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Abstract. An important requirement of a robust traffic engineering solution is
insensitivity to changes, be they in the form of traffic fluctuations or changes in
the network topology because of link failures. In this paper we focus on devel-
oping a fast and effective technique to compute traffic engineering solutions for
Interior Gateway Protocol (IGPs) environments that are robust to link failures in
the logical topology. The routing and packet forwarding decisions for IGPs is
primarily governed by link weights. Our focus is on computing a single set of
link weights for a traffic engineering instance that performs well over all single
logical link failures. Such types of failures, although usually not long lasting, of
the order of tens of minutes, can occur with high enough frequency, of the or-
der of several a day, to significantly affect network performance. The relatively
short duration of such failures coupled with issues of computational complexity
and convergence time due to the size of current day networks discourage adap-
tive reactions to such events. Consequently, it is desirable to a priori compute a
routing solution that performs well in all such scenarios. Through computational
evaluations we demonstrate that our technique yields link weights that perform
well over all single link failures and also scales well, in terms of computational
complexity, with the size of the network.
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1 Introduction

With IP networks carrying increasing amounts of commercial traffic, reliability and
steady performances have become critical factors. Large ISPs today offer Service Level
Agreements (SLAs) covering delay, port availability and losses across their network,
which must be maintained even if the network experiences congestion or failures. This
provides strong incentives for engineering the network to maintain acceptable levels
of performance across a broad range of operating conditions, i.e., fluctuating traffic
patterns and intensities or topological changes caused by link and node failures. The
focus of this paper is on one such aspect of traffic engineering, namely computation of
robust routes to mitigate the impact of single link failures in logical topologies.

Most large service providers map a logical (IP) topology onto an underlying phys-
ical fiber network and then operate an Interior Gateway routing protocol like OSPF,
IS-IS, or EIGRP on the logical topology. Hence, disruption can occur due to a failure in



the physical network, for example a fiber cut, or due to a failure in the logical topology,
for example a loss of adjacency between routers due to CPU overload, lost packets,
interface failure, etc. Critical failures in the physical network, e.g., fiber cuts, are rel-
atively infrequent but typically long lasting, from hours to days, [8]. As a result, they
are dealt with either directly at the physical layer, e.g. automatic switch-over, or with
reactive routing which re-computes a new routing pattern. The relatively long recovery
time of reactive routing is warranted by the scope and severity of such failures. In con-
trast, logical link failures are much more common but normally affect just a single link
(see again [8]), and are typically transient in nature, resolving over a time scale of min-
utes. Because of their relatively short durations, logical failures are a natural candidate
for proactive solutions that rely on robust routing which apriori anticipate all possible
logical link failure scenarios. In particular, relying on reactive solutions may not be ap-
propriate or even feasible, as quickly computing and deploying a complete set of new
routes can be challenging, especially in today’s large networks that often include several
hundred routers. Indeed, by the time the network has determined how to best adapt its
routing and propagated the required changes, the failure may have been already fixed
or be in the process of being fixed. In addition, re-computing a new optimal routing
pattern has the potential for being disruptive to more flows, i.e., re-route them, than just
the flows that were originally affected by the failed link.

In this paper, our focus is on developing a technique to compute such a priori robust
routing solutions for OSPF [9], IS-IS [3] and EIGRP [1], three of the most common
intra-domain routing protocols in the Internet. The IGP routing framework imposes
two unique constraints. One, traffic in an IGP environment can flow only along short-
est paths computed using a set of link weights1 (say W ). Two, load balancing of traffic
between a node-pair is allowed only over equal cost multiple paths with the further re-
quirement that traffic be split in equal proportions across paths2. Within the framework
of robust routing, our goal is then to compute a single set of link weights for a given
characterization of traffic entering the network, i.e., traffic matrix T , which performs
well under both normal conditions and in the event of any single logical link failures
This would ensure that only the routes traversing the failed link are affected and possi-
bly re-routed3, which is clearly the minimum re-routing required under a link failure.
Another important goal is to ensure that the weight computation algorithm scales well
with network size which, as mentioned previously, easily span hundreds of routers.

