of O₂ leads to a reducing environment. For example, Scholz et al. measured an increase in NADPH fluorescence in rat liver within seconds of exposure to near anoxic pO₂, and measured a new steady state within minutes (227). Treatment with the iNOS inhibitor, 1400W, significantly reversed the affect of LPS and IFNγ stimulation at all pO₂, suggesting the increase in OPPC activity was to accommodate NO production and/or the neutralization of reactive nitrogen mediated stress. Although NADPH may also be consumed by NADPH oxidase (149), or even by iNOS to produce superoxide (247), superoxide release by LPS and IFNγ stimulated RAW 264.7 cells is reported to only occur within the first hour after stimulation (203), and to be only 6 % of NO production (11, 190).

OPPC activity correlated linearly with NOx production above 0.13% O₂, with a slope of approximately 2, suggesting that for each molecule of NOx measured, 4
molecules of NADPH were consumed. NO production is reported to require 1.5 molecules of NADPH per NO molecule (reviewed by (247)), leaving a theoretical excess of 2.5 NADPH molecules. One possibility for this excess is that NADPH is required to maintain cellular redox equilibrium in the presence of reactive oxygen and nitrogen mediated stress (reviewed by (16, 73)). Another possibility is a limitation associated with our measurements: NOx does not account for all NO metabolites, or for the NO released into the gas phase of the vial. Since the thin film culture system is designed to keep the gas phase in equilibrium with the liquid phase, it is not technically possible to confine NO to the media. Because NO production was not measured via radiolabeled L-arginine, it is impossible to calculate the amount of NO released into the gas phase. Therefore, the absolute relationship between NO, NOx production, and NADPH consumption remains to be addressed by additional studies.

Because OPPC activity decreased with pO\textsubscript{2}, we investigated whether OPPC activity was limited by hypoxia. HEDS and PIMO are chemical oxidants that induce oxidative stress by mechanisms that are not dependent on pO\textsubscript{2} (18, 26, 27, 264). Thus, these compounds were used to challenge the OPPC in RAW 264.7 cells under hypoxia. Treatment with HEDS or PIMO significantly increased OPPC activity under all conditions tested including hypoxia. To further investigate the relationship between OPPC activity and NOx production, we measured NOx production in LPS and IFN\gamma stimulated RAW 264.7 cells exposed to HEDS, and found that NOx production was maintained despite this chemical challenge to the OPPC. Therefore, we conclude that OPPC activity is not limiting for NO production in stimulated RAW 264.7 cells.
In summary, OPPC activity was increased following stimulation with LPS and IFNγ at all pO₂ investigated in RAW 264.7 macrophages, a response which appears to be a direct consequence of NO production. OPPC activity under conditions of chemically mediated oxidative stress (i.e. HEDS or PIMO treatment) was not limited by hypoxia, nor was it limiting for NO production under any of the conditions investigated. Finally, we conclude that O₂ substrate limitation is the primary mechanism responsible for decreased NO production by LPS and IFNγ stimulated macrophages exposed to acute hypoxia.
Schematic of the relationship investigated between NOx production and OPPC activity. The production of 1 molecule of NO consumes 1.5 NADPH molecules (247). The NO metabolites (NOx) measured in this study include nitrite, nitrate, and nitrosothiols in the extracellular media (see Methods). The OPPC produces 2 molecules of NADPH per molecule of CO₂ released. OPPC activity was measured as the production of ¹⁴CO₂ from ¹⁴C-labeled glucose minus the ¹⁴CO₂ produced by the TCA cycle (see Methods).
EF5 binding in Glass Dishes versus Vials. RAW 264.7 cells were cultured for 3 hours in the presence of 100 µM EF5 at 0.03%, 0.14%, 0.21%, 0.59%, 1.04%, 1.91%, or 11.7% O₂. RAW 264.7 cells were labeled with an EF5-specific Cy5 antibody and EF5 binding was measured by flow cytometry of a single cell suspension. Results across experiments were normalized to a positive control. Note that in the experiments presented, pO₂ is defined as the % of oxygen in 1 atmosphere of dry gas at 37°C (i.e. 100% = 760 mm of Hg).
NOx production, iNOS protein concentration, and iNOS dimerization in LPS and IFNγ stimulated RAW 264.7 cells cultured with Thin Film Cell Culture. LPS and IFNγ stimulated RAW 264.7 cells were exposed to 0.07%, 0.13%, 0.24%, 0.61%, 2%, 10%, or 50% O₂ (balance N₂) for 4 hours using Thin Film Cell Culture. A. Media NOx were converted to NO via reaction with vanadium chloride and measured with a Sievers Nitric Oxide Analyzer (see Methods). Data presented are mean ± SD. (n ≥ 3). B, C. Representative western blots of an SDS-PAGE gel (B) and a low temperature SDS-PAGE gel (C) for iNOS and β actin. (n ≥ 3). (R) RAW 264.7 cells grown in atmospheric
O₂. (+) RAW 264.7 cells treated with LPS and IFNγ for at least 18 hours prior to exposure to the designated pO₂. (-) RAW 264.7 cells not treated with LPS and IFNγ.

