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Target Enumeration via Euler Characteristic Integrals

Abstract

We solve the problem of counting the total number of observable targets (e.g., persons, vehicles, landmarks) in
a region using local counts performed by a network of sensors, each of which measures the number of targets
nearby but neither their identities nor any positional information. We formulate and solve several such
problems based on the types of sensors and mobility of the targets. The main contribution of this paper is the
adaptation of a topological sheaf integration theory — integration with respect to Euler characteristic — to
yield complete solutions to these problems.
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TARGET ENUMERATION VIA EULER CHARACTERISTIC
INTEGRALS*

YULIY BARYSHNIKOVT AND ROBERT GHRIST?

Abstract. We solve the problem of counting the total number of observable targets (e.g.,
persons, vehicles, landmarks) in a region using local counts performed by a network of sensors,
each of which measures the number of targets nearby but neither their identities nor any positional
information. We formulate and solve several such problems based on the types of sensors and
mobility of the targets. The main contribution of this paper is the adaptation of a topological sheaf
integration theory—integration with respect to Euler characteristic—to yield complete solutions to
these problems.
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1. Topological enumeration.

1.1. Sensors. Sensor networks are poised to impact society in fundamental ways
analogous to the impact of the personal computer and the internet. The rapid develop-
ment of small-scale sensor devices coupled with wireless ad hoc networking capability
is giving birth to a wide variety of sensor networks for applications to agriculture,
defense, environmental monitoring, and more.

At present, there are severe limits on sizes and types of implementable networks.
In particular, there are trade-offs among power consumption, sensing complexity (how
much data is gathered and processed onboard), sensor size, sensor range (how large
a neighborhood of the sensor is scanned), and communication bandwidth. Current
implementations of sensor networks in environmental and agricultural monitoring are
limited to dozens or at most hundreds of sensors (see, e.g., [16] for a typical de-
ployment). This constraint will not persist. Ubiquitous sensing—the saturation of
physical environments with networked sensors—is a future scenario whose possibility
is strongly suggested by Moore’s law, by advances in micro- and nano-scale electronic
device fabrication, and by advances in wireless networking capabilities [8]. The poten-
tial to integrate sensors into building materials, roads, soil, and other media portend
an extraordinary increase in the ability to monitor street traffic, crowd dynamics,
wildlife habitats, and crop development.

This paper initiates a mathematical (and, in particular, topological) approach
to target-counting problems in sensor networks. Counting is a fundamental applica-
tion of sensors, both in present and potential settings. Scenarios where counting is
critical include agriculture (crop/weed/insect populations, herd size), border security
(people, vehicles, shipping containers), commerce (customers, stock, mail parcels),
ecology (wildlife population, particulate pollutants), situational awareness (troops,
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826 YULIY BARYSHNIKOV AND ROBERT GHRIST

vehicles, artillery), traffic control (vehicles, pedestrians), and more. Note that objects
to be counted span several orders of magnitude in scale, depending on the particular
application domain. In many instances, targets may be in motion.

At present, there are many sensor modalities that admit counting. The most
common current applications are what one might call one-dimensional sensors, e.g.,
people counters installed at entrances and exits of retail stores. Such sensors act via
beam interruption and are used to enumerate inflow and outflow. More relevant to
the setting of this paper are sensors whose “support” is of a dimension higher than
one. For example, the motion detectors common in security applications range over a
broad (but localized) swath of space. Infrared, acoustic, optical, and radio frequency
are a few of the relevant sensor modalities. On the horizon are a variety of sensor types
under rapid development, many at very small physical scales. These include smart
optical arrays and biophotonic sensors used for counting individual DNA strands,
molecules, or photons.

Following the paradigm of integration theory, we begin with the “continuum limit”
where sensors are assumed to be very small and distributed with very high density.
We then pass to the setting of networks (dense or sparse, grids or ad hoc) from the
perspective of discretizing the domain. The sensors in our models require very few
higher-order processing capabilities: no clocks, time stamps, or synchronization; no
range-finding or directional sensing capabilities; and very little memory. Onboard
computational needs are flexible. For a centralized scheme, nodes need no computa-
tional ability at all and can be scanned by a central data collector and processor. Our
methods allow for decentralized computation, assuming the ability to share counting
data with neighbors and perform integer arithmetic. Such computational abilities are
well within the range of small-scale processors—communication complexity becomes
the limiting factor.

1.2. A simple example: Geometric enumeration. The following simple
example of target enumeration has a trivial geometric solution that motivates our
topological techniques. Consider a field of (infinitesimally small) sensors, one at each
point x in a planar domain R?. Assume there is a finite set of points acting as
observables or targets {O,} C R?, and that the sensor at x € R? returns a quantized
count h(z) € N equal to the number of targets which are “nearby”—which can be
sensed by whatever modality (optical, acoustic, infrared) is used. The sensors have
no information about target location or identity.