Most of the previous works, on optimizing IGPs for traffic engineering, e.g. [6], [4],
[12] and [13] only address the problem in an environment without link failures. As one
can expect and as we shall see, performance can degrade significantly if link weights
are chosen without accounting for failures. [6] proposed a technique for coping with
link failures in OSPF/IS-IS networks, but that involves changing a few link weights
upon failure and hence is suitable only for reactive routing.

1 As routing is fully specified by the set of link weights, in this paper we use interchangeably
the terms “routing solution” and “weight setting.”

2 Although EIGRP allows unequal splitting, it is rarely used.
3 Re-routing would not occur if there were multiple shortest paths.



The problem of computing a single set of link weights robust to all single link fail-
ures was first addressed in [2] and has been studied in [10], [7], and [14]. [10] presents
a tabu-search heuristic that computes a set of weights robust to link failures by evalu-
ating the impact of all possible link failures for each sampled weight setting. Although
it yields good link weights, evaluation of all link failures for a weight setting has very
high computation complexity making the search intractable for large networks. In order
to avoid this bottleneck a typical method is to evaluate the impact of failure of only
a few important links. The key issue then is the identification of such links. [14] re-
lies on random sampling, but this obviously ignores the coupling that exists between
links, traffic, and routing. [7] defines important links based on the increase in cost they
contribute upon failure. However, the cost increase is computed for the current weight
setting, which introduces a strong bias based on the routing that this weight setting in-
duces. In other words, neither the technique of [14] nor that of [7] selects important
links in a manner that fully accounts for the complex dependencies that exist between
weight settings and traffic flows.

1.1 Our Contributions

We propose a solution to the above problem that is fast, scalable and performs well
without the drawbacks of previous techniques. Our contributions are three-fold. One,
we introduce a new definition to classify the importance of a link failure that takes
into account the traffic matrix, routing and the potential benefit to the network from
protection against the failure. Two, we develop a new technique to quickly identify
critical links based on this definition by extracting relevant information from standard
weight search heuristics, like [5] and [4], used to optimize OSPF/IS-IS in no-failure
scenarios. Our technique uses the weight perturbations performed by these heuristics
to approximate link failures and capture statistical identifiers, based on which it selects
critical links. Three, our technique possesses a novel feature in that it yields quanti-
fiers for identification of links and/or networks whose failure performance is insensitive
to weight settings. We show through computations that compared to [10], our tech-
nique yields a computational gain of a factor of over 10 for small size networks and
a factor of 100-200 for large real-life sized networks. Equally important, we demon-
strate that it yields better results that the techniques of [7] or [14] and is consistently
faster.

The rest of the paper is organized as follows. Section 2 provides a general overview
of the problem and the challenges involved, including a brief review of related works.
Section 3 presents the heuristic we use for computing weight settings. Section 4 evalu-
ates its performance and we conclude in Section 5.

2 Problem Formulation and Related Work

We model the network as a directed graph G = (V,E) with M = ‖V‖ vertices and N =
‖E‖ edges. We assume the existence of a traffic matrix T which characterizes the traffic



between each node-pair4. For a given set of link weights W , let Φ0(W ) denote the
cost of routing the traffic matrix T over G, i.e., in the no-failure scenario, under IGP
constraints. The choice of Φ0 can be controlled by the network operator5. See Section 4
and [11] for details of the function used in this paper. Let Φl(W ) denote the cost of
routing T over G− l, i.e., when link l has failed 6. Let F be some arbitrary function
that weighs the importance of each no-failure and failure scenario. The IGP single link
failure robust routing problem may then be stated as

min
W

F(Φ0,Φl1 ,Φl2 , . . . ,ΦlN ) ,W ∈ Z+N (1)

For the purposes of this paper, we use

F(Φ0,Φl1 ,Φl2 , . . . ,ΦlN ) = Φ0 + µ ∑
l∈E

Φl (2)

where µ is a parameter that weighs the importance of failures.
The equal-split constraint in standard IP forwarding renders the problem NP-hard

[5] even in the (simpler) no-failure scenario and hence motivates the use of heuristics.
In the remainder of the section we review previous related work. The technique

presented in [10] proposes a tabu-search heuristic that samples different weight settings
and evaluates F over each sample, choosing the minimum. A major drawback of this
method is that the computation of F requires evaluating all possible link failures for
each weight setting. This quickly becomes intractable for large networks.

