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Abstract— We consider the problem of stabilizing a plant
with a network of resource constrained wireless nodes. In a
companion paper, we developed a protocol where each node
repeatedly transmits a linear combination of the values in its
neighborhood. For certain topologies, we showed that these
linear combinations can be designed so that the closed loop
system is stable (i.e., the wireless network itself acts as a
controller for the plant). In this paper, we design a Intrusion
Detection System (IDS) for this control scheme, which observes
the transmissions of certain nodes in the network and uses that
information to (a) recover the plant outputs (for data-logging
and diagnostic purposes) and (b) identify malicious behavior
by any of the wireless nodes in the network. We show that
if the connectivity of the network is sufficiently high, the IDS
only needs to observe a subset of the nodes in the network
in order to achieve this objective. Our approach provides a
characterization of the set of nodes that should be observed, a
systematic procedure for the IDS to use to identify the malicious
nodes and recover the outputs of the plant, and an upper bound
on the delay required to obtain the necessary information.

I. I NTRODUCTION

Industrial control systems are often deployed in large,
spatially distributed plants that involve numerous sensors,
actuators and internal process variables. Interconnecting the
various components of these systems has traditionally been
achieved through physical wiring, which is often difficult
to do (when the plant contains hard-to-reach or dangerous
areas), expensive, and fault-prone. However, the advent of
low-cost and reliable wireless networks promises to alleviate
many of these issues [1], [2]. With this technology, sensor
measurements of plant variables can be transmitted to con-
trollers, data centers and plant operators without the need
for excessive wiring, thereby yielding gains in efficiency and
profitability for the operator.

The topic of control over networks (wireless or other-
wise) has been intensively studied by researchers over the
past decade, leading to design procedures for controllers
that are tolerant to network imperfections such as packet
dropouts and transmission delays [3], [4], [5]. These works
typically adopt the convention of having a dedicated con-
troller/estimator located somewhere in the network, and
study the stability of the closed loop system assuming that
the sensor-estimator and/or controller-actuator communica-
tion channels are unreliable (dropping packets with a certain
probability, for example). In the companion paper [6], we
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introduced theWireless Control Network, a new paradigm
for control over a wireless network where the networkitself
acts as the controller (instead of having a specially designated
node performing this task). Specifically, we considered a
wireless network consisting of simple nodes that are able
to exchange information only with their direct neighbors.
We devised a protocol where each node transmits, at each
time-step, a single value that is a linear combination of
the values in its neighborhood. Nodes that have access to
the outputs of the plant (i.e., those nodes that are located
near the plant sensors) include those measurements in their
updates, and the plant actuators apply a linear combination
of the transmissions of nodes that are closest to them.
This novel protocol effectively causes the wireless network
to behave as a linear system with sparsity constraints on
the system matrices (corresponding to the topology of the
network). We provided a numerical design procedure (based
on linear matrix inequalities) to determine the appropriate
linear combinations for each node to use in order to stabilize
the plant, even when packets are dropped with a (sufficiently
low) probability. As discussed in [6], this scheme has several
benefits over traditional approaches to designing networked
control systems:

• It can explicitly incorporate very simple (computation-
ally constrained) nodes into the design procedure.

• It simplifies the transmission scheduling polices for the
network.

• It can easily handle practical scenarios involving large-
scale plants that have multiple (geographically dis-
persed) sensing and actuation points.

While the stability of networked control systems under
benign packet-drop scenarios has been well studied, the need
for a rigorous theory ofsecurityin industrial control systems
has only recently started to gain attention [7], [8], [9],
[10], [11]. In domains such as chemical process industries,
aviation and critical infrastructure, attacks on the control
systems could have disastrous consequences. The report
[12] makes several key recommendations for “designing-in”
security into industrial control systems. One of the points
highlighted by the report is the need to maintain accurate
logs of the plant and controller behavior, and to analyze
the information contained in those logs in order to quickly
detect and isolate anomalies. In traditional (data) networks,
this type of monitoring is performed with anIntrusion
Detection System(IDS), which essentially raises an alarm
if the observed traffic flow in the network deviates from
expected patterns [13]. The application of IDSs to wireless
networks is a relatively new area of research [14], and the



paper [15] suggests an IDS for wireless networks in process
control industries. The design in [15] captures (at a policy
level) attacks such as jamming, flooding the network with
large numbers of packets, and corruptions in the formatting
of data transmitted by certain nodes.

A more dangerous (and difficult to detect) attack in control
networks is that of datamodification, where malicious nodes
subtly change the contents of messages that they are passing
through the network, but otherwise follow the normal rules
of transmission. In this paper, we describe how to design
an IDS to detect data modification attacks in the control
scheme proposed in [6]. The IDS will be responsible for
observing the transmissions of certain nodes in the network
in order to (a) recover the outputs of the plant (e.g., for
fault-diagnosis purposes), and (b) detect and identify data
modification attacks by nodes in the network; the overall
architecture of the plant, control network and IDS is shown
in Fig. 1. We show that the wireless control scheme from
[6] allows malicious behavior to be identified by examining
the transmissions of only asubset of the nodes in the
network, provided that the network topology satisfies certain
conditions. We provide an explicit characterization of the
subset of nodes that needs to be monitored, along with
a procedure for the IDS to follow in order to extract the
required information from the transmissions of those nodes.
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Fig. 1. Architecture of the wireless control network with anIDS.

