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C H A P T E R 17

Rainbows and Other Caustics
Don’t expect that mathematics will give you an easy answer
to any physical problem. If you find that it does, that is
evidence that you picked a poor problem to begin with.

— Blair Kinsman

17.1 SIGNPOST: BIFURCATIONS OF STATIONARY-PHASE POINTS

If any physical phenomena can be called “beautiful,” surely the rainbow is an example.
Throughout human history it has played a key role in art, literature, and even religious
scriptures, inspiring awe.1 And yet, for millennia the rainbow was also a goad, a rebuke
to humans’ attempts to understand Nature. Practically every natural philosopher of
any note had something to say about rainbows, yet very little was understood until
René Descartes published an essay titled La Dioptrique in 1637.2 We now see the
rainbow as an exemplar of a much broader class of optical phenomena called “caustics.”
Phrased in modern language, we will see that Descartes correctly identified the origin
of a caustic as a consequence of an even more broadly applicable concept called
bifurcation: in this case, the merger and mutual annihilation of two stationary-phase
points as a parameter is varied.

Figure 17.1 shows some features of the rainbow that are directly observable with
the unaided eye. The Focus Question is
Question: What are the minimal requirements for the focusing of light? Can it happen
naturally, or only with special apparatus?
Physical idea: Focusing to a bright line of light, with a di�use background, is generic.

17.2 PRELIMINARIES

17.2.1 Natural versus contrived focusing
Chapter 6 discussed the focusing of light by a lens. Focusing to a point turned out to
be a tricky a�air, requiring the lens to have the right shape and distance to a focusing
screen. In constrast, another form of focusing arises naturally and is ubiquitous. For
example, sunlight that arrives at the bottom of a swimming pool gets concentrated
into a network of bright lines (not points). The constantly changing shape of the water
surface (due to wind) does not destroy these lines, but merely moves them. A partial
focus of this sort is generically called a caustic; point focus is just one special case.

In general, the projection of a caustic onto a viewing screen lies along a line.
Because the screen need not be at any special distance from the source, the caustic
itself occupies a 2D surface in 3D space.

1Awe and fear: Many folk traditions attribute grim consequences to pointing at a rainbow.
2Thomas Harriot performed similar calculations 30 years earlier, but apparently never published
them.
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17.2 Preliminaries 485

Figure 17.1: [Photograph.] Rainbow. Note (i ) the sky appears darker between the two bows; (ii ) the secondary
bow is less bright than the primary; (iii ) the order of colors is opposite in the two bows; (iv ) the main bow’s
color sequence is roygvgvg. The faint, extra last bands are part of a “supernumerary” bow; see Section 17.3.4.
The photo was taken with a polarizing filter; this does not a�ect the rainbow, which is already polarized, but
it does reduce background light from the sky. Inset: Color saturation was digitally enhanced to bring out the
structure. [Photo courtesy Steve Nelson (Fayfoto, Boston MA).]

We will soon see that a natural rainbow involves a particular kind of caustic.

17.2.2 Dispersion from a triangular prism
Section 5.3.5 introduced the concept of dispersion: Because di�erent vacuum wave-
lengths travel at slightly di�erent speeds in a transparent medium, the bending pre-
dicted by the law of refraction is wavelength-dependent. Figure 17.2 shows the resulting
behavior in a macroscopic setting. A bundle of parallel incoming rays of light3 gets
spread in angle upon entering a prism, then spread further upon exiting.

A key observation is that each spectral color exits at a specific angle relative to the
incoming rays, and that this angle is the same for each of the parallel incoming rays.
Thus, as we move farther away from the prism, the increasing spread with distance
eventually dominates the smearing from finite beam width, and a clear spectrum
emerges.

3Section 6.5.1 introduced the concept of light rays.
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486 Chapter 17 Rainbows and Other Caustics
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Figure 17.2: [Photograph.] Colors from a prism. 1 : Each incoming ray bends toward the perpendicular upon
entry. 2,3 : Blue is bent slightly more than red. 4 : A bundle of many parallel incoming rays combine their
respective spectra, leaving mostly white except at the edges. 5 : Each ray bends away from the perpendicular
upon exit, and again blue bends more. 6 : Each color emerges at a specific angle, which is the same for each of
the parallel incoming rays. [https://sciencing.com/happens-light-passes-through-prism-8557530.html ]

17.3 SPHERICAL DROPLETS: THE CARTESIAN RAINBOW

17.3.1 The rainbow as a caustic
Rainbows are always seen with the Sun behind the observer. Eventually, early scientists
realized that the light we see must be sunlight scattered backward to us from water
droplets in the sky. Figure 17.3 shows how this is possible: Light rays are shown
entering a droplet, then partially reflecting inside it. (Much of the incoming light
instead exits the droplet at point Q, continuing away from the observer, but some
will be internally reflected.) As with the prism, two rounds of refractive bending are
involved, and each can spread incoming white light.