In order to overcome such computational bottlenecks, a common technique is to
hypothesize that the total cost is dominated by a few variables and hence evaluate only
their cost. A natural extension of this reasoning is to assume that only a few link failures
are important and compute weight settings to protect only against their failures. This is
equivalent to defining a new cost function

FEC(Φ0,Φl1 ,Φl2 , . . . ,ΦlN ) = Φ0 + µ ∑
l∈EC

Φl (3)

where the new set of links EC satisfies ‖EC‖ � ‖E‖. If the hypothesis is indeed true,
minimizing FEC , Eqn. (3) with a good choice of EC should yield Fbest

EC
≈ Fbest as well

as significantly reduce computational complexity. However, this raises the question of
how to carefully select the subset EC so that performance is not compromised.

In [14], the links in EC are determined via random selection. This ignores the re-
lationship between the traffic T and the routing W . In [7] EC is updated every few
iterations by evaluating the cost Φl of all link failures and choosing the ones that incur
the largest cost.

4 The techniques developed in [6] for optimization over multiple traffic matrices are directly
incorporable into our technique. For purposes of clarity and space, however, in this paper we
focus on optimization for a single traffic matrix.

5 It is typically a function of link load.
6 We simply set wl = ∞, re-compute any affected shortest paths and re-route the traffic matrix

T .



This technique has two drawbacks. First, in some cases certain links may degrade
network performance significantly on failure regardless of the weight setting. Including
such links in EC yields little reward in terms of computational effort since network
performance would always be poor when these links fail. However, the definition used
by [7] would likely include such links in the set EC since their cost on failure is always
large. The second drawback has to do with cases when the impact of a link failure
does depend on weight settings. Since EC is updated only every few weight changes,
it is quite possible that EC may not contain the critical links as defined by [7] with
regards to the final chosen weight setting W ∗. This can also lead to poor performance.
We validate our observations in Section 4.

3 Heuristic for Failure Optimization

Based on our arguments in the previous section, we hypothesize that the criticality of
a link, which decides its membership in EC, should be a function of the range and
variability of cost it incurs on failure over a large, if not the whole set of link weights.
We now motivate and define a new metric for the criticality of a link that satisfies the
above mentioned criteria and present a fast technique for its measurement.

Links which, regardless of weight settings always degrade network performance on
failure, as well as links whose failure does not affect the network at all are considered
insensitive to weight settings. Computational effort spent in finding weight settings to
protect the network against failure of such links would yield very little reward. Hence
such links should typically not be included in EC. On the other hand, link failures that
exhibit large variations in cost across weight settings would be ideal candidates for
the critical link set (EC). By carefully computing weights, one can protect the network
against these link failures. Clearly their inclusion in the critical set yields increased
returns in terms of performance improvement per unit of computational effort. These
links are considered sensitive to weight settings. Hence, we define the criticality of
a link as a function of some measure that is proportional to its sensitivity to weight
settings.

In order to quantify the sensitivity of a link, we use a two-threshold based approach.
We specify two thresholds to denote satisfactory and unsatisfactory performance. The
sensitivity of a link is defined as the number of times, over all weight settings, that net-
work cost on failure of the link falls below or above the satisfactory and unsatisfactory
cost thresholds, respectively. The larger and close to each other the two numbers, the
higher the likelihood that the link impacts network performance and responds to failure
optimization. A simple example should illustrate this concept. Consider two links A and
B, so that across 100 weight settings failure of link A results in a network cost that is
below the satisfactory cost threshold (has little impact) 50 times and above the unsat-
isfactory cost threshold 50 times (large penalty). Conversely, for link B, the numbers
are 90 and 10 respectively. Clearly, A is sensitive to weight settings, while the failure
impact of link B is likely to be insensitive to weight settings. Hence inclusion of A in
the critical set would be more beneficial.

It now remains to devise a technique that can determine the sensitivity of a link
efficiently without having to compute the network cost after its failure for all possible



weight settings. Two observations are key to our technique. First, a link failure may be
approximated by an increase in link weight. Second, weight-search heuristics like [5]
devised to compute optimal weights in no-failure scenarios typically operate by making
numerous single weight changes to explore the weight space. We can exploit this to
achieve our goals. During the course of the exploration of the weight space, we can
approximate the impact of failure for each link over a large set of weight settings, simply
by capturing appropriate statistical identifiers whenever a link weight is increased. This
yields two advantages. One, we can compute the sensitivity of a link over a large set of
routings without incurring additional complexity7. Second, it also provides an indicator
on network robustness in general (see Section 3.4).

