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Abstract: Diabetes associated complications are affecting an increasingly large population
of hospitalized patients. Since glucose physiology is significantly impacted by patient-specific
parameters, it is critical to verify that a clinical glucose control protocol is safe across a
wide patient population. A safe protocol should not drive the glucose level into dangerous low
(hypoglycemia) or high (hyperglycemia) ranges. Verification of glucose controllers is challenging
due to the high-dimensional, non-linear glucose physiological models which contain both
unobservable states and unmeasurable patient-specific parameters. This paper presents a hybrid
system model of a closed-loop physiological system that includes an existing FDA-accepted high-
fidelity physiological model tailored to intraoperative settings and a validated improvement to
a clinical glucose control protocol for diabetic cardiac surgery patients. We propose the closed-
loop model as a physiological system benchmark for verification and present our initial results
on verifying the system using the SMT-based hybrid system verification tool dReach.

Keywords: Formal verification; Medical applications; Safety analysis; Closed-loop Controllers;
Glucose control;

1. INTRODUCTION

For the more than 29 million Americans who have di-
abetes, the risk of death is nearly twice as high when
compared to age-matched non-diabetic individuals (Xu
et al. (2010)). Those suffering from this disease, especially
Type 1 diabetics, depend on insulin self-injections to man-
age their blood glucose level. As such, glucose regulation
is a safety-critical control task: too much insulin causes
life-threatening hypoglycemia (low glucose levels) and too
little insulin causes hyperglycemia (high glucose levels), a
condition that has potential outcomes such as blindness
and nerve damage.

While outpatient glucose management has been the pri-
mary focus of recent diabetes research (e.g., the artificial
pancreas (AP) Cobelli et al. (2011)), mounting evidence
suggests that diabetes associated complications among
hospitalized patients are increasing (Wallymahmed et al.
(2005)); thus, methods for inpatient glycemic control are
important (Bruno et al. (2008); McAlister et al. (2005)).
During surgeries, patients can suffer from stress-induced
glucose fluctuations (Bochicchio et al. (2005)). Data sug-
gests that specialized inpatient glucose level management
within a safe range can minimize the hypoglycemia risk
and improve clinical outcomes (Subramaniam et al. (2009);
Lazar et al. (2004)). Clinicians currently follow rule-based
protocols to administer insulin and glucose during surg-
eries (e.g., see Kohl et al. (2013)), but those protocols
are still far from foolproof (Meijering et al. (2006)). Thus,

verifying that intraoperative glycemic controllers avoid se-
vere hypoglycemia/hyperglycemia events across a diabetic
population is imperative.

Recently, the United States (US) Food and Drug Ad-
ministration (FDA) has accepted the UVa/Padova Type
1 Diabetes Mellitus Metabolic Simulator (T1DMS) as a
substitute for animal testing in certain pre-clinical trials
of glucose controllers (Kovatchev et al. (2009); Dalla Man
et al. (2014)). The T1DMS utilizes a high-dimensional,
multi-modal, and non-linear model with over 30 patient-
dependent parameters that are (mostly) unobservable in
ordinary T1D patients through standard medical tests. Ex-
isting work on evaluating controllers using T1DMS relies
on simulating the physiological models with a finite set
(typically 300, see Kovatchev et al. (2009)) of “virtual
subjects”, which are discrete realizations of the model
parameters identified through invasive experiments (Basu
et al. (2003)). However, there is no formal guarantee that
the “virtual subject” set covers the entire T1D population.
To this end, formal verification of controllers can provide a
new level of safety assurance to clinical practitioners before
performing human clinical trials. 1

This paper makes the following contributions towards for-
mal verification of intraoperative glycemic control. First,

1 Currently, model-based trials are only approved to replace pre-
clinical testing. It is unclear whether model-based trials will ever
be approved to replace clinical (human) testing due to unmodeled
physiology and comorbidity inherent in all models.



we introduce the model of the closed-loop intraopera-
tive glycemic control system as a case study verification
benchmark: the model contains both an FDA-accepted
high-fidelity physiological model and a validated intraop-
erative glycemic control protocol. We also provide over-
approximated value ranges of all model states and pa-
rameters whose ranges are supported by extensive clin-
ical studies. Second, we implement the benchmark in a
recently proposed SMT-based hybrid system verification
tool, dReal/dReach (Gao et al. (2013a)). Third, we present
a proof-of-concept safety verification of the intraoperative
glycemic control benchmark over a non-scalar subspace of
each physiological parameter/state.