(M) BioRad Kaleidoscope Prestained Standards (BioRad, Hercules CA).
Correlation between OPPC activity and NOx production. A. RAW 264.7 cells (closed circles), LPS and IFNγ stimulated RAW 264.7 cells (open circles), or LPS and IFNγ stimulated RAW 264.7 cells pretreated with the iNOS inhibitor, 1400W at 100 µM (open triangles) were incubated with 1-14C glucose or 6-14C glucose in parallel experiments at 0.07%, 0.13%, 0.24%, 0.61%, 2%, 10%, or 50% O2 (balance N2). Cumulative OPPC activity was calculated by subtracting 14CO2 produced in the presence of 6-14C glucose.
(TCA Activity) from $^{14}\text{CO}_2$ produced in the presence of 1-^{14}C glucose (OPPC Activity + TCA Activity).
OPPC activity by LPS and IFNγ stimulated RAW 264.7 cells was significantly different from RAW 264.7 cells and LPS and IFNγ stimulated RAW 264.7 cells + 1400W at all pO$_2$ (p < 0.001). At this concentration (100 µM), 1400W did not completely inhibit the enhanced OPPC activity resulting from LPS and IFNγ stimulation.

Data presented are mean ± SD. ($n \geq 4$)

B. Linear regression of OPPC activity and NOx production (data shown in Figure 2). $y = [b1]x + [b0]$
OPPC Challenge with HEDS and PIMO. OPPC activity of RAW 264.7 cells and LPS and IFNγ stimulated RAW 264.7 cells was measured during treatment with one of two chemical oxidants, HEDS (2 mM) or PIMO (2 mM), at 0.07% and 50% O₂ for 4 hours. (*) Significant effect of HEDS or PIMO treatment on OPPC activity versus no treatment (p < 0.001). Data presented are mean ± SD. (n = 4)
NOx production during OPPC challenge with HEDS and PIMO. RAW 264.7 cells and LPS and IFNγ-stimulated RAW 264.7 cells were treated with 2 mM HEDS or 2 mM PIMO during a 4 hour exposure to 0.07% or 50% O2. Media NOx were converted to NO via reaction with vanadium chloride and measured with a Sievers Nitric Oxide Analyzer. PIMO data were corrected for the signal of PIMO in media (3.64 nmol). A statistically significant effect of HEDS or PIMO on NOx versus no treatment was calculated where indicated (* p < 0.05, ** p < 0.001). Data presented are mean ± SD. (n ≥ 3).
Table 1. Effect of 1400W on RAW 264.7 NOx Production, OPPC activity, and TCA activity.