Once the sensitivity of each link has been computed, the most sensitive links are
included in EC. The same weight search heuristic is then re-run to compute weights that
now minimizes the cost function FEC , Eqn. (3)

The heuristic can be thought of as consisting of 3 phases:

1. Phase 1: Run a standard weight search heuristic, e.g. [5], to compute the optimal
link weights for the no-failure scenario (i.e. minimize Φ0). During this search, col-
lect statistics whenever link weights are large enough to simulate failure.

2. Phase 2: Compute sensitivity of each link and choose the most sensitive to comprise
the set EC.

3. Phase 3: Run the standard weight search heuristic to minimize the cost function,
FEC , Eqn. (3).

We note that any heuristic that explores the OSPF/IS-IS weight space by perturbing
link weights could be used in Phases 1 and 3. We used the algorithm presented in [5] as
our template because the algorithm has been found to be quite fast and effective. In the
next sub-sections, we briefly describe each phase. A detailed pseudo-code is available
in [11] and omitted here due to space constraints.

3.1 Phase 1: Collecting Link Statistics

The main functions of Phase 1 are to get an estimate of the best cost in the no-failure
case, Φbest

0 and to gather statistics to compute a measure of criticality for each link.
In each iteration, the underlying no-failure weight search heuristic begins with a

weight setting W and then searches the neighbourhood of that space by choosing a link,
and perturbing its link weight. Let the weight vector after perturbation be W ′. Denote
the cost after perturbation as Φ0(W ′). Let the current estimate of the best no-failure cost
is Φbest

0 . We denote the 2 thresholds mentioned in Section 3 to measure the sensitivity
of a link by θ1(unsatisfactory) and θ2 (satisfactory).

Each time the perturbation results in the increase of weight of a link l, we collect
the following statistics :

1. The number of times link weight increases. We denote this by winc(l).

7 Note that a weight search to optimize performance in the no-failure scenario needs to be run
anyway since our objective contains Φ0.



2. The number of instances for which the cost of the network lies above the threshold
θ1. We denote this estimate by ∆(l) and increment it by 1 whenever the current cost
Φ0(W ′) satisfies

Φ0(W ′)−Φbest
0

Φbest
0

≥ θ1. (4)

3. The number of instances for which the cost of the network lies below the threshold
θ2. We denote this estimate by γ(l) and increment it by 1 whenever the current cost
Φ0(W ′) satisfies

Φ0(W ′)−Φbest
0

Φbest
0

≤ θ2. (5)

Observe that since winc(l) is always incremented for a weight increase,

winc(l) ≥ ∆(l)+ γ(l). (6)

3.2 Phase 2: Selection of Critical Links

At the end of the execution of Phase 1, we have the estimate of the best no-failure cost
Φbest

0 , as well as the necessary statistical identifiers to compute the sensitivity of links.
Phase 2 involves the creation of EC. Towards this end we compute for each link l,

the frequency of cost change α(l), which is our measure of sensitivity. This is done
using the equation

α(l) = min{(winc(l)−∆(l)),(winc(l)− γ(l))} (7)

The above equation can be explained as follows. If over all sampled weight settings,
weight increases of a link result in cost increases that are either always above θ1 or
below θ2, then the impact of this link’s failure is relatively insensitive to weight settings.
For such scenarios, if the cost of failure is always high (low), then ∆(l) (or γ(l)) would
be large. From Eq. (6) and Eq. (7), α(l), the criticality of the link assumes a low value
for both cases. On the other hand, if an increase in cost of the link results in widely
varying cost increases that are often above or below the corresponding thresholds, then
again from Eq. (6) both ∆(l) and γ(l) will be comparatively small, resulting in a large
value for α(l). Continuing with the example of Section 3, link A would have a criticality
α(A) = min(100− 50,100− 50) = 50, while link B would have a criticality α(B) =
min(100−90,100−10) = 10.

