
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

5-8-2003

Real-time reach planning for animated characters
using hardware acceleration
Ying Liu
University of Pennsylvania

Norman I. Badler
University of Pennsylvania, badler@seas.upenn.edu

Copyright © 2003 IEEE. Reprinted from Proceedings of the IEEE Computer Society 16th International Conference on Computer Animation and
Social Agents, 2003 (CASA'03), held 8-9 May 2003, pages 86-93. Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27000

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/5
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/cis_papers
http://repository.upenn.edu/cis
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27000
http://repository.upenn.edu/cis_papers/5
mailto:repository@pobox.upenn.edu

Real-time reach planning for animated characters using hardware
acceleration

Abstract
We present a heuristic-based real-time reach planning algorithm for virtual human figures. Given the start and
goal positions in a 3D workspace, our problem is to compute a collision-free path that specifies all the
configurations for a human arm to move from the start to the goal. Our algorithm consists of three modules:
spatial search, inverse kinematics, and collision detection. For the search module, instead of searching in joint
configuration space like most existing motion planning methods do, we run a direct search in the workspace,
guided by a heuristic distance-to-goal evaluation function. The inverse kinematics module attempts to select
natural posture configurations for the arm along the path found in the workspace. During the search,
candidate configurations will be checked for collisions taking advantage of the graphics hardware – depth
buffer. The algorithm is fast and easy to implement. It allows real-time planning not only in static, structured
environments, but also in dynamic, unstructured environments. No preprocessing and prior knowledge about
the environment is required. Several examples are shown illustrating the competence of the planner at
generating motion plans for a typical human arm model with seven degrees of freedom.

Keywords
collision avoidance, computer animation, real-time systems, robot kinematics, search problems, virtual reality,
3D workspace, animated characters, collision detection, collision-free path, direct search, distance-to-goal
evaluation function, dynamic unstructured environments, graphics hardware-depth buffer, hardware
acceleration, heuristic-based algorithm, human arm model, inverse kinematics, inverse kinematics module,
natural posture configurations, real-time reach planning, spatial search, virtual human figures

Comments
Copyright © 2003 IEEE. Reprinted from Proceedings of the IEEE Computer Society 16th International
Conference on Computer Animation and Social Agents, 2003 (CASA'03), held 8-9 May 2003, pages 86-93.
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27000

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/5

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27000
http://repository.upenn.edu/cis_papers/5

Real-time Reach Planning for Animated Characters
Using Hardware Acceleration

Ying Liu Norman I. Badler

Center for Human Modeling and Simulation
Department of Computer and Information Science

University of Pennsylvania
liuying, badler@graphics.cis.upenn.edu

Abstract

We present a heuristic-based real-time reach planning
algorithm for virtual human figures. Given the start and
goal positions in a 3D workspace, our problem is to
compute a collision-free path that specifies all the
configurations for a human arm to move from the start to
the goal. Our algorithm consists of three modules: spatial
search, inverse kinematics, and collision detection. For
the search module, instead of searching in joint
configuration space like most existing motion planning
methods do, we run a direct search in the workspace,
guided by a heuristic distance-to-goal evaluation
function. The inverse kinematics module attempts to
select natural posture configurations for the arm along
the path found in the workspace. During the search,
candidate configurations will be checked for collisions
taking advantage of the graphics hardware – depth
buffer. The algorithm is fast and easy to implement. It
allows real-time planning not only in static, structured
environments, but also in dynamic, unstructured
environments. No preprocessing and prior knowledge
about the environment is required. Several examples are
shown illustrating the competence of the planner at
generating motion plans for a typical human arm model
with seven degrees of freedom.

1. Introduction

The issue of robot motion planning has been studied

for a couple of decades and many important contributions

to the problem have been made [7]. Most of these

algorithms are based on the use of the configuration space

(C-space): a structure that maps realizable joint angle

ranges as dimensions in a Cartesian space. The inherent

difficulty with the C-space approach is its high

dimensionality. It is well known that the worst-case time

bound for any complete motion planning algorithm is

exponential in the dimensionality of its C-space [11].