The rest of this paper is organized as follows: Section 2
presents the problem formulation; Section 3 introduces
the diabetes model in the intraoperative setting; Section 4
presents the hybrid system model of the closed-loop physi-
ological system; Section 5 describes the case study of veri-
fying an intra-operative glycemic controller on the surgical
physiological model using dReach and includes a presen-
tation of our initial verification results in a subspace of
the entire parameter and initial condition range; Section 6
discusses our future work.

2. PROBLEM FORMULATION

In this section, we define the safety verification problem
considered in this work. We represent the combined intra-
operative glucose control protocol and physiological dy-
namics (defined in Section 3) as a standard hybrid system,

H = 〈X ,Q,Xinit,Xinv,F(P), T 〉 , (1)

where X represents the continuous states, Q denotes the
discrete modes, Xinit ∈ RX specifies the initial condition
space, F(P) captures the flows parameterized by a vector
P ∈ RP , Xinv identifies invariants mapping modes to
flows, and T relates the transitions between modes. A
measurable output y = φ(t;Xinit) denotes the glucose
value, with φ(t,Xinit) describing the measurement at time
t ∈ [0, tmax] 2 , having evolved from initial condition Xinit.
In this paper, we aim to solve the following safety verifi-
cation problem:

∀t ∈ [0, tmax] , ∀P ∈ RP , ∀Xinit ∈ RX , y 6∈ Runsafe,

where Runsafe is a region representing unsafe blood glu-
cose content (i.e., hypoglycemia and hyperglycemia).

3. MODELING OF SURGICAL GLUCOSE CONTROL

In this section, we introduce the FDA-accepted T1DMS
model (Man et al. (2007); Dalla Man et al. (2014)) modi-
fied for the intraoperative clinical scenario and a clinically
validated glucose control protocol ( Kohl et al. (2013)).

3.1 Glucose-Insulin System Model

The full T1DMS model contains three sub-models (insulin,
glucose, and carbohydrate-ingestion) with 13 states and
32 parameters. The original publications (e.g., Man et al.
(2007); Kovatchev et al. (2009)) discuss the details of
physiological modeling and our previous paper (Chen
et al. (2015)) summarizes the model equations from the

2 tmax represents the maximum time the patient is in surgery.

literature. Since intraoperative patients receive insulin and
glucose via intravenous infusion, the two subcutaneous
insulin compartment states and the entire carbohydrate-
ingestion sub-system can be neglected, resulting in a 7-
state intraoperative model, as described in the remainder
of this subsection.

The intraoperative model contains an insulin sub-model
and a glucose sub-model. The insulin system is a 5-state
linear model driven by the insulin input, u(t), written as

İp(t) = −(m2 + m4)Ip(t) + m1Il(t) + u(t) ∗ 102/BW (2a)

Ẋ(t) = P2U/ViIp(t) − P2UX(t) − P2U ∗ Ib (2b)

İ1(t) = ki/ViIp(t) − kiI1(t) (2c)

İd(t) = kiI1(t) − kiId(t) (2d)

İl(t) = m2 ∗ Ip(t) − (m1 + m3)Il(t). (2e)

The Ip(t) and Il(t) states represent insulin mass in the
plasma and liver, respectively. I1(t) and Id(t) represent
a delayed insulin transportation process. X(t) represents
an insulin signal in the remote tissue that governs glucose
concentration in the interstitial compartment. The model
contains a set of parameters that are patient dependent:
m1...4 and P2u are rates of insulin mass diffusion among
different compartments, Vi is the insulin distribution vol-
ume, and BW is the body weight.