Construction of the critical link set EC is now carried out as follows. All candidate
links are sorted in decreasing order of the criticality α(l). The top L links, which are
deemed to be the most critical links, are then chosen to constitute the set EC of candidate
links for failure optimization. L =‖ EC ‖ is a parameter that can be specified.

3.3 Phase 3: Optimization over Critical Links

The final phase is responsible for finding robust weight settings to protect network
performance against failures of links in the critical link set EC. This is achieved simply
by running the same weight search heuristic, but now to optimize the cost function FEC

from Eqn. (3). The search is guided by rejecting all solutions whose no-failure cost,



Φ0 exceeds the best no-failure cost Φbest
0 found in Phase 1 by more than θ2%. This

coupled with the fact that we are optimizing for failure of a small set of links reduces
computational complexity.

3.4 Network Sensitivity to Failure

We now present an additional benefit of our method, namely, the statistical identifiers
computed in Phase 1 can be used to estimate the robustness of a network as a whole.
We define two network indicators

P =
1

‖ E ‖ ∑
l: ∆(l)

winc(l)≥0.95

∆(l)
winc(l)

, (8)

G =
1

‖ E ‖ ∑
l: γ(l)

winc(l)≥0.95

γ(l)
winc(l)

. (9)

Intuitively, P (Pathological) provides an estimate of how many link failures can sig-
nificantly degrade performance regardless of any weight setting, while G (Good) gives
an estimate of the fraction of links that have a negligible impact on failure. One would
expect G to be close to 1 in instances where almost no link failures cause performance
to degrade. Alternatively, one would expect P to be close to 1, if the network is so
heavily loaded, or the traffic poorly matched to the network, that almost every link fail-
ure causes significant degradation of performance. We shall see the relevance of those
indicators in Section 4.

4 Experimental Evaluation

We evaluated the performance of our heuristic through computational experiments on
various topologies and traffic matrices. The set of topologies used for evaluation include
a PoP level version of the Sprint backbone as well as 5 synthetic networks generated
using the Georgia Tech [15] topology generator. For the Sprint backbone, we used an
actual traffic matrix generated from traffic measurements, while the traffic matrices for
other networks were generated by picking intensities for each node-pair from a uniform
distribution. Due to space constraints, we present only a subset of the results. Complete
details may be found in [11].

A piecewise linear cost function introduced in [5] is used to represent the cost of
routing traffic on each link. It is similar to an M/M/1 cost function in that it increases
exponentially with link utilization. The network wide cost, Φ , is assumed to be the sum
of all link costs. We refer the reader to [11] for further details on the cost function.
The thresholds θ1 and θ2 were set to 100% and 20% of the best no-failure cost Φbest

0 ,
respectively. The weight search heuristic was run for 1000 iterations in Phase 1 and
100 iterations in Phase 3. As is standard practice in optimization, these parameters may
be tuned further if required, although we found them to work well for all topologies
considered.

For the smaller networks considered, we compare our algorithm (we shall refer to
our heuristic as “Freq”) against techniques presented in [10] (referred to as “Exhaus-



tive”), [7] (referred to as “F&T”), random selection of EC (referred to as “Random”) as
well as optimal re-routing. To obtain a fair comparison, the same weight search heuris-
tic ([5]) used in our technique for exploring the weight space was also utilized in the
other heuristics. For optimal re-routing, a new set of weights was computed for all in-
stances of link failures on the reduced topology consisting of the original graph minus
the failed link. We then compared the performance of our and other heuristics to the
performance achievable when re-computing new routes after each failure.

For large networks, both the “Exhaustive” technique and computation of optimal
routings for all of the ‖ E ‖ possible failures are intractable. In order to circumvent
this problem we first identify cases for which route re-computation has the potential to
significantly improve performance, that is, those link failures that generate significant
cost differences between the no-failure cost and that of our heuristic. For those and only
those, we re-compute link weights (i.e recompute the routing) by running the no-failure
weight search heuristic ([5]) on the truncated graph from which the failed link has been
removed. This enables us to again compare the performance of the different heuristics
(except the “Exhaustive”) against a benchmark consisting of what is achievable when
full re-routing is allowed.