How can sensors merge their local counts into a global count of the number of
targets? If the targets are sufficiently separated, then this becomes a simple problem
of counting the number of connected “on” clusters in the network [9]. If we want
to allow for more complex target interactions, the following critical (if not entirely
realistic) assumption makes the problem very simple. Assume that each target O,
impacts its environment in such a way that O, is detected precisely on those sensors
within Euclidean distance R of O,. This is a reasonable assumption if all targets
are identical on a homogeneous domain. Then the total number of targets may be
computed as an integral:

(1.1) #0} = 37 [ hia) e

where M = 7R? is the “mass” of the support set U, on which the target O, is
detected. This formula is trivial: the count returned by the sensor field is of the form
h =75, 1y,, where 1 denotes the characteristic function. As integration is linear,
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TARGET ENUMERATION VIA EULER CHARACTERISTIC 827

Fic. 1. A sensor field counts the number of in-range visible beacons based on line-of-sight.
Target supports (the region in the sensor space from which the target is sensed) may vary greatly in
size and shape, depending on beacon stremgth and target space obstacles; however, target supports
are star-convex with respect to the target and thus all topologically trivial.

one observes the following:

h(x)da::/ Zandm:Z/ ]andx:ZM:M#a.
R2 R2 7 o YR? %

This method is immediately applicable to arbitrary dimensions as well as to more
general target supports U,, so long as all targets have supports with identical mass.
In addition, one can discretize the domain, sampling h on a finite set, say, a grid.
Then a total count of targets can be realized as a discrete integral, assuming the grid
is neither too coarse nor degenerate with respect to target supports.

This paper generalizes this simple idea to problems whose target supports may
have different (and unknown) sizes but whose topology is fixed (see Figure 1). Because
we replace geometric assumptions with topological ones, our methods are adaptable
to a wide range of enumeration problems in sensor networks, particularly situations
where one wants to count many different types of targets. For example, if one wants
to count the number of vehicles in an area via a field of counting sensors, our methods
allow for different sizes of “footprints”—SUVs and subcompacts alike can be counted.

1.3. Other problem statements. There are numerous interesting and chal-
lenging problems that involve determining a global count based on a local count.
Some variants we address in this paper include the following.

1. Each sensor sweeps a finite length beam or cone over all bearings, recording
the number of targets sensed as a function of bearing and location.

2. Each sensor increments an internal counter whenever a moving target comes
within range.

3. Each sensor increments an internal counter whenever a moving wavefront
initiated by a target event passes within range.

In these situations, assume that the sensor field is parameterized by some topo-
logical space X. The sensor field returns a “counting function” h : X — N. The goal
is to aggregate the redundant data of h and normalize in such a way as to yield a
global count of targets/events.

1.4. Results and related work. The major result of this paper is a topological
integral calculus for a variety of target enumeration problems.
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828 YULIY BARYSHNIKOV AND ROBERT GHRIST

Although our applications are novel, all of the mathematical tools used in this
paper are fairly elementary and known to experts. Our key tool is the theory of
integration with respect to Euler characteristic, a calculus based on the Euler char-
acteristic. Though the ideas date back to Blaschke [3] and Hadwiger [13] as a form
of inclusion-exclusion, we follow the more modern approach, based on ideas from (1)
sheaf theory, as in [31, 25, 26, 27|, and (2) motiic integration, as in [6, 30].

Integration with respect to Euler characteristic is not well known to applied math-
ematicians; see [26] for an application to computational geometry, as well as [19] for
recent work on using Euler characteristic integrals to compute volumes. Integrals
involving Euler characteristic appear frequently in the literature on integral geometry
[3, 13] and convex geometry [11, 22]. There is also significant literature in geometric
combinatorics concerning Euler characteristic as a measure [5, 23, 24]. More recently,
integrals involving Euler characteristic have arisen in analyses of the geometry of
Gaussian random fields, as in [1, 2, 32, 29]. Many of these papers appear to use
integration with respect to Euler characteristic without the formal machinery. An
algebraic cousin to Euler characteristic integrals appears in the body of literature on
generalized Bonferroni inequalities [10] and tube formulas [7], which are all general-
izations of the inclusion-exclusion principle.

There are few if any similar approaches to problems in target estimation or track-
ing, the literature on which almost always assumes the ability to identify different
targets (along with other high-level functions, including distance estimation, bearing
estimation, and sensor localization). For example, the large-scale wireless system im-
plemented in [16] assumes an aggregation phase based on strict spatial separation of
targets. Jung and Sukhatme [17] implement a multitarget robotic tracking system
where the targets are labeled with colored lights. The survey paper of Guibas [12]
pointing to the broader literature on geometric range-searching assumes the ability
to aggregate target identities and concerns itself with computational complexity is-
sues. The paper by Li et al. [20] on multitarget tracking via sensor networks notes
that “target classification is arquably the most challenging signal processing task in
the context of sensor networks.”

One significant solution to a target enumeration problem is found in the work of
Fang, Zhao, and Guibas [9], which gives a distributed algorithm for target enumeration
without any target-identification capabilities on the part of the sensors. Their work
assumes that all target supports are round balls in R?, each sensor reads a R-valued
signal proportional to the inverse square of distance-to-target, and target impacts are
additive. Their algorithm counts the number of local maxima in the sensor signal
field and therefore gives an accurate count so long as the target supports overlap
minimally or not at all. Our work is complementary to this in that the theory we
introduce accommodates very complex target support overlaps.

Another example of target counting without identification or localization arises
in work of Singh et al., who consider a network of sensors which return a value in
{0,1}, depending on target proximity [28]. Their technique involves using time-series
data in the case of moving targets/sensors, since a target count in the stationary case
is too difficult, even if all target supports are convex, round, fixed, etc. There is also
substantial literature in people counting and tracking people in crowds by means of
visual data [21, 33], some portion of which does not engage in target identification
[14].

The sensors in our model are minimal in that they use nothing more than lo-
cal counts without geometric data about the target identity, distance, or bearing.
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That being said, we have ignored for the moment many of the important technical
issues associated with network implementation of our methods. Much of the work
in aggregation of data by a network concerns network protocols for signal processing
[20], managing constraints on bandwidth and energy [4], and dealing with errors or
node failures [34]. This introductory paper does not treat these important issues. We
also assume noise-free sensor readings over a continuum field of sensors (or at least
a sufficiently dense network). In particular, certain degenerate target configurations
require knowing sensor readings on sets of Lebesgue measure zero: an unrealistic de-
mand. The present paper assumes an idealized setting to develop and highlight the
mathematical tools.