II. N OTATION AND BACKGROUND ON GRAPH THEORY

We useei to denote the column vector (of appropriate
size) with a1 in its i-th position and0’s elsewhere, and the
symbol1 to denote the column vector (of appropriate size)
consisting of all1’s. The symbolIN denotes theN × N
identity matrix, andA′ indicates the transpose of matrixA.
The cardinality of a setS is denoted by|S|, and for two sets
S andR, we useS \ R to denote the set of elements inS
that are not inR. The set of nonnegative integers is denoted
by N.

A graph is an ordered pairG = {V , E}, where V =
{v1, v2, . . . , vN} is a set of vertices (or nodes), andE is
a set of ordered pairs of different vertices, called directed
edges. The vertices in the setNvi = {vj |(vj , vi) ∈ E} are
said to be neighbors of vertexvi. A subgraphof G is a graph
H = {V̄, Ē}, with V̄ ⊆ V and Ē ⊆ E (where all edges in̄E
are between vertices in̄V).

A path P from vertexvi0 to vertexvit is a sequence of
verticesvi0vi1 · · ·vit such that(vij , vij+1

) ∈ E for 0 ≤ j ≤
t−1. The nonnegative integert is thelengthof the path. We

will call a graphdisconnectedif there exists at least one pair
of verticesvi, vj ∈ V such that there is no path fromvj to
vi. The connectivityof the graph is defined as the smallest
number of vertices that must be removed to disconnect the
graph, and is denoted byκ. A set of pathsP1, P2, . . . , Pr are
vertex disjoint if no vertex appears in more than one path.
Given two subsetsV1,V2 ⊂ V , anr-linking from V1 to V2 is
a set ofr vertex disjoint paths, each with start vertex inV1

and end vertex inV2. Note that ifV1 andV2 are not disjoint,
we will take their common vertices to be vertex disjoint paths
betweenV1 andV2 of length zero. The following classical
result will play a role in our derivations (e.g., see [16]).

Lemma 1:Let G = {V , E} have connectivityκ, and let
V1 and V2 be subsets ofV , each of size at leastκ. Then
there is aκ-linking from V1 to V2 (and vice versa).

III. T HE WIRELESSCONTROL NETWORK

Consider a plant of the form

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k],
(1)

with A ∈ R
n×n,B ∈ R

n×m and C ∈ R
p×n. The

output vector y[k] =
[
y1[k] y2[k] . . . yp[k]

]′
con-

tains measurements of the plant state vectorx[k] pro-
vided by the sensorss1, . . . , sp. The input vectoru[k] =[
u1[k] u2[k] . . . um[k]

]′
corresponds to the signals ap-

plied to the plant by actuatorsa1, . . . , am.
The plant is to be controlled using a wireless network

consisting of a set of nodes that interact with each other and
with the sensors and actuators installed on the plant. Each
node in the network is equipped with a radio transceiver
along with (limited) memory and computational capabil-
ities.1 Similarly, each sensor and actuator on the plant
contains a radio transceiver, allowing them to communicate
with neighboring nodes. The wireless network is described
by a graphG = {V , E}, whereV = {v1, v2, . . . , vN} is
the set ofN nodes andE ⊆ V × V represents the radio
connectivity (communication topology) in the network (i.e.,
edge(vj , vi) ∈ E if nodevi can receive information directly
from nodevj). In addition, we defineVS ⊂ V as the set of
nodes that can receive information directly from at least one
sensor, andVA ⊂ V as the set of nodes whose transmissions
can be heard by at least one actuator. We will refer toVS as
the sourcenodes in the network. In this paper, we will also
assume that there are somemalicious nodesin the network,
given by the setF ⊂ V . These malicious nodes will transmit
false values (perhaps by conspiring with each other) in an
attempt to damage the system in some way. Note that the set
F is unknowna priori.

In our development, we will find it convenient to consider
a new graphḠ that captures how the plant outputs enter
into the wireless control network. This graph is obtained by
taking the graph of the networkG and addingp new vertices

1We will model these resource constraints by limiting the state maintained
by each node to be a scalar. As discussed in [6], the control scheme can
also be applied to cases where nodes are allowed to maintain state vectors.



S = {s1, s2, . . . , sp}, corresponding to the sensors on the
plant. Define the edge set

EI =

{
(sl, vj)

sl ∈ S, vj ∈ VS ,
sl’s value is available to nodevj

}
.

We then obtainḠ = {V ∪ S, E ∪ EI}.
The proposed control scheme (introduced in [6], [17])

consists of having each node in the network update its value
to be a linear combination of its previous value and the
values of its neighbors. In addition, each source node will
include a linear combination of the sensor measurements
(i.e., plant outputs) that it receives at each time-step. Finally,
the malicious nodes will update their values arbitrarily at
each time-step. Mathematically, if we letzi[k] denote node
vi’s value at time-stepk, we obtain the update equations:2

zi[k + 1] = (2)



wiizi[k] +
∑

vj∈Nvi
wijzj[k]

+
∑

sj∈Nvi
hijyj [k] if vi ∈ VS \ F ,

wiizi[k] +
∑

vj∈Nvi
wijzj[k]

+
∑

sj∈Nvi
hijyj [k] + fi[k] if vi ∈ VS ∩ F ,

wiizi[k] +
∑

vj∈Nvi
wijzj[k] + fi[k] if vi ∈ F \ VS ,

wiizi[k] +
∑

vj∈Nvi
wijzj[k] if vi /∈ VS ∪ F .