Finally, we note that all the IGP weight search techniques ([5], [4] etc.) are random
in nature and our identification of critical links is also based on statistical estimators.
Hence it is possible that in a particular run we traverse an atypical sample path and
make poor choices when selecting critical links, resulting in poor performance8. In
order to quantify the frequency of such instances, we performed multiple runs (20) of
all heuristics. Consequently, the results are presented in the form of the “fraction of
times the heuristic cost lay within a certain fraction of the benchmark cost” over all
the runs. The metric used for comparison was always the worst case deviation over all
link failures between the heuristics and the benchmark costs. For example, a value of
60% under a column titled 30% would imply that in 60% of the runs, the worst case
deviation of the heuristic from the benchmark over all link failures was less than 30%.

4.1 Small Networks

This section presents results for a PoP level version of the Sprint network. Re-computation
of the optimal routing after each failure was tractable and hence used as the benchmark.
Table 1 shows results for a maximum link utilization of 0.7 under the optimal routing
no-failure scenario. From the first row, we observe that the “Exhaustive search” heuris-
tic performs quite well, always within 30% of optimal re-routing.

The next two rows, namely “Freq., L = 40” and “Freq. L = 20”, show the perfor-
mance of our heuristic with 40 and 20 critical links, respectively. As can be seen, the
results are very good and comparable to those of the “Exhaustive Search” technique.
100% of the sample runs for L = 40, and 90% of the samples for L = 20, yield a perfor-
mance within 40% of that obtainable with the best possible re-routing. The “Exhaustive
Search” heuristic outperforms our heuristic with L = 40 in only 6.6% of the sample
runs, and that too by less than 10%.

8 Given their random nature, all the weight search techniques suffer from this problem.



Table 1. Comp. Results for various heuristics on the Sprint n/w, Max Util = 0.7

Freq. of % Deviation from Optimal
Heuristic 10% 20% 30% 40% 50% 60% 70% 80% 90% ≥ 100%

Exhaustive 9.1 81.8 9.1 0 0 0 0 0 0 0
Freq. L = 40 13.33 73.33 6.67 6.67 0 0 0 0 0 0
Freq. L = 20 10 75 0 5 0 0 0 0 0 10
F&T L = 40 0 15 10 0 15 15 10 0 0 35
F&T L = 20 0 5 0 10 5 10 0 5 0 65

Random L = 40 0 25 20 0 20 10 0 0 0 25
Random L = 20 0 5 5 0 10 10 15 5 5 45

Plain 0 3.33 0 16.67 3.33 6.67 0 0 0 70

Table 2. Comp. Results for various heuristics on the Sprint n/w, Max Util = 0.5

Frequency of % Deviation from Optimal
Heuristic 10% 20% 30% 40% 50% 60% 70% 80% 90% > 100%

Exhaustive 100 0 0 0 0 0 0 0 0 0
Freq. L = 20 100 0 0 0 0 0 0 0 0 0
F&T. L = 20 100 0 0 0 0 0 0 0 0 0

Plain 20 80 0 0 0 0 0 0 0 0

Our technique also outperforms the implemented “Random” as well as “F&T” tech-
niques. From Table 1 we observe that the “F&T” technique has a worst-case deviation
of more than 100% from optimal re-routing in 35% of the cases with L = 40 and in 65%
of the cases with L = 20. “Random” selection of critical links results in a worst case
deviation of more than 100% in 25% of the sample runs with L = 40 and in 45% of the
sample runs with L = 20. This further re-enforces the importance of correctly selecting
critical links. Finally, the last row (“Plain”), indicates performance when link weights
are optimized only for the no-failure scenario. As expected, it performs the worst with
70% of the runs exceeding optimal performance by 100%.

Table 2 presents an interesting second sample point for the Sprint network, this time
for a relatively low utilization of 0.5. As can be seen, all techniques including even
the “Plain” heuristic performs exceedingly well. Why is this the case? Our network
indicators P and G defined in Section 3.4 correctly explain this situation. The P and G
indicators for the various networks at various levels of utilization have been computed
in Table 3(a). Note from the 2nd entry, which represents the network in question, that it
has a G entry of 0.98. This indicates that at the current utilization, the network should
be relatively insensitive to failures, which is indeed the case. Note also that the 1st row
which represents the Sprint network with the previous utilization of 0.7, has a P value
of 0.046. This indicates the presence of some (4) links that always cause degradation on
failure. We confirmed this observation for all 4 links by comparison with the optimal
performance on failure of these links.

