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Motion estimation using a spherical camera

Abstract
Robotic navigation algorithms increasingly make use of the panoramic field of view provided by
omnidirectional images to assist with localization tasks. Since the images taken by a particular class of
omnidirectional sensors can be mapped to the sphere, the problem of attitude estimation arising from 3D
motions of the camera can be treated as a problem of estimating the camera motion between spherical images.
This problem has traditionally been solved by tracking points or features between images. However, there are
many natural scenes where the features cannot be tracked with confidence. We present an algorithm that uses
image features to estimate ego-motion without explicitly searching for correspondences. We formulate the
problem as a correlation of functions defined on the product of spheres S2 × S2 which are acted upon by
elements of the direct product group SO(3) × SO(3). We efficiently compute this correlation and obtain our
solution using the spectral information of functions in S2 × S2.
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Motion Estimation Using a Spherical Camera

Ameesh Makadia and Kostas Daniilidis
GRASP Laboratory, University of Pennsylvania, Philadelphia, PA 19104

{makadia, kostas}@cis.upenn.edu

Abstract

Robotic navigation algorithms increasingly make use of the panoramic field of view provided by omnidirectional
images to assist with localization tasks. Since the images taken by a particular class of omnidirectional sensors can
be mapped to the sphere, the problem of attitude estimation arising from 3D motions of the camera can be treated
as a problem of estimating the camera motion between spherical images. This problem has traditionally been solved
by tracking points or features between images. However, there are many natural scenes where the features cannot be
tracked with confidence. We present an algorithm that uses image features to estimate ego-motion without explicitly
searching for correspondences. We formulate the problem as a correlation of functions defined on the product of
spheresS2 × S2 which are acted upon by elements of the direct product groupSO(3) × SO(3). We efficiently
compute this correlation and obtain our solution using the spectral information of functions inS2 × S2.

1 Introduction

Estimating the motion of a camera (ego-motion estimation) is a problem that has numerous applications, ranging
from mobile robot localization to stereo algorithms. When the motion between frames is large, differential algorithms
using optical flow are bypassed in favor of techniques which track features or points between images. Sophisticated
feature extractors [9, 5] are often application or scene-dependent in that many parameters must be tuned in order to
obtain satisfactory results for a particular data set. Although the tracking of features is considered a familiar and
well-understood problem, there are many scenes and objects with repeated textures for which features cannot be
successfully matched. However, due to the geometry of spherical perspective, a global image transformation which
models the general rigid motion of a camera does not exist, and so we cannot altogether abandon the calculation of
localized image characteristics. Roy and Cox [8] have treated this approach by computing a cost function based on
the variance of point intensities relative to their Euclidean distance. Geyer [2] proposed a 6D Radon transform on the
space of Essential matrices parameterized by ordered pairs in the rotation groupSO(3). In contrast, we propose an
algorithm which circumvents the pitfalls of feature tracking by processing the features directly without searching for
the best matches. Our approach culminates with a five-dimensional search for the parameters of motion via an integral
transform similar to the Radon in concept.

2 Motion estimation via a Radon transform

We will first introduce the traditional Radon transform as it applies to identifying lines in planar images before we
illustrate how we can use similar intuition to identify the correct ego-motion parameters of a spherical camera in
motion. The Radon transform will convert a function from data space into parameter space, and for identifying lines
on a planar image it is given as

G(ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)δ(ρ − < (x, y), (cos θ, sin θ) >)dxdy

Here g(x, y) is the weighting function, in this case an intensity image.δ is a soft characteristic function, which
measures how close the point (x,y) lies to the line defined by(ρ, θ). Conceptually, for any line(ρ, θ), G(ρ, θ) counts