The scalarswij and hij specify the linear combinations
that are computed by each node in the network. The scalar
fi[k] is an additive error3 committed by nodevi at time-
stepk if it is malicious. If we letF = {vj1 , vj2 , . . . , vj|F|

}
denote the set of malicious nodes, and aggregate the values
transmitted by all nodes at time-stepk into the value vector
z[k] =

[
z1[k] z2[k] · · · zN [k]

]′
, the transmission strat-

egy for the entire system can be represented as

z[k + 1] = Wz[k] +Hy[k]

+
[
ej1 ej2 · · · ej|F|

]
︸ ︷︷ ︸

EF




fj1 [k]
fj2 [k]

...
fj|F|

[k]




︸ ︷︷ ︸
f [k]

= Wz[k] +
[
H EF

]
︸ ︷︷ ︸

BF

[
y[k]
f [k]

]

︸ ︷︷ ︸
v[k]

,

(3)

for all k ∈ N. In the above equation, the(i, j) entry of W
satisfieswij = 0 if vj /∈ Nvi , and the(i, j) entry of H
satisfieshij = 0 if sj /∈ Nvi . We assume thatz[0] (i.e., the
initial state of the wireless control network) is known to the
IDS. Recall that the symbolei denotes a vector with a single
1 in the i–th position and zeros elsewhere.

At each actuatorl ∈ {1, 2, . . . ,m}, we apply the input
ul[k] = glz[k], wheregl is a vector that specifies a linear

2The neighborhoodNv of a vertexv is with respect to the graph̄G.
3This model allows a malicious node to update and transmit an arbitrary

value by choosing the error termfi[k] appropriately. It also captures the
scenario where multiple malicious nodes update their values in a coordinated
manner. We assume that malicious nodes cannot send conflicting values to
different neighbors, due to the broadcast nature of the communications.

combination of the values transmitted by the nodesVA that
are near that actuator.4 The update strategy for the network
can therefore be represented as

z[k + 1] = Wz[k] +Hy[k] +EF f [k]

u[k] = Gz[k],

where the matricesW ∈ R
N×N , H ∈ R

N×p and G ∈
R

m×N have sparsity constraints determined by the underly-
ing network topology. When there are no malicious nodes
(i.e., F = ∅), the overall closed loop system evolves as:

[
x[k + 1]
z[k + 1]

]
=

[
A BG

HC W

] [
x[k]
z[k]

]
, Â

[
x[k]
z[k]

]
.

Matrix Â is structured, in that certain entries are forced to
be zero (corresponding to the topology of the wireless control
network). LetΨs denote the set of all tuples(W,H,G) that
satisfy the required sparsity patterns and that cause the matrix
Â to have all its eigenvalues inside the open unit circle. In
[6], [17], a numerical procedure was provided to find an
element ofΨs (if one exists).

In this paper, we consider the problem of data collection
and analysis in this network for the purpose of identifying
malicious behavior by a nonempty subsetF of nodes.
Specifically, we will describe the design of anIntrusion
Detection System,5 whose task is to collect data from the
network in order to (a) recover the plant outputs6 y[k] and
(b) detect and isolate anomalous behavior in the wireless
control network. Clearly, one trivial option would be for
the IDS to simply listen to the transmissions ofeverynode
and sensor in the network, and double-check that all nodes
are indeed computing the proper linear combinations at
each time-step. However, this is not a satisfactory solution,
since the entire point of the wireless control network is
to avoid the communication infrastructure required for a
centralized solution of this kind. Instead, we would like a
way to identify the malicious nodes in the network and
obtain the plant outputs by viewing the transmissions of
just a subsetT ⊂ V of the nodes. Perhaps surprisingly, we
will show that this is possible with an appropriate choice
of the setT (provided that the network topology satisfies
certain conditions), even though the transmissions of the
nodes have been designed specifically with the goal of plant
stabilization in mind. In other words, the above design for the
wireless control networksimultaneouslyachieves the dual
objectives of stabilizing the plantand providing the IDS
with enough information to diagnose failures and malicious

4In this work, we do not consider the possibility of maliciousactuators
that apply arbitrary inputs to the system. Such behavior canpotentially be
identified by using the outputs of the planty[k] and applying appropriate
fault-diagnosis techniques, as described below.

5We assume that this is a trusted entity, with sufficient computational and
storage capabilities to analyze the data that it receives from the network.