Our technique is the only one that allows the explicit identification of such instances
without resorting to expensive computation. The P and G network indicators readily



Table 3. Computational Time and Insensitivity Indicators for Sprint n/w

Row Network Max. Insensitivity
Util. P G

1. Sprint 0.7 0.046 0
2. Sprint 0.5 0 0.98
3. 150 Node 0.7 0 0.97

(a) Insensitivity of vari-
ous network-traffic matrix
instances to link failure

Heuristic Avg. Max.
Time(secs) Time(secs)

Exhaustive 3320 4207
Freq. L = 40 510 626
Freq. L = 20 189 224
F&T L = 40 608 743
F&T L = 20 270 546

Plain 36 49

(b) Comp. Times for various
heuristics

identify instances where failure optimization is not beneficial, simply by using infor-
mation from the computationally inexpensive Phase 1. Based on the values of P and
G, one can decide to skip the more expensive Phase 2, and/or initiate a redesign of the
network.

Table 3(b), displays statistics of the computation time (on a Dell Intel 1.5 GHz)
for each heuristic on the Sprint network. The table clearly demonstrates the significant
gain in computation time of our heuristic over the “Exhaustive Search” technique. Our
heuristic takes an order of magnitude less time to compute solutions, and in most cases
yields equally good weight settings. We also observe that the “Freq.” heuristic is faster
than the “F&T” technique.

4.2 Large Networks

Scalability to cope with the large size of present day networks has been an important
goal of our heuristic. By virtue of the size of large networks, one expects a link failure
to have less impact than on small networks. Hence we use smaller critical link sets to
improve the running time. Table 4(a) shows results for a 150 node 432 edge graph for
“Freq.” and “F&T” heuristics with L = 10, and for the “Plain” heuristic. Our heuristic as
well as the “F&T” heuristic perform well, within 10% of the benchmark over all runs,
while the “Plain” heuristic performs well in 80% of its runs. The results are attributable
to the high value of G = 0.97 for the 150 node network. All but 4 of the links cause little
impact on failure. However the 4 links are sensitive to weight settings which offsets the
“Plain” heuristics performance in 20% of the runs.

Running times for the network are shown in Table 4(b). Our heuristic took about 4.6
hours and was much faster than the “F&T” heuristic. For the network in question, 10
iterations of the “Exhaustive Search” took about 7 hours. The underlying weight search
scheme ([5]) typically takes about 1000 iterations to produce consistent results ([5]). A
straightforward extrapolation indicates that the “Exhaustive” technique would require
700 hours to produce results equivalent to our method, i.e., about 2 orders of magnitude
more.

Results for several other small and large networks are presented in [11]. They further
demonstrate the speed and effectiveness of our technique over other methods as well as
the benefits of the network indicators P and G.



Table 4. Performance and complexity statistics for 150 node n/w

Freq. of % Dev. from No-Failure Cost
Heuristic 10% 20% > 100%

Freq. L = 10 100 0 0
F&T L = 10 100 0 0

Plain 0 80 20

(a) Comp. Results for various heuristics, Max
Util = 0.7

Heuristic Avg. Max.
Time(secs) Time(secs)

Freq. L = 10 16489 17847
F&T. L = 10 23800 138646

Plain 5559 6387

(b) Comp. Times for various
heuristics

5 Conclusions

We have addressed the problem of computing a single set of link weights for IGP rout-
ing to protect the network against single link failures and perform well under normal
conditions. This is an important problem because single link failures are the most com-
mon type of failures, and can generate significant disruption if not properly guarded
against. The use of “proactive” solutions limits the amount of overhead and re-routing
required and also minimizes disruption which are desirable given the transient nature
of such failures.

In this work we have presented an efficient and novel heuristic that exploits the
information gathered by no-failure search heuristics. We showed how to use this infor-
mation to construct a set of critical links that are most likely to degrade performance
on failure. Exhaustive search to optimize for failure is then performed only for this
smaller set of links. Through computational evaluations we have demonstrated that the
heuristic scales well with network size, and outperforms previous approaches. Finally,
a novel feature of our heuristic is in the form of the P and G indicators that provide
early indication of the general sensitivity of the network to failures.
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