Though reasonable performance can be achieved for low

degree of freedom problems (low-dimensional C-space),

motion planning algorithms typically run slowly when

faced with many degrees of freedom [9].

Motion planning has applications in a variety of fields

such as assembly planning, virtual prototyping [3], drug

design [4], and computer graphics simulations [8, 10].

However, despite the applicability of motion planning

techniques to computer graphics simulations, the problem

has not been addressed much in the computer graphics

community [2]. As stressed by Latombe [12], non-robotics

applications (e.g. graphics animation, surgical planning,

and computational biology) are growing in importance and

are likely to shape future motion planning research at least

as much as robotics.

In this paper, we address the motion planning problem

in computer graphics while avoiding the explicit use of

configuration space. Our focus is on inventing techniques

aimed at making motion planning practical for real-time

interactive animation of human arm reaching tasks in

constrained workspaces. While there has been much

robotics research on motion planning, our restriction to a

human arm and torso provides an additional constraint as

well as an opportunity to optimize such a difficult problem.

We describe a heuristic-based reaching algorithm to

automatically generate motion paths for a human arm

model in complex 3D environments. A system with such

functions may be used in different domains. It allows the

animator to direct the motion of the virtual human at a high

level in computer animation. It is suitable for a variety of

real-time applications involving autonomous animated

characters. While inverse kinematics techniques are now

common in computer animation, existing algorithms do not

readily adapt to constrained or changing environments.

Applications can also be found in ergonomic design and

evaluation of workplaces for human operators, and

maintenance facilities for service personnel [23].

Proceedings of the 16th International Conference on Computer Animation and Social Agents (CASA�03)
1087-4844/03 $17.00 © 2003 IEEE

The paper is organized as follows: in Section 2, a brief

overview of the historical approaches to motion planning

used by the computer graphics community is presented.

Section 3 describes our algorithm in detail. Section 4

presents the experimental results of the implementation for

several specific cases. Section 5 summarizes the state of

our system. Section 6 outlines directions for future

research.

2. Related Work

An early effort at addressing the motion planning

problem in computer graphics is by J. Lengyel et al. [16].

They use standard graphics hardware to rasterize

configuration space obstacles into a series of bitmap

slices, and then use dynamic programming to create a

navigation function and to calculate paths in this

rasterized configuration space.

Working with a human figure model, [1] and [22] modify

the inverse kinematics algorithm of [21] to include

environment and body constraints. The constraints are

inserted as a set of distance predicates checked during the

solution search. The iterative gradient descent search

simply respects the additional inequality constraints in

each cycle. The speed of the algorithm is limited by the

convergence rate of the inverse kinematics and the

number of point-to-point distances checked each iteration.

In [8], a path planner is developed for several

cooperating arms to manipulate a movable object between

two configurations in the context of computer animation.

In their work, a manipulation path is an alternating

sequence of transit and transfer paths, where a transit

path defines arm motions that do not move the object,

while a transfer path defines arm motions that move the

object. Transit paths are computed using a randomized

path planner (RPP) in the arms’ configuration spaces. For

transfer paths, a collision-free trajectory in the movable

object’s configuration space is computed first, and then

arm postures that are feasible to grasp the object are

selected from a finite grasp set enumerated from an inverse

kinematics algorithm.

Later, J. Kuffner designed a randomized path planner

with a sampling heuristic designed for computing

collision-free manipulation motions for animated human

characters [10]. The sampling heuristic (known as RRT-

Connect) is based on Rapidly-exploring Random Trees

(RRTs) [13, 14].

Most recently, Foskey [5] propose a hybrid motion

planning algorithm for rigid bodies translating and rotating

in a 3D workspace. In their method, they generate a

Voronoi roadmap in the workspace and combine it with

“bridges” computed by randomized path planning with

Voronoi-based sampling. The Voronoi roadmap is

computed from a discrete approximation to the generalized

Voronoi diagram of the workspace, which is generated

using graphics hardware. Applications of the Voronoi

diagram to motion planning for rigid bodies in 3D

environments can also be found in [6, 18, 24].