2. Integration with respect to Euler characteristic. Our results follow
from the classical and elegant theory of integration with respect to Euler characteristic
[31, 25]. We restrict attention to subsets of R™.

2.1. The simplicial approach. For simplicity, we begin our treatment of topo-
logical integration with simplicial complexes (triangulated piecewise-linear sets) in R™.
For k > 0, a k-SIMPLEX, o, is the convex hull of a set of k£ 4+ 1 affinely independent
vertices {v;}§ in R": o = {3, t;v; + t; € (0,1),>,t; = 1}. A face of o is a simplex
spanned by a proper nonempty subset of the vertex set of o. The closure cl(o) of a
simplex o is the (disjoint) union of o and all its faces. A simplicial compler X is a
finite collection of simplices such that each pair o, 7 of simplices satisfies cl(o) Ncl(T)
is either empty or the closure of some simplex in the complex. A complex is called
closed if it contains all its faces.

See, e.g., [15] for elementary definitions and examples. Throughout this paper,
all simplicial complexes will be implicitly assumed finite. The above definition differs
from the usual in that we do not assume that a simplicial complex is closed while
most authors do.

DEFINITION 2.1. The geometric Euler characteristic of a simplicial complex X is

o0

(2.1) x(X) = Z(—l)dim“ = Z(—l)k#{k—simplices in X}.

o k=0

Ezxample 2.2.

1. Euler characteristic generalizes cardinality: for a finite set X, x(X) = | X].

2. If X is a compact contractible set (if it can be deformed continuously within
itself to a single point), then x(X) = 1.

3. For a finite graph ', x(T") = #V — #E: vertices minus edges.

4. For X a triangulated orientable surface of genus g, x(X) = 2(1 — g).

5. For X C R? a compact connected set with IV disjoint disks (open or closed)
removed, x(X)=1— N.

As one could guess from the above examples, the Euler characteristic is a topolog-
ical invariant: x(h(X)) = x(X) for h a homeomorphism. It is therefore independent
of the simplicial structure imposed on X. That this is so follows from a homological
interpretation: x(X) = > e (—1)* dim(Hy (X)), where Hy(X) = HPM(X;R) de-
notes the Borel-Moore homology of X with R coefficients.! For X a closed complex,
Hi(X) = H2(X;R), the more familiar kth simplicial homology group of X with R

IThis is isomorphic to the singular relative homology Hy(cl(X),cl(X) — X;R). A detailed un-
derstanding of this definition is not required of the reader.
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830 YULIY BARYSHNIKOV AND ROBERT GHRIST

coefficients, a vector space whose dimension measures the number of “holes” in X that
a k-dimensional subcomplex can detect. The Mayer—Vietoris principle [15], a homo-
logical inclusion-exclusion principle, yields the following: for A and B subcomplexes
of X,

(2.2) X(AUB) = x(A4) + x(B) — x(AN B).

The above equation evokes the definition of a measure and allows one to interpret
(2.1) as giving a “topological volume” of a complex. As many authors have implicitly
or explicitly observed [3, 13, 23, 25, 31], the measure dx derived from x is well-behaved
when restricted to the appropriate classes of integrands and domains. In the setting
of Z-valued functions over simplicial complexes, this measure theory has a simple
combinatorial definition.

DEFINITION 2.3. Let X denote a finite simplicial complex and CF(X) the abelian
group of functions X — Z with basis 1., where o is a simplex of X. The Fuler integral
is the homomorphism [ dx : CF(X) — Z which sends 15 — x(0) = (=1)%, for o a
k-simplex.

The following is obvious from Definitions 2.1 and 2.3.

LEMMA 2.4. The Euler integral satisfies [, 1adx = x(A) for A C X a sub-
complex.

2.2. The definable approach. We extend the definitions to a wide class of
spaces which are not obviously simplicial. The reader who is in a hurry may skip
ahead to section 3 and remain in the class of simplicial complexes.

Not all sets are measurable in dy: Cantor sets, Hawaiian earrings, and other
“wild” sets do not possess a well-defined Euler characteristic. In many respects, the
best definitions for what should be called a “tame” set are to be found in the literature
on o-minimal structures [30].

Briefly, an o-minimal system A = {A,} is a sequence of Boolean algebras A,
of subsets of R™ (families of sets closed under the operations of intersection and
complement) which satisfies certain natural properties (the system is closed under
products and projections, and 4; consists of all finite unions of points and open
intervals). Sets belonging to 4, are called “tame” or, more properly, definable. A
(not necessarily continuous) function is called definable if its graph (in the product of
domain and range) is a definable set in the system. The interested reader is encouraged
to see the text of van den Dries [30], which requires little background. Canonical
examples of o-minimal systems include semilinear sets (sets defined by a finite number
of affine inequalities), semialgebraic sets (sets defined by a finite number of polynomial
inequalities), and subanalytic sets (sets which are the local image of real-analytic
manifolds under real-analytic mappings).

One of the principal results from the theory of o-minimal structures is the trian-
gulation theorem: any definable set A can be expressed as the image under a definable
homeomorphism of a simplicial complex. From this, and the fact that x is a home-
omorphism invariant, it follows that all definable sets possess a well-defined Euler
characteristic. One proceeds in the following obvious manner.

DEFINITION 2.5. Denote by CF(X) the group of constructible functions,? func-
tions h : X — 7 with finite range and definable level sets h=1(c).