The glucose system has two states and is written as

Ġp(t) = − k1 ∗Gp(t) + k2 ∗Gt(t) − Fsnc + m(t) ∗ 103/BW

+ max (0, kp1 − kp2 ∗Gp(t) − kp3 ∗ Id(t))

− 1 − max (0, ke1 ∗ (Gp(t) − ke2))

(3a)

Ġt(t) = −
(Vm0 + Vmx ∗X(t)) ∗Gt(t)

Km0 + Gt(t)
+ k1 ∗Gp(t) − k2 ∗Gt(t)

(3b)

where, Gp(t) and Gt(t) represent the glucose concentration
in plasma and interstitial fluids, respectively. The Gp(t)
derivative (Equation 3a) contains two saturation switches
max (0, kp1 − kp2 ∗Gp(t)− kp3 ∗ Id(t)) and
max (0, ke1 ∗ (Gp − ke2)), which represent the endogenous
glucose production (EGP) and renal glucose clearance,
respectively. These two max switches yield four discrete
modes in the hybrid system representation of the model,
and transitions among the four modes are governed by
saturations of the two max terms. The Gt derivative

contains a non-linear term − (Vm0+Vmx∗X(t))∗Gt(t)
Km0+Gt(t)

that

represents the remote insulin signal X(t)’s impact on
glucose dynamics. The model contains two population
static parameters ke1 (glomerular filtration rate) and ke2
(renal threshold of glucose). All other parameters are
patient dependent: k1 and k2 are the mass exchange
rate between the Gp and Gt compartments; kp1 is the
extrapolated EGP; kp2 is the liver glucose effectiveness;
kp3 is the insulin action on liver; Vm0, Vmx, and Km0 are
model parameters that govern the insulin action on Gt; Vg
is the glucose distribution volume. m(t) is the intravenous
glucose input into the plasma compartment.

The 7-state intraoperative glucose control model is ob-
served through y(t) = Gp(t)/Vg, corresponding to the
plasma glucose measurement (in mg/dL). Most of the
patient-dependent parameters, except for a few such as
the body weight, are not measurable in standard hospital
tests. Estimating those parameters on individual patients
involves invasive and costly procedures such as the triple-



Table 1. Over-Approximated Ranges of the
T1DMS Model States

States Ranges Units
Example

Nominal Value
Ip [0, 30] pmol/kg 5
X′ [−500, 500] pmol/liter 30
I1 [0, 300] pmol/liter 120
Id [0, 300] pmol/liter 120
Il [0, 30] pmol/kg 3
Gp [0, 1000] mg/kg 200
Gt [0, 1000] mg/kg 150

Table 2. Over-Approximated Ranges of the
T1DMS Model Parameters

Parameters Ranges Units
Example

Nominal Value
m1 [0.1, 1] min−1 0.2
m2 [0.1, 1] min−1 0.3
m3 [0.1, 1] min−1 0.3
m4 [0.05, 0.5] min−1 0.1
ki [0.001, 0.02] min−1 0.01
P2u [0.01, 0.1] min−1 0.03
Vi [0.02, 0.1] liter/kg 0.06
Ib [0, 300] pmol/liter 100

BW [0, 300] kg 90
k1 [0.02, 0.1] min−1 0.05
k2 [0.05, 0.3] min−1 0.1
kp1 [1, 10] mg/kg/min 5
kp2 [0.0001, 0.01] min−1 0.004

kp3 [0.001, 0.03]
mg/kg/min per

pmol/liter
0.01

Vm0 [1, 10] mg/kg/min 5

Vmx [0.01, 0.15]
mg/kg/min per

pmol/liter
0.05

Km0 [100, 1000] mg/kg 200
Vg [1, 5] dL/kg 2

tracer meal protocol experiment (Basu et al. (2003); Man
et al. (2007)), which is clearly not feasible in surgical set-
tings. The FDA-accepted T1DMS simulator comes with 10
adult virtual subjects, each of which is a whole realization
of the parameters. Those virtual subjects are extracted
from the same distribution as the 100 FDA-accepted adult
virtual subjects for black-box controller evaluation were.