3. Planning Algorithm

3.1. Problem Statement and Objectives

The problem of motion planning that we focus on in

this work is described as follows: in a complex 3D

environment (known as workspace in robotics literature),

given a start position and a goal position of the end

effector, compute an optimal collision-free motion path

that a human arm can follow to reach from the start to the

goal without interactive intervention from the animator.

The freedom of movement for the arm is constrained by

the presence of obstacles in the environment. The arm

should find a feasible obstacle-free path to the goal while

satisfying certain criteria such as shortest path. For a

human arm, its movement is also constrained by

kinematics constraints such as joint limits.

The environment can be arbitrarily complex regarding

possible solution paths and obstacles encountered. The

obstacles are allowed to move unpredictably during

planning.

The goal position can be changed interactively during

planning. Once the goal is changed, the planner should be

able to immediately adjust the plan toward the new goal.

As mentioned earlier, the worst-case time bound for

any complete motion planning algorithm is exponential in

the dimensionality of the configuration space [11]. This

inherent difficulty makes many complete planning

methods infeasible in practice. The planning framework

presented here attempts to solve the problem in real-time

by trading completeness for efficiency.

Instead of a complete algorithm, we are looking for fast

spatial search and collision detection methods to perform

reaches: if a reach is “easy”, a solution should be found

quickly; but if a reach is awkward or difficult, we can

afford to indulge in more computation to find a path if one

exists.

3.2. Algorithm Overview

To implement automatic reach space access planning

in real time for a typical human arm model, we propose a

heuristic-based reaching algorithm.

This algorithm consists of three modules: spatial

search, inverse kinematics and collision detection. The

spatial search module incrementally computes an optimal

path from the start to the goal in discretized 3D workspace

Proceedings of the 16th International Conference on Computer Animation and Social Agents (CASA�03)
1087-4844/03 $17.00 © 2003 IEEE

for the end effector of the arm. Every time when a new

node is generated in the path, it will be passed to the next

module – inverse kinematics, which then computes a

posture configuration to put the end effector in the new

position. Candidate configurations will be checked for

collisions taking advantage of the graphics hardware –

depth buffer.

The following sections explain each of these modules

in greater detail.

3.2.1. Spatial Search Module. One of the most perplexing

problems in the study of biological motor control has been

to determine in what type of coordinates movement plans

are generated in the brain. Teleological concerns argue

strongly for planning in workspace coordinates, since the

characteristics of a movement are most naturally specified

in terms of the layout of objects in the workspace [17].

Based on this observation, in our method, instead of

searching in joint configuration space as most existing

motion planning methods do, we propose to run a direct

best-first search in the workspace, guided by a distance-

to-goal evaluation function. It incrementally computes an

optimal path from the start to the goal for the end effector

of the arm.

In this module, the search is accomplished in the

discretized workspace. Note that the discretization is not

performed over the entire workspace, instead, only the

discretized coordinates of the grid cells that the arm could

possibly reach are computed, thus reducing the total

computation time.

At each expansion step of the best-first search tree, six

neighbors are considered for the current node. Suppose

the discretized coordinate of the current node is (X, Y, Z),

then its neighbors are defined as the face-adjacent nodes

with the following coordinates in the discretized space:

(X - 1, Y, Z) (X + 1, Y, Z)
(X, Y - 1, Z) (X, Y + 1, Z)
(X, Y, Z - 1) (X, Y, Z + 1)

These six neighbors are sorted according to their

distance to the goal and stored in a priority queue. The

best-first search is continued with the nearest neighbor to

the goal. Therefore, nodes with promising optimal costs

are searched on a priority basis. The distance-to-goal

evaluation function we use is simply the Euclidean

distance from the current node to the goal.

To avoid circuits in the search graph, we mark all the

visited nodes and only “unvisited” nodes are further

expanded.

It is interesting to note that paradoxically but

desirably, the search phase of the planner may run faster

for complex, obstacle-cluttered environments, since such

environments result in fewer free cells to search.

Figure 1 is an illustration of the searching process,

where the end effector is at the wrist, the start position is

shown in the blue sphere on the left and the goal is the

bright green sphere on the right. Movement of the arm is

constrained by the cube obstacle in the middle. The

dotted green line is the computed path from the algorithm.