2In order to avoid complications concerning proper functions, we will assume for the remainder
of the paper that CF(X) is restricted to compactly supported functions.
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It follows from the triangulation theorem that any f € CF(X) admits a de-
composition as f = > caly, for ¢co € Z and 0, C X a simplex (in a definable
triangulation).

DEFINITION 2.6. The Euler integral is the homomorphism [y dx : CF(X) — Z
which sends )y, calo, — Y, caXx(0a).

The analogue of Lemma 2.4 clearly holds.

2.3. The sheaf approach. There is, as intimated earlier, a deeper treatment
in the literature on sheaves. There are significant and deep perspectives from sheaf
theory that can be easily interpreted in the setting of Euler integration.

A sheaf is, roughly speaking, a means of assigning to open sets of a topological
space some algebraic object (e.g., a group) in a manner that respects the operations of
(1) restriction and (2) gluing. The canonical example of a sheaf on a space X is C'(X),
the continuous functions X — R. This forms a sheaf since (1) the restriction of a
continuous function is continuous, and (2) two continuous functions on subsets which
agree on the intersection extend to a continuous function on the union. Sheaf theory
allows one to extend some of the more familiar concepts implicit in C(X)—germs,
sections, analytic continuation, etc.—to a vast degree of generality.

As the definition of constructible function is local (depends only on a system of
open sets covering X ), CF(X) can be thought of a sheaf over X with respect to the
standard topology. Following the general formalism of sheaf operations ([18, 25, 27]),
one obtains an interpretation of |  dx via the pushforward (or direct image, since we
assume compactly supported integrands) construction.

DEFINITION 2.7. Let F : X — Y be a definable map for a fived o-minimal
structure.®>  The pushforward of F is the induced homomorphism F, : CF(X) —
CF(Y) defined for h € CF(X) via

(2.3) F.h(y) = /F—l( )h(x) dx(x).

Since we assume definability and compact supports, h is integrable on F~!(y) for
all y € Y. Formal methods imply that the pushforward is functorial, meaning that
things which ought to commute do. This is no mere formality: in the present context,
this result is extremely important, leading to the following.

THEOREM 2.8 (Fubini theorem [31, 25]). For F : X — Y as above and h €
CF(X),

(2.4) /X h(z) dx(z) = /Y Euh(y) dx(y).

Proof. In the case of the trivial map X — {pt}, CF({pt}) = Z, and one checks
that the induced pushforward CF(X) — Z is precisely the integral with respect to
the Euler characteristic. Given F': X — Y, functoriality says that the composition
commutes:

Jx dx
/\

(2.5) CF(X) —= CF(Y) — 32

[

3Concrete examples include piecewise-linear maps between simplicial complexes, algebraic maps
between real semialgebraic sets, and analytic maps between real-analytic manifolds.
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The fact that [ dx is the pushforward of X — {pt} implies that this operation
respects the gluings and restriction operations implicit in sheaves, and it is thus proper
to call it by the term integral.* This brief aside on sheaves hints at a wealth of available
tools: convolution operators, integral transforms, etc., to be utilized in future work.

3. A simple enumeration theorem. We give an immediate application of in-
tegration with respect to Euler characteristic in a simple target enumeration problem.
The following generalizes the problem and setting of section 1.2.

Let W denote the target space, a topological space which models the domain in
which the targets O, lie. In the setting of section 1.2, the sensors fill W = R2. More
generally, one can parameterize the collection of sensors into a SENSOR SPACE, denoted
X. The sensor space is a topological space which may differ from W. For example,
one may count targets in a 3-dimensional room via a network of sensors located along
a two-dimensional (2-d) wall. Each target O, has a target support, defined to be
U, = {x € X : the sensor at x detects O, }.

PRrROBLEM 3.1 (fixed targets). Assume a sensor modality in which each sensor
x € X records the number of targets in range. This yields a (constructible) height
function,

(3.1) h(z) = #{a : € U,},

and represents the count that a collection of sensors on X gives of the targets in W.
The problem is to compute the number of targets, given only h: X — N.

If we assume that the target supports all have the same nonzero Euler character-
istic, then Problem 3.1 is immediately solved.

THEOREM 3.2. Given h : X — N the counting function for {Us} a collection of
compact definable target supports in X satisfying x(Uy) = N # 0 for all a. Then

1
(3.2) #a = N/th)(.

Proof.

(3.3) /thX:/X<Z]lU‘*> dsz/X]andszX(Ua):N#a. uf

This result solves Problem 3.1 and greatly generalizes the simple example of
section 1.2, in that we do not need to assume that the target supports are round or
even convex. In the case of convex, or even contractible compact sets, N = 1 and the
formula is especially simple. Note however that if N = 0, no solution is possible in
general: see Figure 2.

4. Computation. Integration with respect to Euler characteristic, being partly
combinatorial in nature, permits simple, clear computations.

4.1. Excursion sets. We employ the following convenient notation. For func-
tions h : X — Z, the set {h = s} is the LEVEL SET {z € X : h(z) = s}, and the
set {h > s} is the upper excursion set {x € X : h(x) > s}. Lower excursion sets are
likewise defined.

40ne could prove the Fubini theorem directly by using the lemma that  is multiplicative under
Cartesian products and invoking the definable Hardt theorem [30] if the sheaf formalism is to be
avoided.
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TARGET ENUMERATION VIA EULER CHARACTERISTIC 833

Fic. 2. Giwen h =3 1y, with x(Us) =0, one has [ hdx = 0. It is not possible in general
to determine #a. (Left) The height function of a collection of annuli. Four? or (right) siz? Any
even number between two and twelve is possible with embedded annuli.