6This information can be used by the IDS for tasks such as diagnosing
faults that occur within the plant (e.g., using the techniques described in
[18]). Since this is a rather general problem, we will not delve into the
details of how the IDS uses the outputsy[k] further in this paper, and
instead, will concentrate on ensuring that the IDS can obtain these outputs,
in addition to identifying malicious nodes in the control network.



behavior. Broadly speaking, our analysis will reveal that if
the connectivity of the wireless control network is at least
p+2f , and if each sensor measurement is heard by at least
p+2f nodes, then the IDS can deduce the above information
from the transmissions ofany p+ 2f nodes in the network,
as long as there are no more thanf malicious nodes during
anyD contiguous time-steps (whereD is an integer that we
will characterize later).

Remark 1: In this work, we will not consider a probabilis-
tic drop model for the channels between nodes; the possibil-
ity of a large number of (accidental) packet losses incurred
by such a model complicates the task of isolating malicious
behavior, and future research will be devoted to addressing
this more general scenario. However, our model does capture
the case where there is a limited (bounded) number of packet-
dropping channels in any set ofD contiguous time-steps.
Specifically, note that a dropped packet from nodevj to
vi can be modeled as “malicious” behavior by nodevi,
where the additive errorfi[k] is selected to cancel out the
contribution ofzj[k] in vi’s update. Thus, one can effectively
trade an actual malicious node for a dropped packet in our
analysis, as long as the total number of actual malicious
nodes and dropped packets in any set ofD contiguous time-
steps is less than or equal tof .

IV. A NALYSIS ALGORITHM FOR THE INTRUSION

DETECTION SYSTEM

For any setT ⊂ V , denote the vector of transmissions of
the nodes in that set at time-stepk by t[k]. We can write

t[k] = Tz[k] , (4)

whereT is a |T | × N matrix with a single1 in each row
capturing the positions of the vectorz[k] that are in the setT ,
and zeros elsewhere. In this section, we provide a procedure
for the IDS to use to parse the valuest[k], k ∈ N, in order
to recover the plant outputsy[k], and identify anomalous
behavior by any nodes in the network.

In our development, we will find it useful to consider
a slightly more general version of the system model (3).
For any subsetQ = {vq1 , vq2 , . . . , vq|Q|

} ⊂ V of nodes, let
EQ =

[
eq1 eq2 · · · eq|Q|

]
, and defineBQ =

[
H EQ

]

(where H is the matrix from (3) specifying the linear
combinations of the plant outputs that are used by the source
nodes). Note thatBQ hasp+ |Q| columns. The values seen
by the IDS overL + 1 time-steps (for some nonnegative
integerL) for the system

z[k + 1] = Wz[k] +BQv[k]

t[k] = Tz[k]
(5)

are given by



t[k]
t[k + 1]
t[k + 2]

...
t[k + L]




︸ ︷︷ ︸
t[k:k+L]

=




T

TW

TW2

...
TWL




︸ ︷︷ ︸
ΘL

z[k] +MQ
L




v[k]
v[k + 1]
v[k + 2]

...
v[k + L− 1]




︸ ︷︷ ︸
v[k:k+L−1]

, (6)

where

MQ
L ,




0 0 · · · 0

TBQ 0 · · · 0

TWBQ TBQ · · · 0
...

...
. . .

...
TWL−1BQ TWL−2BQ · · · TBQ



. (7)

When L = N − 1, ΘL is the observability matrix for
the pair (W,T), and we will call MQ

L the input matrix
corresponding to the setQ.

The following theorem shows that the IDS can recover
the desired quantities from the transmissions of nodes in
T , provided that a certain algebraic condition holds. We
will later relate this algebraic condition to conditions onthe
network topology and choices of the monitored nodesT .

Theorem 1:Suppose that there exists an integerD such
that, for all possible setsQ of 2f nodes, the matrixMQ

D

satisfies

rank
(
MQ

D

)
= p+ |Q|+ rank

(
MQ

D−1

)
. (8)

Then, as long as there are no more thanf malicious nodes in
the network during any set ofD contiguous time-steps, the
IDS can uniquely recover the plant outputsy[k] and identify
all of the malicious nodes with a delay ofD time-steps,
based on the transmissions of the nodes inT .

Before proceeding with the proof of the above theorem,
we provide a more detailed explanation of condition (8).
Specifically, note from (7) that for any setQ, the last(L−1)

block-columns ofMQ
L have the form

[
0

M
Q
L−1

]
, and thus have

rank equal to the rank ofMQ
L−1. Condition (8) is therefore

equivalent to saying that the firstp + |Q| columns ofMQ
D

must be linearly independent of each other, and of all other
columns inMQ

D. With this interpretation in hand, we are
now ready to continue with the proof of Theorem 1.

Proof: [Theorem 1] Consider time-stepsk =
0, 1, . . . , D, and suppose that the malicious nodes during this
period are a subset of the setF = {vj1 , vj2 , . . . , vjf }. From
(3), (4) and (6), the values seen by the IDS over these time-
steps are given by

t[0 : D] = ΘDz[0] +MF
Dv[0 : D − 1] , (9)

wherev[k] =
[
y′[k] f ′[k]

]′
. Note that the IDS knows the

quantitiest[0 : D] andΘDz[0], but it does not know the set
F or the valuesv[0 : D − 1]. The IDS will try to identify
these unknown parameters based on the known quantities.