3.2.2. Inverse Kinematics Module. Choosing to work

directly in the workspace makes inverse kinematics

algorithm necessary because plans made in the workspace

must eventually be translated into arm joint angles to drive

the arm to move.

In order to achieve real-time performance, we prefer a

method that can quickly solve inverse kinematics

problems for a human arm. Currently, we are using the

IKAN toolkit [19, 20]. It uses an analytical method to solve

generalized inverse kinematics problems involving an

anthropomorphic arm or leg and is faster and more reliable

than numerical methods. It also allows the user to

interactively explore all possible solutions using an

intuitive set of parameters, which is also a favorable

feature for our system.

3.2.3 Collision Detection Module. Instead of the

traditional geometric collision detection methods, we take

advantage of the computer graphics hardware depth

buffer.

This module utilizes the hardware rendering pipeline

commonly found on graphics accelerator cards to perform

collision detection. Speed is gained by using the graphics

hardware to quickly project the obstacle geometry into a

2D bitmap (depth map). Collision detection is done by

depth comparisons between the depth values of the arm

and the environment.

In 3D graphics, when rendering 3D objects onto a 2D

screen, many different points in the objects may be

mapped to the same pixel position on the screen, but with

different depth values. Only the one with the smallest

depth value is visible to the viewer and all the other ones

are occluded. The depth buffer will be automatically

updated with the nearest point’s depth value every time

when the scene is rendered. It is this property of the depth

buffer that we use for collision detection.

This is a link-wise procedure. To check if the arm

collides with any obstacles in the environment, collision

detection will be performed link by link on upper arm,

lower arm and hand sequentially.

For each link, a virtual perspective camera is placed at

the proximal end of the link and the viewing direction is

toward its distal end. This virtual camera is intended to

observe the interior of the arm link geometry to detect any

potentially penetrating obstacles. From the view of the

camera, if it can see some objects other than the arm link

Proceedings of the 16th International Conference on Computer Animation and Social Agents (CASA�03)
1087-4844/03 $17.00 © 2003 IEEE

itself, then it indicates some obstacles penetrate the arm

thus a collision will be reported. Accordingly, in depth

buffer, the depth values of the part where the collisions

occur will be the depth values of the corresponding

intruding obstacles.

In other words, if we represent the depth map as a two-

dimensional array, suppose the depth map of the arm link

is A[m][n] and the environment depth map is E[m][n], then

A[i][j] >= E[i][j] means a collision exist between the

obstacles and the arm. By comparing all the points in the

bitmaps, we know whether there are any collisions

between the environment and the current arm

configuration. This procedure can be expressed in the

following pseudo-code:

for i = 1 to m
for j = 1 to n

if A[i][j] >= E[i][j]
 return Collisions;

return No-Collisions.

For the algorithm to work, we assume that for each arm

link, all interior surfaces are completely visible from the

virtual camera location.

Figure 2 is an illustration of the collision detection

procedure for the upper arm. For explanation purpose, we

represent the link as a cylinder. The virtual camera is

placed at the shoulder, and the viewing direction is toward

the elbow. The blue cone represents the viewing volume.

The green torus represents an obstacle. In this projection

scheme, points P1 on the link and P2 on the obstacle are

projected to the same position P on the screen. The depth

value of P2 will be stored in the depth buffer, and is

smaller than P1’s. This only happens when the obstacle

penetrates the link as shown in the figure.

Note that this is an approximate algorithm. The

approximation is mainly from the finite resolution of the

depth buffer. With higher resolution, it can detect

collisions more accurately, but requires more

computations accordingly.

Another limitation of this method is that it cannot

detect collisions for the part of the link that is outside the

viewing volume, as the zone Z1 and Z2 shown in figure 2.

This problem can be solved by increasing the view angle

so that the link is covered by the viewing volume as much

as possible. But unfortunately, this will cause the

resolution of the depth map to decrease. Thus there is a

tradeoff between the two factors. Another alternative is to

move the camera proximally along the segment axis and

adjust the near clipping plane accordingly, as the dashed

lines shown in Figure 2. In our implementation, the view

angle is set to be 45 degrees, and the resolution of the

depth buffer is 100*100.

