Atomistic Studies of Deformation and Fracture in Materials with Mixed Metallic and Covalent Bonding

Vaclav Vitek
University of Pennsylvania, vitek@seas.upenn.edu

Marc J. Cawkwell
University of Pennsylvania

Roman Gröger
University of Pennsylvania

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/pennergy_posters/1
For more information, please contact repository@pobox.upenn.edu.
Atomistic Studies of Deformation and Fracture in Materials with Mixed Metallic and Covalent Bonding

Abstract
Materials with high melting temperatures (over 2000°C) tend to be brittle at ambient and even relatively high temperatures. High melting temperatures originate in strong interatomic bonding arising from formation of \(dd\) or \(dp\) bonds that also affect and/or control crystal structures and properties of extended defects, such as dislocations, grain boundaries. These, in turn, govern plastic deformation and fracture.
General goal: Establish relationship between electronic structure and mechanical behavior

Comments
Materials with high melting temperatures (over 2000°C) tend to be brittle at ambient and even relatively high temperatures.

High melting temperatures originate in strong interatomic bonding arising from formation of dd or dp bonds that also affect and/or control crystal structures and properties of extended defects, such as dislocations, grain boundaries. These, in turn, govern plastic deformation and fracture.

General goal: Establish relationship between electronic structure and mechanical behavior.

Materials studied

BCC transition metals: Mo, W, Nb, Ta, V
FCC transition metal: Iridium
Intermetallic compounds: MoSi$_2$, Mo$_5$Si$_3$, Ir$_3$Nb, Ir$_3$Zr

MOTIVATION OF RESEARCH

CORE STRUCTURE OF THE 1/2[111] SCREW DISLOCATION IN MOLYBDENUM

Bond-order potential and ab-initio DFT-based calculations of Woodward and Rao

MOLYBDENUM

Tension and compression compared with corresponding pure shear in the direction of the Burgers vector. If only the shear stress parallel to the Burgers vector controlled glide, the CRIS would be the same for pure shear, tension and compression.

FUTURE RESEARCH

SHORT TERM

Properties of special and general grain boundaries in iridium and comparison with other fcc metals to clarify the propensity for intergranular brittleness in polycrystalline iridium.

Studies of stacking faults and dislocations in molybdenum silicides: MoSi$_2$ (tetragonal C11_b, hexagonal C40, orthorhombic C54) and Mo$_5$Si$_3$ (D8_m).

LONG TERM

Transition bcc metals (Mo, W, Ta, Nb, V)

Establish general rules of the dependence of their plastic behavior on electronic structure, in particular filling of the d-band. Investigate effects of point defects, in particular interstitials produced by irradiation, impurities and alloying elements on dislocation glide and thus deformation and fracture of these materials.

FERROMAGNETIC IRIDIUM

Development and testing of BOP that includes ferromagnetism. Using this BOP to investigate dislocations, interstitials, grain boundaries, alloying elements and their interactions in bcc iron with emphasis on effects of ferromagnetism and comparison with non-magnetic bcc metals.