the number of image points which belong to the line given byρ − x cos θ − y sin θ = 0, weighted by the intensity of
the image points. The rigid motion of a camera is given by the pair(R, t), whereR ∈ SO(3) is the rotation of the
camera andt is the translation. We parameterizeSO(3) with ZYZ Euler angles (R(α, β, γ) = Rz(γ)Ry(β)Rz(α)),
and since the translation can only be recovered up to scale, we restrictt to be a unit vector, concerned only by
the direction of translation. As the Radon transform identifies lines in planar images, we would like to formulate a
conceptually similar transform that will identify the five parameters describing the motion of a camera between two
image locationsI1, I2. For every possible rigid motion given by(R, t), we want to count the number of point pairs
(p1, p2), wherep1 ∈ I1, p2 ∈ I2, such that (p1, p2) satisfies the motion constraint given by(Rp1 × p2)T t = 0,
weighted by the similarity of the pointsp1, p2. This formulation will be robust only if we can find a similarity measure
which will identify point pairs only if the points under comparison are projections of the same scene point. With
this objective a simple image-based measure will not suffice Our proposal is to use image features which compute
more distinguishing characteristics such as local gradient orientation distributions. A similarity between such features
shows greater contrast between image locations that do not represent the same projected scene point [6]. Using this
idea of a similarity between features, we can formulate an integral transform to compute the validity of each possible
rigid motion:

G(R, t) =
∫

p1∈S2

∫
p2∈S2

g(p1, p2)δ((Rp1 × p2)T t)dp1dp2

Here our soft characteristic functionδ measures how close the pair of feature locationsp1 andp2 come to satisfying
the motion constraint given by(Rp1 × p2)T t = 0. Our weighting functiong(p1, p2) measures the similarity between
features located at pointsp1 andp2, and is given as

g(p1, p2) = {e−||p1−p2|| if features have been extracted atp1 andp2, 0 otherwise},

where||p1 − p2|| is an measure of the difference between two features. Notice that the domain both our weighting
function and characteristic function is the manifoldS2 × S2, since(p1, p2) is an ordered pair of points on the sphere
S2. Since we have restrictedt to be a unit vector, we can writet = RzRye3, where(RzRy) ∈ SO(3). Consequently,
points in our parameter space can be identified with elements of the direct product groupSO(3) × SO(3). Thus, the
functionsg, δ are defined on the homogeneous spaceS2 × S2 of the groupSO(3) × SO(3), of which elements of
our parameter space belong. In the following section we will show how to utilize this group theoretic framework to
computeG(R, t) using the harmonic analysis of functions defined on the spaceS2 × S2.

3 Motion estimation as correlation

If we substitutet = RzRye3 = R2e3 into the characteristic functionδ, our integral transform becomes

G(R1, R2) =
∫

p1∈S2

∫
p2∈S2

g(p1, p2)δ((R1p1 × p2)T R2e3)dp1dp2 (1)

=
∫

p1∈S2

∫
p2∈S2

g(p1, p2)δ((RT
2 R1p1 × RT

2 p2)T e3)dp1dp2 (2)

G(R3, R2) =
∫

p1∈S2

∫
p2∈S2

g(p1, p2)δ((RT
3 p1 × RT

2 p2)T e3)dp1dp2, R3 = RT
1 R2 (3)

G(R3, R2) is now a correlation of functions defined on the product of spheresS2 × S2. The correlationshift in this
case is performed by elements of the groupSO(3) × SO(3). As explained in detail in [7, 4], a correlation between
functions defined on the sphereS2, where the shift is given by an element ofSO(3), can be computed efficiently
using a Spherical Fourier Transform (SFT). We now proceed to extend this development to consider the direct product
groupSO(3) × SO(3), beginning with a short exposition of spherical harmonic analysis. Readers are referred to [1]
for extensive information regarding the computation of a discrete SFT.

As the angular portion of the solution to Laplace’s equation in spherical coordinates, the spherical harmonic func-
tionsY l

m form a complete orthonormal basis over the unit sphere:

Y l
m(θ, φ) = (−1)m

√
(2l + 1)(l − m)!