Let F1,F2, . . . ,F(Nf )
⊂ V denote all possible sets of

f nodes, and letMF1

D ,MF2

D , . . . ,M
F
(Nf )

D denote the input
matrices corresponding to these sets. With these matrices in
hand, suppose that the IDS finds the firstj ∈ {1, 2, . . . ,

(
N
f

)
}

such that the vectort[0 : D]−ΘDz[0] is in the column space
of the matrixMFj

D . This means that the IDS can find a vector
v̄[0 : D − 1] such that

M
Fj

D v̄[0 : D − 1] = t[0 : D]−ΘDz[0].



The vector̄v[0 : D− 1] is the IDS’sestimateof the value of
v[0 : D− 1] (note that the valuēv[k] =

[
ȳ′[k] f̄ ′[k]

]′
con-

tains estimates of the plant outputs and the malicious errors
at time-stepk). Substituting (9) into the above expression
and rearranging, we have

MF
Dv[0 : D − 1]−M

Fj

D v̄[0 : D − 1] = 0 .

Let {F ,Fj} denote the set that is obtained by concatenating
setsF and Fj (i.e., it is the union of the two sets, with
duplications allowed). Exploiting the form of matrixMQ

D

shown in (7), the above expression can be written as



0 · · · 0

TB{F ,Fj} · · · 0

TWB{F ,Fj} · · · 0
...

. . .
...

TWD−1B{F ,Fj} · · · TB{F ,Fj}




︸ ︷︷ ︸
M

{F,Fj}

D




ṽ[0]
ṽ[1]
ṽ[2]

...
ṽ[D − 1]



= 0

(10)
whereB{F ,Fj} =

[
H EF EFj

]
and

ṽ[k] =



y[k]− ȳ[k]

f [k]
−f̄ [k]


 .

Now consider the matrixMF∪Fj

D . Since F ∪ Fj has at
most2f nodes, equation (8) in the statement of the theorem
indicates that the firstp + |F ∪ Fj | columns of the matrix
M

F∪Fj

D are linearly independent of each other, and of all
other columns of the matrix. Now, note that the matrix
M

{F ,Fj}
D is obtained from matrixMF∪Fj

D simply by dupli-
cating certain columns (namely, the columns corresponding
to nodes that appear in bothF and Fj). Consider a node
vl ∈ F . If vl /∈ Fj, then the column corresponding tovl
within the firstp+2f columns ofM{F ,Fj}

D will be linearly
independent of all other columns inM{F ,Fj}

D (since this
column will also appear in the firstp+ |F ∪Fj | columns of
M

F∪Fj

D ). This means that equation (10) can be satisfied only
if fl[0] = 0. On the other hand, iffl[0] 6= 0, the only way for
equation (10) to be satisfied is ifvl ∈ Fj andf̄l[0] = fl[0]. In
other words, if equation (8) is satisfied, any malicious node
that commits an error during the first time-step will appear
in setFj , and its additive error can be found by the IDS.

Next, note from (8) that the firstp columns ofM{F ,Fj}
D

will be linearly independent of each other and of all other
columns in that matrix (since these columns also appear in
M

F∪Fj

D and are not duplicated inM{F ,Fj}
D ). This means that

the only way for equation (10) to be satisfied is ifȳ[0] =
y[0]. Thus, the IDS has also recovered the outputs of the
plant that were injected into the network at time-stepk = 0.

At this point, the IDS knowsy[0] and the identities of
those nodes inF that committed errors during time-step0,
along with the exact values of their additive errors. The IDS
can then use (3) to obtain the transmitted values of all nodes
at time-stepk = 1 as

z[1] = Wz[0] +Hy[0] +BFj
f̄ [0] .

Now, using the identity

t[1 : D + 1] = ΘDz[1] +MF
Dv[1 : D] ,

the IDS can repeat the above process to find the values of
y[1] along with the identities of the nodes that are malicious
during time-stepk = 1. By repeating the above procedure
for all positive values ofk, the IDS can obtain the identities
of all malicious nodes and the errors that they commit, along
with the source streamsy[k] for all k, simply by listening
to the transmissions of the nodes inT .

Remark 2: It is worth noting that the decoding procedure
specified in the above proof requires the testing of up to

(
N
f

)

matrices (in the worst case) in order to locate the malicious
nodes. If one assumes that the set of malicious nodes does
not change over time, then at time-stepk, the IDS can
restrict its search to only those setsFj that contain all of the
malicious nodes from time-steps less thank. This reduces
the computational burden on the IDS in subsequent time-
steps. However, if we allow the IDS to repeat the search for
malicious nodes at each time-step, this analysis procedure
is also able to tolerate cases where the set of malicious
nodes changes over time (with the only constraint being that
no more thanf nodes are malicious during any set ofD
contiguous time-steps). The development of a more efficient
method to parse the transmissions of the monitored nodes is
an important venue for future research.

V. NETWORK TOPOLOGYCONDITIONS FOR

M ISBEHAVIOR IDENTIFICATION AND DATA RECOVERY

Theorem 1 provides a decoding procedure for the IDS
provided that condition (8) is true. In this section, we will
use results from the theory ofdynamic system inversionand
structured linear systemsto relate this condition to conditions
on the network topology.