Closer inspection of Figure 17.3 reveals a problem with this explanation, however.
For the case of a spherical water droplet in air, outgoing ray directions depend on
wavelength, but also on which ray we are following, so that a jumble arrives on any
projection screen. How, then, can we get a rainbow? Here is where Descartes made
his decisive contribution.

Descartes realized that although an incoming bundle of parallel rays will emerge
in many directions, nevertheless there is a minimum angle of deviation. That is, in the
ray-optics approximation no light will be returned at angles less than this minimum.
(Larger angles all the way up to 180 deg are all possible.) You should stop reading now
and work out the details in Problem 17.1. A key conclusion is that a projection screen
placed behind the droplet will catch light covering a disk-shaped region, leaving the
exterior of that disk dark, and moreover the edge of the disk will be especially bright.
In fact, the edge is a caustic.

Descartes confirmed the predicted phenomena with an experiment in which a
spherical flask of water was illuminated by a shaft of sunlight in an otherwise dark
room.
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17.3 Spherical Droplets: the Cartesian Rainbow 487
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Figure 17.3: [Ray diagram.] Parallel incoming rays emerge nonparallel from a droplet. The red and blue lines
depict rays that obey the laws of reflection and refraction for two di�erent wavelengths. Not shown: Much of
the incoming light exits at point Q, but we are interested in the part that internally reflects as shown. (Also,
some of the incoming light reflects at P.)

17.3.2 The primary bow arises from one internal reflection
When we see a rainbow, we are looking not at a single object, but at the combined
e�ects of countless droplets. Descartes drew a diagram similar to Figure 17.4 to explain
the situation:

• Each droplet reflects light back in a caustic shaped like a cone, with the droplet
at its apex. Even if the droplets are not all the same size, each of their cones has
the same opening angle, because that angle does not depend on the size.

• We can catch part of that droplet’s cone of light if our angle of view relative to
the Sun’s rays equals the cone’s opening angle.

• The locus of all points in space that meet this condition is also a cone, but with
our eye at the apex: When we look in a direction lying on that cone, we see glints
from every droplet lying along that line of sight.

The combined e�ect is an apparent glowing arch in the sky.
Descartes did not have the framework needed to complete his understanding of

the rainbow, because he did not understand that white light is a mixture of di�erent
spectral colors. Shortly after his work, Newton pointed out that each spectral compo-
nent of light will have a slightly di�erent angular radius for its bright ring, so that the
ring will appear colored. The weaker light sent to larger scattering angles creates a
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488 Chapter 17 Rainbows and Other Caustics

Figure 17.4: [Diagram.] When many droplets
are present, we only see light from a few. Atmo-
spheric scientist Craig Bohren observes reflected
light mainly originating from droplets located on
a cone with half-angle 0.7 rad, that is, from direc-
tions rotated 2.4 rad from that of the incoming
solar rays. The upper part of this cone appears
to the observer as a partial ring of light. The
lower part is mostly preempted by the Earth;
that it, it has very little optical depth, and so is
not visible, unless the observer is in an airplane.
[From Bohren & Clothiaux, 2006.]

just right (rainbow angle)
too small (less than rainbow angle)

too big but OK

di�use, white illumination inside the bow. Indeed, real rainbows are noticeably darker
just outside the ring than inside (Figure 17.1).

17.3.3 The secondary bow arises from double internal reflection
In good conditions a second bow is often visible (Figure 17.1). It has a similar expla-
nation, involving two internal reflections. Because each reflection is only partial, the
secondary bow is usually less bright than the primary. Because the total scattering
angle is now greater than 180 deg, the extra bending of blue relative to red implies
that the order of colors is reversed relative to the primary bow, as is also seen in
Figure 17.1.