3.2. Planning Procedure

The following is a more detailed planning procedure
involving the three modules described above. Figure 3
shows the high-level description of the planning
framework.

1. Initialization: A general 3D polygon mesh model of

the environment and character suitable for

rendering are provided, along with a starting

position and a goal position.

2. Projection of the arm: For each link, set the camera

at the proximal end and view direction toward its

distal end. Render the link only and get the depth

map from depth buffer for later comparisons.

3. Discretization: Compute the discretized coordinate

for the current position of the end effector (wrist

in the model) according to the user-specified

resolution level.

4. Spatial search: Search next position for the end

effector to reach. The possible candidates are the

six neighbors of the current end effector cell less

any already visited cells. The one with the

shortest distance to the goal position is picked

and marked as “visited”. If all the candidates are

“visited”, then backtrack.

5. Inverse kinematics: Compute joint angles for the

arm using IKAN to put the end effector in

position.

6. Forward kinematics: Compute the positions of the

shoulder, elbow and wrist in the workspace

corresponding to the new configuration computed

from step 4. The information will be used to

position and orient the virtual camera in the

following collision detection step.

7. Collision detection: Perform collision detection

utilizing the depth-buffer for the upper arm, lower

arm and hand sequentially:

(a) Upper arm collision detection:

� Setup: Position a virtual perspective camera at

the shoulder. The view direction is toward the

elbow. The near clipping plane of the camera

is set to be slightly away from the shoulder,

and the far clipping plane is slightly away

from the elbow.

� Projection: Render the obstacles in the

environment and update the depth buffer

� Read back: Read the depth map into memory

from the depth buffer.

� Comparisons: Compare the depth values

between the upper arm and the environment

as stated in Section 3.2.3. If no collisions, go

to the next step; otherwise, go back to step 3.

(b) Lower arm collision detection:

Execute the same procedure for the lower arm

as stated in step 7.a). The virtual camera is

placed at the elbow and the view direction is

Proceedings of the 16th International Conference on Computer Animation and Social Agents (CASA�03)
1087-4844/03 $17.00 © 2003 IEEE

toward the wrist. The near and far clipping

planes are slightly away from elbow and wrist,

respectively.

(c) Hand collision detection:

Repeat the same procedure 7.a) for hand. The

camera is placed at the wrist toward the

middle-finger tip. The clipping planes are set

accordingly.

8. If no collisions are found for all 3 links, the current

configuration is put into the solution path and the

arm is moved to this configuration, then repeat

from step 3 until the goal position is reached;

Otherwise, go back to step 4 and continue the

search in the workspace.

Note that once the arm model is given, the depth map

for each link will not change throughout the planning as

long as the segment is not deformed during the movement.

Therefore they only need to be computed once in practice,

thus saving some computation time.

4. Implementation and Experimental Results

We implemented the basic algorithm described in the

previous sections and tested it on a few sample

environments. It works well in the designed scenarios.

The algorithm is implemented on a 1500MHz Dell PC

using C++ and OpenGL. It is applied to a seven degree-of-

freedom human arm model with the shoulder position

fixed.

A sample environment is shown in Figure 4, where the

arm is at the start configuration. Two reaching tasks are

specified in this environment. Task A is to reach for the

thermos in the middle, task B is to reach for the teacup on

the right from the thermos.

This is a relatively open environment, but is composed

of more than 30,000 polygon primitives. The main purpose

is to show the planner’s potential to plan motions at

interactive rates in complex environments.

In Figure 4, the movements of the arm are constrained

by the desktop and the computer. It tries to avoid the

collisions with these objects during planning.

Step
Size

Visited
Nodes

Solution
Nodes

Total
Time

Time Per
Step

Task A 0.06 57 39 1,129 19.81

Task B 0.06 46 32 1,015 22.06

Task A 0.1 37 27 797 21.54

Task B 0.1 32 22 687 21.47

Table 1. Experimental results

The experimental results are listed in Table 1. Total

Time is the average total planning and execution time for

the designed task. Times listed in the table are in

milliseconds. Visited Nodes is the number of the total

nodes visited while marching through the workspace grid

during the planning. Solution Nodes is the number of

“good” nodes in the final computed planning path. The

Step Size is the marching cell size of the workspace grid.