<table>
<thead>
<tr>
<th>% pO₂</th>
<th>0.07</th>
<th>0.07</th>
<th>2</th>
<th>2</th>
<th>50</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400W</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOx (nmol/10⁶ cells)</th>
<th>NS</th>
<th>1.5 ± 2.1</th>
<th>ND</th>
<th>0.1 ± 1.1</th>
<th>ND</th>
<th>0.2 ± 0.3</th>
<th>ND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>4.9 ± 3.0 *</td>
<td></td>
<td>0.0 ± 0.5 †</td>
<td>15.5 ± 2.8 *</td>
<td>ND</td>
<td>26.4 ± 1.5 *</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPPC (nmol CO₂/10⁶ cells)</th>
<th>NS</th>
<th>14.7 ± 3.8 †</th>
<th>10.7 ± 1.7</th>
<th>7.4 ± 0.9</th>
<th>5.0 ± 1.9</th>
<th>25.1 ± 7.9 †</th>
<th>9.7 ± 1.0 §</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>25.0 ± 2.2 a</td>
<td>13.1 ± 0.4 b</td>
<td>59.0 ± 4.8 a</td>
<td>18.8 ± 1.9 a,b</td>
<td>71.8 ± 7.3 a</td>
<td>27.9 ± 5.3 a,b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TCA (nmol CO₂/10⁶ cells)</th>
<th>NS</th>
<th>0.3 ± 0.1</th>
<th>0.2 ± 0.02</th>
<th>1.7 ± 0.4</th>
<th>4.9 ± 0.4 c</th>
<th>4.1 ± 2.9</th>
<th>5.78 ± 2.9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>0.4 ± 0.1</td>
<td>0.3 ± 0.01</td>
<td>0.6 ± 0.04</td>
<td>0.3 ± 0.04 d</td>
<td>0.6 ± 0.04 d</td>
<td>0.3 ± 0.1 d</td>
</tr>
</tbody>
</table>

RAW 264.7 cells were stimulated (S), or not (NS), with 1 µg/mL LPS and 100 U/mL IFNγ prior to exposure to 4 hours of 0.07%, 2%, or 10% O₂ with Thin Film Cell Culture. RAW 264.7 cells were treated with 100 µM 1400W (+), or not (-), for 1 ½ hours prior to Thin Film Cell Culture. (ND) = not determined. (*) Effect of LPS and IFNγ treatment on media NOx (0.07% p < 0.05; 2% and 50% p < 0.001). (†) Effect of 1400W treatment on media NOx (0.07% p < 0.01, 50% p < 0.001). (‡) Effect of pO₂ on RAW 264.7 OPPC activity (0.07% and 50% > 2%, p < 0.05). (§) Effect of 1400W treatment on RAW 264.7 cells OPPC activity (p < 0.001). (a) Effect of LPS and IFNγ treatment on OPPC activity (p < 0.001). (b) Effect of 1400W treatment on OPPC activity by LPS and IFNγ stimulated RAW 264.7 cells (p < 0.001). (c) Effect of 1400W on TCA activity (p < 0.05). (d) Effect of LPS and IFNγ treatment on TCA activity (Without 1400W p < 0.01, With 1400W p < 0.001). Data presented are mean ± SD. (NOx n ≥ 3, OPPC n ≥ 4, TCA n ≥ 2).
CHAPTER 3.

EFFECT OF CHANGING EXTRACELLULAR L-ARGININE
CONCENTRATION ON MACROPHAGE NO PRODUCTION

Mary A. Robinson

Unpublished Data
INTRODUCTION

L-arginine is a substrate for NO production by iNOS; the nitrogen in NO is derived from either of the guanidino nitrogens of L-arginine (120, 206). Pharmacological inhibition of iNOS can be obtained in vivo and in vitro with 1400W, an L-arginine analog that contains an amidine and an amine substituted for the guanidino groups (82). Once 1400W binds to the L-arginine binding site, it is slowly reversible with a dissociation constant (Kd) of 7 nM (82). L-arginine competes directly with 1400W binding to iNOS with a binding constant (Ks) of 2.2 µM (82), similar to the iNOS apparent Km for arginine (2.8 µM (245)). The concentration of L-arginine in the cell culture media used for our studies was 300 (JBMEM) and 700 µM (MEM). Therefore, in the studies describe in Chapters 1 and 2, incubations with 1400W were performed in media prepared without L-arginine to optimize inhibition kinetics. Inhibition of NO production by exposure to 1400W (100 µM) in media prepared without L-arginine was measured directly in the forced convection cell culture system (Chapter 1, Figure 6B). To differentiate the effect of 1400W on NO production from the effect of changing the extracellular L-arginine concentration, NO production was also measured in real time during exposure to L-arginine deficient media. This experiment revealed some interesting kinetics of L-arginine removal and replacement.
METHODS