17.3.4 Critique of ray-optics results
Ray optics has given us a good account of several of the properties of rainbows.
Conspicuously absent from the list, however, is any explanation of the “supernumerary”
bows that are visible in Figure 17.1. It is easy to miss this phenomenon if you are not
looking for it. Even if you look it is not always visible, and artistic depictions almost
never include it. Perhaps for these reasons, as well as the overwhelming authority of
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17.4 The Di�ractive Rainbow 489

Figure 17.5: [Diagram.] Scattering geometry.
Light from a distant point source scatters from
a droplet through angle “ and lands on a distant
projection screen. The path shown is not a sta-
tionary phase path. The diagram is not to scale;
the main text considers only the case L0 ∫ B
and d ∫ B. In that limiting case, the angles ◊Õ

and ◊ become equal.
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Isaac Newton, the supernumerary bows were dismissed until Thomas Young o�ered
them as evidence for the wavelike aspect of light in 1803.

Young pointed out that for scattering angle “ greater than the caustic value “ú
(that is, within the primary bow) there are two di�erent incoming rays (two stationary-
phase paths) of unequal length that emerge at that angle.4 The path-length di�erence
depends on “, leading to an interference pattern of light and dark bands, di�erent
for each wavelength. Young proposed that these considerations could explain the
supernumerary bows.

Although Young’s idea was correct in essence, it is not a quantitative theory: It
attempts to join together the ray-optics approach, which suppresses the wavelike char-
acter of light, with interference, which is inherently a wave phenomenon. Section 17.4
will outline a more self-consistent calculation.

Moreover, the calculation you did in Problem 17.1 appears to predict an infinite
intensity of light right at the caustic! This unphysical prediction, too, is an pathology
of the ray-optics approximation, as we will now see. It is similar to the conclusion
from ray-optics that a lens can focus light down to a mathematical point. Really, we
know that di�raction limits the focus of even a perfect lens;5 similarly, we will find
finite light intensity at the rainbow caustic.

17.4 THE DIFFRACTIVE RAINBOW

17.4.1 Stationary-phase paths can be created and lost as parameters are changed
Figure 17.5 assigns names to the quantities that appear below. As in earlier chapters,
we restrict attention to paths that consist of straight lines within each medium, with
sharp bends or bounces only at the boundaries between media. However, and also as
in earlier chapters, we do not insist on the rules of ray optics (laws of reflection or
refraction); these will emerge in the course of finding the stationary-phase path(s).

4You should have found this when solving Problem 17.1. More precisely, this holds for scattering “
angles greater than the caustic value, but less than about 2.8 rad.
5See Section 6.8.1.
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490 Chapter 17 Rainbows and Other Caustics

According to the Light Hypothesis,6 the path shown contributes a phase equal to
2fi/⁄ times

Le� = L1 + nL2 + nL3 + L4, (17.1)

where n is the index of refraction of water at the wavelength of the light.
To simplify the calculations, we will illustrate the method in two dimensions,

that is, neglect the third dimension coming out of the page. We’d like to compute
the probability amplitude for photon arrivals at a particular point on the projection
screen, that is, a particular value of the angle “. This will be the sum of contributions
for various paths, that is, for various values of the angles ◊, –, and — that characterize
each path.

We are interested in the situation where the source distance L0 is much larger
than the droplet radius B. As in Chapters 5 and 6, this means that the incoming part
of the path has the simple form

L1 = L0 ≠ B cos ◊ + · · · ,

where the ellipsis denotes terms that vanish as B/L0 æ Œ. Similarly, because d ∫ B
we have

L4 =


(d cos “ ≠ (≠B cos(◊ + – + —)))2 + (≠d sin “ ≠ (B sin(◊ + – + —)))2 (17.2)
= d + B cos(≠“ + ◊ + – + —) + · · · , (17.3)

where again the ellipsis indicates terms we may drop.
The two isosceles triangles in Figure 17.5 have

L2 = 2B sin(–/2) and L3 = 2B sin(—/2).

Our previous experience suggests that, for millimeter-scale droplets, the most
significant contributions to the answer will come from stationary-phase paths and
their immediate neighbors. To find them, we now fix a point on the observation screen
(that is, “ is a constant “0) and consider small variations about a particular path:

◊ = ◊0 + ›, – = –0 + ‹, — = —0 + µ.

It will also be convenient to define � = ≠“0 + ◊0 + –0 + —0.
We now expand Le� as a Taylor series in ›, ‹, and µ:

Le� = L(0)
e� + L(1)

e� + L(2)
e� + · · · .