All the states and parameters in the FDA-accepted model
have physiological meanings, and numerous clinical studies
have investigated the ranges of values across different
populations (Harris et al. (1987); Danaei et al. (2011);
Kulcu et al. (2003); Katz et al. (2000); Laakso (1993)).
Table 1 lists over-approximated ranges and the units of the
seven states and Table 2 lists over-approximated ranges of
the eighteen parameters.

3.2 A Proportional-Derivative Glucose Control Protocol

In surgery rooms, clinicians periodically sample the glu-
cose values approximately every 30 minutes, and adjust
insulin or glucose inputs only at sample times based on
rules defined in the clinical protocols. The insulin input has
two types: the continuous intravenous infusion rate uc(k),
which will remain constant within a sample period, and
insulin bolus ub(k) that is an impulse input. The insulin
input u(t) that goes into the plasma insulin compartment
Ip(t) in Equation 2a is (uc(t) + ub(t)). The glucose input
m(t) is in the form of dextrose bolus that is an impulse
input to the plasma glucose compartment Gp(t) in Equa-
tion 3a.

Our team has collaborated with clinicians in the Divi-
sion of Critical Care at the Hospital of the University
of Pennsylvania in order to evaluate an intraoperative
insulin protocol (IIP) that manages the glucose level for
cardiac surgery patients (Kohl et al. (2013)). Our previous
work identifies the weaknesses of the IIP and proposes
a proportional-derivative (PD) controller that reduces
intraoperative hypoglycemia while preserving the IIP’s
strengths in simulation studies. The clinicians who devel-
oped the IIP believed that the results warrant prospec-
tive in-vivo evaluations of the PD controller (Kohl et al.
(2013)).

In this paper, we present a proof-of-concept safety ver-
ification of the PD controller for a non-scalar subspace
of each physiological parameter/state. The PD controller
(see Kohl et al. (2013)) calculates the insulin or glucose
dose based on two plasma glucose readings: the current
value y(k) and the last reading y(k−1) sampled 30 minutes
before; those are the same glucose inputs required by the
IIP. The PD controller updates uc(k), ub(k), and m(k)
based on y(k) and y(k − 1) according to the rules defined
in Table 3. The controller gains are static and tuned to
minimize the hypoglycemia risk while maximizing quality
of glucose control in a T1DMS simulation study. 3

4. A HYBRID SYSTEM MODEL OF THE
PHYSIOLOGY AND CONTROLLER

We model the 7-state intraoperative physiological model
and the PD controller as a hybrid system as illustrated
in the Appendix, Figure 1. It is standard practice to
perform perioperative monitoring of the patient to ensure
the patient is stable enough for surgery. During the pe-
rioperative period (typically at least 30 minutes), if the
patient exhibits extreme glucose variation, the surgery
may be postponed until the patient stabilizes (Lipshutz
and Gropper (2009)). To model the perioperative moni-
toring procedure, we divide the verification time into two
phases: during the initial monitoring phase, if the glucose
output y leaves a control range (e.g., 70−130 mg/dL), the
system transitions into the “NOT ADMIT” mode; if the
glucose output y stays within the control range during the
entire monitoring period, then the system transitions into
the protocol control phase and the PD controller starts
operating. During the protocol control phase, the system
transitions into the “NOT SAFE” mode if the glucose
output y leaves a safe range (e.g., 60− 150 mg/dL).