A. System Inversion

Consider the wireless control network given by equations
(3) and (4). The quantitiesy[k] andf [k] in (3) are unknown
to the IDS, and so linear systems of this type are termed
linear systems with unknown inputs7 in the control literature
(e.g., see [19]). For such systems, it is often of interest
to “invert” the system in order to reconstruct some or all
of the unknown inputs, and this problem has been studied
under the moniker ofdynamic system inversion. We will
now summarize some pertinent results from the literature
on system inversion, and apply them to the problem of
detecting and identifying malicious nodes in the wireless
control network.

For any setQ ⊆ V , the output of the linear system (5) over
L + 1 time-steps (for some nonnegative integerL) is given
by (6). Alternatively, we can consider the transfer function

P(z) = T (zI−W)
−1

BQ ,

which is a|T | × (p+ |Q|) matrix of rational functions ofz.

7In our case, the setF (and thus the matrixBF ) is also unknown to
the IDS, so the system given by (3) and (4) is more general thanthe linear
systems with unknown inputs commonly considered in the literature.



Definition 1: The system (5) is said to have anL-delay
inverse if there exists a system with transfer functionP̂(z)
such that̂P(z)P(z) = z−LIp+|Q|. The system is invertible if
it has anL-delay inverse for some finiteL. The least integer
L for which anL-delay inverse exists is called the inherent
delay of the system.

In order for the system to be invertible, its transfer function
must have rankp+ |Q| over the field of rational functions in
z. The following result follows directly from [19] and [20]
(which studied the problem of dynamic system inversion)
and provides a test for invertibility in terms of the system
matricesW,BQ andT.

Theorem 2 ([19], [20]): For any nonnegative integerL,

rank(MQ
L ) ≤ p+ |Q|+ rank(MQ

L−1) (11)

with equality if and only if the system has anL-delay inverse
(note that rank(MQ

−1) is defined to be zero). If the system is
invertible, its inherent delay will not exceedL = N − p −
|Q|+ 1.

Note that condition (11) means that the firstp + |Q|
columns ofMQ

L must be linearly independent of each other,
and of all other columns inMQ

L . Taking Q to be any set
of 2f nodes, this is precisely the condition that is required
for us to detect and identify malicious nodes (as specified in
equation (8) in Theorem 1). In other words, the problem of
identifying malicious nodes in the wireless control network
can be viewed as a problem of linear system inversion. Thus
the task is now to find conditions on the network topology
and a set of nodesT that will ensure that the linear system
specified by the matrices(W,BQ,T) is invertible for every
choiceQ ⊂ V of 2f nodes. To solve this problem, we will
first use the theory oflinear structured systemsto obtain a
graph-theoretic characterization of invertibility.

B. Structured Systems

A linear system of the form (5) is said to bestructuredif
each entry of the matricesW,BQ andT is either a fixed
zero or an independent free parameter [21]. Interestingly,
such systems have certain properties that can be inferred
purely from the zero/nonzero structure of the system ma-
trices; these properties will hold for almost any choice of
free parameters (i.e., the set of parameters for which the
property does not hold has Lebesgue measure zero [21]),
and thus these properties are calledgeneric. Of particular
relevance to this paper is thegeneric normal rankof the
transfer function matrix of a structured system, which is the
maximum rank (over the field of rational functions inz) of
the transfer function matrix over all possible choices of free
parameters.

To analyze structural properties of linear systems of the
form (5), one associates a graphH with the structured set
(W,BQ,T) as follows. The vertex set ofH is given by
V ∪ I ∪ O, whereV = {v1, v2, . . . , vN} is the set of state
vertices,I = {i1, i2, . . . , ip+|Q|} is the set of input vertices,
andO = {o1, o2, . . . , o|T |} is the set of output vertices. The
edge set ofH is given by Evv ∪ Eiv ∪ Evo, whereEvv =
{(vj , vl) | Wlj 6= 0}, Eiv = {(ij , vl) | BQ,lj 6= 0}, and

Evo = {(vj , ol) | Tlj 6= 0} (where Wlj indicates entry
(l, j) of matrix W, and so forth). The following theorem
characterizes the generic normal rank of the transfer function
of a structured linear system in terms of the graphH.

Theorem 3 ([21], [22]): Let the graph of a structured
linear system be given byH. Then the generic normal rank
of the transfer function of the system is equal to the maximal
size of a linking inH from I to O.

The above result says that if the graph of the structured
system (5) hasp + |Q| vertex disjoint paths from the
inputs to the outputs, then for almost any choice of free
parameters inW, BQ andT, the transfer function matrix
T(zI − W)−1BQ will have full column rank. Based on
Theorem 2, this will mean that the firstp + |Q| columns
of the matrixMQ

N−p−|Q|+1 will be linearly independent of

all other columns inMQ
N−p−|Q|+1.

We now have a graph-theoretic characterization of the
invertibility of linear structured systems, and are in place to
apply this to the problem of identifying malicious behavior
and recovering the plant outputs in the wireless control
network.