PROPOSITION 4.1. Given h € CF(X), the integral of h with respect to dx may
be computed as follows:

o0

(4.1) /thx: Z sx{h = s}
(4.2) = ix{h > st —x{h < —s}.
5=0
Proof.
h = i slip=s} = is(l{hzs} — Lipssy) + fs(l{hgs} = Lin<sy)s
s=—o00 5=0 5=0
= i Tinssy — Line—sys
5=0

where the last equality comes from telescoping sums. Lemma 2.4 completes the
proof. a

Equation (4.2) is preferable to (4.1) in practice, since, for h a sum of indicator
functions over compact sets, the excursion sets of h are compact for all s, whereas
h=1(s) is only relatively compact.

Ezample 4.2 (fixed targets). In the example of Figure 3, seven contractible sets are
displayed, along with a height function on connected components. In the intended
application, only A is known, not the target supports. Decomposing h into upper
excursion sets (Figure 4) allows one to compute [ hdyx via (4.2):

s=3 s=2 s=1 s=0

ad AN AN AN S
(4.3) /hdxzzx{h>s}: L T+ =
s=0

The levels sets of h in Figure 4 are “fragile” in the sense that a perturbation of
h=1(s) (in the Hausdorff metric) usually changes the topology and hence the Euler
characteristic of the level set. The upper excursion sets are less likely to exhibit such
instability. This will become more important when sampling integrands over discrete
sets.
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834 YULIY BARYSHNIKOV AND ROBERT GHRIST

FIG. 3. A collection of contractible patches {Uq} in R? corresponding to the supports or “vis-
ibility regions” of seven targets. The collection decomposes R? into cells labeled according to the
height function h returned by a dense sensor network.

FIG. 4. Decomposing h into upper ezcursion sets and computing x yields the integral [ hdx.

There are other means of computing integrals with respect to dy, many of which
are related to Morse theory. We detail these in subsequent work.

4.2. Homology and duality. Since the Euler characteristic has a homological
as well as a combinatorial definition, we can switch perspectives at will, playing off
strengths for computational purposes. We augment Proposition 4.1 with a specialized
formula for certain integrands on the plane.
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THEOREM 4.3. For h : R? — N constructible and upper semicontinuous,

oo

(4.4) [ =3 (ol > s} = ol < s} 1),

s=0

where By denotes the zeroth Betti number, or equivalently, the number of connected
components of the set.

Proof. Let A be a compact nonempty subset of R?. From the homological defini-
tion of the Euler characteristic, x(A) = Y .2 ,(—1)* dim H,(A), where, by compact-
ness, H; is the singular homology. However, since A C R?, Hy(A) = 0 for all s > 2.
Thus, it suffices to compute x(A) = dim Hy(A) — dim H; (A). By Alexander duality
[15],

dim H;(A) = dim H°(R? — A, A) = dim Hy(R* — A) — 1,

and dim Hy = [y, the number of connected components. One substitutes into (4.2)
the above computations for A = {h > s} and R* — A = {h < s}. 0

This formulation is extremely important to numerical implementation of this in-
tegration theory to planar sensor networks: see section 5.2.

Ezample 4.4. The duality formula (4.4) applied to the integrand of Example 4.2
yields

s=3 s=2 s=1 s=0

hdx=2-1+1)+@B-1+1)+4-2+1)+(1-3+1)=T.
R2

5. From fields to networks. The mathematical tools formulated here for enu-
meration problems depend on having a sensor field with counting data at all points
in a continuum of the sensor space. Any realistic implementation must occur over a
discrete collection of sensors: a network, where nodes N (typically within the target
space N C W) record values.

Trying to parameterize the sensor space X as a discrete set based on the nodes A/
is doomed to failure, as the target supports will be likewise discrete and of unknown
and nonuniform Euler characteristic. Likewise, if the communication links between
nodes give the sensor network the structure of a graph, then the network graph is an
equally bad candidate for the sensor space X: cycles in the graph can make the Euler
characteristics of the target supports vary greatly. In fact, the denser the network in
W, the more negative the Euler characteristics of the target supports become (e.g.,
in Figures 5, 6, and 7, the target supports intersected with the network are graphs
with negative Euler characteristic).

5.1. Numerical analysis and Euler integrals. A more sensible parametriza-
tion is to model the sensor space X as a simplicial approximation to the target space
W, using the nodes N as vertices. Assume that enough structure is known about
N to give a simplicial structure (a triangulation) that has N as the vertex set. In
analogy with the problem of computing a numerically approximate Riemann integral
of an integrand h based on a discrete sampling, one guesses that the integral of the
piecewise-linear (PL) interpolation hpy, of h based on the sampled values at N is a
good approximation.

Unfortunately, the integration theory of section 2 does not take continuous R-
valued functions as integrands. In a sequel to this paper, we extend the integration
theory to R-valued (definable) integrands and show that the PL approximation is, in
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F1G. 5. The height function of a collection of target supports (left) is successfully sampled on a
regular mesh (right).

F1G. 6. Errors can arise from sampling an integrand with geometrically small chambers.

this context, correct; furthermore, when the sampling is too coarse, one can construct
an “expected value” for the integral which contains useful data.

Example 5.1. Computing the constructible upper semicontinuous approximation
|hpr| can give the correct answer. Figure 5 gives an example of an integrand sampled
on a uniform hexagonal grid. The integral of | hpr, | with respect to Euler characteristic
is

s=3

s=2 s=1
A N NN
(5.1) /LhPLJ dx=1 + 3 + 0

= 4.