RAW 264.7 cells (American Type Culture Collection, Manassas, VA) were cultured using the forced convection cell culture system described in Chapter 1 Methods (22). Cells were stimulated overnight (18 to 24 hours) with 1 µg/ml LPS (E. coli O111:B4; Sigma) and 100 U/ml CHO-derived recombinant mouse IFNγ (Cell Sciences, Canton, MA). Then, cells were perfused with a minimal essential media (JBMEM: 140 mM NaCl, 1.4 mM CaCl₂, 5.3 mM KCl, 4.4 mM Dextrose, 25 mM HEPES, 0.3 mM L-arginine, and 0.1% heat-inactivated FBS (LONZA)) and NO production was measured with an NO electrode as described in Chapter 1 Methods. Once baseline NO production was established, the cells were perfused with L-arginine deficient media (JBMEM without L-arginine) for 1 hour. The cells were returned to L-arginine replete media, and the effect on NO production was measured. The pO₂ for these experiments was 36 Torr O₂.
RESULTS AND DISCUSSION

Perfusing the cells with L-arginine deficient media decreased NO production, but did not eliminate it (Figure 1). NO production achieved a new steady state within 15 minutes at approximately 20% of the initial NO production level. One hour later, when the cells were returned to L-arginine replete media, NO production immediately (within seconds) recovered to the initial measured level (Figure 1).

These results suggest that the majority of the L-arginine utilized for NO production by LPS and IFN\(\gamma\) stimulated RAW 264.7 cells was transported into the cell, and are consistent with previous observations of extracellular L-arginine usage for NO production by some cell types and tissues (171, 294). They also indicate that transport into the cell was fast (within seconds), relative to the rate of intracellular L-arginine metabolism (minutes). MCAT-2B, a member of the cationic amino acid transporter family, is upregulated by LPS stimulation of macrophages (52, 53), making this transporter a possible candidate for mediating the L-arginine influx. The forced convection cell culture system could be a useful tool to investigate possible MCAT-2B involvement, and the potential requirement for extracellular L-arginine.

One limitation of this experiment is that the L-arginine deficient media contained 0.1% FBS. Plasma concentrations of L-arginine are typically 50 to 200 \(\mu M\) (286), and could explain the residual NO production observed; residual NO production was ~ 75 nM, and L-arginine concentration due to the addition of 0.1% FBS is estimated to be as high as 200 nM. However, intracellular conversion of L-citrulline to L-arginine via argininosuccinate synthase and argininosuccinate lyase is also possible (186, 187). These experiments need to be repeated in media without L-arginine or FBS to evaluate the
contribution of intracellular L-arginine supply to NO production by LPS and IFNγ stimulated RAW 264.7 cells.

The effect of hypoxia on the kinetics of L-arginine transport and metabolism was not investigated. Hypoxia has also been shown to upregulate MCAT-2B mRNA (169), which would theoretically increase L-arginine influx. In contrast, both hypoxia (24 hours) alone and in combination with LPS has been shown to upregulate macrophage arginase (7, 169), which has been proposed to compete with iNOS for L-arginine as a substrate (48, 108, 250). Inhibition of arginase can increase NO production by stimulated macrophages, and vice versa (109). However, IFNγ stimulation of RAW 264.7 cells did not induce arginase (270), and costimulation of RAW 264.7 cells with LPS and IFNγ prevented arginase upregulation by an unknown mechanism (270). Thus, minimal arginase should have been present in RAW 264.7 cells following overnight stimulation with LPS and IFNγ as described for this experiment and in Chapters 1 and 2.