The arm radius is 0.18, so the two step sizes are relatively

fine enough. The depth buffer resolution used is 100*100.

Figure 5 shows another sample environment. The goals

are represented as orange spheres. The image sequence

shows some key configurations of the character computed

from the algorithm.

Animation examples can be found at

http://www.seas.upenn.edu/~liuying/animations/.

During an interactive session, the user can click and

drag on the goal location or obstacles, and the path

planner will calculate an updated, collision-free path

toward the new goal at interactive rate.

Among the three key modules of the algorithm, the

collision detection dominates the computation time per

step and plays a key role in achieving real time

performance. It involves three major operations: geometry

projection, read-back and depth comparisons. The

projection rate mostly depends on the complexity of the

environment, and the resolution of the depth buffer affects

the computation time for read-back and comparisons. In

the environment shown in Figure 4, when the depth buffer

resolution is increased to 600*600, the planning and

execution time per step is around 28ms.

Note that when rendering the environment for collision

detection purpose, since we only care about the depth

values of the objects, the rendering time can be further

reduced by disabling some expensive graphics

computations such as lighting. For programming

simplicity, we keep the lights on throughout the planning.

The effectiveness of the planner and the total planning

time is determined by the search and inverse kinematics

modules, where the performance of the search depends on

the discretization resolution of the workspace. The finer

the resolution is, the longer it takes to find a solution. On

the other hand, with a coarser discretization, it will run

faster, but in some cases when narrow passages are

involved, it may fail to find solutions.

5. Discussion

In this paper, we present a real-time planner that has

been specially designed to quickly solve path planning

queries involving human arms. It is straightforward and

easy to implement. The examples shown illustrate the

competence of the planner at generating motion plans for

a typical human arm model with seven degrees of freedom.

Proceedings of the 16th International Conference on Computer Animation and Social Agents (CASA�03)
1087-4844/03 $17.00 © 2003 IEEE

This method differs from existing motion planning

methods in several ways. In our method, the arm starts out

without any knowledge of the environment. It explores the

environment and generates goal-directed motion on the

fly, based upon the information acquired thus far, until the

goal is reached. A feasible collision-free pose in the goal

position is not required in advance. During exploration of

the environment, the algorithm just takes the immediate

surroundings of the arm into account, thus saving

planning time and boosting efficiency by only exploring

the grid cells that the arm could possibly reach.

Furthermore, our method avoids expensive pre-

processing steps associated with traditional geometric

techniques that partition configuration space into obstacle

space vs. free space. Instead, a much less expensive

potential field computation is carried out that provides a

heuristic distance-to-goal evaluation function over the

workspace. In actuality, our method does not fully and

explicitly pre-compute such a potential function over the

entire workspace, but rather computes a crude measure of

remaining distance to the goal at each step during

planning that serves as a virtual potential field. The crucial

point is that an easily computed potential field can be of

good heuristic value, making it possible to search directly

for paths without excessive backtracking [17].

While being inherently local, the algorithm does not

suffer from local minima like most potential field based

methods since the search is always continued with one of

the six neighbors that is closest to the goal position.

When no neighbors are accessible, the algorithm will

backtrack.

In addition, this algorithm allows planning not only in

static, structured environments, but it is also useful in

dynamic, unstructured environments where no prior

information is available. Each time obstacles move, the

depth buffer will be dynamically updated automatically.

This way, the real-time hardware computation enables

local motion planning through dynamic environments.

This method also allows interactive changes of the

goal position during the planning process. The planner

will immediately adjust the motion plan for the arm toward

the new goal.

The collision detection module runs fast due to the

utilization of the graphics hardware depth buffer. The

algorithm also makes parallel computations possible,

which we expect to result in an even better performance

for the planner.