Unfortunately, there are several complications which portend difficulty in the
development of numerical analysis for dy. For target supports that are nearly tangent,
a given sensor network may or may not sample the chamber correctly. See Figure 6
for a sampling of errors that can arise from small chambers. Even triangulations with
arbitrarily small-diameter simplices can sample the region near a discontinuity of the
integrand incorrectly: a simple example can be constructed from Figure 6 (left). It
remains to develop a theory of numerical analysis for integration with respect to Euler
characteristic.

5.2. Ad hoc planar networks. We note that the strategy of converting the
sampling of the true impact function h over N to a PL interpolation hpy does not
necessarily require knowing the coordinates of the nodes. Indeed, the evaluation of
J « ~dx is conspicuous in its freedom from coordinate geometry: it is a topological
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Fic. 7. A sparse sampling over an ad hoc network retains enough connectivity data to evaluate
the integral exactly.

integral. If one is given a triangulation, the extension of the counting function h
on vertices over the domain is automatic. However, if no geometry associated with
N is known, it may not be possible to determine a canonical extension hpj over
the domain. Such a situation is not uncommon in sensor networks based on ad
hoc wireless communications, an increasingly common protocol for distributed sensor
networks and robotics.

Assume that one is given a network in the form of an abstract graph G. By
abstract we mean that the projection of the one-dimensional (1-d) cell complex G to
the workspace is unknown. Edges should possess some coarse proximity data. One
popular (if rigid) assumption is that G is a unit disk graph, in which edges exist
between nodes if and only if they are within unit distance in the workspace. For
this and other proximity-based networks, the duality results of section 4.2 allow us to
compute integrals based on coordinate-free ad hoc network sampling.

COROLLARY 5.2. Assume an upper semicontinuous constructible integrand h :
R? — N, and let G be a network graph with nodes N' C R?, where the only thing known
is the restriction of h to N (in particular, the coordinates of N in R? are unknown,).
If the network G correctly samples the connectivity of the upper and lower excursion
sets of h, then (4.4) returns the exact number of targets.

An example appears in Figure 7. Note that in this example, the topology of the
excursion sets of h is not always sampled correctly: sparsity leads to holes in the
network. Nevertheless, since the connectivity of the upper and lower excursion sets is
sampled faithfully, the integral is correct. Although the example drawn is a unit disk
graph, this is by no means necessary for the result.

Remark 5.3. Fix an integrand h in which all chambers are codimension zero; e.g.,
excursion sets are equal to the closures of their interiors. Fix also a sufficiently small
communication radius € > 0. Then, for a sufficiently dense sampling of nodes in R?,
the e-disk network generated from these nodes will satisfy the hypotheses of Corollary
5.2 and return a correct integral. Unfortunately, the density required to guarantee
this depends on the integrand A and the communication radius e.

Remark 5.4. The situation in higher-dimensional workspaces is not as convenient
as in the planar case, since duality does not pair completely to connected compo-
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nents alone. The next most natural domain in which to work is R3. Here, duality
is effective in mitigating spurious generators of second homology Hy—voids in the
network. However, holes appearing as generators of H; are dual to H; generators in
the complement, and one must deal with homology in dimension one. This is by no
means as straightforward as in the planar case, and a simple clustering algorithm will
not suffice.

5.3. Distributed computation. Since our methods are based on an integration
theory, the enumeration of targets detailed in this paper is a local computation. To
wit:

(5.2) / hdxz/hdx—i—/ hdx—/ hdy.
AUB A B ANB

Thus, enumeration can be performed in a distributed manner easily. This is partic-
ularly easy when the network is a lattice, as one can employ standard distributed
protocols for localization and merging of target counts.

6. Enumeration. In this section, we solve a variety of target enumeration prob-
lems in terms of integrals with respect to the Euler characteristic.

6.1. Moving targets. The lack of a convexity assumption in our theory makes
it ideal for applications in which target supports are generated by moving vehicles.

PROBLEM 6.1 (moving targets). In this setting, one has a finite collection of
targets O, which move along continuous paths Oy (t) in the domain W C R™ over
some fized time interval; see Figure 8. Assume that semsor modes can detect when
some target comes within proximity range (a time-dependent set U,(t) containing
Ou(t)), and that each such detection produces an increment in its internal counter:
such increments occur only when the node detects an increase in the number of targets
within range. One obtains a height function h : W — N of the form

(6.1) h(z):=#{(t,a) : 2 € Us(t +€) and x & Ua(t —€) for e — 07} .

The problem is to compute the number of targets based solely on the function h. Note
in particular the absence of temporal data: there are no clocks.

One interesting feature in this setting is the possibility that the “trace”—the
union of temporal supports U U, (t)—can be a noncontractible set. In this setting,
the Fubini theorem is invaluable.

THEOREM 6.2. Assume moving targets as per Problem 6.1. Then the number of
targets is equal to #a = fW hdx, where h is the height function of (6.1).

Proof. Consider the sensor space X = W x R as the product of the target space
W with time, and let FF : X — W be temporal projection. The target supports
in X are the traces U, := UsUy(t) x {t}: this is a contractible set, as illustrated
in Figure 8 (right). Let ¢ : X — N be g = > 1y,. From Theorem 3.2, the
number of targets is fX gdx. By the Fubini theorem, this equals fW F.gdyx, where
(Fig)(w) = fF—l(w) gdx. The intersection F~1(w)NU, is a finite number of compact
intervals—one for each time w goes from being outside U, (¢) to inside it as ¢ increases.
Thus, h = F,.g and

/hdxz/ F*gdxz/gdxz#a. O
w w b'e

The fact that integration with respect to Euler characteristic admits a Fubini
theorem is thus not merely a curiosity but rather a crucial feature.
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Fic. 8. Vehicles moving in a planar environment activate sensors along regions which intersect
over time and accumulate a larger height function there. The resulting integrand is the pushforward
of a temporal projection map.
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F1a. 9. A cusp singularity in the trace of a moving vehicle; no matter how densely it is sampled,
one will never recover the correct Euler integral.