C. Topological Conditions for Identifying Malicious Nodes

From Theorem 1 and Theorem 2, the IDS can identify
up to f malicious nodes if the linear system given by the
tuple (W,BQ,T) is invertible for every setQ ⊂ V of
up to 2f nodes. To verify that this property holds, note
that for any given setQ, the tuple(W,BQ,T) essentially
defines a structured linear system, with the only exception
being that the nonzero entries in the matricesEQ (where
BQ =

[
H EQ

]
) andT are taken to be “1”, rather than

free parameters. However, this is of no consequence, since
each nonzero entry in those matrices appears in a row and
column by itself, and thus can essentially be “scaled” to a
free parameter by an appropriate redefinition of the inputs
and outputs (e.g., see [23]). Thus, we can proceed with
applying the above results on structured system theory to the
tuple (W,BQ,T), which brings us to the following result.

Theorem 4:Let Ḡ = {V ∪S, E ∪ EI} denote the graph of
the wireless control networkG augmented with the sensor
verticesS and the corresponding edges. LetT ⊂ V denote
the set of monitored nodes. Suppose that for every possible
setQ ⊂ V of 2f nodes, the graph̄G contains a(p + 2f)–
linking from S ∪ Q to T . Then, for almost any element
(W,H,G) ∈ Ψs (if it is nonempty), there exists an integer
D ≤ N−p−2f+1 such that the IDS can recover the outputs
of the plant and identify all malicious nodes with a delay of
at mostD time-steps, as long as there are no more thanf
malicious nodes in any set ofD contiguous time-steps.

Proof: For any setQ ⊂ V of 2f nodes, consider the
graph8 HQ associated with the structured set(W,BQ,T).
To obtain this graph, start by taking the graph of the network
G (which captures the vertices and interconnections in the
matrixW). To this graph, addp+2f input vertices (denoted

8The notationHQ is used to denote the fact that this graph is associated
with the structured set(W,BQ,T), for a particular setQ of 2f nodes.



by I) which will connect to the nodes in the graph according
to the structure of the input matrixBQ. Specifically,p of
these input vertices correspond to the plant sensorsS (which
producey[k]), and each of these has outgoing edges to the
nodes inVS (specified by the structure of matrixH). The
other2f input vertices each have a single outgoing edge to
a node inQ (corresponding to the single1 in each column
of EQ). Next, add|T | output vertices (denoted by the set
O), and place a single edge from each node in the setT to
a node inO, corresponding to the single nonzero entry in
each row of the matrixT. Furthermore, add a self loop to
every state vertex corresponding to the nonzero entries on
the diagonal of the matrixW.

From the statement of the theorem, note that graphḠ
contains a linking of sizep+ 2f from S ∪Q to T , for any
setQ of 2f nodes. This linking also exists in the graphHQ,
sinceḠ is a subgraph ofHQ.9 This linking can be extended
to a linking from the entire setI to T in HQ simply by
including the edges from the setI \ S to the setQ. Finally,
this linking can be further extended to a linking fromI to O
simply by including the edges from each vertex inT to the
corresponding output vertex inO. From Theorem 3, we see
that the system(W,BQ,T) will be invertible for almost
any choice of matricesW andH (subject to the required
sparsity patterns). This genericness implies that invertibility
will hold simultaneously for all of the sets(W,BQ,T) for
every setQ of 2f nodes with almost any choice of free
parameters in the matricesW and H. From Theorem 2,
the firstp+ |Q| columns of the matrixMQ

N−p−2f+1 will be
linearly independent of each other and of all other columns in
MQ

N−p−2f+1. Thus, condition (8) in Theorem 1 is satisfied,
and the IDS can uniquely determine the identities of the
malicious nodes, as well as the values of the plant outputs,
based on the transmissions of the nodes inT , with a delay
of at mostN − p− 2f + 1 time-steps.

Finally, we show that there is a tuple(W,H,G) in the set
Ψs (which contains all stabilizing structured matrices for the
plant and is assumed to be nonempty) that allows the IDS to
recover the desired information. This is easily done by noting
that the set of matrices for which the system is stable has
nonzero measure in the spaceR

r (wherer is the number of
free parameters in the matricesW andH). More precisely, if
we letλ ∈ R

r denote a numerical vector of free parameters
in W andH that produces stability (e.g., obtained from the
design procedure in [6], [17]), the closed loop system will
remain stable for any parameter vectorsλ∗ satisfying the
component-wise inequalitiesλ − ǫ1 ≤ λ∗ ≤ λ + ǫ1, for
sufficiently smallǫ > 0; this is because the eigenvalues of a
matrix vary continuously with the parameters in that matrix.
Thus, the set of parameters for which the system is stable has
measure at least(2ǫ)r > 0, whereas the set of parameters for
which the system is not invertible has measure zero. Thus,
for almost any tuple(W,H,G) ∈ Ψs, the system is stable
andallows the IDS to recover the plant outputs and identify

9Specifically, it is the graph obtained by dropping the outputvertices and
the 2f input vertices connecting to the setQ in HQ.

malicious behavior.
Theorem 4 characterizes the set of nodesT that the IDS

should observe in order to achieve its objectives. Specifically,
T should be sufficiently well connected to the rest of the
network (i.e., there should be enough vertex disjoint paths
from the other nodes in the network to the nodes inT ).
However, the fact that the theorem is framed in terms ofall
possiblesetsQ of 2f nodes makes it somewhat unwieldy.
One can come up with a more compact condition when the
entire network is sufficiently well connected, as follows.