4π(l + m)!
P l

m(cos θ)eimφ



whereP l
m(cos (θ)) are associated Legendre polynomials. Thus, for any functionf(ω) ∈ L2(S2), we have a Spherical

Fourier Transform (SFT) given as

f(ω) =
∑

l∈N

∑
|m|≤l f̂ l

mY l
m(ω) (4)

f̂ l
m =

∫
ω∈S2 f(ω)Y l

m(ω)dω (5)

An important property of the spherical harmonic functionsY l
m is

Y l
m(R−1η) =

∑
|k|≤l

Y l
k(η)U l

km(R), (6)

where the(2l+1)×(2l+1) matricesU l are the irreducible unitary matrix representations of the transformation group
SO(3), whose elements are given by

U l
mk(R) = e−imαP l

mk(cosβ)e−ikγ . (7)

The P l
mk are the generalized Legendre polynomials. From (6) we obtain a Shift Theorem relating coefficients of

rotated functions makadia03cvpr:

h(ω) = f(R−1ω) ⇔ ĥl
m =

∑
|k|≤l

f̂ l
kU l

mk(R) (8)

This Shift Theorem (8) shows us that theU l matrix representations of the rotation groupSO(3) are the spectral
analogue to 3D rotations. As vectors inR

3 are rotated by orthogonal matrices under rotation, the(2l + 1)-length
complex vectorŝf l, comprised of all coefficients of degreel, are transformed by the unitary matricesU l.

As expected, this theory extends to the direct product groupSO(3) × SO(3) acting on the homogenous space
S2 × S2. The expansion for functions inS2 × S2 is given as

f(ω1, ω2) =
∑
l∈N

∑
|m|≤l

∑
n∈N

∑
|p|≤n

f̂ ln
mpY

l
m(ω1)Y n

p (ω2) (9)

f̂ ln
mp =

∫
ω1∈S2

∫
ω2∈S2

f(ω1, ω2)Y l
m(ω1)Y n

p (ω2)dω1dω2 (10)

A Shift theorem also exists for functions onS2 × S2:

h(ω1, ω2) = f(RT
1 ω1, R

T
2 ω2) ⇔ ĥln

mp =
∑
|r|≤l

∑
|q|≤n

U l
rm(R1)Un

qp(R2)f̂ ln
rq (11)

We will now use these results to show how to compute the correlation efficiently.

3.1 Algorithm

Expanding our correlation (3) with (11,10), we get:

G(R3, R2) =
∫

p1∈S2

∫
p2∈S2


∑

s

∑
|t|≤s

∑
u

∑
|v|≤u

ĝsu
tv Y u

v (p2)Y s
t (p1)


 (12)


∑

l

∑
|m|≤l

∑
n

∑
|p|≤n

∑
|r|≤l

∑
|q|≤n

U l
rm(R3)Un

qp(R2)δ̂ln
rqY

n
p (p2)Y l

mp1


 dp1dp2 (13)

From the orthogonality of the spherical harmonics this reduces to

G(R3, R2) =
∑

l

∑
|m|≤l

∑
n

∑
|p|≤n

∑
|r|≤l

∑
|q|≤n

U l
rm(R3)Un

qp(R2)f̂ ln
mpδ̂

ln
rq (14)



From the homomorphism property of the representationsU , we know that

U l
mn(R(α, β, γ)) =

∑
|k|≤l

e−im(γ+ π
2 )e−ik(β+π)e−in(α+ π

2 )P l
mk(0)P l

kn(0)

Using this to expand (14), and by definingR3 = Rz(γ − π
2 )Ry(β − π)Rz(α + π

2 ) andR2 = Rz(η − π
2 )Ry(ξ − π),

we get

G(R3, R2) =
∑
lmrk

∑
npqj

P l
rk(0)P l

km(0)Pn
qj(0)Pn

jp(0)ei(kβ+rα+mγ+jξ+pη+q π
2 )ĝln

npδ̂
ln
rq (15)

As it happens, the exponentials inG(R3, R2) are orthogonal to the Fourier basis for the circle, so in fact we can take
a 5-D Fourier transform ofG and obtain

Ĝrkmjp =
∑

l

∑
n

∑
|q|≤n

P l
rk(0)P l

km(0)Pn
qj(0)Pn

jp(0)eiq π
2 ĝln

npδ̂
ln
rq (16)

Thus, the Fourier coefficientŝG of our correlation (15) can be computed directly fromĝ and δ̂. Note also that the
resolution of our correlation grid directly depends upon the band-limit we assume for our functionsg, δ. If our
band-limit is chosen to beL, we will obtain a result that is accurate up to±(180/(2L + 1))◦ for each parameter.