The hybrid system contains seven states: one initial state
mode 0; four states (modes 1 - 4) that represents the
system dynamics with four possible combinations of the
two saturation switch terms in Equation 3a, which are re-
stated in Equation 4; one “NOT ADMIT” mode and one
“NOT SAFE” mode.

max (0, C1), where C1 = kp1 − kp2 ∗Gp − kp3 ∗ Id
max (0, C2), where C2 = ke1 ∗ (Gp − ke2)

(4)

The system has 30 continuous states 4

3 Our previous paper Kohl et al. (2013) explains in detail the process
of identifying the controller gains.
4 To be consistent with the dReach implementation in Section 5,
in the hybrid system model we denote all parameters as continuous
states with derivatives of zero (i.e., constants).



Table 3. The PD Controller

Condition Control Input Update
y(k) ≤ 60 uc(k) = 0, ub(k) = 0,m(k) = 12.5

60 < y(k) < 100 AND
y(k)− y(k − 1) < −30 uc(k) = 0, ub(k) = 0,m(k) = −0.1 ∗ (y(k)− y(k − 1))

100 ≤ y(k) < 300 OR
y(k)− y(k − 1) ≥ −30 uc(k) = max(0, 0.05 ∗ (y(k)− 100) + 0.06 ∗ (y(k)− y(k − 1))) + 1), ub(k) = 0,m(k) = 0

y(k) ≥ 300 u(k) = 15, ub(k) = 15,m(k) = 0

X = {Ip, X, I1, Id, Il, Gp, Gt,P , t, tau, ypre, u,m},
where P denotes the 18 model parameters, t is the global
verification time, tau is the local timer variable, ypre(t) is
a variable to record the last output sample, u(t) and m(t)
are the insulin and meal inputs.

For simplicity of presentation we denote the four combi-
nations of the two max terms using T1 to T4, as shown in
Equation 5.

T1 := (C1 ≤ 0) ∧ (C2 ≤ 0)

T2 := (C1 > 0) ∧ (C2 ≤ 0)

T3 := (C1 > 0) ∧ (C2 > 0)

T4 := (C1 ≤ 0) ∧ (C2 > 0)

(5)

Mode 0 is the initial state, in which all states have zero
derivatives except t and tau. The system immediately goes
into one of modes 1 - 4. The invariant on mode 0 is
INV0 := (tau ≤ 0). Equation 6 defines the guards on
the transitions out of mode 0.

∀i ∈ {1, 2, 3, 4}, G[0→ i] := Ti ∧ (tau ≥ 0) (6)

Let t ∈ [0, ta] denote the monitoring phase. Let Rna and
Runsafe denote the set of “NOT ADMIT” glucose values
and “NOT SAFE” glucose values, respectively. Equation 7
defines the invariants on modes 1 - 4. To model the
practical scenario that a clinician may not check exactly at
the 30 minutes mark, we allow timing non-determinism by
relaxing the conditions on the invariants with a sampling
jitter δ.

∀i ∈ {1, 2, 3, 4}, INVi :=(¬(t ≤ ta ∧ y ∈ Rna)

∧ (¬(t > ta ∧ y ∈ Runsafe)

∧ Ti
∧ (tau ≤ 30 + δ))

(7)

The self-transitions on modes 1 - 4 are triggered at
the glucose sample times. On the self-transitions ∀i ∈
{1, 2, 3, 4}, G[i → i], control inputs u and m are updated
according to the PD algorithm, and ypre is updated to
the current y. Considering the timing jitter δ, Equation 8
defines the self-transition guards.

∀i ∈ {1, 2, 3, 4}, G[i→ i] := (tau ≥ 30− δ) (8)

The transition guards between modes 1 - 4 are governed
by conditions T1 - T4 and are defined in Equation 9.

∀i, j ∈ {1, 2, 3, 4}, G[i→ j] := Tj (9)

In modes 1 - 4, if y ∈ Rna during the monitoring phase,
the system transitions into the “NOT ADMIT” mode 5.
Equation 10 defines the transition guards between modes
1 - 4 and the “NOT ADMIT” mode 5.