The duration of hypoxia required to upregulate arginase, and the effect of combined stimulation with LPS, IFNγ, and hypoxia on arginase expression and activity, have not been investigated. Because maximal arginase mRNA and protein upregulation by LPS (240, 270), cAMP (188), and dexamethasone (188) requires approximately 12 hours, it is unlikely that the hypoxic exposures used in our experiments (Chapter 1: 40 minutes; Chapter 2: 4 hours) were long enough to elicit an increase in arginase. Furthermore, L-arginine is required for iNOS dimerization, which was either increased (Chapter 1) or maintained (Chapter 2) with hypoxia in our experiments. Therefore, L-arginine availability for iNOS does not appear to be compromised by arginase in the experiments described in Chapters 1 and 2.
In summary, these data suggest that NO production predominantly depended on the continuous transport of extracellular L-arginine into the cell, and that the rate of transport was faster than the rate of utilization under these conditions. Although the effects of hypoxia on L-arginine transport and metabolism were not investigated, the maintenance of iNOS dimerization in Chapters 1 and 2 implied that L-arginine availability for iNOS was not affected by acute hypoxia. Further study of the mechanisms and kinetics of L-arginine transport and metabolism by macrophages in the forced convection cell culture system could help elucidate the physiology of L-arginine supply for NO production.
Effect of Changing Extracellular L-Arginine Concentration on Macrophage NO production. Representative tracing of NO production by LPS and IFN-γ stimulated RAW 264.7 cells exposed to L-arginine deficient media (* 240 seconds), and then returned to L-arginine replete media (* 3980 seconds) using the forced convection cell culture system. NO production was continuously measured via an NO electrode; arrows on the x axis indicate probe baseline checkpoints. Data were baseline corrected. N = 2.
DISCUSSION

Acute Hypoxic Regulation of NO Production

The ability of macrophages to migrate to sites of infection, injury, and disease results in their exposure to multiple pO$_2$ [Physiological: 5 to 71 Torr (23, 32, 37, 42, 87, 88, 124, 129, 159, 253, 254, 263, 266, 281, 282); Pathophysiological: 0 to 20 Torr (37, 38, 69, 70, 72, 79, 111, 116, 118, 122, 130, 166, 194, 213, 236, 237)]. Thus, macrophages are required to operate over a much wider range of pO$_2$ than most cell types. The studies presented herein are the first to demonstrate the rapidity (seconds) at which NO production is affected by changes in pO$_2$, the reversible nature of those changes, and confirm that these changes are occurring within the physiological and pathophysiological range. This rapid and reversible decrease in NO production following exposure to acute hypoxia (\leq 4 hours) is due to O$_2$ substrate limitation, and not effects on iNOS concentration, iNOS dimerization, NADPH availability, or L-arginine availability.

No previous cell culture studies have investigated NO production during acute hypoxia for direct comparison to these results. The measured apparent K_mO$_2$ values (Chapter 1: 22 \pm 6 Torr (218), Chapter 2: 5 \pm 1 Torr), however, are within the range of values reported previously for long term hypoxic exposures (\geq 18 hours) of LPS and IFNγ stimulated macrophages (14 Torr (202), 77 \pm 1.4 Torr (179)), and for the isolated iNOS enzyme (5 \pm 0.6 Torr (214), 93 Torr (1), 96 Torr (67)). They are also well within the range of pO$_2$ required for the regulation of NO production in vivo (0 to 71 Torr (23, 32, 37, 38, 42, 69, 70, 72, 79, 87, 88, 111, 116, 118, 122, 124, 129, 130, 159, 166, 194, 213, 236, 237, 253, 254, 263, 266, 281, 282). The rapidity and reversibility of the
response within the physiological and pathophysiological pO₂ range suggests that changes in tissue pO₂ in vivo will significantly affect macrophage NO production, as has been suggested previously (1, 67, 179, 202, 214).