3.2 Refining the estimate

For a reasonable selection of the variableL = 20, we will obtain an estimate with±4.4◦ accuracy. The computational
load required to obtain an estimate of sub-degree accuracy is infeasible. However, we can practically compute (3)
directly in a window of8.8◦ in each parameter to localize our solution. It is important to note that since we are only
refining our solution (we assume it is correct, and only wish to localize it), we can use the initial estimate to prune the
feature pairs which are deemed outliers, thus greatly reducing the computational load.

4 Experiments

In this section we will present some practical considerations regarding the computation of our correlation function
(15) and its coefficients, followed by some experimental results on real data. For comparison, we use a popular feature
extractor/tracker to generate correspondences from which we estimate the motion. For a ground truth result, we track
by hand 30 image points from which we again estimate the motion.

4.1 Spherical Images

Catadioptric systems with a unique effective viewpoint have been proven to be convex reflective surfaces of revolution
with a parabolic or hyperbolic profile. Geyer and Daniilidis [3] showed that such projections are equivalent to a
projection on the sphere followed by a projection from a point on the sphere axis to the plane. In the parabolic case,
the second projection is a stereographic projection from the sphere to the catadioptric plane (also the image plane):

u = cot
θ

2
cosφ

v = cot
θ

2
sin φ.

Given a calibrated camera and catadioptric imageI(u, v) we define its inverse stereographic mapping onto the sphere
as

IS(θ, φ)
def
= I(cot

θ

2
cosφ, cot

θ

2
sin φ).

This mapping allows us to interpolate an image on the sphere given a catadioptric image. The range of this mapping
is only limited by the field of view of the original catadioptric system, and so to fully image the sphere a 360◦ field of
view catadioptric system would be required.



4.2 Image acquisition

To obtain spherical images, we used a catadioptric system consisting of a Nikon Coolpix 995 digital camera along
with a parabolic mirror attachment produced by Remote Reality. The mirror’s field of view is 212◦. The size of the
original catadioptric images was 2048×1536 pixels without compression, and the parabolic mirror filled up a region
of approximately 1400×1400 pixels. The images are mapped to the sphere by interpolating onto theθ-φ plane, where
angular sampling is uniform. Figure 1 shows a sample catadioptric image obtained from a parabolic mirror and its
corresponding projection onto the sphere.

                                    

Figure 1:On the left is a parabolic catadioptric image. In the middle is the spherical image represented on theθ-φ plane, and on
the right is the image displayed on the sphere.

4.3 Feature extraction

To extract features from our catadioptric images we use the Scale Invariant Feature Transform (SIFT). The SIFT feature
extraction algorithm identifies distinguishable feature vectors using a scale-space difference-of-gaussians approach.
Feature vectors are computed using neighborhood gradient orientation information. A feature generated from SIFT
typically has 128 parameters. To compute difference between two feature vectors inR

128, we simply use the Euclidean
distance. Figure 2 shows the feature correspondences you would obtain if you matched SIFT features between two
images.

Figure 2:Correspondences generated between two images using SIFT features.

                        

Figure 3:Two catadioptric images taken from a camera moving in only the positive X direction.



We tested our algorithm on the pair of images shown in Figure (3). For comparison, we searched for corre-
spondences between our feature sets, and then applied Levenberg-Marquardt minimization to find the five parameters
of motion. To determine the validity of each solution, we hand-tracked 30 featurespi, qi and computed the error∑30

i=1

∣∣(Restpi × qi)T test

∣∣2. The error of our algorithm after performing a refinement in the solution window using a
direct computation was 0.0159, and the error of LM minimization was a comparable 0.0179. To understand the mag-
nitude of these errors, we also performed LM on our hand tracked correspondences, and the error of these matches
using its own estimate was 0.0074;

5 Conclusion

In many instances, Fourier based algorithms offer a significant advantage compared to direct, brute-force spatial
computations. Global Fourier techniques are generally frowned upon when dealing with motion estimation problems
because as global operators they cannot account for signal alterations introduced by occlusion, depth-variations, and
a limited field of view. We avoid these pitfalls by analyzing the spectral information of feature-based signals rather
than the original spherical images. Our preliminary results indicate that with a reasonable computational load we can
obtain a motion estimate up to a small window. If necessary, a fast direct computation will deliver a refined solution.
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