∀i ∈ {1, 2, 3, 4}, G[i→ 5] := (t ≤ ta ∧ y ∈ Rna) (10)

In modes 1 - 4, if y ∈ Runsafe after the monitoring phase,
the system transitions into the “NOT SAFE” mode 6.
Equation 11 defines the transition guards between modes
1 - 4 and the “NOT SAFE” mode 6.

∀i ∈ {1, 2, 3, 4}, G[i→ 6] := (t > ta ∧ y ∈ Runsafe) (11)

The “NOT ADMIT” mode 5 and “NOT SAFE” mode
6 are terminating states with no invariants or transitions
out of them. The safety verification question is specified as
follows: for all initial conditions (where the 7 physiological
states and 18 parameters are in their ranges), can the
system reach the “NOT SAFE” mode 6.

5. CASE STUDY: VERIFICATION OF A GLUCOSE
CONTROL PROTOCOL

Verifying the intraoperative glucose controller safety prop-
erty requires either a tool designed for non-linear dynam-
ics, e.g., Flow* (Chen et al. (2013)), KeYmaera (Platzer
and Quesel (2008)), and dReach/dReal (Kong et al.
(2015)), or transforming the non-linear hybrid automata
into a form suitable for other tools, e.g., UPPAAL (Larsen
et al. (1997)), HyTech (Henzinger et al. (1997)), PHAVer
(Frehse (2005)), and SpaceEx (Frehse et al. (2011)). While
evaluating all the aforementioned verification tools against
the intraoperative glucose control benchmark can provide
useful insight to their respective capabilities, it is beyond
the scope of this work. Rather, we provide a proof-of-
concept illustration that for at least one verification tool,
dReach, it is possible to verify the safety property over
a non-scalar subspace of the potential patient physiology.
The remainder of this section provides a brief description
of the dReach implementation and summarizes the verifi-
cation results.

5.1 Benchmark implementation in dReach

The dReach approach utilizes the framework of δ-complete
decision procedures that aims to solve first-order logic
formula with arbitrary computable real functions (Gao
et al. (2013b)). The dReach tool can be employed to prove
safety properties of hybrid systems over finite time by
identifying safe and unsafe regions of the state space and
defining a corresponding δ-decision problem. Following
Gao et al. (2013b), we consider the δ-decision problem

∃Xinit ∧ ∃t ∈ [0, tmax] ∧ ∃y ∈ Runsafes.t.

|Xinit| ≤ δ1 ∧ |y − φ(t;Xinit)| ≤ δ2 (12)

where δi is a numerical error bound specified by an
arbitrary rational number and the bounded first-order
sentences contain Type 2 computable functions Ko (1991).

In this work, we define an unsafe region via limits on the
glucose levels observable in the patient. We seek to show



that for our controller, composed with the physiological
model described by a hybrid system with non-linear ODEs,
there does not exist an initial condition which can lead to
the satisfiability of (12) within a bounded time. As a con-
servative solution, the dReach tool (through δ-weakening)
verifies for all initial conditions and bounded time that
either the unsafe region is unreachable (UNSAT) or the
unsafe region is reachable within a δ error (δ-SAT ).

The dReach implementation of the surgical glucose hybrid
system contains 30 state variables: 7 physiological; 18
parameters; 2 inputs (insulin rate u and glucose rate m);
1 state to record the last glucose reading; 1 global time
state, and 1 local timer state. The dReach source code of
this implementation is available online 5 .