Corollary 1: Suppose that the networkG has connectivity
at leastp+2f , and that each sensor inS connects to at least
p+2f source nodes. LetT ⊆ V be any set of at leastp+2f
nodes. Then, for almost any element(W,H,G) ∈ Ψs (if it
is nonempty), there exists an integerD ≤ N − p − 2f + 1
such that the IDS can recover the outputs of the plant and
identify all malicious nodes with a delay ofD time-steps, as
long as there are no more thanf malicious nodes in any set
of D contiguous time-steps.

Proof: Since the network has connectivityp + 2f ,
Lemma 1 shows that for any setQ of 2f nodes, there is
a linking of sizep + 2f from the setVS ∪ Q to T (since
|VS | ≥ p+ 2f). Since each sensor inS connects to at least
p+ 2f source nodes, each sensor will connect to at leastp
nodes in the setVS \Q. By Hall’s Theorem (e.g., see [16]),
there is a linking of sizep from S to VS \ Q (this is also
called amatching). Thus, the graph̄G = {V ∪ S, E ∪ EI}
contains a linking of sizep+ 2f from S ∪ Q to T for any
setQ of 2f nodes. The conditions required for Theorem 4
are thus satisfied, from which the result follows.

Note that the above corollary indicates that in networks
with connectivity p + 2f or higher, any set of p + 2f
nodes can be chosen to be observed by the IDS in order
to recover the desired information about the system. For
example, consider the wireless control network shown in
Fig. 1. The source nodesVS = {v1, v2, v3} have access to the
plant’s (scalar) outputy[k] at each time-step, and the plant’s
actuator applies a linear combination of the transmissions
of the nodes from the setVA = {v7, v8, v9}. Note that the
connectivity of the network isκ = 3, and since there is a
single sensor on the plant (p = 1) that connects to three
nodes, Corollary 1 indicates that the IDS can detect and
identify up to f = ⌊κ−p

2 ⌋ = 1 malicious node, simply by
monitoring the transmissions of anyp+ 2f nodes (e.g., the
setT = {v3, v6, v9}). We will forgo a numerical example of
the analysis procedure here in the interest of space, but the
interested reader is directed to [17] for more details.

VI. REMOVING MALICIOUS NODES

There are various courses of action that can be taken
once the IDS detects and identifies a set of malicious nodes.
The most direct (and drastic) action would be to shut down
the plant and dispatch appropriate personnel to physically
remove the malicious nodes from the network and investigate
the source of the attacks. This is clearly an option of
last resort, as plant shut-downs may be expensive, time-
consuming, and difficult to perform. Anonline method to



remove the malicious nodes would be more desirable, so
that the plant can continue to operate. We will now briefly
describe one means of achieving this.

First, once the IDS identifies a set of malicious nodes,
it broadcasts a message containing the identities of all
malicious nodes to all of the nodes in the network. There
are various low-overhead schemes for fault-tolerant broadcast
in wireless networks (e.g., see [24]) that can be used to
guarantee that each node receives the correct message. After
this is done, the correct nodes in the system simply ignore
the transmissions of the exposed malicious nodes. However,
in order to avoid affecting the stability of the closed loop
system, the computations undertaken by the malicious nodes
must be migrated to other nodes in the network. This can be
done by following the protocol described in the companion
paper [6] for dealing with crash-failures (i.e., nodes that
simply drop out of the network). In this protocol, one of the
failed node’s neighbors becomes avirtual nodeand assumes
the role of calculating the failed node’s linear combinations
at each time-step. All other neighbors of the failed node
increase their transmission ranges so that the virtual nodewill
receive the same information at each time-step as the failed
node did. By ignoring the malicious nodes (i.e., treating them
as crash-failures) and applying the above protocol, the plant
can continue to operate; note that this scheme has its limits,
since nodes can only increase their transmission ranges up
to a certain point, and expend greater energy in doing so.
However, it provides a way for the system to gracefully
degrade (and self-heal) under malicious attacks until the
afflicted nodes are repaired.

VII. SUMMARY

We considered the problem of identifying malicious be-
havior in a wireless control network. Under nominal con-
ditions, each node in the network transmits (at each time-
step) a linear combination of the values in its immediate
neighborhood. We showed in a companion paper that the
linear combination for each node can be chosen so that
the transmissions of nodes closest to the actuators of the
plant will be stabilizing. In this paper, we showed how to
construct a IDS that observes the transmissions of just a
subset of the nodes in the network, and uses that information
to obtain the actual plant outputs, along with the identities
of any malicious nodes. In particular, we showed that if the
connectivity of the network is at leastp + 2f , and each
output of the plant is heard by at leastp + 2f nodes, then
the IDS can recover the desired information by listening to
the transmissions ofany p+ 2f nodes in the network.

There are a variety of avenues for future research. First,
our approach requires the IDS to consider up to

(
N
f

)
matrices

in order to locate the malicious nodes; a more efficient
scheme for parsing the observed transmissions would reduce
the computational burden on the IDS. Second, an extension
of these results to the case where the channels in the
network drop packets in a probabilistic manner would allow
our scheme to be applied in more general (i.e., unreliable)
networks.
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