Two prior studies investigated the effects of long term hypoxic exposures on nitrite production by RAW 264.7 cells concurrently stimulated with LPS and IFNγ (179, 202). McCormick et al. measured an apparent K_mO₂ for the headspace gas of 10.8 ± 2.0 % (77 ± 1.4 Torr) (179). Otto and Baumgardner measured a similar pO₂ dependence in a comparable system, but did not calculate an apparent K_mO₂ from the nitrite data directly (202). Instead, they measured iNOS protein concentration and activity, and found that iNOS protein concentration and activity also decreased as pO₂ decreased. Thus, the changes in nitrite were reflective of changes in the specific activity and/or the amount of active iNOS, as well as effects due to substrate limitation. After normalizing nitrite production to changes in iNOS activity, and accounting for the O₂ diffusion gradient from the headspace gas to the cell surface, the estimated apparent K_mO₂ at the cell surface was 14 Torr (202), similar to the apparent K_mO₂ values measured in these studies of acute hypoxia (Chapter 1: 22 ± 6 Torr (218), Chapter 2: 5 ± 1 Torr).

Acute hypoxia did not affect iNOS protein concentration, and iNOS dimerization was either increased (Chapter 1) or maintained (Chapter 2). These results are consistent with a previous study showing that costimulation with LPS and hypoxia requires a minimum of 3 hours and 6 hours to affect iNOS mRNA and protein, respectively (4). Therefore, the key difference between the regulation of NO production by acute hypoxia and long term hypoxia appears to be the absence of sufficient time for acute hypoxia to influence iNOS mRNA and protein concentration. The mechanism for increased iNOS
dimerization observed in cells cultured with forced convection is not known. Regardless, decreased NO production despite increased iNOS dimerization further suggests that substrate limitation is the primary mechanism mediating decreased NO production during acute hypoxia.

O$_2$ substrate limitation, not decreased NADPH or L-arginine availability, is the primary mechanism mediating decreased NO production during acute hypoxia. Macrophage OPPC activity linearly correlated with NO production at all pO$_2$, consistent with previous studies in atmospheric O$_2$ (58, 153, 191, 192). OPPC activity was decreased during acute hypoxia due to the absence of NO production; treatment with 1400W, a specific iNOS inhibitor, significantly reduced OPPC activity in LPS and IFNγ stimulated macrophages at all pO$_2$. Chemically mediated oxidative stress (HEDS or PIMO) significantly increased OPPC activity under all conditions tested including hypoxia, and did not affect NO production (HEDS). These results are consistent with our measurements in tumor cells (259), and conform with the classical view of decreased metabolic flux through the OPPC under hypoxia (99, 127, 227), whereby removal of O$_2$ leads to a reducing environment. They additionally demonstrate that the absence of molecular O$_2$ is not limiting for OPPC activity.

The affect of hypoxia on L-arginine transport and metabolism was not measured directly. However, L-arginine is required for iNOS dimerization (20). Thus, the increase (Chapter 1) or maintenance (Chapter 2) of iNOS dimerization measured in these studies suggests L-arginine was not limiting. These results were expected, because the concentration of L-arginine in the media used for these studies (JBMEM: 300 µM, MEM: 700 µM) was much greater than the L-arginine apparent K_m (3 µM) (245). Interestingly,
the removal of L-arginine also rapidly and reversibly decreased NO production to 20% of basal levels (Chapter 3). NO production decreased more slowly upon the removal of L-arginine (minutes) than upon the removal of O$_2$ (seconds), also suggesting the hypoxia mediated decrease in NO production was not due to limited L-arginine influx. In contrast, restoration of L-arginine immediately (seconds) enabled NO production to resume at levels equivalent to the initial measured level. The forced convection cell culture system promises to be a useful tool for studying the effect of changes in extracellular L-arginine transport on NO production.

In summary, changes in physiological and pathophysiological pO$_2$ rapidly and reversibly regulate macrophage NO production via O$_2$ substrate limitation. Acute hypoxia did not alter iNOS protein concentration, increased or maintained iNOS dimerization, and did not limit NADPH availability. Because long term hypoxic exposure mediates changes in NO production via effects on iNOS protein in addition to substrate limitation, identifying the degree and duration of hypoxia in vivo will be critical to assessing its influence on physiological and pathophysiological macrophage NO production.