Ezample 6.3 (moving targets). Figure 8 illustrates a height function for a moving-
target situation as in Problem 6.1. Note that some traces self-intersect. One computes:
s=2 s=1 s=0

> A~ A~
(6.2) /hdxzzx{h>s}= 1 +716 +Z13= 4.
s=0

Theorem 6.2 is applicable to the problem of counting vehicles that move over
a region with acoustic sensors embedded. The advantage of the Euler integration
method is that one can count vehicles of different “size”—large or small vehicle traces
are irrelevant. A challenge for implementation lies in (cusp) singularities generated
by a vehicle that turns too sharply, leading to an integrand that it not upper semi-
continuous, as in Figure 9. Such a singularity does not invalidate Theorem 6.2. Indeed,
the integral of this height function with respect to Euler characteristic is equal to

/ hdy =x{h > 1} +x{h >0} = (1= 1)+ (1) = 1.

R2

The upper excursion set h > 1 is not a compact disk, but rather has a closed interval
in the boundary removed. Thus x{h > 1} = 1 —1 = 0. Any sensor network, no

matter how dense, will fail to see the higher codimension piece of boundary that is
set to 1 instead of 2.
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Fic. 10. (Left) Events trigger wavefronts that increment counting sensors as the front passes
over. (Right) Reflections along the boundary can be accounted for accurately.

6.2. Wavefronts. The following problem is motivated by enumerating events
whose effects propagate in time.

PROBLEM 6.4 (wave fronts). Consider a finite collection of points Oy in W C R™.
Each O, represents an event which occurs at some time and which triggers a wavefront
that propagates for a finite extent. Assume that each sensor has the ability to record
the presence of a wavefront that passes through its vicinity. Nodes have a simple
counter memory that allows them to store the number of wavefronts that have passed
over as a counting function h : W — N. The problem is to determine the number of
source events Q.

Again, there is no temporal data associated to the sensors. With a particular
assumption on the sensing modality, this problem is solved as a corollary of Theorem
6.2, using the same Fubini argument. Assume that the “wavefront” associated to
each event O, induces a continuous definable map Fy, from a compact ball D" to W
whose restriction to rays from the origin are geodesic rays in W based at O,. It is not
enough to model sensors which count wavefronts by recording the number of “fronts”
that have passed, as one must account for singularities. To that end, the cleanest
assumption for the counting sensors is the following.

COROLLARY 6.5. In the context of Problem 6.4, assume that each sensor at w €
W increments its internal counter by x(F, ' (w)) whenever the wavefront of O, passes
over. Under this assumption, the number of triggering events is #a = fW hdx.

Proof. Apply the Fubini theorem to h = 3 _(F,)«1pn, where F, is the mapping
of the wavefront into W. O

Since n = dim(W) = dim(D"), the inverse image F; !(w) is generically discrete,
and the assumption on the sensor modality boils down to counting the number of
passing wavefronts. However, certain complications can arise in practice. For example,
very coarse binary sensors may not be able to distinguish between one wavefront and
several wavefronts passing over simultaneously: this can lead to positive-codimension
defects in the counting function h.

A similar loss of upper semicontinuity occurs when there is reflection of wavefronts
along the boundary 0W; see Figure 10. For a compact domain W C R™ with smooth
boundary OW. Consider a wavefront-counting integrand h = > _(Fo)«1p» whose
projection maps F, may have fold singularities (reflections) along OW. Let h™T :
W — N be the upper semicontinuous extension of h. Then it is easy to show, using
the techniques of this paper, that

(6.3) #a:/ th:/ h+dx—1/ htdy.
w w 2 Jow
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The problem of dealing with cusp singularities, diffraction waves, and other sin-
gular phenomena is significant (in signal processing applications) and open.

6.3. Beam sensors. Instead of having the targets (or their wavefronts) move,
we can consider situations in which the sensors have some internal degree of freedom.
The following is a mathematical abstraction of the idea of a sensor which uses a bi-
(or multi-) directional beam to count targets.

PROBLEM 6.6 (beam sensors). Fiz a FEuclidean target space in R™ and consider
a variant of Problem 3.1 in which each sensor mode at x € R" senses targets via
a “beam” that is a round k-dimensional ball in R™ centered at x (the term “beam”
evoking the case k =1). Each target O, has a spatially extended region of brightness
over some convex neighborhood Vo, of O, in R™. The sensor at x € R™ performs a
sweep of its k-ball beam over all possible bearings. At each such bearing, the sensor
counts the number of intensity regions Vo within the beam. Problem: compute the
number of targets #a.

Note that each target has a spatially extended range over which it is sensed. The
sensor field is parameterized over the Grassmannian bundle Grg(R"™) = R"™ x Gry,
where Grj, is the Grassmannian of k-planes in R™. (For example, the projective space
RP™ is Gry.) Thus, the sensor field returns a counting function h : Gry(R™) — N.

THEOREM 6.7. Under the assumptions of Problem 6.6 and the additional as-
sumption that if n is even, then so is k, the number of targets is equal to

n=k 1k
(6.4) o= LILE [ gy

5! Gri (R™)
where |-| denotes the floor function.