In the direct heuristic search formulation, extra work is

introduced in the search process only when backtracking

becomes necessary. In our case, the cost is expected to be

acceptable empirically by adding appropriate constraints,

such as setting up a time limit that one can afford to plan

reaches. If the time limit is exceeded, the planner simply

returns with a failure, meaning either no solutions exist, or

it could not find one.

6. Future Work

Although some promising results are shown in its

present form, the algorithm could be improved in a number

of important ways.

One of the problems of our method is from the usage of

inverse kinematics. The major difficulty with inverse

kinematics stems from the fact that the problem is ill posed

[17]. In other words, there are in general many (possibly

infinite) solutions that will put the end effector of a

redundant arm at a given point in the workspace.

However, in our method, we only choose a single solution

returned from IKAN that may not be a good one in the

sense that it will collide with obstacles. This is a tradeoff

between efficiency and completeness. How to explore all

the possible solutions based on the environment

information and make the algorithm resolution-complete

while still running at interactive rates will be the next task

we will work on. This will greatly enhance the planner’s

ability to solve various planning problems in complex

environments.

The evaluation function for the grid search is simple. It

does not take the environment information into account.

In cases where the arm has to reach around an obstacle,

the algorithm will rely on backtracking to go around the

obstacle, which increases the entire planning time. A more

sophisticated metric may be helpful.

The resulting end effector path computed from our

method is jerky because of the cellular property of the grid

search. Measures need to be taken to generate smoother

path.

Another limitation of the current searching procedure

is from the fixed discretization resolution of the workspace.

It does not distinguish relatively open environments and

rather cluttered ones. To help the algorithm automatically

adapt to environments with different complexities, perhaps

a multi-resolution or an adaptive strategy would be more

appropriate.

For collision detection purposes, the environment is

rendered completely 1~3 times (for 3 links) per step and

the rendering time increases with the complexity of the

environment. This is one of the critical factors that affect

the performance of the algorithm. We are planning to use

some geometry culling scheme to improve the rendering

efficiency. Optimizations can also be made to reduce the

depth buffer read-back time.

In computer animation, natural motions are vitally

important for animated characters. The issue is not

addressed in its current implementation of the algorithm.

As suggested in [9], it may be possible to encode

Proceedings of the 16th International Conference on Computer Animation and Social Agents (CASA�03)
1087-4844/03 $17.00 © 2003 IEEE

aesthetics as search criteria to use during planning. Efforts

toward generating natural motions for the human arm are

in the progress, mainly focusing on using strength

information [15].

References

[1] Badler, N., Bindiganavale, R., Granieri, J., Wei, S., Zhao, X.

“Posture Interpolation with Collision Avoidance”,

Computer Animation, Geneva, Switzerland, IEEE Computer

Society Press, Los Alamitos, CA, 1994, pp. 13-20.

[2] Breen, D. E., “Choreographing Goal-Oriented Motion

Using Cost Functions”, In N. Magnenat-Thalmann and D.

Thalmann, editors, State of the art in Computer Animation,

Springer-Verlag, New York, NY, 1989, pp. 141-151.

[3] Chang, H., Li, T., “Assembly Maintainability Study With

Motion Planning”, Proceedings of International Conference
on Robotics and Automation, 1995.

[4] Finn, P. W., Kavraki, L. E., Latombe, J. C., Motwani, R.,

Shelton, C., Venkatasubramania, S., Yao, A., “Rapid:

Randomized Pharmacophore Identification for Drug

Design”, Proceedings of 13th ACM Symposium on
Computational Geometry (SoCG’97), 1997.

[5] Foskey, M., Garber , M., Lin, M. C., Manocha D., “A

Voronoi-Based Hybrid Motion Planner for Rigid Bodies”,

Proceeding of IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2001.

[6] Hoff, K. III, Culver, T., Keyser, J., Lin, M. C., Manocha,

D., “Interactive Motion Planning Using Hardware-

Accelerated Computation of Generalized Voronoi

Diagrams”, Proceedings of IEEE International Conference
on Robotics and Automation, 2000.

[7] Hwang, Y. K., “Gross Path Planning – A Survey”, ACM
Computing Surveys , Vol. 24, No. 3., 1992.

[8] Koga, Y., Kondo K., Kuffner J. J., Latombe, J.-C.,

“Planning Motions with Intentions”, Proceedings of ACM
SIGGRAPH 1994

[9] Kuffner, J. J., Autonomous Agents for Real-Time Animation.

Ph.D. thesis, Stanford University, 1999.

[10] Kuffner, J. J., Latombe, J.-C., “Interactive Manipulation

Planning for Animated Characters”, Pacific Graphics’00,

Hong Kong, 2000.

[11] Latombe, J.-C., Robot Motion Planning. Kluwer Academic

Publishers, 1991.

[12] Latombe, J.-C., “Motion Planning: A Journey of Robots,

Molecules, Digital Actors, and Other Artifacts”,

International Journal of Robotics Research, 1999, 18(11):

1119-1128.

[13] Lavalle, S. M., Kuffner, J. J., “Randomized Kinodynamic

Planning”, Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA’99),
Detroit, MI., 1999.

[14] Lavalle, S. M., “Rapidly-Exploring Random Trees: A New

Tool for Path Planning”, Preliminary manuscript available

at http://janowiec.cs.iastate.edu/~lavalle/, 1999.

[15] Lee, P., Wei, S., Zhao, J., Badler, N. I., “Strength Guided

Motion”, Proceedings of ACM SIGGRAPH, Vol. 24, No. 4.,

1990.

[16] Lengyel, J., Reichert, M., Donald, B. R., Greenberg, D. P.,

“Real-Time Robot Motion Planning Using Rasterizing

Computer Graphics Hardware”, Proceedings of ACM
SIGGRAPH 1990, Vol. 24, pp. 327-335.

[17] Mel, B. W., Connectionist Robot Motion Planning: A
Neurally-Inspired Approach to Visually-Guided Reaching,
Academic Press, Inc., 1990.

[18] Pisula, C., Hoff, K. III, Lin, M. C., Manocha, D.,

“Randomized Path Planning for a Rigid Body Based on

Hardware Accelerated Voronoi Sampling”, Proceedings of
Workshop on Algorithmic Foundations of Robotics, 2000.

[19] Tolani, D., Analytic Inverse Kinematics Techniques for
Anthropometric Limbs. Ph.D. theis, University of

Pennsylvania, 1998.

[20] Tolani, D., Goswami, A., Badler, N. I., “Real-time Inverse

Kinematics Techniques for Anthropomorphic Limbs”,

Graphical Models, 2000, 62: 353-388.

[21] Zhao, J., Badler, N. I., “Inverse Kinematics Positioning

Using Nonlinear Programming for Highly Articulated

Figures”, ACM Transactions on Graphics 1994, 13(4): 313-

336.

[22] Zhao, X., Badler, N. I., “Near Real-Time Body

Awareness”, Computer-Aided Design, 1994. 26(12): 861-

868.

[23] Badler, N. I., Phillips, C. B., Webber, B. L., Simulating
Humans: Computer Graphics, Animation, and Control,
Oxford University Press, 1999.

[24] Garber, M., Lin, M. C, “Constraint-Based Motion Planning

Using Voronoi Diagrams”, Proceedings of Fifth
International Workshop on Algorithmic Foundations of
Robotics (WAFR), 2002

Proceedings of the 16th International Conference on Computer Animation and Social Agents (CASA�03)
1087-4844/03 $17.00 © 2003 IEEE

Figure 1. Search path for end effector

Figure 2. Collision detection

Inverse Kinematics

Collision Detection

Upper Arm

Lower Arm

Best-First Search in

Workspace

Back Tracking

Evaluation Function

Depth Map

Hand

Figure 3. High-level description of the algorithm

 Figure 4. Sample environment 1

Figure 5. Sampled image sequence from a
reaching task

Proceedings of the 16th International Conference on Computer Animation and Social Agents (CASA�03)
1087-4844/03 $17.00 © 2003 IEEE

	University of Pennsylvania
	ScholarlyCommons
	5-8-2003

	Real-time reach planning for animated characters using hardware acceleration
	Ying Liu
	Norman I. Badler
	Real-time reach planning for animated characters using hardware acceleration
	Abstract
	Keywords
	Comments