The first (“zeroth-order”) term is an irrelevant constant. The first-order term is

L(1)
e� = B[›(sin ◊0 ≠ sin �) + ‹(n cos(–0/2) ≠ sin �) + µ(n cos(—0/2) ≠ sin �)].

For a stationary-phase path, we require that all three of these terms be zero. Thus,
sin ◊0, n cos(–0/2), and n cos(—0/2) must all equal sin � (and hence must equal each
other). We restate this as

–0 = —0 (17.4)
sin ◊0 = n cos(–0/2) (17.5)

◊0 = either � or (fi ≠ �). (17.6)

6Ideas 4.5 and 4.6.
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Figure 17.6: [Mathematical functions.] Behavior near a caustic. (a) Stationary-phase paths can be labeled by
the angle ◊0 of their entry point, or by their exit angle “. For some values of “ there are two such paths (dots);
for others there are none (“ < “ú). (b) A simplified situation with only one integration variable u, showing how
two stationary-phase points (1 and 2, orange dashed curve) can merge (3, blue solid curve) and then disappear
(green dotted curve) as a control parameter is adjusted through a special value.

The first of these conditions is just the law of reflection. Figure 17.5 shows that the
angle of refraction is Â0 = (fi ≠ –0)/2, so Equation 17.5 is the law of refraction at the
entry point. The last condition has two cases because sin(fi ≠ x) = sin x, but the first
is spurious; we are interested in the second, which is the law of refraction at the exit
point.

Thus, we have recovered the rules of ray optics. You already know the solution
from Problem 17.1: Equations 17.4–17.6 have two solutions for large angles “, and no
solutions for smaller “. That is, as we move on the projection screen from larger to
smaller scattering angles (away from the “antisolar point”), the two stationary-phase
points approach each other, merge, and disappear. We say that the phase su�ers a
bifurcation from two to zero stationary-phase points.7

17.4.2 The caustic angle arises as a bifurcation point
We are particularly interested in the special value “ú at which the two stationary-phase
paths merge. This is the caustic, and it is where ray optics approximation broke down
(it gave us the unphysical result of infinite probability density). To find it, combine
Equations 17.4–17.6 to get

“ = 2◊0 + 4 cos≠1(n≠1 sin ◊0) ≠ fi. (17.7)

Figure 17.6a shows this function. It is minimum when
1
2 n sin(–ú/2) = cos ◊ú. (17.8)

Use Equation 17.5 to eliminate –ú:

2n≠1 cos ◊ú =


1 ≠ n≠2 sin2 ◊ú

7“Catastrophe theory” studies a wide range of phenomena involving bifurcations of the stationary
points of a function. For example, each curve of Figure 17.6b could represent the potential energy
of a system; as the control parameter changes, the stable minimum disappears altogether, with
consequences that could indeed be catastrophic in the nonmathematical sense of the word.
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492 Chapter 17 Rainbows and Other Caustics

sin ◊ú =


(4 ≠ n2)/3. (17.9)

For water in air, evaluating this expression and substituting in Equation 17.7 gives
the caustic’s angle (in this situation called the rainbow angle) as “ú ¥ 2.41, as seen
in the figure.

17.4.3 The Light Hypothesis addresses the shortcomings of ray optics
Figure 17.6b shows a simplified version for the mathematical behavior we have found:
The horizontal axis shows a single variable u schematically representing all three
integration variables ›, µ, and ‹. The three curves show imagined behavior above, at,
and below a critical value of the control parameter “. We see two stationary points
that move together, merge, and disappear. Such mergers are examples of bifurcations.

What happens to the probability amplitude for photon arrivals when this merger
occurs? The situation is reminiscent of the one discussed in Chapter 6. With no
lens, many points on the projection screen each have a phase function with a single
stationary-phase point uú. With a lens, however, one point in space is special. The
special point lies in the plane at distance d satisfying the focus condition. Within that
plane, it is located along the straight line from the source that passes through the lens
center, that is, at x = 0 in Figure 6.3. This point has a phase function whose graph is

*
A

d

A

L0

Fig. 6.3 flatter than an ordinary stationary-phase point: It is a constant plus a u4 term (not
u2).8 The sum of contributions to the probability amplitude then has a longer central
region than the one shown in Figure 4.11a, and hence its modulus squared is large,

Fig. 4.11a

leading to very bright illumination at that one spot.
Similarly, above the caustic angle the dashed curve in Figure 17.6b has two

stationary-phase points (marked 1 and 2 on the dashed curve), each leading to a large
excursion in the complex plane in between tight coils. Those excursions can either
reinforce (Figure 17.7a) or cancel (Figure 17.7b), depending on the length di�erence
of the two corresponding paths. The resulting interference pattern is wavelength-
dependent, potentially explaining the colored supernumerary bows.