Proof. Target supports U, C Grg(R™) are computed as follows. Fix an « and
fix a “bearing” k-plane in the Grassmannian Gry. The set of nodes in R™ at which
this k-ball intersects V,, is star convex with respect to (the centroid of) V. Thus, the
target support U, is topologically equivalent to V, x Gry and thus to Gr}. The Euler
characteristic of Gry, is

0 :n even, k odd

x(Grie) = ( L? ) . else.
2]
The result follows from Theorem 3.2. O
In the case of the plane (n = 2) with linear beams (k = 1), the theorem fails, since

target supports have the homotopy type of a circle. Figure 2 suggests that counting
may be impossible in this setting. See, however, section 6.4.

6.4. Sweeping sensors. We consider a variant on Problem 6.6 in which sensors
sweep cones instead of beams.

PROBLEM 6.8 (Sweeping sensors). Fiz a Fuclidean target space in R™ and con-
sider a variant of Problem 3.1 in which sensor nodes do not return merely a count
of the number of targets within range, but rather a parameterized count of targets as
the sensor performs a “sweep” over its visual sphere. For example, in dimension 2, a
sensor at x € R? returns a piecewise-constant function hy : S' — N which indicates
how many targets are seen as a function of bearing. Assume, for simplicity, that a
sensor at location x with bearing v € T}(R™) scans a compact cone at x centered
on v whose aperture and length are independent of x and v. The problem is how to
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compute the target count given the collection of functions h = {h, : © € X}, where
he(v) returns the number but not identity of targets within the cone at (x,v).

Note that it is not assumed that the size, shape, or volume of the scanning cone
C is known, only that it is a cone. For a very thin scanning cone, intersections with
the targets rarely overlap, and x(h, (1)) yields the correct number of targets within
range of x, reducing the problem to that of Problem 3.1. For more general cones,
however, sweeping does not return an immediate count at x.

THEOREM 6.9. Under the assumptions of Problem 6.8 and a general-position
assumption on the targets {0y}, the number of targets is equal to

(6.5) o= / @, ( /T f dx(U)) dx(x),

where ®,, is the operator that replaces a function with its upper-continuous (for n
even) or lower-continuous (for n odd) extension over 0-dimensional discontinuities.

Proof. The rationale: the inner integral has the effect of aggregating all targets
visible at 2 during a complete sweep over the unit tangent sphere T} = TJR" = §"~1,
The outer integral would give > x(U,) in accordance with Theorem 3.2.

Unfortunately, the target supports U, are not contractible. Fix a bearing direc-
tion and consider the intersection of the target support in T'R™: it is a contractible
set (translated copies of the sensing cone). Hence, each U, is a bundle over the (n—1)-
dimensional sphere of tangent directions with compact contractible fiber. This has a
Euler characteristic x(U,) = (—1)"~1. For n even, this vanishes.

If one considers T'R™ as a bundle over R”, the resulting target support is the
function 1g, — (—1)"1e,, where S, is the set of points € R™ such that there exists
a bearing placing the sensing cone at x over O,. At the single point O,, this function
is equal to x(S™1): “filling in” to a 1 would make the target support a compact
contractible set.

The operator ®,, wipes out these defects by, in effect, gluing in an open unit disk
into each Uy, so that the resulting tame set U, is contractible. By the general position
assumption, the defects caused by sensors on top of targets are the only such strata on
which ®,, acts. It remains to note that the operator ®,, is linear on upper (or lower)
semicontinuous functions, and thus acts independently on each singularity. O

Note that it is not necessary to assume the functions h, have a rigid parametriza-
tion—one need not interrogate how many targets are seen at a given bearing. The
combinatorial type suffices. In the case of a discrete network of sensors as opposed
to a continuum sensor field, one can assume that the sensors are not at the same
location as the targets and the defects will be hidden. (Though it should also be
noted that in practice a sensor’s support region can “diffuse” somewhat, yielding
small codimension-0 defects in the height function.) A discrete network of sweeping
sensors actually makes the computation of the integral easier, as one can dispense
with the O-dimensional singularities by a general position argument.

7. A concluding introduction. The goal of this paper is to introduce integra-
tion with respect to Euler characteristic as a powerful and computable tool to perform
data aggregation in networks of extremely weak sensors. As with many problems in
sensor networks, the fundamental issue is the passage from local data to global infor-
mation: an ideal target for algebraic topology.

This is an introduction to the mathematical techniques, and we have ignored
many of the complications present in physical sensor networks and important to im-
plementation. We have not dealt with communication and signal protocol issues,
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the difficulty of localizing nodes, and the stochastic nature of real sensors. We are
optimistic that these topological methods will robustly adapt to many of these issues.

We stress one point: by solving these target enumeration problems via an inte-
gration theory, we can leverage techniques (e.g., the Fubini theorem) and perspectives
(e.g., numerical integration) forcefully. Due to limitations of space, this paper pro-
vides a bare introduction to the mechanics and utility of Euler integration. Much
more is knowable and known. Future work includes the following:

1. The integration theory extends from constructible functions CF(X) to defin-
able R-valued functions. Though the corresponding integral operator is not
linear (!), it does have an attractive expression in terms of Morse theory.

2. The R-valued theory gives a natural approach to expected target counts, con-
fidence measures on sensor readings, and harmonic extensions of integrands
over holes.

3. Euler integration admits a variety of integral transforms which are often in-
vertible [26]. In the context of sensor networks, inverse transforms can be
used to localize the targets, based only on counting sensors.

Open questions abound, including the impact of noise, the confidence of a dis-
cretized sampling, and the challenge of integrating more complex type of data (such
as logical statements or mixed-mode data).
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