Implications for Macrophage NO Physiology and Pathology

Several macrophage phenotypes produce NO (14, 102, 210, 233, 234), and NO production is essential for eliminating certain types of bacterial and parasitic infections (6, 94, 96, 215, 265). However, tissue pO$_2$ varies widely, and tissues become hypoxic in the wound environment, and during many inflammatory diseases such as sepsis and cancer (116, 194, 213, 236). The studies presented herein suggest that NO production by
macrophages will be rapidly limited by low pO$_2$ *in vivo*. Additionally, changes in extracellular L-arginine could rapidly affect macrophage NO production *in vivo*.

The center of the wound environment is hypoxic and depleted of L-arginine (7, 225). NO production and L-arginine metabolism by wound macrophages are affected by hypoxia. During hypoxia, wound macrophages metabolize L-arginine by arginase instead of iNOS (7). This switch is thought to mediate the transition from the inflammatory phase of wound healing to the proliferative phase (99). However, once angiogenesis and revascularization restore O$_2$ to the wound, redirection of L-arginine back to iNOS may result in overlap of the inflammatory phase and the proliferative phase, as has been proposed previously (105). Spatial and temporal measurements of tissue pO$_2$, NO production, and angiogenesis during wound healing would provide further insight into the sequence, duration, and overlap of these events.

Sepsis is by definition a systemic inflammatory response to infection (36), and can be thought of as a systemic wound. iNOS expressing macrophages in the heart, lung, liver, and kidney have been observed via immunohistochemistry during the first 24 hours in a rat endotoxemia model (44), which is similar to when of iNOS expressing macrophages appear in a localized wound (24 to 72 hours) (211). Also similar to the wound environment, septic patients become hypoxic (118), and L-arginine plasma concentrations decrease (78), albeit by different mechanisms. The results described herein suggest that macrophage NO production may be limited in septic patients due to decreased O$_2$ and L-arginine availability, as previously proposed (1, 7, 41, 62, 67, 94, 168, 179, 202, 214, 219). Spatial and temporal measurements of pO$_2$, NO production, and L-arginine concentration and turnover in septic models and/or patients are necessary.
to verify these results *in vivo*. If these findings are confirmed, diminished macrophage function as a result of hypoxia and L-arginine depletion could promote overwhelming infection, making it questionable as to whether specific iNOS inhibitors will provide therapeutic value for patients in septic shock. Preventing circulatory collapse, while enabling macrophages to fight off the infection, may be a more appropriate therapeutic strategy for patients in the later stages of sepsis.

Chronic inflammation and hypoxia correlate with tumor development and progression (37, 38, 69, 70, 79, 111, 162, 166). The results herein suggest that macrophage, and possibly tumor, NO production will be rapidly and reversibly limited within hypoxic areas. Similar to wound macrophages, TAM in a hypoxic environment may preferentially metabolize L-arginine via arginase (7). Arginase production of ornithine promotes cell growth, and may enable tumor growth (184). Furthermore, the results herein suggest that NO production could be restored once angiogenesis improves O₂ delivery to the tumor. Thus, spatial and temporal measurements of pO₂, NO production, and ornithine production, and identification of the cell types involved, are needed to verify these results *in vivo*, and could further our understanding of how these factors contribute to tumor progression and metastasis.