Just at the caustic angle, there is only a single stationary-phase point (solid curve
in Figure 17.6b), but the phase function is flatter there than in the generic case: As a
function of u, the leading behavior is u3, not u2. Accordingly, the resultant is especially
big there (Figure 17.7c), giving rise to the bright caustic ring. However, in contrast
to the ray-optics theory, the light intensity is finite at the caustic.

For scattering angles less than the caustic angle, there is no stationary-phase point
at all (dotted curve in Figure 17.6b), analogously to a defocused lens system. The
integral that yields the probability amplitude consists mostly of tight spirals, so its
modulus squared is small (Figure 17.7b). Unlike in ray optics, however, there is some
illumination inside the caustic angle.

Figure 17.8 summarizes the qualitative expectations raised in this section.

17.4.4 Confirm expectations
To justify our expectations, we must now look at the higher-order terms in Le� (Equa-
tion 17.1). Up till now, we have only expanded this function to first order in small
variations around chosen starting values of ◊0, –0, and —0.

To begin, we will examine the phase function for an observer located at the caustic
angle, that is, set “ equal to the value “ú found below Equation 17.9. The sketch graph

8See Figure 6.4.
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Figure 17.7: [Sketch graphs.] Contributions to the probability amplitude, corresponding to the three cases
shown in Figure 17.6b. Each panel represents an integral in the same style as Figure 4.11. In each case, the
red vector is the resultant from adding many contributions (black arrows). Number labels refer to features in
Figure 17.6b. (a) At scattering angles below “ú, there is no stationary-phase path at all. (b) Exactly at the
caustic angle, we get super-constructive interference. (c,d) Beyond the caustic angle, the two stationary-phase
paths each make contributions similar to Figure 4.11a. These can interfere constructively or destructively.

Figure 17.8: [Mathematical functions.] Models of
the rainbow. Dashed curve: Ray optics predicts
zero light below the caustic angle and infinite
intensity right at it (see Problem 17.1). Solid
curve: The sum over paths correctly predicts:
(a) Some light below the caustic angle; (b) finite
intensity at every scattering angle; and (c – d) an
interference pattern above the caustic angle. The
calculation assumed an index of refraction 1.33
and droplet radius B related to light wavelength
by B = 1500⁄/(2fi), and neglected the contri-
bution from paths that reflects o� the droplet
surface instead of entering it. (If included, such
contributions would superimpose rapid variations
on the same overall structure shown here.)
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(solid curve in Figure 17.6b) suggests that we are looking for a flat region of the phase
function, but there are three integration variables—not just one as in the figure. At
least we know where to look: The stationary-phase path is at ◊0 = ◊ú, –0 = –ú, and
—0 = –ú given by Equations 17.8 and 17.9.

As previously, we now let ›, ‹, and µ be small deviations of ◊, –, and — away from
the starting point. We already know that the phase function’s variation vanishes at
first order in these deviations, so we now collect the second-order terms:

L(2)
e� = 1

2 B
#

›2 cos ◊ú + (‹2 + µ2)≠n

2 sin(–ú/2) ≠ (› + ‹ + µ)2 cos �ú
$

.
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In the second term, note that sin(–ú/2) =


1 ≠ n≠2 sin2 ◊ú. In the last term, note
that cos �ú = ≠ cos ◊ú. Thus,

L(2)
e� = 1

2 B
Ë

(2›2 + ‹2 + µ2 + 2›‹ + 2›µ + 2‹µ) cos ◊ú ≠ (‹2 + µ2)n

2


1 ≠ n≠2 sin2 ◊ú

È

.

Next, note that Equation 17.9 says cos ◊ú =


(n2 ≠ 1)/3 and n
2



1 ≠ n≠2 sin2 ◊ú =


(n2 ≠ 1)/3. Thus,

L(2)
e� = 1

2 B
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Although the quadratic terms do not cancel completely, we see that at the caustic,
one direction is singular. That is, the matrix just found has one zero eigenvector,
namely the one with ‹ = µ = ≠›. This one direction in the path integral becomes
degenerate as we sweep “ through the caustic, leading to the behavior anticipated in
Section 17.4.3.9 In particular, the phase near ‹ = µ = › = 0 is super-stationary in
the special direction, leading to a large, but finite, enhancement in intensity at the
caustic.

For values of “ close, but not equal, to “ú, the phase acquires linear terms even
when traversed along the special direction just found. In this way, we see that the
picture in Figure 17.6 captures the essential physics. Nothing significant changes in the
other two integration directions near the caustic, so we may replace those integrations
by constants.

17.4.5 Reduction to a single integral
For the simplest possible calculation, we just replace the full three-dimensional integral
over ◊, –, and — by a single integral along the line that passes through (◊ú, –ú, —ú)
and is directed along the degenerating direction just identified. Because nothing is
degenerating in the other two directions of the path integral, we may hope that
the remaining two integrals in directions transverse to the interesting one roughly
contribute a constant factor.10 Figure 17.8 shows the result of evaluating the remaining
integral numerically, then computing its modulus squared. Labeled points correspond
to the examples shown in Figure 17.7, illustrating:

(a) Small (but nonzero) probability in the zone that was forbidden in ray optics
approximation.

(b) Finite probability at “ú.
(c) Nonmonotonic fallo� (supernumerary bows) beyond the caustic.

G. Airy carried out an analysis roughly equivalent to the preceding discussion
in 1838, though from a di�erent viewpoint. He concluded as we did that di�ractive
scattering near the caustic was dominated by an oscillatory integral whose phase is
a degenerating family of cubic functions. The answer as a function of the control
parameter “ is now called the Airy function; its modulus squared gives rise to the
solid curve in Figure 17.8.

9This result is similar to the analysis of Problem 6.8.
10We use a similar argument to avoid nonplanar paths, that is, to avoid having to do a six-dimensional
integral over the entry, exit, and reflection points.
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17.5 VISTA

17.5.1 Contrast to point focus
Recall the situation with point focusing. For simplicity, consider the two-dimensional
case (Figure 6.3). Focusing to a point required two conditions: (i) The distance d to

*
A

d

A

L0

Fig. 6.3the projection screen had to have the correct value given the distance L0 the lens
focal length. (ii) The observer had to sit at the correct point on the projection screen.
When these two conditions were met, then we found a value uú of u at which the phase
function Ï(u) acquired three special properties: Its Taylor series expansion about uú
was a constant plus terms of order at least (”u)4; that is, the linear, quadratic, and
cubic terms were missing, leading to a big enhancement of probability amplitude.11

In short,

(two conditions) + (freedom to choose uú) æ three special properties of Ï(u) about uú.

Now think about what we found for the caustic, again in two dimensions. Here we
only had to impose one condition: The screen could be at any (large) distance and the
sphere could have any radius, so the only condition is that the scattering angle have a
particular value “ú. We had three integration variables, so the freedom to choose their
three starting values was su�cient to eliminate their three linear coe�cients in the
phase function. The condition on scattering angle then su�ced to gain one additional
property, that in one integration direction the quadratic part of the phase function
should also vanish. This was enough to make the phase function super-stationary,
though not as much as in the point focus. In short,

(one condition) + (freedom to choose ◊ú, –ú, —ú) æ four special properties of Ï(u).

In three dimensions, a similar counting argument predicts that generically a curved
transparent object can focus light to a surface in space, that is, the locus where again
one condition is satisfied—a caustic.

17.5.2 Droplet size and shape e�ects
Earlier we saw that the value of the caustic angle “ú does not depend on droplet
size B. Certainly the dispersion (wavelength dependence of the index of refraction)
does not depend on B either, so droplets of every size give the same rainbow caustic:
The variation of droplet sizes found in real atmospheric systems does not destroy the
rainbow.

Matters are more complicated when we turn to interference e�ects, because now
there is a new length scale—the physical wavelength of light matters. Similarly to the
case of finite slit di�raction, droplet size now a�ects the interference, and a mixture
of droplet sizes will blur out the supernumerary bows.

However, smaller droplets are more nearly spherical than larger ones, because for
them surface tension dominates over air drag forces. When we look at the upper part of
a rainbow, the dependence of arc position on droplet size mentioned in the preceding
paragraph can be partially canceled by an opposite dependence from the slightly
ellipsoidal cross-section of the larger droplets; when this occurs, the supernumeraries
can be distinguished (Figure 17.1).

11Actually, we added a third condition, that the lens shape had to be symmetrical about u = 0. But
the only role of this condition was to ensure that uú = 0, simplifying the problem.
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When we look at the lower part of the rainbow, the scattering occurs in a mostly
horizontal plane. In this plane, each droplet’s cross-section is circular, so the cancella-
tion mechanism just described cannot occur. Indeed, supernumerary arcs are generally
not seen in the lower part of a rainbow (Figure 17.1).

17.5.3 Polarization and other e�ects
The discussion in this chapter is far from being the last word on rainbows. Airy’s work
preceded, and so could not incorporate, Maxwell’s theory of the connection between
light, electricity, and magnetism. For example, our presentation so far has neglected
the transverse character of light, and in particular the polarization dependence of the
transmission and reflection coe�cients.12 In fact, however, for the dominant polariza-
tion of scattered light our calculation agrees quite closely with a sophisticated model
based on Maxwell’s equations. (For the other polarization, nearly all light exits the
sphere instead of reflecting internally.)

THE BIG PICTURE

The rainbow reminds us that concepts from one domain of experience can be unex-
pectedly relevant in an apparently distant context: For example, the idea of bifurcation
from dynamical systems proved to be key to unraveling the structure of caustics.

Even at the level of raw phenomena, we may find something salient (for example,
a beautiful rainbow), think about it, and extract a more general class of phenomena
(caustic focusing) that we had not previously thought to explore systematically. For
example, the twinkling of stars in the night sky results when caustic surfaces, caused
by nonuniformity in atmospheric temperature, sweep across our eyes. In a biophysical
setting, caustics are important for the visual ecology of shallow-water marine creatures,
which must deal with photodamage from greater fluctuations of light intensity than
we might have expected; they must also make sense of their visual world amid large
distracting dynamic illumination patterns; and so on. Surely we have not yet learned
the last lessons that rainbow can teach us.

FURTHER READING

Semipopular:
Lynch & Livingston, 2001; Lee, Jr. & Fraser, 2001; Boyer, 1987.
Intermediate:
Bohren & Clothiaux, 2006, §8.4.2; Nye, 1999.
Descartes experiment: Ivanov & Nikolov, 2016.
Technical:
Berry, 2015; Nussenzveig, 1992.

12In addition, these coe�cients are not independent of angle as we assumed; Idea 5.1 only gave them
for the case of perpendicular incidence.
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Figure 17.9: [Ray diagram.] See Problem 17.1.
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PROBLEMS

17.1 Ray-optics rainbow
In this problem, you’ll make a picture like Figure 6.10a, but instead of following the

x
z

Fig. 6.10atransmitted ray you’ll examine the internally reflected ray, and use index of refraction
values appropriate for a spherical water droplet in air. Use the ray-optics approximation
for this problem, and restrict everything to a plane passing through the droplet center.
a. Consider a set of parallel incoming rays, traveling horizontally in Figure 6.19. One

incoming ray arrives at distance y0 from the centerline, as shown. Find the angle
◊2 shown in terms of y0 and the sphere radius B. Explain why the ray’s angle of
incidence ◊1 equals ◊2.

b. Use the law of refraction to find the angle Â in terms of ◊.
c. The triangle PQO is isosceles. Use that fact to find the angle – in terms of ◊2.
d. Use the law of reflection to conclude that the triangles PQO and QRO are congru-

ent, and hence to find the point of exit, R.
e. Use the law of refraction again to show that ◊3 = ◊1. Then find the angle “ that the

exiting ray makes with the right-pointing horizontal after exiting the droplet. This
angle will lie between fi/2 and fi, because the exiting ray is scattered backward.

f. Use a computer to draw the four segments of this ray, and repeat for a range of
other y0 values. (Also draw the circular boundary of the droplet’s cross-section as
shown.)

g. Make a graph showing the angle “ as a function of y0.
h. Suppose that incoming light is uniformly distributed across the water drop, that

is, y0 is a Uniform random variable. Conclude that the exit angle you found in (g)
is nonuniformly distributed, and describe its PDF qualitatively.

i. If the incoming light is monochromatic, what would you expect to see projected
onto a screen that intercepts these rays? What if the incoming light is white?

17.2 Di�ractive rainbow
[Not ready yet.]
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