5.2 Verification Results using dReach

To perform verification, we employ dReach version 2.15.01
on a Linux server with a Intel(R) Xeon(R) E5-2667 v2
3.30GHz CPU and 64 GB memory, and the results are
provided in Table 4. First, we note that dReach is a
bounded model checker, therefore the search depth or Path
Length refers to the number of discrete transitions for
which we have performed verification. In the results, the
Path Length is the search depth completed by dReach in
Time concluding in Result, where DNF translates to did
not finish and x0 and p0 denote the nominal states and
parameters specified in Table 1 and Table 2, respectively.
From the results we observe that allowing the parameters
and initial state to vary fully over their respective ranges
prevents dReach from reaching a depth of more than 3.
In this scenario, a path length of 3 corresponds to a
maximum of one hour of surgery. The fact that dReach
did not exceed the arguably trivial depth of 3 suggests that
fully varying the parameter and initial condition space is
a computationally challenging problem.

Table 4. Verification Results for
Rsafe = [60, 180].

Physiological Range Path Time
Result

State Parameter Length (hours)

Full Full 3 30 safe
Full Full 4 DNF -
Full p0 3 0.1 safe
Full p0 4 0.6 safe
Full p0 5 3.1 safe
Full p0 6 8.2 safe
Full p0 7 16.4 safe
Full p0 8 DNF -

x0 ± 0.5 p0 ± 0.5 3 0.1 safe
x0 ± 0.5 p0 ± 0.5 4 0.4 safe
x0 ± 0.5 p0 ± 0.5 5 1.1 safe
x0 ± 0.5 p0 ± 0.5 6 2.9 safe
x0 ± 0.5 p0 ± 0.5 7 8.1 safe
x0 ± 0.5 p0 ± 0.5 8 DNF -

To investigate the capabilities of dReach, we allowed the
initial state to vary over the full range, but constrained the
parameters to equal p0. These results are consistent with
the T1DMS scenario for a single artificial patient with
unknown initial state (but known parameters). Here we
observe a significant improvement in verification results,

5 URL:https://github.com/chen333/igc-benchmark

with dReach achieving a depth of 7 in 16.4 hours corre-
sponding to a maximum surgery duration of 3.5 hours.
By constraining the initial variance of the state and pa-
rameters to a hypercube around the nominal patient, we
observe that dReach is able to achieve a depth of 7 in 8.1
hours corresponding to a maximum surgery duration of
3.5 hours. This suggests that discretizing the parameter
and initial condition space can significantly improve time-
to-verification given sufficient computing resources.

6. DISCUSSION AND FUTURE WORK

In this work, we consider the problem of safety verifica-
tion for an intraoperative glucose controller. We present
a formal model of the combined physiology and controller
as a medical verification benchmark containing non-linear
dynamics and over 30 states and parameters combined.
Using dReach, a powerful non-linear verification tool, we
provide preliminary results illustrating its performance on
the proposed benchmark. Future work includes continued
attempts to formally verify the proposed benchmark over
the entire physiological space for a surgical duration of
several hours (consistent with typical operations). Moti-
vated by the stability inherent in biological systems, we
plan to investigate methods to improve the verification
performance through Lyapunov bounding of the state dy-
namics.
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APPENDIX
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İp(t) = �(m2 + m4)Ip(t) + m1Il(t) + u ⇤ 100/BW (1a)
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Ṗ = 0 (1j)

u̇(t) = 0 (1k)
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İp(t) = �(m2 + m4)Ip(t) + m1Il(t) + u ⇤ 100/BW (1a)
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ṁ(t) = 0 (1l)

˙ypre(t) = 0 (1m)

MODE 1 MODE 2

MODE 3MODE 4

G[2->1]

G[1->2]

G[3->2] G[2->3]

G34

G43

G[4->1] G[1->4]

G[1->3]

G[3->1]

G[4->2]

G[2->4]

NOT 
ADMITTED

NOT 
SAFE

MODE 5 MODE 6

G[2->2]

G[3->3]

G[1->1]

G[4->4]
G[1->5]

G[4->5]

G[2->5]

G[3->5]

G[3->6]

G[2->6]

G[4->6]
G[1->6]
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Ṗ = 0 (1j)

u̇(t) = 0 (1k)
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Fig. 1. A Hybrid System Representation of the FDA-accepted High-Fidelity Physiological Model with the PD Controller.