Conclusions

The pO₂ dependence of NO production occurs within the physiological and pathophysiological range. Acute hypoxia rapidly and reversibly decreases macrophage NO production. O₂ substrate limitation is responsible for decreased NO production during acute hypoxic exposures; no effects were attributable to changes in iNOS protein
concentration, iNOS dimerization, NADPH availability, or albeit indirectly, L-arginine availability. The primary differences observed between long term hypoxia and acute hypoxia appear to be the additional affects of long term hypoxia on iNOS mRNA and protein concentration. Modification of extracellular L-arginine concentration also rapidly and reversibly regulates macrophage NO production. Acute hypoxia did not appear to limit L-arginine availability. However, the effects of short and long term hypoxia on L-arginine transport and metabolism requires further investigation. Both tissue pO₂ and L-arginine concentration may significantly influence macrophage NO production and function in vivo. Further studies of the tissue microenvironment, and its effects on macrophage NO production, are required to understand its contribution to the pathogenesis of disease.
APPENDIX: HYPOXIC CELL CULTURE

Challenges of Hypoxic Cell Culture

Hypoxic cell culture is typically performed using an airtight chamber in which the gas phase overlying the media, or headspace gas, is tightly controlled. There are several limitations to this system that limit accurate and precise delivery of O\textsubscript{2} to the cells. When the media is not stirred, the poor solubility of O\textsubscript{2} in media forces investigators to use a long equilibration time to acquire hypoxic conditions (22). Diffusion of oxygen through the media is so slow, that the predicted pO\textsubscript{2} calculated based on diffusion alone (i.e. in the absence of convection currents) is 0 Torr at 1 mm below the media surface for a headspace gas of 40 Torr (22). Thus, convection currents, due to temperature gradients and vibrational changes in the environment, are responsible for the majority of the O\textsubscript{2} delivery to the cell monolayer. Since these currents depend on the environment, the resulting pO\textsubscript{2} at the cell monolayer is highly variable within and between cultures, as was confirmed in our laboratory (202). Another common problem experimenters face is that many of the materials commonly used for conventional cell culture absorb O\textsubscript{2} from room air and release substantial amounts into the media during “controlled” anoxia (242).

These limitations were overcome using the two cell culture systems described below.

Forced Convection Cell Culture

The forced convection cell culture system (Chapter 1, Figure 1) uses countercurrent exchange to equilibrate the media with a gas mixture before pumping the
media through a capillary tube containing the adherent cells (22). None of the materials used in this system absorb or release O\textsubscript{2}. Thus, accurate and precise amounts of O\textsubscript{2} can be delivered to the cells, and immediate changes between pO\textsubscript{2} can be performed. The outflow from this system immediately flows past two ports where various probes can be inserted. In these studies, a NO probe was used to record real-time NO production by the cells. The response time and sensitivity of the probe is such that physiologic changes in NO can be detected with as few as 1 X 106 cells in less than 5 seconds from its production. One disadvantage of this system is the limited number of cells (1 X 106), and thus limited sample material (protein and RNA) available for analysis.

Thin Film Cell Culture

The thin film cell culture system uses reduced media volume and constant mixing to accurately deliver O\textsubscript{2} to a cell monolayer (143). The headspace pO\textsubscript{2} is controlled by placing the glass dishes or vials into leak proof aluminum chambers, and subjecting them to a series of gas exchanges with N\textsubscript{2} or O\textsubscript{2} to produce the desired headspace pO\textsubscript{2} (142-144, 259). Chambers are warmed to 37°C and shaken continuously to ensure adequate gas exchange between the headspace and the media throughout the experiment. The pO\textsubscript{2} in the chambers is measured at the end of the incubation period using a polarographic O\textsubscript{2} electrode. Additionally, EF5, a nitroimidazole, can be used to verify that the cellular pO\textsubscript{2} is equivalent to the headspace pO\textsubscript{2} (141, 142). One disadvantage of this system is the slower equilibration time between the headspace pO\textsubscript{2} and the O\textsubscript{2} tension at the cell monolayer (~ 30 minutes).

82. Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJR, and Knowles RG. 1400W is a slow, tight binding, and highly selective inhibitor of

119. Ip MSM, Lam B, Chan L-Y, Zheng L, Tsang KWT, Fung PCW, and Lam W-K. Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by

207. Pervin S, Singh R, Hernandez E, Wu G, and Chaudhuri G. Nitric oxide in physiologic concentrations targets the translational machinery to increase the

223. Sandau KB, Zhou J, Kietzmann T, and Brune B. Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor

