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Abstract

Microrheology of Soft Matter

Daniel Tien-Nang Chen

Arjun G. Yodh

This thesis describes the application of microrheologyHharacterize the mechanical proper-
ties of three soft matter systems: an entangled biopolymlertisn, a suspension of actively
swimming bacteria, and a gel-forming carbon nanotube nétwd/e demonstrate using these
distinct model systems that it is possible to employ miceofbgy to extract both local and bulk
information using a combination of one- and two- point measients and theoretical modeling.

In the first set of experiments, we use microrheology to pitbleerheological properties of
semi-dilute polymer solutions of-DNA. In these solutions, the depletion interaction leaxla t
layer of reduced DNA density near the particle’s surface.défmonstrate a method for deducing
the local microstructure of these layers along with the bbkology of the polymer solution.
This work was one of the first to systematically demonstriat tracer-based microrheological
methods could be used to deduce both local and bulk rheologywell-characterized model
soft matter system.

In the second set of experiments, we use microrheology teptioe dynamics of a model
active soft matter system: a suspension of swimming bacteBy comparing measurements
of the fluctuations of passive tracer particles with the oesp of a driven, optically trapped

tracer in the bacterial bath, we demonstrate a breakdowedfiuctuation-dissipation theorem

Vi



in bacterial baths. These measurements enable us to etktteapbwer spectrum of the active
stress fluctuations. We develop a theoretical model incatjpm coupled stress, orientation, and
concentration fluctuations of the bacteria to explain theeoled scaling of the power spectrum.
In the final set of experiments, we report measurements 6hgelgid rod networks, com-
prised of a semidilute dispersion of surfactant stabilizacbon nanotubes. Microrheology is
employed to follow the rheological evolution of the suspendrom a semidilute solution of
unbonded tubes to a bonded gel network. A theoretical moakstd on the crossing proba-
bility of rods confined to finite volumes is developed to agudior network elasticity. Model
predictions compare well with computer simulations andegixpents as a function of nanotube

volume fraction and cure time.
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Chapter 1

Introduction

Imagine looking, as people in the 18th Century did, at pladicn water under a microscope.
The jiggling motions of micron-sized objects that you arsearsing might, based on the intu-
itive association between motion and life, be attributetht particles being ‘alive’. It wasn't

until 1826 that the careful experiments of Robert Brown skadthat they were in fact the conse-
quence of thermal fluctuations of ‘dead’ matter. In 1905skim considered Brownian motion
using kinetic theory and in a stroke of insight, he offerethpelling evidence for the atomic
hypothesis. In this thesis we build on these seminal insiglhtdecode’ the jiggles resulting

from thermal and active motion of particulate matter in aetstrof soft materials.

1.1 Soft matter/complex fluids

The rise of soft matter from a subaltern to mainstream disgiof physics has been fueled in

part by the promise of deciphering the ‘rules’ of self-askgtan endeavor which, if realized,



Structure < » Dynamics

Rheology

Figure 1.1: Structure, Dynamics, and Rheology of Soft Matte

could enable large-scale engineering of complex strustwiéh broad societal impact. More-
over, the potential for leveraging its methods of inquiryield new insights about other fields
such as molecular biology and chemical/bio/mechanicalneeging has also generated much

scientific interest in soft matter physics.

Characterization of a colloidal suspension, polymer nétywor emulsion requires that the
relationship between its structure, its equilibrium and-eguilibrium dynamics, and its rhe-
ology be determined. These categories, sketched in Figlireade not independent. In most
materials they are coupled, albeit not in a simple univemsahner. A concrete example is the
hard sphere colloidal suspension, illustrated in Figug 1n equilibrium, random collisions
among particles (blue spheres) with liquid-like order mideesuspension resistant to flow. But
as the shear stress or, equivalently, the shear rate iesiethe particles become ordered into

lane-like configurations. These lane-like configuratioageha lower viscosity relative to the
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Figure 1.2: Relationship between structure, dynamics,rhedlogy in the shear thinning-shear
thickening transition in hard sphere colloidal suspersigkdapted from [113].

more randomized configurations. At yet higher shear ratgdddynamic forces between par-
ticles dominate over stochastic ones, a change that distii@torder and spawns hydroclusters,
i.e. transient fluctuations in particle concentration. @ificulty that particles have in flowing
around each other in such a strong flow leads to a higher raeenfly dissipation and an abrupt
increase in viscosity [113]. Thus, itis clear that a comtigraof rheological and structural mea-
surements is necessary to fully elucidate such phenomeaneina relatively simple system; any

single measurement modality would be insufficient.

An important way that we learn about the structure and dyosmwi soft matter is to probe
them mechanically. Rheology measurements typically stibjenaterial to shear in a prescribed
geometry and the material’s resulting stress and straimaasured to extract its shear and
elastic moduli. These moduli are measures of a materialmgic elastic properties, analogous

to specific heat capacity and various coefficients of healspart or resistivity and electrical
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transport.

Real materials, and especially soft materials, are neittezd solids nor ideal liquids. Real
soft materials exhibit both elastic and viscous respongsésaae therefore called viscoelastic.
The internal structures of soft solids and complex fluids posed of colloidal particles, fil-
amentous and flexible polymers, and other supra-molecutangements lead to complicated
mechanical responses. As a result, the relations betwesss stnd strain are not simply defined
by elastic and viscousonstants; rather, these relations can be functions of time, diraectamnd
extent of deformation. The goal of rheological experiménts quantify the viscoelasticity of a
material over as wide a range of time and deformation scalpsssible and, ultimately, to relate
these viscoelastic properties to the molecular meso- amdanstructure of the material. Today,
the rheology of many soft materials, both biological andtisgtic, is often very different from
that of materials like rubber for which theoretical modesvda proven highly effective. Thus

many open questions remain about how to relate structuris¢oelastic response.

1.2 Overview of rheology/microrheology techniques

Rheology is a well established methodology for extractimfgrimation from material deforma-
tion [21]. Rheometry has been a standard method to chamcteaterials in industry for most
of the twentieth century. In concert with the tremendouggims generated by computational
advances (e.g. molecular dynamics simulations) that heserced at the end of the 20th cen-
tury (and continue today), rheology has generated valuabight into the detailed microscopic

molecular motions of polymers for example. However, in ibsn@ntional implementations,
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rheology has limitations; it requires a large amount of malkeit typically operates at low fre-

quency, and it measures motions over relatively large fesghles (mm’s).

Relatively recently, owing in part to innovations in lightadtering techniques and digital
video microscopy, it has been realized that rheologicadlrmftion can be extracted from an
analysis of the motions of micron-scale probe particles esddbd in the material. This suite
of new measurement technologies, ternmadrorheology, has augmented the scope of mate-
rials and the range of length and time scales that can beestudinportantly, microrheology
has enabled the study of materials in situations wheredlitimaal rheometers are difficult to
use, e.g., when the material is available only in very lowniitias (< 1mL) . Moreover, mi-
crorheology has been useful in situations where removalatérials from their naturairg situ)
contexts alters their ability to function, such as in livioglls. This thesis describes applications

of microrheology to the study of soft matter.

Rheometers generally measure two quantities: stressybard of force per unit area ap-
plied to the sample; and strain, the dimensionless degregitth the material deforms. The
materials’ properties, quantified as elastic moduli foidsobr viscosities for liquids, are cal-
culated from the ratio of stress to strain or stress to strai®, respectively. To characterize
fully the viscoelastic properties of complex soft matesjahe relation of stress to strain must be
measured over a wide range of strains, strain rates, andstiales (Figure 1.3). Unfortunately,
quite often existing instruments and methods either caooegr a large enough range or else
disrupt the material during measurements. Thus, receraraeés in rheological methods have
been motivated in part by attempts to measure delicate ssmyth complex time-dependent

responses at the micron scale. These microrheologicalauiethave even been extended for
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Figure 1.3: Rheological Techniques employed to probe saferials. Main Figure: Typical fre-
guency and viscoelastic modulus range of techniques. (Motgours represent min/max ranges
of the techniques). Schematic illustrations of A) Activecrorheology using optical tweezers
to force probe particle. B) Passive two-point microrhegloging image-based patrticle track-
ing. C) Dynamic material deformation using atomic force nmoscopy (AFM). D) Oscillatory
Macrorheology.

use in live cells. Additional experimental and theoretjgadgress has been made on systems far
from equilibrium, e.g., systems in which non-thermal segrof energy drive fluctuations and
rheological responses.

As with any other new measurement technology, questions begn raised about the lim-
itations of microrheology. Chief among these, circa thdye2000’s, was the effect of material
heterogeneity on the interpretation of probe based miemdgical measurements. For exam-
ple, when these heterogeneities exist, can the bulk modah be measured using microrhe-
ology? Whereas these issues can complicate interpretatierperimental data, such compli-
cations can be cleverly turned around to increase the anaiunformation available from a

microrheology experiment. In a different vein, the abilityprobe miniscule, inhomogeneous,
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sorting field as determined by the ISI (Web of Science) ontiatabase.

out-of-equilibrium material$n situ and at high bandwidth holds the potential to reveal new in-
sights about the inner workings of living cells [57], sersmtor assemblages [67], and novel
materials (e.g., self-healing materials [22]). This exgient has led to a growth of activity in
the subfield of microrheology. Figure 1.4 shows the numbguublished papers containing the
keyword “microrheology” in the title, abstract, or sortigtegory for each year spanning the
period 1990 - 2008, as determined by Thomson Scientific'sW8b of Knowledge database.
Assuming that the number of papers per year is a reflectiooiefse interest in microrheology,

the results are indeed indicative of exciting progress andrial.

1.3 Organization

The remainder of this thesis is organized as follows. In @vapwo, we introduce the theo-
retical underpinnings of rheology and microrheology. Iimdoso, many of the issues that arise

in interpretation of microrheological data will be intrazhd. In Chapter Three, we describe the
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experimental methods commonly employed in microrheologgegements, many of which have
been used in this thesis. In Chapter Four, we describe nexasuts of the viscoelastic response
of entangled polymer solutions usingDNA as a model system [18]. This study highlights the
use of thermal microrheology to quantitatively charaetemechanical heterogeneities around
the probe particles, in this case stemming from depletidaréctions between the probe and
the DNA solution. Chapter Five describes microrheologegleriments on suspensions of ac-
tively swimming bacteria [20]. Bacterial baths constitatenodel of active matter in a driven
non-equilibrium steady state. The work explores the exteattthe theoretical framework em-
ployed to interpret results from equilibrium systems cavvjate an adequate characterization of
a non-equilibrium system. Our work explicitly demonstsateow theory must be modified to
accommodate non-equilibrium systems. In Chapter Six, wgeriliie measurements of a gelling
suspension of single-walled carbon nanotubes [19]. Of amjninterest is our new access to
the dynamics of the incipient gel which microrheologicalas@rements permit. We introduce
theoretical models and computer simulations of rigid rads iconfined volume to elucidate
the role of bonding in this network class. The work describe@hapters 4-6 has been pub-
lished [18—20], and the chapters follow largely from theapgrs with some amplification of

ideas. Finally, we conclude and give some future directfonsvork in Chapter Seven.



Chapter 2

Theory

2.1 Introduction

The rheological behavior of most complex materials, paldidy soft materials, can exhibit
many regimes depending on the scale, geometry, amplitndease of the imposed deformation.
Consider the classic toy: silly-putty. When squeezed sipivbeforms and flows like a liquid;
however, when thrown against a wall, it bounces like a rigaktic solid. Many techniques
have been developed to characterize these behaviors. IBsmahking, there are two classes of
rheological measurements: macrorheology and microriggoltn this chapter, | will describe
the theoretical underpinnings of these methodologies.mdithe material on macrorheology in
this Chapter can be found in textbooks including Landau afshitz [54], Ferry [36], Macosko
[65], Doi and Edwards [32], Larson [56], and Rubinstein aradb@ [87]. Much of the material

on microrheology is covered in review articles [99, 114].
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2.2 Macrorheology

2.2.1 Basic Definitions

Consider a material sandwiched between two parallel plagesepicted in Figure 2.1. This is
a prototypical set-up encountered in macrorheology erpatts. In this simple shear appara-
tus, the top plate is displaced with a for¢en the x-direction, and the force is transmitted to
the bottom plate through the material. The adhesion betwemmaterial and the surfaces is
considered to be strong enough such that there is no slipgiagjther surface. If the material is
totally rigid, the bottom plate must be held in place by a éor¢f to prevent net translation in

the +x direction. The shear stress,, (simply denoted>), resulting from the force exerted in

the +z direction and transmitted to a planar cross-sectional drearmal to they-direction is

defined as:

(2.1)

Q
Il
o=

The units of stress are force per unit ar@a (= kg m~' s~2 in Sl units). The shear strain

~ is defined as the displacement of the top platedivided by the thickness of the sampie
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Ax
— 2.2
= (2.2)

If the material is a perfectly elastic solid (as it sometirngefr low strains), then the stress
will be linearly proportional to the strain. The constantppbportionality, known as the shear

modulusG, is defined by:

()
Il

(2.3)

=219

The shear modulus has the same units as the shear stressstsaic is dimensionless. Each
sub-parcel of the material subjected to shear will expegethe same local stress and strain,
assuming the material deformation is uniform, or affine. Phaperty of elastic materials, that
the modulus is constant over a range of strains is more ggné&raown as Hooke’s law of
elasticity, a constitutive relation valid in the linear pesse regime (typicallyy < 4 — 5%).

A generalization of Hooke's Law is explicated in Landau arifshitz’s Theory of Elasticity
[54]. In passing, | remark on some notable features of thimétism that will be of use in

understanding literature associated with the subjectsigrthesis.

First, stressd;;) and strain {;,;) are 2nd rank tensors, and stiffne€s;{;) is a 4th rank
tensor connecting them, i.ez;; = Cjjuvw. Or, as is sometimes denoted in the literature:
o = C : v. The total number of independent componentCpf,; is reduced from 81 to
21 due to the stress and strain tensors being symmetricgje= oji, Y = Yk, implying
Cijt = Cji = Cyju and the symmetry of the stiffness tensor as a consequente strain

energyU being a quadratic function of the strain to lowest order, l/e= %fCijkmjfyklddx,
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implying Cj;x; = Chui5. Since the trace of any tensor is independent of basis, tis¢ complete
coordinate-free decomposition of the strain tensor is fwa®ent it as the sum of a constant

tensor and a traceless symmetric tensor:

1 1
Vij = §7kk5ij + (vij — §7kk5ij)- (2.4)

The first term on the right is known as the volumetric straimste; it corresponds to de-
formations akin to hydrostatic compression. It is strefighitard to show that for small (linear)
deformations, the volume change givendy’ = dV (1 + ;;), where the prime denotes the
volume of a parcel of the deformed material. In other wortlg, rielative volume change is
equal to the trace of the strain tens@dV’ — dV')/dV = ~;;. If the trace of the strain tensor
is non-zero 4;; # 0), then the resulting deformation will not be volume-conssg. The sec-
ond term, known as the deviatoric strain tensor, or sheaoteis traceless, corresponding to
a volume-conserving shear deformation. Any arbitrary defdion can be captured by a lin-
ear combination of these two elementary deformations, lamsla generalized Hooke'’s Law for

isotropic materials is:

1 1
gij = 3K(§7kk:5ij) +2G(vij — g%k@j)- (2.5)

Here K is known as the bulk modulus, and G is known as the shealulms. Written
in this way, it is clear thatk' and G are elements of the stiffness tensdy;;; for isotropic
media. For other symmetries, e.g. crystalline, there valkblditional elements corresponding

to the underlying symmetries of the structure. There areyneguivalent ways to express the
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information of Eq. 2.5. For instance, it can also be written a

Oij = Mkkdij + 20075, (2.6)

where A\, . are known as La#n coefficients and are related 16, G via A = K — %G and
u = G. It is sometimes more convenient to use the Eacoefficients because the stiffness
tensor can be writtent;;,; = Ad;0k + p(dikdj + di105). Also, the free energy of a deformed
isotropic material is, to lowest (harmonic) order a neatdgatc function of the strainst’ =

Fo + 5\ + 1.

The elementary deformations are summarized in Figure 2t material is stretched in
one direction, it tends to contract (or occasionally, expan the other two directions perpen-
dicular to the direction of stretch. Conversely, when a dampmaterial is compressed in one
direction, it tends to expand (or rarely, contract) in theeottwo directions. The Poisson ratio
relates the elongational strain to volumetric change irenmls, i.e. AV/V = (1 — 2v)AL/L.
For incompressible materialg,= % In general, the elastic properties of homogeneous isiatrop
linear elastic materials are uniquely determined by anydwantities amonds, GG, E, v; thus,

given any two moduli, any other of the elastic moduli can biegheined.

By contrast, if the material is a pure liquid, the shear stissndependent of strain. Rather,
shear stress depends linearly on the shearﬁr&e‘ft—'z. The constant of proportionality, known

as the viscosity), is defined by:

2.7)

3
Il
=19
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Figure 2.2: Elementary deformations, modulus, and st@imémogeneous isotropic materials.
Dashed figure in deformation column corresponds to material to deformation. Shaded
region corresponds to volume-conserving deformations.

Viscosity has units of force per unit area time (Pa s in Slg)niEluids for which Eq. 2.7
holds are known as Newtonian fluids. Note that for such fluids,resistance to deformation
(shear stress) depends on the rate of deformation and nantpktude of the deformation, as
for solids. As anyone who swims knows, it's not how large thieke that matters, but rather
how fast the stroke. A similar analysis to Eqns. 2.4 - 2.6 carmcdrried out to generalize the
stress-strain relation for Newtonian fluids. Essentiatlys the same with the substitution of
strain rate tensov;; for u;;, and substitution of bulk and shear viscosities for bulk ahear

moduli.
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2.2.2 Viscoelasticity

Most soft materials are viscoelastic, having time-depehdeechanical responses intermediate
between Newtonian fluids and Hookean solids. A time-depatingleneralized shear relaxation
modulusG(t) = o(t)/~ is necessary to describe this behavior. Imagine imposingnatant
stresspy, at timet = ty, and then monitoring the stress in the material as showngargi2.3.
For a Hookean solid with shear modulGs the stress will beyG for as long as the stress is
applied and then it will rapidly return to zero once the stiigireleased. For a Newtonian liquid,
the stress will exhibit an initial transient spike and thecaly rapidly to zero. For a dominantly
liquid-like viscoelastic material, the stress will decaypenentially to zero with a characteristic

relaxation timer, as shown in Figure 2.3B.

A B
(A) Op ( )O applied stress
— Oyt
[2] | |
i (¢] [ [
vGT solid
JE—— Y .4_
o |
" liquid
\ |
|
| |
© : Viscoelastic
1 liquid
| |
to 8] time

Figure 2.3: Stress relaxation in soft materials. (A) Sch@m#ustration of stressyy being
applied to a solid, liquid, or viscoelastic liquid materiéB) Stress profile for solid, liquid, and
viscoelastic liquid materials. (Top) The step stregss applied at time¢, and removed at time
t1. 7 is the relaxation time of the decaying stress in viscoaldsfuid.
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In order to gain insight into the rheological responsesrafdr viscoelastic materials, includ-
ing the factors that control the relaxation time, simple haical models of linear viscoelastic
behavior have proven to be very useful conceptual aids. Eréchl models of viscoelastic ma-
terials utilize linear combinations of springs and dashpgotmathematically model elastic and
viscous components, respectively. The elastic elememtbeanodeled as springs with elastic

modulusG with a stress-strain relation:

o= Gy, (2.8)

whereo is the stress; is the shear modulus of the material, anid the strain that occurs under
the given stress, similar to Hooke’s Law. The viscous coreptsican be modeled as dashpots

such that the stress-strain rate relationship can be gwen a

dy
= p—L 2.9
wheren is the viscosity of the material, ar@ is the strain rate. Eq. 2.9 predicts that stresses in

the viscous element will be larger whenever sudden defoomsatare imposed.

The simplest mechanical models for viscoelastic behavthee Maxwell and Voigt models.
The Maxwell model idealizes the viscoelastic material aprang in series with a dashpot, as
depicted in Figure 2.4. The Maxwell model captures the @sddratures of the rheology of
an entangled polymeric network. In such an entangled palyragvork, stresses in the network
can relax at long times, whereas for short times, entanglesretween polymer strands prevent

relaxation and give rise to a dominantly elastic rheoldgiesponse. Accordingly, such networks
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possess a relaxation time scale, below which the respodsanimantly elastic and above which
the response is dominantly viscous. Under a sudden impased, s depicted in Figure 2.4C,
the spring element will initially bear the full strain in tisgstem owing to the fact that the stress
in the viscous element is large. Over time, the strain wilixdo zero as the strain is transferred
to the dashpot.

f f
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1 Te : :
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-~y t

Figure 2.4. (A) Maxwell elements of spring and dashpot ineser (B) Maxwell Model for
viscoelastic materials is a Newtonian liquid with viscgsjtand Hookean solid with shear mod-
ulus G. Shear stress is transmitted serially through each mhbtegighe plates. (C) (top) Step
strain~y, is imposed at time, and held constant until timg whereupon it is released. (mid-
dle) Time-dependent strain (extension) in the elastic el@m Initially the imposed strain is
fully accommodated in the elastic element and then it sla@yays. (bottom) Time-dependent
strain (extension) in the viscous element. Initially thex@o strain in the dashpot and then it
increases. Note that upon release of straih-att;, there is no recovery if (as shown) the strain
in the elastic element has completely relaxed.

Under an imposed total strain = v, + ~,, the strain across the elastic spripgand the
strain across the viscous dashpptare free to adjust until stress on both elements is the same,

ie.,

o= G

— . 2.10
Uy (2.10)

In the step strain experiment, a constant strgirs applied at = 0 and the time dependent
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strain in the viscous element is given by

dy(t)
T2 =0~ (), (2.11)
where the relaxation time = /G. Solving,
_dnlt) _dt (2.12)
Y0 — ’Yv(t) T
—t
Inf30 — 7(H)] = — +C. (2.13)

Here the initial conditiony, (0) = 0, yieldsC = In~,, and the strain in the elastic element

~e(t) equals:

Ye(t) = Y0 — Y (t) = yoexp(—t/7). (2.14)

Since the elements are in series, the stress across botardteis identical thus:

o(t) = Ge(t) = Gyo exp(—t/7). (2.15)

The stress decays to its equilibrium value exponentially wirelaxation time- = /G, as
shown in the bottom panel of Figure 2.3C. In the Maxwell motted stress relaxation modulus
G(t) = o(t)/v = Gexp(—t/7). Thus, the two main features of the stress relaxation are:
one, the modulus is independent of strain in the linear regamd two, a single relaxation time

governs the stress relaxation.
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This two-element, one-relaxation-time Maxwell model igdy simplified, however; it turns
out that more complex mechanical networks, approximatiadwolymer networks, can be mod-
eled as multiple basic Maxwell elements of series springdashpots. Importantly, in the linear
response regime, each independent mode has its own relatiatie. Network behavior is de-
rived by combining these modes via linear superpositioniétdya network stress relaxation
modulus having a broader, multi-timescale decay profilereld entangled polymer networks,
for example, the distribution of relaxation times is a capsnce of the multiple length scales
in the underlying polymer length distribution, e.g., leamgif polymer segments between en-
tanglement points or dangling polymer strands. These setgnaad strands each vibrate with
a characteristic frequency which depends in part on the segfangth and segment tension.
Collectively, these thermally excited vibrations, somatdinalogous to a strummed chord on a

guitar, give rise to a broader stress relaxation profile firadicted by the Maxwell model.

Another possibility in real polymer networks is for the siiia to be cross-linked, as in a
polymeric gel. In such a situation, the stresses in the nitwidl never relax so long as a stress
or strain is imposed. This feature is captured in the Voigtet@s a spring in parallel with a
dashpot, as depicted in Figure 2.5. After a step stress iedet) the strain across both elements
increases to a saturating value (Figure 2.5C). The streigdtily higher in the dashpot but

eventually the stress is transferred entirely to the spelaghent at long times.

In the Voigt model, the strain, rather than the stress (aBérMaxwell model), is the same
across both elements; = ~. = ~,. The total stress is thus the sum of the stresses on both

elements and is free to adjust to accommodate the strain:
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Figure 2.5: (A) Voigt elements of spring and dashpot in paka{B) Voigt model for viscoelastic
materials is a Newtonian liquid with viscosityand Hookean solid with shear modultis Shear
stress is applied simultaneously to both media via the sdate.p(C) (top) Step stress, is
imposed at time&, and held constant until timg whereupon it is released. (middle) Time-
dependent strain (extension) in the elastic element. dbytTime-dependent strain (extension)
in the viscous element. The strain in both elastic and visaaments is the same due to the
parallel geometry of the deformation. Note that the stratunns to its initial state upon the
release of the stressat ¢; due to the elasticity in the spring.

o(t) = Gy(t) + 77(2—:. (2.16)

Since materials obeying the Voigt model cannot be instaaasly deformed, an alternative
deformation methodology in which a step stress is appliedtine used to elicit the rheological
response of the Voigt model. Applying a constant step sis¢ss = oy att = 0, Eq. 2.16

becomes

dry o
= = 2.17

wherer = n/G. Eq. 2.17 can be readily solved by following the procedur&ef 2.11 - 2.14
and applying the initial conditiory(0) = 0. The time-dependent strain for the Voigt model is

thus
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(1) = % [1 - e_t/T} : (2.18)

The measurement used to illustrate the Voigt model in Fi@us€, wherein a constant step
stress is applied to a material and its strain recovery isitoi@d, is known in rheological lit-
erature as creep response.The creep analogue of the slaatiom modulus is known as the
shear creep compliancéd(t), and is given by the ratio of the time-dependent strain arebst

J(t) = ~(t)/oo. It follows from Eq. 2.18 that the creep compliance is:

J(t) = [1 - e_t/T] . (2.19)

The main difference between the Voigt and Maxwell model ithiir long time behavior.
In both models the viscous stress in the dashpot is initlatiyer after the step strain (Maxwell)
or stress (Moigt) is applied, and then it decays exponéytigth time. In the Maxwell model,
the consequence is that the stress decays to zero. In thervoigl, the consequence is that
the strain saturates to a constant valyeG owing to the fact that in parallel the strain from the
extension of the spring is always present and bears all thsssafter the transients decay. It is
also worth noting that the Voigt model will always return te initial strain after the stress is
turned off as shown in Figure 2.5C. In contrast, the Maxwelterial will not return to its initial
strain state, so long as the duration of the strain defoonatkceeds the relaxation time. Thus
the Voigt model is a hallmark of elastic behavior expectadyfils. Accordingly, the Voigt model
is a simple idealized model for polymeric gels wherein cilogss prevent long time relaxation

of the deformed network. One such system is a carbon nanoitierk cross-linked by van
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Y, sin(ot)

(A)

Figure 2.6: (A) Schematic of steady shear rheology measmem a cone-and-plate geometry.
The top cone is rotated at a constant angular velecitynd the resulting stress or strain is mea-
sured. (B) Schematic of oscillatory rheology measuremEné top cone is rotated sinusoidally
and the stress or strain is measured.

der Waals interactions. This gel (Voigt) system is furthiaberated in Chapter 6. Entangled

polymeric networks (Maxwell) ofA-DNA are the subject of Chapter 4.

2.2.3 Common Rheology Measurements

The two most common macrorheology measurements are sthadyand oscillatory measure-
ments. In steady shear measurements, the top plate isdratsiecconstant angular velocity as

illustrated in Figure 2.6A. The resulting stress is deteedivia:

J(t):/_t Gt —t)5(t)dt'. (2.20)

Eg. 2.20 is a general statement of the Boltzmann superpogitinciple which states that
the stress in the material at any given time is due to a lingperposition of its previous shear

history. Since the shear rafe= w is time-independent in steady shear measurements, we have

t e’}
o(t) = 4 /_ Gt —)dt = 4 /0 G(r)dr, (2.21)

where the variable substitutian= ¢ — ¢’ has been made. This leads naturally to a definition of
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viscosity as the time integral of the shear relaxation mastul

77:/0 G(t)dt. (2.22)

This viscosity is known as the steady shear viscosity andbeaempirically related to the
more commonly measured dynamic complex viscosityw) in many simple polymeric liquids
via the Cox-Merz rule [56], which states thgty) ~ n(w).

Dynamic viscoelasticity measurements are made by applysigusoidally oscillating strain
(or stress) to a sample and measuring its stress (or stespdnse, respectively, as a function of
frequency (Figure 2.6B). For linear viscoelastic materittie result is two sinusoidal functions,
and both the elastic and dissipative properties of the nadte computed from the amplitudes
and phase shifts of the sinusoidal functions, as illusiraweFigure 2.7. In strain-controlled

oscillatory measurements, for example, the applied stiaiies sinusoidally with time:

v(t) = o sin(wt), (2.23)

which for a Hookean solid leads to a stress which is in phatetive strain:

o(t) = Gy(t) = Gy sin(wt). (2.24)

For a Newtonian liquid, by contrast, the stress depends emnate of strain and as a result,

the stress lags the strain by exactly2 phase shift:

d
~y(t) = nd—z = nyow cos(wt) = nypw sin(wt + g) (2.25)
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ot

Figure 2.7: Stressy and strairny, amplitudes vsot in an oscillatory deformation of a viscoelas-
tic material. The stress and strain signals are phase dglujtan angle.

More generally, interpolating between these two extremes;oelastic materials can be

characterized as having a stress which is out of phase watlstilain by a relative phase an-

gle0 <o <m7/2

o(t) = ogsin(wt + 9), (2.26)

with the consequence that the stress and strain are rekatbe lgeneral expression:

o(t) =0 |G (w)sin(wt) + G"(w) cos(wt)] , (2.27)

whereG’(w) is known as the storage modulus aftl(w) is known as the loss modulus. Ex-

panding Eq. 2.26 and comparing it to Eq. 2.27, it becomes thedthe storage and loss moduli

at eachw can be related to the phase anghada:
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09
G' = —=coséd

Y0
G" = 70 sin d
0
1!
tand = re (2.28)

The ratio of the loss to storage moduli is given tay §, known as the loss tangent. The
loss tangent is a useful measure of the degree of elastieitsus viscosity in a material. It is
diverging for Newtonian fluidsthn(7w/2) = oc] and zero fan(0) = 0] for Hookean solids. In
principle, the oscillatory rheology of the material is cdatply characterized by knowledge of
any two out of the three quantitie&’, G”, §. Equivalently, and more succinctly, the sentiment

of Egns. 2.28 can be mathematically expressed using thelegfymction:

G*(w) = G'(w) +iG" (w)

tan d(w) = Tw)’ (2.29)
G*(w) is known as the complex shear modulus aad ¢(w) is the frequency-dependent loss
tangent. The complex shear modulus characterizes thellokesitance to deformation of a
material, regardless of whether that deformation is re@le (elastic) or non-recoverable (vis-
cous). The information contained in the complex shear madcén alternatively be expressed in
terms of the complex dynamic viscos#y(w) which is trivially related viaG* (w) = —iwn*(w).

Typical linear oscillatory rheology data for a variety ohemon materials is illustrated in Figure
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>Viscoelastic solid (Voigt)
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log w
Figure 2.8: Schematic illustration of frequency-dependérear moduli for prototypical liquids,

solids, viscoelastic solids described by Voigt model, arstoelastic liquids described by the
Maxwell model.
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2.3 Microrheology

Instead of using macroscopically applied and detectedsstnad strain to extract a material’'s
moduli, microrheology relies on detecting the displacentdrrolloidal probe particles embed-
ded in the material to extract similar quantities. Thesdemisplacements can be excited either
by broadband thermal energy (i.eg1’) or by externally imposed forces (e.g. via magnetic or
optical tweezers). The former is termpaksive microrheology, while the latter is termeective

microrheology.

2.3.1 The Stokes-Einstein relation

Consider, as Einstein did circa 1905, a particle diffusm@ Newtonian fluid. In thermal equi-
librium, collisions of the particle with the molecules iretfluid gives rise to Brownian motion

which can be quantified by the particle’s mean square dispiaat (MSD):

(Az?(1)) = ([z(to + T) — z(t0)]?). (2.30)

Herex(t) is one omponent of the position of the particle at time is the lag time, and)
denotes time averaging over all initial timggfor a single particle or, alternatively, both time

and ensemble averaging for a collection of particles.

For a spherical particle with radius diffusing in a Newtonian liquid of viscosity), the

particle’s MSD is related to the diffusivity via (Az?(7)) = 2D where

kgl
~ 6ma’

(2.31)
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Eg. (2.31) is known as the Stokes-Einstein relation and astlieoretical cornerstone of
all passive microrheology measurements. It asserts thasunements of a particle’s thermally
excited diffusivity can be used to extract the viscosity lef fluid, thus relating an embedded
tracer particle’s dynamics with the medium’s rheology. @avio the importance of the Stokes-
Einstein relation in microrheology, it is useful to derivg.E2.31 from first principles. In order
to do so, it is instructive to break the derivation down ik tsteps and critically examine the
assumptions underlying each of the steps. The first stepvistE(Q. 2.31 as a statement that a
stochastic quantity (D) is related to the temperature timm@sterministic material quantityt{),

i.e. D = kgTM, whereM = 1/6mna. M is called the particle mobility. This is the “Einstein”

part of “Stokes-Einstein” due to the fact that it was Einsteho first considered it in 1905.

The second step is relating the particle’s mobilifiy) to the medium'’s viscosity.M is a
deterministic material property that relates the velogityof a particle embedded in the medium
to the force ) applied to it viaw = M - F'. The hydrodynamic calculation yieldd = 1/67na
for a spherical particle of radiustranslating with velocity in a Newtonian fluid with viscosity
n. This result, first carried out by Stokes in 1851, comprides “Stokes” part of “Stokes-

Einstein”.

Finally, note that Eqg. 2.31 is contains a constant (i.e.Uesgy/time-independent) viscosity.
However, it is clear from the preceding sections that mofitreaterials are viscoelastic, and
hence frequency-dependent moduli are necessary to deshaly rheological response. Thus,
the final step will be to generalize the Stokes-Einsteirtimiao frequency- dependent material

properties.
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2.3.2 Einstein Component: relating diffusivity to mobility

The phenomena connected most directly with Brownian masaodiffusion: an ensemble of
small particles placed at a point in space will spread oubie tdiffusing via Brownian motion.
Consider a collection of particles diffusing in one-dimiens Letc(z, ) be the concentration at
x andt. The process of diffusion is phenomenologically describgdrick’s Law, which states
that if the concentration is not uniform, there will be a fli(¢, ¢) which is proportional to the

spatial gradient of the concentration, i.e.,

Oc

j(l‘,t) = _Daa

(2.32)

where D is the diffusivity, or diffusion constant. Owing teet minus sign on the right hand
side of Eq. 2.32, the flux of particles will always be from hégltoncentration regions to lower
concentration regions. Stated another way, in equilibritna flux is zero; whereas if the system
is driven out of equilibrium the flux acts to restore equilifon. If there is an external potential

U (z) acting on the particles, then Fick’s Law must be modified. pbiential exerts a force

ou

F:—%

(2.33)

on the particles producing in a non-vanishing mean partielecity v which, assuming the force

is weak, is linearly related to F via

v F——n-2U (2.34)
Ox

whereM is the particle mobility. The average velocity of the pdeticin response to the external
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potential gives rise to an additional flex which must be added to Eq. 2.32, such that the total

flux will be

. Jc ou
jlx,t) = —D% —c(M - E) (2.35)

In equilibrium, the concentration(z, t) is independent of time and is given by the Boltz-

mann distribution

Ceq(z) x exp(—U(x)/kpT). (2.36)

Detailed balance requires the net flux to vanish in equilitri

. 0 oU
jlx,t) = —D%ceq — Mceq(?_x =0, (2.37)

so that substituting Eq. 2.36 into Eq. 2.37 yields

D = kgTM. (2.38)

This expression is commonly known as the Einstein relatibrelates a stochastic fluctuat-

ing quantity (diffusivity) to a deterministic mechanicabperty (mobility).

2.3.3 Stokes Component: relating particle mobility to mateial rheology

The functional form of\/ for a spherical particle of radiussteadily translating in a Newtonian
fluid was obtained by Stokes in 1851. For low-Reynolds nurfibers, where viscous damping

dominates inertial effects, the Navier-Stokes equaticrepglied to fluid phases reduce to
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nV*i = Vp,

<
2
I
o

(2.39)

Here is the local velocity field of the incompressible flow far awiegm sources and sinks
andp is the local pressure. Eqns 2.39 are known as the Stokesi@wpaind can be readily
solved fori, p by considering appropriate boundary conditions for thedflaii the the probe
particle surface (no-slip) and at infinity (bounded) to reldne probe mobility to the viscosity of
the medium.

Once solved for, the velocity fieldand pressurg can be used to determine the stress tensor

OaB via

OaB = —p5a5 + U(VQU5 + Vgua). (240)

Finally, the viscous drag on the particle is given by intdgpEqg. 2.40 over the particle

surface:

F, = / GapdSs. (2.41)
S

For a sphere of radiustranslating through a fluid of viscosityat constant velocity = vz,

Egns. 2.39 yield the solutions:

Oaz 2T 1 3 (00 3z2ry
CL(T—FF)—FZa <T'_3_ 7”5 >, (242)



where7 is the distance from the sphere’s center and the displacement along the sphere’s
direction of motion. The pressure is given by
3 r-u

DUAERE (2.43)

p(7) = 5

Substituting Eqns. 2.42 - 2.43 into Eqgns. 2.40 - 2.41 andrsplfor the viscous drag via

F= (v, we obtain{ = 6mna. The Stokes mobility is thus

M = ¢ = (6mna) ™t (2.44)

Thena combination could have been guessed from simple dimensamadysis of the drag
force. However the 67" prefactor is a direct consequence of the no-slip boundandition
for the fluid velocity field on the sphere’s surface. Intaregy, relaxation of the no-slip bound-
ary condition, e.g., as in the case of a deformable bubbseilteein a prefactor value o#r”.

Combining Eq. 2.44 with Eq. 2.38 yields the Stokes-Einstelation, Eq. 2.31.

2.3.4 Generalized Stokes-Einstein Relation

The first assumption in the generalization of the Stokes litypis that it adopts the same func-

tional form at all frequencies:

M*(w) = M _pp = (670" (w)a) ™", (2.45)

i.e., simply replace), with n*(w). The basis for this assumption can be found in the underly-

ing linearity of Eqns. 2.39 which, when solved in the nonviraé¢ regime, admit viscous and
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viscoelastic solutions exhibiting isomorphic correspemezk [119]. With this assumption, Ma-
son and Weitz [70], derived the relationship between théemdSD and frequency-dependent

mobility starting from the Langevin equation:

mV (t) :fR(t)—/O C(t—tV(hat, (2.46)

describing the dynamics of a spherical particle subject weak random forcefz(¢) in an
isotropic linear viscoelastic material. HereandV are the mass and velocity of the probe parti-
cle, respectively((t — t') is the time-dependent hydrodynamic resistance, defineflyia) =
[t ¢t —t)V(¢')dt’ whose Laplace transform is the inverse of the mobiity) = M (s)~".

Taking the Laplace transform of Eq. (2.46) and solving¥fds) yields

’ mV(0) + fr(s)

V(s) = e i (2.47)

whereV (s) denotes the Laplace transform6ft) ands is the Laplace frequency. Becauge
is a stochastic quantityy () must be treated statistically. Multiplying Eq. (2.47) byt = 0)

and ensemble averaging gives

m(V(0)*) + (V(0) fr(s))

VOV () = T2

: (2.48)

Assuming that the random force is uncorrelated with theamsio(frV') = 0 and equiparti-
tion: %m(V(O)2> = %kBT, the Laplace transform of the velocity autocorrelationdatimensional

probe motion is thus
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VO (s) = L

=t T (2.49)

If the frequency is low enough that the resistag¢e) dominates over the probe inertias

(typically < MHz for colloidal systems), then

(V(0)V(s)) ~ dkgT(Y(s) = dkpTM(s). (2.50)

The neglect of inertia will be addressed in a later subsecttnally the Laplace transform

of the velocity autocorrelation can be related to the MSDth@identity

(AF?(s)), (2.51)

where.# denotes Laplace transformation, to give

2dkpT _ 2dkgT -

AP (s)) ~ 2 = M(s), 2.52
(AT%(s)) 22(s) =2 (s) (2.52)
or
S2(AF2(s
(s) = 7%{:3;» (2.53)

Eq. 2.53 is more commonly written in terms of the frequenqyesielent shear moduli@ s)

G(s)

which is related to the probe mobility/ (s) via M (s) = (6ma=—>)~1. The resulting expression

is known as the Generalized Stokes-Einstein Relation (QSER
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(@) =

= ) (2.54)

The GSER is the basis for all passive (thermal) microrhepldg states that the Laplace
transform of the probes’ MSD is related to the Laplace tramsfof the shear modulus of the
medium. An equivalent representation of Eq. 2.54 in termthefFourier components, more
commonly encountered in oscillatory macrorheologicabdatn be readily obtained via ana-
lytic continuations = iw. In practice, the Laplace or Fourier transformed MSD is dgjy
not obtained directly from the time-domain data since theadyic range is limited to a few
decades in conventional measurement schemes. Insteatptocer laws are used to approxi-
mate the time-domain MSD and the transforms are generaaeaigebraic expressions based on
the values of the power law exponents. More details of thigguure will be given in Section

3.3.6.

An alternate but, equivalent approach was used by Gitted.g#0] and Schnurr et. al. [93]
in their data analysis. Their experiments involved oplycahpping of the probe particle and thus
the introduction of an additional force term into Eq. 2.46iethis more naturally analyzed via
the linear response function. The linear response funciiohrelates the probe’s displacement

r(t) to a weak applied forcé'(¢) is defined via the relation

r(t) —r(0) = /0 a(t —7)F(7)dr. (2.55)

Taking the Fourier transform of this equation yields
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r(w) = a(w)F(w). (2.56)

The Fluctuation-Dissipation Theorem (FDT) relates the @ospectrum of the probe’s dis-

placementS(w) = (Ar(w)Ar(—w)) to the imaginary part of the Fourier transform of the linear

response function:

2dkpT
= —q
w

S(w) (w). (2.57)

Oncea’(w) is obtained, the Kramers-Kronig relations can be used taiolihe real part
o/ (w) from the imaginary part [16]. The power spectrum represtr@snformational endpoint
for microrheology of systems in thermal equilibrium, sintés equivalent to a measurement
of the response function as Eq. 2.57 attests. Eq. 2.57 igiégdémo Eq. 2.53, provided the
substitutions = w and identitya*(w) = M*(w)/(iw) are made. A table summarizing the
connections between quantities measured in macroscoiarlrheology and probe dynamics

measured in microrheology is given in Table 2.1.
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| Property | Symbol | Relation \
Linear shear rheology
Shear relaxation modulusg G(t) fo — t)y(t)dt
Complex shear modulus | G*(w) a(w) = ( ) (w)
Complex viscosity n*(w) G*(w) = —iwn*(w)
Creep Compliance J(t) wJ*(w) =1/G*(w)
Local probe response
Probe Mobility M(t) V(t) fo VE(t)dt!
Probe resistance C(t) F(t) fo t — t’ (t)dt'

¢(s) = M~'(s)

Linear response function | o*(w) M*(w) = iwa* (w)
Probe statistics
Mean square displacemeht(Ar2(t)) (AF2(s)) = SWdLis%jEs)
Positional Autocorrelation (r(t)r(0)) (Ar%(t)) = 2 — 2(r(t)r(0))
Power Spectrum S(w) = (Ar(—w)Ar(w)) S(w) = 26T o/ (1)
Two-Point MSD (MSD2) | MSD2 = R(Arl( t)Arg(t)) | MSD2 = (Ar?(t)) for homog.

Table 2.1: Relations between properties measured in nmaap@slinear rheology and probe
dynamics in microrheology. Adapted from Ref. [99].
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2.3.5 One-point Microrheology

One-point passive microrheology uses the generalizedeStBinstein equation (GSER),

o kpT
(AF(s)) = 77‘1’&8@1(8)’ (2.58)

to determine the single-particle shear modufiigs) from the measured single-particle mean-
square displacementAr?(r)) = MSD1 [70]. Here A72(s) is the Laplace transform of
Ar?(7) as a function of Laplace frequeney a is the particle radius, andpT is the ther-
mal energy. Eq. (2.58) is the familiar Stokes-Einstein ti@hageneralized to a frequency-
dependent viscosityj(s) = sG(s). Shear moduli and/.SD1 may be readily converted be-
tween the Fourier, Laplace and lag time domains with simplaerical routines [70]. We will
discuss the approximations used to convert the MSD in maialde Chapter 3. The GSER
accurately provides the experimenter with the backgrouedium’s complex shear modulus,
Giup(w) = G'(w) +iG"(w) when the medium is homogeneous on the scale. dVhen the
sample is heterogeneous, this standard GSER relation adrtdesignificantly underestimated

shear moduli [59, 61].

2.3.6 Limits of the GSER

The validity of one-point microrheology using the GSER toyide an accurate measure of the
complex shear modulu§™(w), for even simple homogeneous systems, to say nothing of real
complex materials, was far from certain prior to the year®0Uhere were two main sources
of uncertainty. The first concerned the frequencies ovechvttie GSER of Eq. 2.58 was valid.

Theoretical work by Levine and Lubensky [59, 60] showed thate exists a certain frequency
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range,w. < w < w;, wWithin which the probe particles’ dynamics provide an aatel measure
of G*(w) as measured in bulk rheology. The lower limit, is the frequency at which compres-
sional modes become significant compared to the shear miodeare excited in a polymeric
network. In bulk rheology, the applied strain has only a slseanponent, whereas the thermally
driven probe patrticle responds to all of the thermally eec¢tinodes of the system, including the
compressional modes of the elastic network. Consequéndyz SER would measure a different
G*(w) than bulk rheology. At frequencies lower thapthe network compresses and fluid drains
from denser regions of the network to more rarefied regiomssiponge-like manner. Above,
the network “locks in” with the incompressible fluid with thesult that compressional modes
are suppressed. Consequently, the GSER should measusnikérs(w) as bulk rheology. An
estimate of the lower crossover frequengy, can be determined by balancing local viscous
and elastic forces. The viscous force per unit volume egdrtethe solvent on the network is
~ nv/&2, whereuv is the velocity of the fluid relative to the network,is the viscosity of the
fluid, and¢ is the mesh size of the network. The local elastic force pdrvatume exerted by
the network isG’V2u ~ G'u/a? at the bead surface wheueis the network displacement field
anda is the radius of the bead. Force balance dictates that \ésoouwpling between the fluid

and network will occur whenv/£2 > G'u/a?, leading to a crossover frequency

G/£2
na*’

We >

(2.59)

For typical soft materials studied using passive microldbgg G’ ~ 0.1 Pa, n =~ .001Pa s,

and¢ = 0.1 a this leads tav, ~ 1H z.

The upper limit,w;, is the frequency at which inertial effects set in at the thrgrale of
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the bead. Recall that one of the assumptions in the denvatidhe GSER in Eq. 2.54 was
the neglect of inertia. Shear waves propagated by the mofitime tracer decay exponentially
from the surface of the bead through the surrounding mediline characteristic length scale
of the decay is called the viscous penetration depth andbjsoptional to/G/pw? wherep is

the density of the surrounding fluid andis the frequency of the shear wave [36, 60]. When the
viscous penetration depth becomes comparable to the sibe dfead, inertial effects become
significant and cannot be neglected. For a particle of ofusadithis occurs at a frequency given

by

(2.60)

For typical soft materials studied using passive microibgg G ~ 0.1 Pa, p =~ 1000 kg/m3,
anda =~ 0.5 um this leads tav; ~ 20 kHz. Note that this is much higher than in macrorheo-
logical measurements where a viscous penetration defgtofn) leads to the onset of inertial
effects at~ 50 Hz. From these analyses, we find under typical conditiolsge frequency

rangel Hz < w < 20 kHz where the GSER accurately measures the shear modulus..

The second source of uncertainty concerned local inhormeaties in the sample induced by
the presence of the probe particles. Consider the situakietthed in Figure 2.9. If the tracers
locally modify the structure of the medium, or sample onlygsoin an inhomogeneous matrix,
then bulk rheological properties will not be determinedcissubtle effects called into question
the widespread applicability of colloidal probe based mikeology. Along with knowledge
about sample homogeneity, the proper interpretation ehiltorheology methods also relies on

knowing the boundary conditions at the probe/soft matémiaiface and the shape of the strain
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Figure 2.9: Schematic of situation in which particles arebedued in pores with a different
compliance than the bulk material.

field, which can be poorly controlled compared to a macroscdgometer.

Two-point microrheology (TPM) [26] uses the correlated imobf two well separated trac-
ers to measure the rheological response, with the effeithaneasurement becomes insensitive
to tracer boundary conditions [59, 61]. This robustnessbeaturned around to study the nature
of the probe boundary conditions with the matrix [18, 100§l @ven inertial effects [9]. While
much early TPM work used an image-based passive approauhs ibeen adapted to dynamic

light scattering [83] and optical tweezer-based instrus §s3].

2.3.7 Two-point Microrheology

Particles immersed in a fluid excite long-ranged flows as theye, and similarly move in
response to fluid motion. By generating and reacting to a'flindal velocity, colloidal particles
experience hydrodynamic interactions with each other aitd the walls of their container.
These interactions, in turn, are dominated by the largkesbalk’ properties of the medium
rather than ‘local’ regions surrounding the tracers thay er@se due to sample inhomogeneity

or boundary effects at the particle-material interfaceofwint microrheology takes advantage
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Ar4(T) Ary(T)

Figure 2.10: Schematic of two-point displacement compbriarthis depiction the longitudinal
componentD,, = (Ari(7)Ars(7)) is the product of the displacement component projected
along the line separating the tracers by distaRcwith R > a ideally.

of the interparticle coupling to robustly extract bulk nrék properties in the face of these

potentially confounding influences.

Two-point microrheology is based on cross-correlatingeitpgal-time displacements of pairs
of tracers. Ensemble and time averaging such products dvesjactory pairs yields a mobil-
ity correlation tensorD,g, that reports the degree of correlation between the tracamgom

motion during lag time- versus their separatioR:

Dag(r,m) = (Arl(t, 7) Ard(t, 7)6[r — RY (£)])izjs, (2.61)

wherei andj denote different particlesy and 3 denote different coordinates, ati’ is the
distance between the distinct particleand j. Spatially, D.s(r,7) can be decomposed into
a longitudinal D,.. and transversé ; components, where the former is the component of the
motion along the center-to-center separation vector ofvtloetracers (depicted in Figure 2.10),

while the latter two are the components orthogonal to tharsgjon vector. To lowest order in
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a/R, the off-diagonal components (e.d,. ) are negligible relative to these. For an incom-

pressible medium, the amplitudes are related via

D, = %Drn (262)

Typically, D,.. is the strongest component and hence easiest to measugeninesnts from
a signal-to-noise perspective. Moreover, to lowest order/iR, D,.,. depends only on the shear
modulus of the medium [59, 61]. By contrast, the terms have, to lowest order /R,
dependencies on the bulk modulus as well. This dependemcheturned around to measure
frequency- and lengthscale-dependent compressibilihguricrorheology via the rati% <
% (= % for an incompressible medium). Accordingly, the shear nheglmnay be determined

using the relation

~ kT

Dy (R, s) = ma (2.63)

whereD,, (R, s) is the temporal Laplace transform B%.,.(R, 7). It is instructive to derive Eq.
2.63 using the Oseen tensor analysis utilized in Ref. [71je Bverdamped Langevin equa-
tion with pairwise hydrodynamic coupling yields the eqaas of motion for a collection of N

particles:

N
vi(t) = > Hyj(r; —r)E5(1) + i, (2.64)
=0

here the velocity of a particle is the sum of both sék(;) and distinct { # j) terms represent-

ing hydrodynamic coupling to deterministic external far€g¢) and stochastic noisg (t). The
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hydrodynamic mobility tensoll;;, is the Oseen tensor and has the components:

I 1
=_ H;(R) =
¢’ i(R) 8tnR

(I+#8), (2.65)

where( = 67mna is the Stokes drag of a sphere of radiui® a Newtonian liquid of viscosity,

I denotes thel x d-dimensional identity matrixg is a unit vector along the vector connecting
the centers of two particles separated by distaRcEq. 2.65 is derived from solving the Stokes
equations and is essentially a Green'’s function for a pairtef solution [32, 88]. It is apparent
from Eq. 2.65 that interparticle coupling does not dependhenradius of the particles. The
elements of the Oseen tensor in Eq. 2.65 are the leading codgronents@(a/R)). The next-
to-leading order components af¥(a/R)?] for the diagonal elements ar@[(a/R)?] for the
off-diagonal elements [11]. Brownian forces are represegiity the stochastic noise tenp(t)

and satisfy the statistical properties:

(mi(t)) =0, (mi(t)n;(t')) = 2kpTH;(r; —1;)d(t —t'). (2.66)

Eq. 2.66 assumes that the random forces are consistent withs@n white noise with zero
mean and also with the FDT. Explicitly, for two particles 1da2y Eq. 2.64 yields the coupled

eqguations:

Vi (t) = H11f1 (t) + ngfg(t) +m (t)
. (2.67)
va(t) = Hofy () + Haofo(t) + m2(t)
In the absence of external forcégt) = fa(t) = 0, EqQns. 2.67 reduce to;(t) = n;(t).

Computing the ensemble average of the cross-correldtioft)v,(t')) yields
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(o1 (B)v2(t)) = (m () (t))

= 2]€BTH12(I'1 - I'Q)é(t - t/)

kT

_ An 4!
= IR (I+2)o(t —t)
kT
= 2:77 7ot —1). (2.68)

Taking the Laplace transform of Eq. 2.68 and using the it (s)02(s)) =
s2(A71(s)Afo(s)) = s2D,..(R, s) and the frequency generalizatigs) = G(s)s~! yields Eq.
2.63. Significantly, Eq. 2.63 has no explicit dependence, @uggesting that it is independent of
the tracer’s size, shape and boundary conditions with trddumein the limit R > a. This is the
signal advantage of two-point measurements that has eh#ltesurmount the inhomogeneity
issue that limited ‘blind’ application of the GSER in michaology. Eq. 2.63 can be rendered

identical to the one-point GSER in Eq. 2.58, provided thaiifieation

(A72(s)) = 22D, (R, s), (2.69)

a

is made. Eq. 2.69 suggests that a two-point MSD (MSD2) carefieet! from theD,..(R, 1)

component, by mulitplying by a geometric prefackdt/a:

(Ar2(7')>2 = —D,(R,T), (2.70)



Eg. 2.70 represents the MSD of a tracer in a medium in whicheafiktrapolation of the large-
scale strain field down to the particle length scale is validthe material is homogeneous,
isotropic on length scales significantly smaller than tlaedr, incompressible, and connected
to the tracers by uniform no-slip boundary conditions ovirt entire surfaces, then the two
MSDs will be equak Ar?(7))2 = (Ar?(7)). If these boundary and homogeneity conditions are
not satisfied, the two MSDs will be unequal. In this case, gishe MSD2 in the GSER wiill
still yield the “bulk” rheology of the material (on the longrgth scale “R”), while using the
MSD1 will report a rheology that is a complicated superposiof the bulk rheology and the
local rheology of the material at the tracer boundary [5®, @& will discuss this in more detail

in the next section.

2.3.8 Electrostatic Analogy

The introduction of particles into an otherwise homogeseamedium can perturb the medium
out to a radius larger than the particle size as shown in EiQutl. This perturbation can
be a result of a reduction of density of the material near tmtigle’s surface, as in the case
of depletion. This density reduction leads to a spatiallyoimogeneous elastic constant tensor
Kiji (%, w). Assuming that the stress-strain relation remains lobaletjuation for displacement

variables is

—0j[Kijni(x, w) o] = fi(x,w), (2.71)

where f;(x,w) is the force density that acts on the surface of the particlése displacement

responses of the collection of particles to forces upon tb@mbe described by the two-particle
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Figure 2.11: Schematic of a particle of radiuembedded in a viscoelastic medium with shear
modulusG(w). The presence of the particle perturbs the medium out to erigath pocket of
radiusb with a modified shear moduluG(w).

response function or compliance tenséj’m):

R (w) = oPm™ (" —r™ w)F" (w), (2.72)

1) J

whereR;' is the displacement vector oth particle and";" is the force on thenth particle. The

(nn)

central question is whether the self components of the damgz tensory, ; have a different

dependence on the bead imposed heterogeneitiés; @f(x, w) than the distinct components
(nm)

o

do. If so, then it will be possible to distinguish the bulk hageneous part from the local
bead imposed part by measuring the different componert&é;‘gf).

In order to address this question, Levine and Lubensky [H9r&de an analogy to a simpler,
but related, problem encountered in electrostatics, frdgtermining the bulk dielectric constant
of a medium by measuring the self- and mutual- capacitante®tal spheres whose presence
perturbs the dielectric constant in their vicinity. If theléctric constants(x,w), remains local,

then the potentiakp(x, w), satisfies

=V - [e(x,w)Vo(x,w)] = 4mp(x), (2.73)
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Figure 2.12: (A) Schematic of electrostatic system in wizigchducting sphere of radius a perturb
an otherwise uniform medium of dielectric constargut to a radius b with dielectric constant
€. (B) Similar schematic of elastic system in which rigid sseperturb an elastic medium with
Lamé coefficients:, \ out to a spherical region with Lagrcoefficientsi, A. Adapted from Fig.

1 of Ref. [59].

wherep(x) is the charge density at. It is clear from the structure of Eq. 2.71 and Eq. 2.73
that there is an analogy between the electrical and rhesalbgroblems with the identification:
¢ < u, € < K, andp <— f. Thus, solving the simpler electrostatic problem for
these quantities will yield insight into the complementguoantities in the elastic problem. For
example, the total charg@ on a metal sphere is the analog of the total fdfcen a bead in the

viscoelastic medium. The inverse capacitance te@sg defined by

¢n = C;nquma ) (274)

whereg,, is the potential on bead and@),, is the total charge on bead, is the analog of the

(nm)

compliance tensorC,,,} «— a;; (w). This electrostatic analogy is illustrated in Figure 2.12
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and summarized in Table 2.2.

Electrostatics Viscoelastics
Potentialp(x) Displacement;(x)

Charge Density(x) Force densityf;(x)
Dielectric tensok;; (x, w) Elastic tensor;;; (x, w)
Inverse capacitance tens@f,. | Compliance tenscmg‘m) (w)

Table 2.2: Correspondence between electrostatics angelastics.

To solve Eq. 2.74 foCigl, the method of images can be used to iteratively fix the piatlent
(¢ = const) on each conducting sphere induced by the charge from tlee sgfheres and from
induced charges in its own cavity. The resulting convergeries may be truncated at the lowest
order in reflections. In general, each higher order of rafladeads to a multiplicative factor of
a/r orb/r in the series, which become negligible in the limit of inttre/r — 0. Levine and

Lubensky found that to lowest order itfr, the inverse self-capacitance is

-1 _
011 -

4;@ [1 + (2 - 1> (1 - %)} : (2.75)

This result shows that fluctuations of a single bead are an$o both the local dielectric
constant ¥) and bulk dielectric constant) around the bead and therefore do not permit an

unambiguous determination of the bulk dielectric constanOn the other hand, the inverse

mutual capacitance

o) = 4# [1 i) (%)] , (2.76)

depends only on the bulk dielectric constant to leading roile /». Thus correlated voltage
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fluctuations, (¢ (w)d2(—w)) = 2(T/w)IMCL! (w), yield a direct measurement efw) pro-
vided the beads are far enough apart tﬁgﬂ ~ 1/r. Based on these results for the electrostatic

problem, it is expected that similar dependencies will bentbfor the two-particle response

tensoraglm). The calculation is more complicated in the elastic probdémae the displacement
field, the quantity analogous to the potential, has more corapts and hence more boundary
conditions at the interfaces. Nonetheless, carrying ouh#as analysis for the elastic problem,
Levine and Lubensky [61] find for the seIf—componeyfﬂ.’l) of the response function in the

two-shell medium of Figure 2.12B:

(11) 1 -
- - 7 i 2.77
Q;; 6 p(@)a (AN, T, a, b)éj ( )

Here Z is a numerical factor that depends on the size of the pedupoeket and both
the bulk ((w), AM(w)) and local fi(w), A(w)) Lamé coefficients. As in the electrostatic case,
fluctuations of a single bead will not yield unambiguous rueaments of the bulk rheology

unlessh = a and(u, A) = (@, A).

To compute the cross componenf?l), of the response tensor relating the displacement of
bead 2 to the force applied on bead 1, it was found that thensspcould be decomposed into
parallel () and perpendiculara(; ) components along the separation veatmonnecting the

center of the two spheres:

0%(]2'1) = a)(r)P7 + ay(r)(diy; — 7ify), (2.78)

where, to lowest order in/r, the response along the line of centers is given by
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1

= 2.79
I drrp(w)’ (2.79)
and the response perpendicular to the line of centers is
1 Aw) + 3p(w)
= . 2.80
L= ) [A(w) Fou(w) (2:89)

Thus fluctuations parallel to the separation vector depeyg an the bulk shear modulus,
p(w) = G(w), whereas those perpendicular to the line of centers deperimbth the bulk\
and . The former result is consistent with Eq. 2.63, derived ia@ fgnevious section for a
homogeneous incompressible fluid. The latter result esadnteexperimental determination of
frequency-dependent compressibility in viscoelasticemals via the ratio obv, (w)/a)(w).
For incompressible material§(w) — oo, the ratio of responses /o) = 1/2, which is
consistent with the results obtained for the ratio of pletdiffusivities D, /D.,.. for two-point
microrheology in a homogeneous incompressible fluid fromgrevious section. The ability
of two-point microrheology to isolate and measure distomnponents of the shear, bulk, and
elastic moduli is also a major advantage over one-pointnigcies. In principle, two-point
methods can be extended to determine the elements of tiressiftensor for lower symmetry

phases such as crystalline or nematically-ordered liguistalline phases.

2.4 Active Microrheology

So far we have focused on the basic theory of passive miartgng measurements utilizing

broadband thermal energy to excite fluctuations that carllaéed to the materials’ underlying
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linear rheology via the FDT. An alternative approach is tpla@m gentle external force to the
particle (via e.g. optical or magnetic tweezers) and to meathe amplitude and phase of its
resulting displacement relative to that of the applied mwtkforce. The principle is the same
as an oscillatory macroscopic rheometry measurement, yanviere are several notable dif-
ferences in practice. First, there is a difference in lersgpthles probed. Just as in the case of
passive microrheology, the active microrheological measent is more prone to the confound-
ing effects of micron-scale inhomogeneities than macmdgy. In macrorheology the length
scale of the deformation is much larger than any of the natiintrinsic length scales with
the consequence that “bulk” rheology is always measuredwveader, the smaller length scale
of active microrheology measurements is not entirely disathgeous. For example, inertial
effects, which arise at high frequencies when the viscoustpation depth is comparable to the
sample thickness, can severely limit the upper frequenogaaf macrorheology measurements
(typically < 100 Hz). The micrometer length scales of microrheology mesmsents enable
probing of much higher frequency measurements, owing tdetttethat the frequency criterion
for the dominance of inertial effects is > /G/pf? whereG is the shear modulug; is the
density of the surrounding fluid, andis the length scale of the shear deformatién=( a for
microrheology) [36,60]. Finally, a more subtle effect iattkhe strain field around an oscillating
probe is not viscometric (shear-only) but rather contawth Bhear and extensional components.
At low frequencies in viscoelastic gels, for example, fluahdreely drain from the network,
effectively decoupling the two and causing micro/macragisement [60]. No analog occurs

in macroscopic rheometry as the strain field is viscomepnice shear).

Active microrheology inherits many of the features of passnicrorheology, but offers at
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Figure 2.13: (A) Schematic of one-particle active micralbgy measurement. An optically
trapped particle is driven sinusoidally by the trappingetaand its position is detected. (B)
Diagram of forces on a particle in an oscillating opticapteambedded in a viscoelastic medium.

least one potential and significant advantage: becausdxfi@énstrains passive microrheology
to the materials’ linear response, it is conceivable thaiv@anicrorheology can be used to
extend microrheology to characterize the nonlinear rlggolaf complex fluids [97, 98]. This

could be accomplished using an optical trap, for exampleinbgeasing the amplitude of the
trap displacement to be much larger than the probe size ogarasion much shorter than the

Brownian relaxation time of the material.

To illustrate active microrheology, we work out a simple rexde of a one-particle measure-
ment using an oscillatory optical tweezer setup, depictéebmatically in Figure 2.13A. The

forces on the particle are shown in Figure 2.13B.

The probe particle’s response is described by the equatiorotion

mi = —6man™(w)x + k(Ae_iwt —x), (2.81)

where A is the displacement amplitude of the oscillating trags the trap stiffnessq is the

particle radius, ang* (w) = n'(w) —in” (w) is the complex dynamic viscosity of the viscoelastic
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medium. Note that in Eq. 2.81 we are treating the displacémess a complex quantity as well
in order to simplify the mathematical manipulations thadiofe. The optical trap is approximated
as a harmonic well and the restoring force on the particlévisngoy the difference between the
particle’s position and the position of the minimum of theitbating trap. The general solution

for the position of the patrticle is

2(t) = D(w)e " WiHo@) (2.82)

where §(w) is the phase lag between the particle and the trap, [atd) is the frequency-
dependent amplitude of the particle’s position. Since tfstesn is overdamped, we can safely
ignore them inertial term in Eq. 2.81 and substitute Eq 2.82 into Eq. 2d4olve forD(w)

ando(w). This yields

kAei(S(w)
Dlw) = (k — 6mawn” (w)) — i(6rawn’ (w)) (2:83)
L 6rawn’ (w)

For the simple case of a particle in a Newtonian fluid wh¢fe) = 7y andn”(w) = 0,

Egns. 2.83 - 2.84 can be succinctly written

= (2.85)

§(w) = tan" 1 (rw), (2.86)
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Figure 2.14: Normalized displacement and phase as a funofirequency for typical parame-
tersa = 2.0 um, np = .001 Pa s, k = 1 x 1075 N/m.

wherer = 6mnpa/k. Eq. 2.85 is the amplitude of the particle displacement madimed by the
amplitude of the oscillating trap. It is clear that for lovefuenciesy < 1/7), the particle is
able to displace with the tragX(w)/A ~ 1), whereas fot > 1/7, the particle’s displacement
amplitude will roll off to zero. Concomitantly, the phasggw) increases from 0 fav <« 1/7

to w/2 for w > 1/7 as shown in Figure 2.14.

It is also useful to solve for the one-particle response tionce* (w) = thij()w) for the

particle in the oscillating trap embedded in a viscoelastadium

. D)™ 1
o w) = kA (k- 6rawn’(w)) — i(6mrawn (w))’ (2.87)

Written in terms of real and imaginary component§w) = o'(w) + i (w), Eq. 2.87

becomes
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k — 6mawn” (w)
(k — 6mawn” (w))? + (6rawn’ (w))?

o (w) = (2.88)

6rawn’ (w)
(k — 6rawn” (w))? + (6rawn’ (w))?’

o’ (w) = (2.89)

For the simple case of a particle in a Newtonian fluid wh¢fe)) = 7y andn”(w) = 0,

Egns. 2.88 - 2.89 can be succinctly written

, B 1
o (w) = A=) (2.90)
o'(w) = k:(l—:i:;wz)’ (2.91)

wherer = 67mnga/k. A typical response function is plotted in Figure 2.15. Avlfsequencies,
the particle is able to follow the trap, resulting in a puredal and flat response function. At
higher frequencies, the particle is unable to fully follawettrap and the phase lag increases,
resulting in a decrease of the real component and an incireése imaginary component of the
response function. Finally, at the highest frequenciesti'ecomplete loss of phase coherence
between the particle and the trap with the consequence hthapdrticle’'s motion approaches
that of constrained diffusion along a “line” traced by thels spatial trajectory [35]. The latter
effect has been exploited to improve statistical power iorasicopy-based colloidal interaction
studies utilizing line-scanned optical traps [25, 111].

Alternatively, Egns. 2.81 and 2.82 can be solved directlytfi@ complex shear modulus

G*(w) by making use of the relation between the complex shear meduid complex viscosity
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Figure 2.15: Real and Imaginary components of the respamsgtién for typical parameters
a=2.0pm,ny = .00l Pas, k=1 x 1075 N/m.

G*(w) = —iwn*(w). Doing so yields the storage and loss moduli

- 552
G (w) = 67% [% sin 5@)] . (2.92)

Finally, we consider two-particle active microrheologyamerements, as illustrated in Fig-
ure 2.16A. The only additional consideration in two-pdetiactive microrheology is that the
response function becomes tensorial, namglfw) = ay,m (w)EFy, (w), wherez,, is the motion
of thenth particle, F,,, is the external force on theth particle, andv,,, is the response tensor
of the system witln, m = 1, 2. Much of the formalism required to understand these coraide

tions has been covered in the previous sections on two-poerbrheology and the electrostatic
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analogy. Here we simply set up the framework for the deteation of«,, .

>
e

b
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Figure 2.16: (A) Schematic of two-particle active micrastogly measurement. Particle 1 is
optically trapped and driven sinusoidally by a trappingetaand the position of particle 2 is
detected. (B) Diagram of forces on particles where particle in an oscillating optical trap
while particle 2 is held in a stationary trap.

For the situation sketched in Figure 2.16B in which two p#t embedded in a homoge-

neous viscoelastic medium are optically trapped with plartl being oscillated while particle

two is held fixed, the coupled equations of motion that mustdieed are

i’l(t) = Hll[k‘l (Ae_i“t — 1’1)] + Hu[k’gAZEQ]

: (2.93)
i’Q(t) = HQl[k‘l (Ae_i“t — 1’1)] + Hoyo []{TQA[L'Q]
where
Hyy = Hyp = — - Hyy— Hyy = —— (2.94)
11 — 1122 — 67'('(1?’](&)) ) 12 — 1121 — 47TR7](O.)) .

are the lowest order components,lifik, of the generalized Oseen tensor for motions along the
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separation vectoR. Note that in writing down Eqg. 2.93 we have neglected ineatid random
thermal forces. The latter condition tacitly assumes faf,; » > Fg. In order to determine
the mutual component of the two-particle response funciigriw), Eqns. 2.93 must be solved
following a similar, albeit more mathematically compliedt protocol as Eqns. 2.81 - 2.89.

A two-particle implementation of active microrheology & many advantages over one-
point active measurements. Just as in the passive case,itfthsde: robustness with respect
to tracer boundary conditions, the ability to extract lasgale bulk rheology, and the ability
to measure compressibility. Moreover, two-point impleations of active microrheology can
potentially enable measurement of the linear and nonlieksesticity of low-symmetry systems

such as crystalline or nematic liquid crystalline phases.
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Chapter 3

Experimental Methods

3.1 Introduction

The work in this thesis relies heavily on digital video migtopy. This chapter will detail the
methods used in the experiments described in Chaptersgariicular, a detailed description
of the experimental protocols will be given, along with acdission about relevant experimental
conditions and sources of experimental errors. The gepevakdures used for sample prepara-
tion are also described. Figure 3.1 schematically illaeg#he workflow of a typical microrheol-
ogy experiment. With the exception of the last section, #meainder of this chapter is organized
according to the steps in the workflow sequence of Figure Bhk last section of this chapter
covers active microrheology using oscillating optical ézers, relevant to the work of Chapter

5.
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Figure 3.1: Workflow of a typical particle tracking microdiegy experiment.

3.2 Selection of Tracer Particles

Choice of tracer particles can critically affect partictacking microrheology results [109].
Among the most important considerations are size of theetrparticles, density of particle

relative to the background fluid, and surface chemistry effhrticle.

3.2.1 Tracer Particle Size

The biggest consideration in selecting the tracer parside is the characteristic size of struc-
tures in the material of interest. For example, polymer oeltw are characterized by a mesh size
&, which depends in part on the polymer concentration. Ifrimfation about the bulk rheology
of the network is desired, as determined from macrorheoliggn the ideal particle will have a
radiusa that is larger tharg (Figure 3.2A). If tracers are selected which are much smtikn
the mesh size, then they will “slip” through the network, dhey will not provide an accurate
measure of the bulk rheological response of the networkugig.2B). On the other hand, parti-
cles larger than the mesh size can only report the bulk rgezabresponse of the network; their

motions will not yield information about the pore size distition of the material. As arule, itis
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useful to have an idea of the characteristic length scaldseaiaterial before choosing the size
of the probes. In practice, particle radiuss limited to the rang00nm < a < 10 um. The
lower limit is due to the optical resolution of the microseopr he image processing algorithm
requires at least 5 pixels for the particle centroid to bemheined with high fidelity. The upper
limit arises because to the particles become ‘non-Browniaith thermal fluctuations reduced
below a measurable level.

(A) (B)

ideal (a>E§) slip (@a <€)
Figure 3.2: (A) The ideal particle for determination of butkeology using microrheology is

larger than sample mesh size. (B) Particles that are mucheswal “slip” through the network,
and their motions not reflect the bulk rheology.

3.2.2 Particle Density

Sedimentation can be a problem in particle-based micréogganeasurements. In severe in-
stances, sedimentation can drive the system out of equitiband/or limit the probe’s residence
time in the imaging volume. These effects limit the meas@mnauration and statistical resolu-
tion of the experiment. The velocity{.,) of a sedimenting probe illuminates the role of various
parameters involved. A simple force balance, between @tamal density mismatch and the
Stokes drag experienced by a non-interacting single jpauitica purely viscous fluid, gives an

expression for the sedimentation velocity
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2a%Apg
Vsed =
9

: (3.1)

whereaq is the radiusy is the viscosity,g is gravity, V' is the particle volume, and\p is the
difference in density between the particle and the fluid ldisgd by the particle. In order to
minimize sedimentation, density matching of the particid aolvent is the surefire approach.
In practice, however, it is often impossible or inconvehignprecisely density match. In this
situation, working with smaller particles can decreasedtfiects of sedimentation. In general,
the larger the probe particle, the more precise the densatghing must be in order to achieve
a givenu,.4. Other than decreasing the density mismatch, Eq. 3.1 stgjtfes increasing the

viscosity,n, may also counteract sedimentation due to density or sffar@hces.

Another complication of sedimentation in microrheologypesiments is that over time the
probe particles will settle near the bounding surface ofdeesity mismatched sample. The
equilibrium distribution of the particle number densiy( z), as a function of the height z above

the bounding surface, is readily predicted by the Boltzmdistribution

N(z) _ _—ApVgz/kpT
NO) e =PI , (3.2)

where N (0) is the probe density at the surface. Ideally, probe conagotr should be uniform
and low ¢ ~ 10~%). Higher densities can render the tracking algorithmsficieht, e.g., by
disrupting the unique identification of the particles duspatial overlap. Moreover, proximity
to the boundary can complicate interpretation of microlbgy results, as will be discussed in a

later section.
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3.2.3 Surface Chemistry

Nearly all beads commonly employed in colloidal studiesunegsurface chemistry modifica-
tions in order to stabilize them against flocculation. Thkigriost commonly accomplished by
coating the particle surface with charged groups or by agdirayer of polymer for steric sta-
bilization. Charge functionalization schemes such asrapgdarboxylate { COOH), amine
(=N Hy), or sulfonate £ 50,) groups on polystrene (PS) particles, or hydroxytH) groups

on silica (Si) particles, is best for agueous systems of lamici strength € 10mAM). These
groups ionize in water, releasing théir™ counterion, with the result that the particle becomes
charged and repulsively stabilized. Foramn M NaCl solution, the screening lengthas3 nm.
The long range nature of the electrostatic repulsion kdeppdrticles far apart, keeping the par-
ticles from feeling the relatively shorter range minima ohspecific attractive interactions such
as van der Waals and depletion. At higher ionic strengthi,divalent counterions are present,
the charges on the spheres will be screened and flocculatilogenwerically occur. By contrast,
steric stabilization is better suited for stabilizing divange attractive forces such as the van der
Waals forces that are ubiquitous whenever the particle ahaist are index mismatched. In
practice, we have found carboxlyate PS spheres to be theuseftl non-stick surface chem-
istry for most uncharged polymers in aqueous systems supblyasthylene oxide (PEO) under
typical conditions. For samples of more highly charged mEsesuch as biopolymers or bacteria,
Bovine Serum Albumin (BSA) is a useful blocking agent. Tygblg, incubating the spheres in a

0.1 wt % BSA is sufficient to coat them.
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3.2.4 Microscope Slide Chamber

For most of the experiments in this thesis, the samples ifi&terial + particles) were mixed and
loaded into microscope chambers made of a microscope sidleaverslip attached with either
heated parafilm, 5-minute epoxy, or UV-curable optical gl@etypical chamber construction
used for aqueous samples is shown in Figure 3.3. The samatebar is constructed by sand-
wiching two parafilm strips cut into an L-shape between a asicope slide and a coverslip. The
narrow opening on both opposite ends is necessary for filliagchamber with capillary forces.
Heating the construction on a hotplate at a moderate sdting 10 seconds is sufficient to
melt the parafilm, and gently pressing on the coverslip withaim of tweezers is sufficient to
adhere the coverslip to the slide. In practice, this procedeproducibly yields chambers with
a thickness of 50 - 8@m. Thicker samples may be produced by stacking more parafitlerda
with each layer contributing a multiple of 50-80n, up to at least 4 layers. After loading the
sample chamber, the two open ends can be hermetically sgdhedpoxy or UV-curing optical
glue. Aqueous samples can last for approximately a weelesetbhambers with no visible sign

of sample evaporation (e.g., air bubbles).

parafilm strips

Y \

microscope

coverslip — slide

Figure 3.3: Sample chamber construction used in typicatex@nts.

If longer lifetime chambers are desired or if non-agueous. @ganic solvents) samples are
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to be used, then the chamber seals should be constructetaaf gtue (Norland) or epoxy (De-
vcon) instead of parafilm. The principle of the constructimthe same, including the necessity
of leaving a gap for facile loading. Control of the chambéckhess can be achieved using com-
merically available spacers (McMaster-Carr). In pragtibese chambers can last several weeks

without visible evaporation. Ultimately, the lifetime dmps on the volatility of the solvent.

3.3 Digital Video Microscopy

The ability to quantitatively track the motion of microresd probe particles is critical to our
work. To do this, we need an optical microscopy system witn mesolution imaging capabil-
ities, and also high-quality image processing algorithmartalyze the recorded image data. In
this section, we describe the methods of digital video nsicopy that were used to obtain and
process the images in this thesis.

Methods of digital video microscopy are by now standard, @etdiled information is read-
ily available in the form of textbooks, methods articlesg avebsites. Much of the descriptions
in this section are sourced from these references. Foilsletaihe microscope’s inner workings,
the textbook on video microscopy by Inband Spring [51] is an excellent source of information.
The best resources for the image processing methods erdptotfés thesis are the methods ar-
ticles by Crocker and Grier [23] and, more recently, by Cevand Hoffman [24]. An excellent
systematic study of static and dynamic errors in partieleking is contained in articles by Savin
and Doyle [91, 92]. Eric Week’s group maintains a websites]that is a valuable resource for
the particle tracking community. In addition to having aailet tutorial on particle tracking, it

is also an aggregator of source code for particle trackin@®in MatLab, and C++. All of the
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IDL routines referenced in this chapter are freely avaddbl download there.

The purpose of this section is not to replicate the matanitie aforementioned articles, but
rather to present a general picture and provide referemcdld specific details. We will focus
instead on highlighting topics that are not addressed irefligting literature and experimental

details are particular to the suite of experiments in thisik

3.3.1 Microscope

In its simplest form, an optical microscope consists of tweitive lenses: an objective lens of
short focal length that images the object and a magnifiefainations as an eyepiece. Most mod-
ern microscopes use infinity-corrected optics, i.e., tHeaitve forms the intermediate image at
infinity (rays are parallel) and another lens to focus thermediate image before the eyepiece.
The advantage of this design is that additional elemends (®larizers, prisms, dichroic flats,
spatial filters, etc.) can be inserted into the optical te@meeded since the light will remain
parallel so long as the elements do not focus the rays.

A bright field microscope image is the consequence of thefarence of direct light from
the light source and transmitted light diffracted by thecémen. This concept was introduced
by Ernst Abbe in 1870 and is illustrated in Figure 3.4. Liglnfi a point source in the form
of spherical wavefronts is collimated by a condenser angerted into plane waves which are
sent into the specimen. Some of this light is diffracted lgiaes of varying index of refraction
in the specimen while some pass through unaltered. Bothitlnaoted and undiffracted light
are collected by the objective and focused in the Back Fdeale?(BFP) of the objective. The
intermediate image is then formed by the interference oligie. Interference is the mechanism

by which contrast is generated in the image of the specimemus Tmage contrast depends
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Figure 3.4: (A) Schematic of image formation in a bright figliccroscope [62]. (B) Bright field
image of a 4um diameter Polystrene (n = 1.6) particle taken with a 20X watenersion NA =
0.7 objective.

on both the variations in index of refraction of the specimed also on the coherence of the
light source. A concrete example of interference-basedyérfarmation process can be found
in a bright field image of a particle. As a consequence of fatence, the intensity profile

of the patrticle is not a circularly symmetric Gaussian, asxigected for an incoherently self-
luminous particle in an aberration-free fluorescence im@agetup, but rather the particle’'s image
is an Airy disk consisting of central bright maximum, sumded by alternating bright and dark
circularly symmetric rings as shown in Figure 3.4B. The sirage the result of interference

between the light diffracted from different regions of tterticle and the undiffracted light.
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The schematic of the simple microscope setup also motitheesoncept of reciprocal and
conjugate planes in microscopy. Two planes are called nec#h planes when points in one
plane are mapped onto the other via a lens and vice versae bethp of Figure 3.4A, the BFP
is the reciprocal plane of the specimen image plane. Anatlagrof looking at the relationship
between reciprocal planes is as a spatial Fourier transfeoninstance, the BFP is the spatial
Fourier transform of the specimen image plane since thetigefocuses the plane waves from
the specimen plane to a point via conversion into spherieakes. By contrast, two planes which
share common focus are called conjugate planes. In Figdife the specimen and intermediate
image planes are conjugate planes, as are the BFP and thedigice plane. Modern micro-
scopes typically contain two sets of conjugate planes, @reagl aperture planes. The images
planes include field diaphragm, specimen plane, internedizgage plane, and retina. The aper-
ture plane consists of the light source, condenser diaphradjective back focal plane, and
pupil. These planes are illustrated in Figure 3.5. Most f@g microscopes, including ours,
contain a removable lens known as a Bertrand lens that casduktaggle between the two con-
jugate planes, permitting the user to observe the back fdaak of the objective. This is useful
for aligning the phase ring for phase-contrast microscamy far doing quick-and-dirty Bragg

scattering measurements of e.g. colloidal crystals in aoatope.
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Figure 3.5: Image beam path (left) and illumination beanhgaght) in Kohler illumination
design [4].
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In order to achieve optimal image quality it is important & gp Kohler illumination in
the microscope’s optical train. Kohler illumination is aigament protocol that ensures every
point in the specimen plane is evenly illuminated with paetdight rays emanating from the
lamp filament, as shown in Figure 3.5. Essentially, this mdke illumination plane reciprocal
to the image plane, eliminating contamination in the forngEnularities from dirty surfaces
which may be present in the aperture planes. For instansescheme has the effect of ensuring
that the lamp filament is not imaged along with the specimenajar problem in the early days
of microscopy. A good step-by-step procedure for achieogler illumination can be found

in [82].

The most important optical parameter of a lensing elemegt @bjective or condenser) is

the numerical aperture (NA) defined as

NA =nsinb, (3.3)

where n is the index of refraction of the medium between theablve or condenser and the
coverslip and is half-cone angle of light captured by the lensing elemEigre 3.6). Common
values of n are n = 1.00 (Air), n = 1.33 (water), and n = 1.5 (imrsim® oil). The system NA
sets both the working distance and the lateral resolutiathebf the lensing element, i.e., the
minimum distance between two diffraction-limited objethsit can be resolved in the image

plane. For transmitted light (bright field) illuminatiorhi$ distance is

r= 1.22)\0/(NA0bj + NAcond)- (3.4)
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For self-luminous objects, as in reflection fluorescencef{aprescence) illumination where
the objective focuses both excitation and emission, thelutsn r is determined solely by the

NA of the objective lens and is

7 =1.22X0/2N Ay (3.5)

Egns. 3.4 and 3.5 are statements of the Rayleigh critericichndlictates that two non-
interfering Airy disks are barely resolvable when the firshimum of one and zeroth-order
peak of the other are separated by a distance r. Higher tesolorresponds to a smaller value
of r and is produced by increasing the NA. Conversely, lowesplution corresponds to a larger
value of r and occurs when the NA is reduced. High-end miajpss contain irises in the
condenser back focal plane which can be used to adjust thengaxA by the modulating the
angled, as shown in Figure 3.6. Reducing the condenser iris hasuleeffect of reducing the
N A..nq and increasing the coherence of the illumination light sitiee light that is collected
then originates from a smaller region of the illuminatingufilent. This reduction of condenser
iris diameter has the effect of increasing image contrasttdincreased diffraction in the image

from the enhanced coherence, but this gain comes at a castef tesolution.

Another important optical microscope imaging parametetrotied by the NA is the depth
of field, d. The depth of field sets the longitudinal resolataf the optical system. The depth
of field is the axial distance from the nearest object plarfedns to the farthest plane that also

appears in focus. Itis given by

Aon . n .
NA2  M-NA”

d =122 (3.6)
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REAR FOCAL PLANE
( ~ BACK APERTURE)
OF OBJECTIVE LENS

SPECIMEN

CONDENSER I[RIS
DIAPHRAGM

Figure 3.6: Numerical apertures and paths of light rays écttndenser and objective lens. The
working numerical aperture of the condenseNid..,,q; = n’ sin#’ and the working numerical
aperture of the objective 87 A,,; = nsinf. NAg,q is proportional tor’, the radius of the
condenser iris opening [51].

wheren and \y are defined as before, and the variables the smallest distance that can be
resolved by a detector placed in the image plane of the ndopmsobjective whose lateral mag-

nification isM .

3.3.2 Bright field vs Fluorescence Microscopy

Most of the images we used in our studies were acquired withbfield or epi-fluorescence

microscopy. There are advantages and disadvantages tarmmthlities. By far the biggest
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drawback of fluorescence is the requirement of a labelingalipe added to the particle or back-
ground. A related drawback of fluorescence is that many ofdinemonly available dyes exhibit
photobleaching over time, requiring the user to monitorldvels of intensity and make adjust-
ments to the microscope or image processing parametendawgly. In practice, however, com-
mercially available particles such as rhodamine-labeled$pheres (Invitrogen) have a fairly
robust fluorescence and do not bleach appreciably over trseof a typical microrheological
measurement of duration 20 minutes. An advantageous feature of fluorescent partisltéeat
they are ideally suited for particle tracking, appearingi@arly circularly symmetric Gaussian
spots against a dark background. Moreover, the point spueation in fluorescence imaging is
independent of particle size, permitting a wider range ofigda sizes to be used. By contrast,
the Airy disk profile of coherent bright field particles is ansiive function of the height of the
particle relative to the image focal plane, as shown in g7, requiring a careful setting of
tracking parameters. In particular, bright field partidietow the image plane acquire a “donut”
shaped intensity profile which is problematic for centmogdialgorithms. Note, the shallower
depth of field required in bright field tracking is not entirelisadvantageous. In two-point mi-
crorheology measurements, for instance, bright field psraimore precise determination of

interparticle separations.

3.3.3 Particle Tracking

The first step in particle tracking is to obtain optimal imag# the particles themselves. In
practice, this entails setting up the microscope in KohHlemination and adjusting camera set-
tings (gain, offset, shutter time) to ensure maximal sigoaloise ratios. For a monochrome

8-bit CCD camera, such as our Hitachi KP-M1 NTSC camera, ritéans adjusting the gain
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Figure 3.7: Bright field image of seven/m diameter silica spheres held using holographic
optical tweezers from pm below to 5um above the image focal plane [28].

and offset to get the full linear dynamic range. When thisdition is satisfied, a histogram
of pixel intensities should spass 40 - 200 in intensity values. Ideally, every particle should
have an unsaturated (Gaussian) intensity profile, a stromgquisite for sub-pixel positional
accuracy. Oversaturation leads to a clipped, “flat-top&msity profile for which sub-pixel accu-
racy on the centroid is compromised. Under optimal illurtiova conditions, the IDL routines,
when properly used, are capable of locating the center of@ated 1.Qum particle to within

~ 10nm.

Previously, the images in our lab were recorded to an S-Vid8otape deck (Sanyo GVR-
S950) and subsequently digitized via a framegrabber candrf3.G-3) onto hard disk. More
recently, circa 2005, we have upgraded to a custom imagereapystem (Advanced Digital
Vision, Natick, MA) that digitizes directly onto a RAID5 hadisk array. This eliminates the
electronic noise from the video tape-to-drive read-wrigasfer step.

After the images are acquired, image processing is dona@ftlsing routines written in
IDL (Interactive Data Language, ITTVIS Inc.). The proce$sracking particles can be broken
down into three main stages, as shown in the workflow diagrafigure 3.8. The first stage,

collectively termed pretracking, involves starting froratack of sequential images and filtering
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the images to eliminate noise and unwanted features sottisatdadily possible to accurately
locate the particle centers in these images. The second, dtagking, involves linking the

features found in the pretracked images to identify eackigamuniquely in each successive
frame; we thus obtain a trajectory for each particle. Finalie last stage, broadly termed post-
tracking, involves the manipulating the information caméal in the trajectories into a form that

can be readily compared with model predictions, e.g., MSDmear viscoelastic moduli.

pretrack track post-track
load image
stack link features
from sequential
»-| frames into
trajectories; best
guess
flat-field images ‘
.
‘ iteratively refine
track parameters
C— compute MSD1,
~— MSD2, g(rt)
—— , 91,
bandpass filter ‘ S(k,b), etc.
-
i drift removal
identify
likely features; ‘
best guess
-
output tracked
data to disk
iteratively
refine feature | —
parameters
-

Figure 3.8: Workflow of image processing and particle tragksteps. Elliptical enclosures
denote optional steps.
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For details on the algorithms used in the image processipssthe reader is referred to
the Weeks group online tutorial [115]. In this tutorial, tteader will find a step-by-step dis-
cussion on particle tracking using IDL along with the roain A thorough discussion of the

considerations involved in setting optimal parametergHerroutines is contained in [24].

3.3.4 Static and Dynamic Errors in Particle tracking

There are two main categories of error in the determinatiopadticle position: static and dy-
namic errors. Static error originates from random errothédetermination of particle postition
and are “static” in the sense that they occur even in an imhga onmobilized particle. These
static random errors are the result of photon countingssiegi and are intrinsic to the imaging
process. Basically, all image processing algorithms deter the position of the particle as the
mean, or center of mass, of a distribution of photons hitthegCCD. Accordingly, the standard

error on the mearxj is subject to statistical fluctuations in photon count nemiN) given by

(3.7)

whereo is the standard deviation of a Gaussian distributionVophotons. Under typical ex-
perimental conditionsy is the apparent radius of the partiecleand N is sufficiently large to
saturate the dynamic range of the CCD. When the latter dond# met and near-optimal image
processing parameters are set, thés the spatial resolution of the setup, roughlsi0th of a

pixel.
The static error results in a random offsgf,in the measured positio®, of the particle:
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z(t) = x(t) + x(1), (3.8)

wherez(t) is the true position of the particle center ap() is a stationary random offset with
mean(x(t)) = 0 and variancex?(t)) = 2. The static error results in an additive offset to the

MSD [66, 92] given by

(AT?(1)) = (Az?(T)) + 2% (3.9)

The error is most apparent at short lag times in highly visaoedia for which the diffusive
particle displacement in one timestep is comparable to thasnrement spatial resolutier~
1/10th of a pixel. On a log-log plot of the MSD, it manifestsaasapparent subdiffusion at early
times even in a purely viscous Newtonian fluid, such as a méxtd glycerol and water. The
apparent subdiffusion spoofs a short time elastic respohagacteristic of the MSD expected
for entangled polymeric solutions for lag times shortemtlize relaxation time, as described
by the Maxwell model. In practice, the static error can betrsbed off the measured MSD
((AT2(7))) to yield the true MSD (Axz?(7))). Figure 3.9 shows the effect of the static error in
the MSD of a particle in an 80 % glycerol in water mixture befand after th@s? has been
subtracted off, recovering the expected linear dependence Note the false plateau from
the noise floor at short lag times in the uncorrected MSD. lrega using a higher illumination
intensity will reduce the static error, but this approactlignately limited by detector saturation

and the tradeoff for minimization of dynamic error.
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Figure 3.9: Mean square displacement vs. lag time fot & 2 um particle diffusing in 80 wt
% glycerol in water mixture withy = .070 Pa s. Open circles are the raw MSD. Solid circles are
the MSD with static erro2e? subtracted off.
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Dynamic error stems from the “smearing” of the particle im#uat results if a particle moves
significantly during the time interval, during which the CCD camera’s electronic shutter is
open and collecting photons. The position acquired at tirtleis contains the history of the
successive positions occupied by the particle during the intervallt — o,t]. The particle’s
measured positiorg(t, o), can be mathematically described as a convolution of thcjegs

true positionx(t), with a blur kernel, H (¢), accounting for the finite shutter time, via

Z(t,o) = (H x z)( /H €)d¢, (3.10)

whereH (t) is defined by

% 0<t<o
H(t) = (3.11)

0 elsewhere

with the result that

(t,0) = - /OU a(t — £)de. (3.12)

The smearing affects centroiding that the image procesdgmyithm uses to determine the
position of the particle’s center. The net effect of the dyiwerror is to systematically cause
the apparent displacement of the tracked particle to belsntaln the actual displacement.
This effect, in turn, results in a measured mean squareagisplent Az (7)) with downward
curvature at short lag time. Savin and Doyle [91,92] have carried out a detailed analysihe
dynamic error on the MSD and obtained a general formulayeefrom Eq. 3.12, which yields

an expression for the dynamic error-biased MSD:
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(AT (1,0)) = % /O (AT + ) + (AP(r — ) — 2AL2 ()]0 — E)de.  (3.13)
where (z2(r,0)) is the measured dynamic error-biased MSDz?(7)) is the true unbiased
MSD, ando is the shutter time. In theory, any functional form desergpithe MSD can be
plugged into Eq. 3.13 and a functional form for the dynamimebiased MSD can be ob-
tained. This is the basic procedure that we use for our MSB daChapter 6 (detailed in the
Appendix). Here we demonstrate its use on experimentalfdata relatively simple system -
particle diffusion in a Newtonian fluid. In the absence otistand dynamic errors, the mea-
sured ensemble-averaged MSD will be described by the fumaitiform: (Az2(7)) = 2D7
whereD = k,T'/(6mna) is the self-diffusion coefficient with temperatufg viscosityn, and
particle radiusa. However, in the presence of static and dynamic errors, tbasored MSD

becomes:

(AT?(1,0)) = 2D(T — 0/3) + 2¢2. (3.14)

where the first term on the right hand side was derived from3ELL. In the data of Figure 3.10,

we have subtracted off the static error, and only the congligeremaining dynamic error.

The dynamic error results in a downward curvature qualightiresembling superdiffusion
in a log-log plot of the MSD, typically most apparent at shiag times, as shown in Figure
3.10 where the open circles are data fqerh diameter particles in water with = 1/30s. We

have plotted the lag time rescaled M$Dx?(7))/27 as a function ofr, in order to highlight
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this downward curvature. In the absence of dynamic errer,ddita should be a flat line with
y-interceptD. The solid line is a fit to Eq. 3.14 from which we extrddt= 0.512 ym?/s as
expected for a Jum diameter particle diffusing at T = 298 K with = 1mPas. Once D is
extracted, the dynamic error can be completely removed 8ing@ Do /3 to the MSD data, and

the expected flat line is recovered, as the solid circlesgurei 3.10 attest.

1.0 ' '

<AX2(T)>
27
[um?/s]

0.1 I L

0.01 0.10 1.00 10.00
T [s]

Figure 3.10: Scaled mean square displacement as a fundtiag cime for a 1um particle
diffusing in water. Open circles are the msd obtained wite= 1/30 s on the CCD camera.
Solid line is a fit to Eq. 3.14 witlr = 1/30 s yielding D = 0.512um? /s as expected for a im
diameter particle diffusing at T = 298 K with = 1 mPa s. Solid circles are the msd corrected
for dynamic error as outlined in the text.

This procedure can be generalized to arbitrary functiooah$ of the MSD:f (7, x) where
x includes all model parameters. Firgt;r, X) is convolved with instrumental resolution to yield
f(r,x,0). Thenf(r,x,0) is fitted to the dynamic error-biased experimental data toaek,
the parameters for the unbiased MSD. Note that the derivatigf (7, x, o) does not incur the

cost of introducing a new parameter; the valueraé known. The dynamic error for each lag

time §(7) can then be estimated a6r) = |f(7,X) — f(7,X,0)|. Onced(r) is obtained, the
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dynamic error corrected MSBAz?(7)) = (AZ%(r,0)) + §(7) can be obtained. An example
of this procedure can be found in the Appendix, wherein westted the MSD data of Chapter

6 for dynamic errors.

3.3.5 Influence of boundaries

The no-slip boundary condition of the fluid’s velocity field the boundaries of the particle and
the walls of the sample chamber can affect microrheologysmmements. In the simplest case
of an isolated sphere of radius, in a fluid of viscosity,ng, at a distance}, from a planar wall,

Faxen’s Law [43] gives the drag coefficiehts

¢= . (3.15)

Here the bare drag coefficierirnga, is modified near the wall by higher order terms in
powers ofa/h. Eq. 3.15 predicts that the effective viscosifyis increased by the presence
of the wall. To leading orden = no(1 + 1—96%). It is tempting to simply “double” Eq. 3.15 to
calculate the drag for a sphere between two walls, as in edlypample chamber (Figure 3.11C).
However, doing would underestimate the drag coefficienf. [43

It is relatively straightforward to account for wall effecin one-point passive microrheol-
ogy measurements since the particle size and distance gkiplane from the walls are both
known. For example, this knowledge permits a determinatibn from the GSER using the
wall-effect modified viscosity of Eq. 3.15 at no additionakt Additionally, a high NA water
immersion objective can be used to minimize refractive i@ben in aqueous samples, permit-

ting measurements deep into the chamber. Two-point passis®rheology experiments, by
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contrast, present a greater experimental challenge thespoint measurements due to the fact
that interpretation of results requires that the longitaticomponent of the two-point correlation

D,, ~ 1/R, whereR is the particle separation.
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Figure 3.11: (A) Four basic pair motions describediby.. The relative displacements (boxed)
are suppressed to a greater degree from the no-slip fluiddaoyinteraction than the net trans-
lations, for a given amplitude of motion. (B) Plot of the segi®n scaled two-point correlation
R« D,,.(R,T = .083s.) vs. particle separatioR for varying chamber thicknessés The arrows
indicate R = 20 um and R = 73 um corresponding to the distanéeof the two thinnest cham-
ber data sets.The particle radius in all the data seisis1 um. (C) Schematic oD,.. depth
dependence measurement. The image plane is at the cenlter serhple chamber a distance h
from both walls.

Physically, D,.. describes four basic motions illustrated in Figure 3.11¥oRre net trans-
lations in which the two particles move in the same directialong their line of separation.
Two are relative displacements in which the particles moveatd or away from each other,
along their line of separation. In an unbounded medium,etmstions are excited by ther-
mal fluctuations with equal probability, in harmony with tbbservation thaD,,, ~ 1/R. In
a bounded medium, however, the latter motions require ‘&zjug out” or “pulling in” the in-

tervening incompressible fluid. The relative motions aerdfore strongly suppressed by the

no-slip boundary conditions from the walls, whereas thdnagislational motions are affected to
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a lower degree. Thus, the presence of the boundaries bileakddgeneracy” of these motions,
with the consequence thal,.,. will decay faster tharl /R, i.e., D,, ~ 1/R® wherea > 1.0.
Figure 3.11B showsD,..(R, 7 = .083s) plotted as a function of separation R for two-point
data taken from the middle of the chamber for varying thigses h, as illustrated in Figure
3.11C. The image plane of the microscope was at a distarfoem the walls, exactly at the
middle of the chamber with total thickne2s. The data clearly show a depth dependence in the
scaling behavior oD,... In Figure 3.11B, the thickest chambers (in which> R) were nearly
flat over the entire range @t whereas the thinner chambers (in whick: R) exhibit an initially
flat RD,, at low R that begins to roll off whef® ~ h. This demonstrates that hydrodynamic
interactions with the boundaries suppresses relativdadisments along the line of separation
of two particles, resulting iD,., ~ 1/R* wherea > 1 for separations larger than the distance
to the nearest boundary. Qualitatively similar conclusiarere reached in experiments utilizing
blinking optical tweezers to carefully study the depen@enicparticle pair diffusivity as a func-
tion of distance from the wall [33]. Thus, the range of usduih two-point measurements is
practically limited by the thickness of the chamber and thidor must be carefully considered

in experimental design and data analysis.

One- and two- particle optical trap-based active microldomeasurements are also sub-
ject to the same depth considerations as passive measusentdowever, they present even
more stringent experimental requirements, since the naeldidh light gradient forces neces-
sitates trapping to within{ 10um) of the coverslip, and thus precludes the use of all but the

highest NA oil-immersion objectives.
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3.3.6  MSD Inversion procedures

Passive thermal microrheology relies on the generalize#eStEinstein relation (GSER), de-
tailed in Chapter 2, to relate the probe particle MSD to thedr viscoelastic shear modulus
of the material. Briefly, the GSER yields the shear moduluteims of Laplace transformed

gquantities as

~ kT
G(s) = —A=20am) AT()) (3.16)
and in terms of comparable Fourier transformed quantites a
o kT
Grw) = maiw(Ar?(w))’ 317

whereG(s), G(w) and(A72(s)), (Ar?(w)) are the Laplace and Fourier transformed shear mod-
ulus and MSD, respectively. Note that althou@h(w) is a complex quantity with real and
imaginary components, it does not contain any more infdnnathané(s) since both are de-

rived from the shear relaxation modulGgt).

Image-based passive microrheology schemes typicallyrrébe MSD in terms of time,
i.e., (Ar2(7)). Itis clear from Eqgns. 3.16 and 3.17 that in order to deteentire frequency-
dependent shear modulus frdiyr2(7)) (a procedure we term inversion), the MSD must first be
converted to a frequency-space representation (LaplaEewter). Conventional image-based
methods yield MSD data that are limited4o5 decades of temporal dynamic range, precluding
direct numerical calculation of the transform using eithemerical integration or Fast Fourier

Transform (FFT) algorithms. In both cases, truncation efdhata introduces substantial errors
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into the transformed MSD, particularly near the dynamicgeamxtrema, which can then be

propagated into the moduli.

One early approach attempted to circumvent the problem taygfian empirical functional
form to either(Ar2(7)) or (A#2(s)), and then using the empirical functional form with fitted
parameters in place of the experimental MSD to compute drestorm analytically [70]. The
weakness of this approach is that it requires the choice afrlitrary functional form that can
potentially distort the data by, for instance, smoothingsubtle features of the data. More recent
approaches have instead determiriéad?(w)) from (Ar?(7)) algebraically using local power
law approximations [68]. The first step is to expais-?(7)) locally around the frequency of

interestw, using a power law and retaining the leading term:

(Ar2(7)> ~ (Ar2(1/w)>(wt)°‘, (3.18)

where(Ar?(1/w)) is the magnitude ofAr?(7)) atT = 1/w and

or) = LSO | (3.19)
is the power law exponent describing the logarithmic sldpgo-?(7)) atT = 1/w. In practice,
the slope is obtained by fitting the logarithm(d2(7)) in a local neighborhood of eaeh Note
that Eq. 3.18 is an identity if the MSD is an exact power lae, {Ar?(7)) ~ 7@, Thus Eq.
3.18 is a good approximation for near power law functionainf® of the MSD. For thermally-
driven spheresqe must lie between zero and one, corresponding to a particleedded in a

Newtonian fluid and Hookean solid, respectively. Substitubf Eq. 3.18 into the evaluation of
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the unilateral Fourier transform

r2(w)) = = r2(tNe“Tdr ~ (Ar3(1/w OOWTae_i“’TT .
(Ar2(w) /0<A (e dr ~ (A <1/>>/0< Je wTdr (3.20)

leads to

(Ar?(w)) = (iw) YA (1/w))T[1 4 a(1/w)] exp|[—ima(l/w)/2], (3.22)

whereT is the gamma functior;(z) = [ 7%~ 'e~"dr. Substitution of Eq. 3.21 into Eq. 3.17

yields

B kT
-~ ma(Ar2(1/w))T[1 + a(l/w)]

G*(w) explimra(l/w)/2], (3.22)

for the complex shear modulus. The elasti)(and loss ") moduli are

G (w) = G(w) cos[ra(l/w)/2]
, (3.23)

G"(w) = G(w) sin[ra(l/w)/2]
where

B kpT
- ma(Ar2(1/w)T[1 + o(1/w)]’

G(w) (3.24)

Egns. 3.23 provide physical intuition into the relationvibe¢n the moduli in terms of the
power law behavior of Ar?(7)). For the case of a Newtonian fluid, = 1, and theG*(w) is
purely G”. Conversely for the limit of a Hookean solid, = 0 and G*(w) is purelyG’. Note

that Eqns. 3.23 and 3.24 yield an exact valued@dfw) whenever the MSD is an exact power
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law, i.e.,(Ar?(7)) ~ 7@ and provide an excellent approximation for slowly varyirgver laws.

However, when the MSD contains regions of high curvaturandke case of the MSD for a
harmonically bound particle in a viscous fluid whewer?(7)) = r¢[1 — exp(—7/79)], EQns.

3.23 and 3.24 can be in error by 15% atw = 1/79. Another limitation is that the weaker of
the two moduli always contains larger error. To remedy thsetions, Crocker has derived
empirically modified versions of Eqns. 3.23 and 3.24 whiatlude second order logarithmic
time derivatives of the MSD [29]. This modification helps ttter account for curvature, gives
a better estimate of the moduli in curved regions of the data, improves the results for the
weaker component of the modulus. The scheme works best Wi#hst 7-10 points per decade;
however, it is sensitive to long wavelength ripples in theadd he modified equations that are

used for extracting the moduli are

G (w) = G@){1/[1 + B'(@)]} cos |5 — §'(w)a’(w) (3 — 1) (3.25)

G (@) = GWH{1/[L +B'w)]}sin | =32 — B/(w)[1 - o' (@))(5 1)

where

B kgT
— ma{Ar2(1/w))T[1 + a(1/w)][1 + B(w)/2]

G(w) (3.26)

The second-order logarithmic time derivative of the MSDeésated by3(w), while o/ (w)

andp’(w) denote the local first- and second- order logarithmic déviea of G(w), i.e.,a/ (w) =

dl;gf;’) andfg’(w) = dfl(lf;ig‘;). Crocker tested the accuracy of these equations usingatiaal

data of the form
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G*(w) = (iw)?® + (iw)?, (3.27)

which broadly captures the power law crossover behavioowmtered in many soft materials.
Slopes of one and zero capture viscous fluids and elastissoéispectively. The sum of the two
components captures the crossover between the two extiente |IMaterials that are neither
strongly elastic nor predominantly viscous will lie in thede region of the complex modulus.
The exponenta andb were varied from 0 to 1 in steps of 0.05 and the frequency rahgsen
for the test ranged from0=° rad/s to 10° rad/s. Figure 3.12 shows the error surface computed
by taking the difference between the exact value given by3E2y and the approximation given
by Egns. 3.25 and 3.26. The error is hormalized by the larfsedwo moduli at that frequency.
The maximum error in each modulus is less than 4 % over theemMnetiuency range for the
family of curves represented by Eq. 3.27. By contrast, timeesarror surface procedure using

Egns. 3.23 and 3.24 yields a maximum error of 40 % over the s@rametric range.
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Figure 3.12: Surface plot of the maximum error over the eritequency range of the (A) elastic
and (B) viscous moduli obtained from data simulated usingE#j7. The x and y axes denote
the difference between the values calculated using Eqr&b &hd 3.26. The accuracy of the
estimated elastic and loss moduli lies within 4 % of the exattie over the entire parameter
space. The error is normalized by the larger of the two mo&ubm Ref. [29].
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3.4 Active Microrheology

The common version of active microrheology involves usingptical tweezer to grab a particle
and to exert local stresses on the surrounding materialdardo probe rheological response.
For the active micrheology measurements of Chapter 5, we aisescillating optical tweezer
instrument built around an inverted microscope that wasifieadfrom an existing line trapping
setup detailed in [110]. Electronic detection was addedhéosetup based in large part on the

scheme developed by the Ou-Yang group [48, 108].

3.4.1 Optical Tweezers

The use of a highly focused beam of light to trap micron-sdaéectric particles was pioneered
by Ashkin and coworkers at Bell Labs in the 70's and 80’s [7,8ince then, optical tweezers
have become a standard tool for measuring and manipulatingisoNewton scale forces on
micron scale objects. It has enabled many notable dis@s/émi biological systems [73]. It
has also been employed in various forms for measurementlimidad interactions across a
wide range of soft materials [25, 45, 72]. In the soft mattanmunity, recent innovations using
holographic methods to generate multiple steerable traps provided a powerful suite of tools
for probing soft materials [28, 42]. A detailed review of thiénciples and technical aspects of
optical trapping can be found in Ref. [77].

An optical trap is formed by tightly focusing a laser beamhwain objective lens of high
NA. When such a beam is focused near a dielectric partickxeitts two kinds of optical forces
on the particle: (1) a scattering force which pushes thagbauin the direction of propagation

of the light beam and (2) a gradient force which pulls theipirtin the direction of the light
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intensity gradient. The scattering force arises from a netmentum transfer to the particle
from the photons impinging on it. The gradient force arigesnfthe fact that a dipole in an
inhomogeneous electric field experiences a force in thectitire of the field gradient. In an
optical trap the laser effectively induces fluctuating diysowithin the particle which interact
with the field (also oscillating at some frequency). In orfiterthe particle to be stably trapped
by the beam in three dimensions, it is necessary for the agi@ponent of the gradient force
to exceed the axial component of the scattering force. Thiglition requires a very steep
gradient produced by sharply focusing a laser beam to aadiftm-limited spot using a high-
NA objective. Once trapped, the particle can be held in mrsiand manipulated by moving
the focus of the laser beam. When the particle experienagt dlisplacements from the focus
of the light beam, it experiences a restoring force whicthpgtiack toward the focus (Figure
3.13). For small displacementag), the trap acts as a Hookean spring whose characteristic

stiffness §) is proportional to the light intensity/¢), i.e., Fi,.p, = —kAx, wherek o< V1.

Theoretical descriptions df;,..;, are usually given in two limiting regimes: (1) the ray optics
regime wherein the radius of the particle is much greatar tha wavelength of the light, > A,
and (2) the Rayleigh scattering regime wheg A. In the first case, the net force on the particle
can be calculated by summing the momentum change expedidryctine particle as it refracts
each incident ray. When the index of the particle is highantthe medium, the net force on
the patrticle is always in the direction of increasing intgngradient, as shown in Figure 3.13.
The opposite situation in which the particle has loweahan the medium results in the particle
being pushed away from the intensity gradient maximum. Apmete mathematical description

of the resulting force can be found in Ref. [103]. For caset{® particle can be approximated
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as a point-like dielectric sphere and the total force exidotethe trap is readily separated into a

scattering forceK..;) and gradient forceK,,q4) given by [8]

E2 1287%a5% /m?2 —1 2 nga?’ m2—1
Firap = Focart + Fyraa = ~= =557 | S ) 0~ =5 iz

) (VE)?, (3.28)
whereny is the index of the medium and is the ratio of the index of the particle to the index

of the medium ¢ /n).

In practice, Eq. 3.28 is useful to get a qualitative senséndov the trapping force depends
on various physical parameters, but it is not exact. Thisues @ the fact that most particles
of interest fall into an intermediate size range (0.1 Al@here neither regime is strictly valid.
Nonetheless, Eq. 3.28 reveals the balance of microscopanders that control the optical
trap’s stiffness. It is clear from Eqg. 3.13 that in order tokea stronger trap, one should
maximize the NA, the laser power, and index mismatch betwieeparticle and medium. Trap-
ping as close to the laser as possible is also importantubedangitudinal spherical aberration

increases with depth into the sample, distorting the beafil@and degrading trap stability.

From Figure 3.13 we see that if the particle moves out of ttarbfocus, restoring forces
act to pull it back to the focus. Consequently, if the trapdarmmed back and forth within the
image plane, then the particle should follow the focus mteglithe scanning is sufficiently slow.
However, if the trap moves too fast then the particle will betable follow the trap and will
escape from the trap. The criteria for the speed is given bytlance of the the Stokes drag
force Fisiones = 6mnav, wheren is the viscosity of the medium, arfg,.,,. This is the conceptual

basis behind using an oscillating optical trap for activenmiheology; in the simplest case of
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a particle in a viscous fluid, the velocity with which the jpelg escapes from the trap yields a
measurement of the viscosity, providednda are known. A natural generalization of this basic
measurement to soft materials having a complex, frequdepgndent viscosity*(w) is to scan
the trap sinusoidally for a range of frequencies and to nreabe displacement and phase of the
particle in response to the trap. The details of this scerfaave been worked out previously in

the active microrheology section of Chapter Two (Sectiat).2.
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Figure 3.13: Ray optics description of the forces on a digtesphere with higher index of
refraction than the medium. The boxes above the spheressegs the light gradient where
white is high intensity and black is low intensity. Two raysrh the light source (represented by
black lines of different thicknesses) are shown. The réfsacof the light by the bead changes
the momentum of the photons equal to the change in direcfiireancident and refracted rays.
By Newton’s third law, the momentum of the bead must changarbgqual amount, exerting a
equal and opposite force on the bead shown by the grey arf@y3.he particle sits below the
laser focus and the net force pushes the particle towardthesf (B) The particle sits in front
of the focus and the net force pulls the particle up towarddhas. In (C) and (D) the patrticle is
off-axis relative to the beam intensity maximum and the atgrhl force brings the particle back
toward the beam intensity maximum. In all cases, the neefoliring the particle back to the
stable equilibrium point at the focus of the beam.

A
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Figure 3.14: Schematic of oscillating optical tweezer geflihe trapping laser (Nd:YLR; =
1054 nm) and detection laser (HeNg; = 633 nm) are coupled into a single-mode optical
fiber. The emitted, collimated light from the fiber contampibhoth wavelengths is split by a
dichroic mirror (D1) which transmits\; and reflects\;. The trapping component is passed
through a barrier filter (BF1) which further attenuates before going into a galvanometer-
driven scanning mirror set to sinusoidally oscillate atfrencyw by a function generator. The
trapping component is directed by a fixed mirror (M1) into daritical dichroic mirror (D2)
which co-linearly recombines the oscillating trappingelaand stationary detection laser. The
two components are steered into a Zeiss inverted microswithea fixed mirror (M2) situated
between a telescope lens pair (L1-L2) which expands the leamwerfill the back aperture
of the microscope objective (OBJ). The back aperture isugatg to the galvo-mirror such
that small deflections of the mirror results in translatidnttee trapping laser’s focus in the
image plane. The beam is collected by the condenser (CON®}rantrapping component
is attenuated by passing through a barrier filter (BF2) antrdic mirror (D3). The detected
component consists of the “shadow” of the moving trappetgailluminated by the stationary
detection beam. The detected component is projected withllection lens (L3) onto a split
photodiode. The A-B voltage components of the split PD agdari€ a lock-in amplifier which
extracts the components of the differential voltage sigimflequencyw via the reference signal
from the function generator. The DC analog outputs of th&-lacare contain the displacement
and phase shift of the signaD(w), 6(w)) which is digitized using a PC running Labview.
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The experimental setup for our active microrheology mesmments reported in Chapter
Five is shown in Figure 3.14. To create the trap, we used theoQifput of an Nd:YLF laser
(Quantronix) at its fundamental frequensy= 1054 nm. We also used a HeNe laser (Hughes)
that is collinear with the IR trapping beam to provide a stary reference for detecting the
displacement of the patrticle in the lab frame. Both laseescaupled into a single mode fiber
before entering the active optical train of the setup. Therfderves two important purposes: (1)
to act as a spatial filter to clean up the beam and, more imutyté2) to ensure that the trapping

beam is dAI'EMy mode having a Gaussian intensity profile that is optimal fable trapping.

After entering the active optical train, the; = 633 nm detection component and the
A+ = 1054nm trapping component are separated so that the trapping baarbec scanned
by the galvanometer-driven mirror independent of the detedoeam. To accomplish this, a
dichroic mirror (D1) reflecting 633 nm and transmitting 1Q%# is placed into the beam path.
A subsequent barrier filter (BF1) further attenuates anglvasé 633 nm remaining in the trap-
ping beam'’s optical path. The galvo-mirror is conjugaten® back focal plane of the objective,
with the result that small deflections of the mirror (drivéa & function generator) translates the
trap’s focus in the image plane. In our measurements, wedilpidrive the mirror to displace
the trap with a sinusoidal amplitudé = 0.25um. Usinga = 2um PS particles, this induces

AJa = 0.25um/2.0pm = 12.5% maximum strain at the particle level.

After the scanning mirror, the trapping beam is steered (fdit¢combine with the detection
beam at dichroic mirror (D2). The combined beam is then edpdmsing a telescope pair (L1-
L2) to overfill the BFP of the objective and steered into therfscence port of an inverted

microscope (Zeiss Axiovert 135). The power of the trappael is typically~ 40mW going
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into the objective while the detection beam is typicalty10u1W. The trapping is monitored
via the microscope’s bright field (transmitted) light imagisetup (not shown). Once trapped,
the forward scattered light from the detection laser on thppted particle forms a geometrical
“shadow” which is collimated by the condenser. Note thatdar 2a = 4um particles, the
forward scattered light is very shadow-like owing to the that we are in the ray-optics regime
(a > 633nm). Whereas for smaller particles & 633nm), the forward scattered image is more
closely resembles interference fringes rather than aleirahadow. To eliminate crosstalk, the
IR trapping component is removed via a barrier filter (BF2)l alichroic mirror (D3) before
being projected onto a split photodiode (Hamamatsu S42D4g. split photodiode is centered
so that when the trapped patrticle is not oscillating, théags difference between the two halves
|A-B| is minimized. The voltages from the two halves of the splé #ren fed into a Lock-
in amplifier (SR530, Stanford Research Systems) which estréhe displacemenb(w) and
phased(w) at frequencyw by homodyning the A-B difference voltage signal with thedtion
generator reference, followed by low-pass filtering. Thgouof the lock-in is digitized onto a

PC running Labview.
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Chapter 4

Rheological Microscopy: Bulk and

Local Properties from Microrheology

4.1 Introduction

The microscopic propagation of force in mechanically inlbgeneous materials is central to
many issues in condensed-matter research, including &r@as in granular and jamming ma-
terials, dynamical heterogeneity in glassy systems, amti¢havior of nanocomposite materials.
In a different vein, cell biologists have discovered thangnaspects of a cells gene expression,
locomotion, differentiation, and apoptosis are goverrielbast in part by the stress and elas-
ticity of its surroundings, through a coupling of intracidr stress and biochemical signaling
pathways. Experimental methods for directly studying wscopic stress and viscoelasticity,

however, have been slow to appear.

The past decade has seen the development of microrheoldggh wses tracer motion to
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assess rheology in much smaller samples and over a broamgr ohfrequencies than conven-
tional rheometry. Typically, the frequency-dependentasimeodulus of a material is derived by
tracking the driven [34, 49] or thermal [40, 69, 70, 93, 12Gjtimns of embedded micron-sized
tracers. To date, microrheology has been applied to biopatysolutions [40, 69, 70, 93], con-
centrated emulsions [70], gels [19, 55], and the cytos&rletf living cells [34,57]. Tracers

naturally probe viscoelasticity on length scales comgar&itheir size. In materials that are
heterogeneous on these scales, tracer motion dependshothbdbcal and the bulk rheology
in a complex way [59, 61]. This fact has largely precludedube and interpretability of mi-

crorheology in mechanically heterogeneous materials @vsach microscopic information is

most needed.

In this chapter, we introduce and demonstrate an analyfiaadework to separately de-
termine the local and the bulk mechanical properties frororonheology data. We call the
method “rheological microscopy.” Elaborations of this eg@ath provide routes to understand-
ing nonuniform force propagation in a variety of heterogergemedia. We demonstrate rheo-
logical microscopy on a model system of polystyrene sphiaraa aqueous semidilute solution
of nonadsorbing, monodisperse semiflexible polydd@®NA. Previous experiments have char-
acterized this model semidilute polymer solution, deteing correlation length and, ergo, the
microstructure of the depletion layer surrounding the estdied particles, as a function of poly-
mer concentration [111,112]. Measurements were perfoahadariety of sphere diameters and
polymer concentrations, permitting us to vary the bulk sotuviscoelasticity and the depletion

layer thickness relative to the particle size. Experimeat®al the extent of the rheologically
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distinct layer, which was approximately 2 times the cotietalength in the semi-dilute poly-
mer solution, significantly different from the predictionf mean-field theory. The computed
bulk rheology is in excellent agreement with independerasneements made using two-point

microrheology [26].

4.2 Background

4.2.1 Depletion

In a binary suspension of small and large hard-spheresairiteg via steric interactions alone,
there exists a spherical shell around the large particléis thickness=~ a,, the radius of the
smaller particle, from which the smaller particles are edel [see Figure 4.1A]. This “deple-
tion layer” exists because the particles are rigid and thallsmparticles cannot approach the
larger particles within a distaneg, without interpenetration or deformation. This fact has-dra
matic consequences for phase behavior of the suspensianin®mediate consequence is that
when two larger particles are close enough such that theietlen layers overlap, then there
will be an imbalance of forces on the particles between thexlapping and non-overlapping
regions and this leads to a net force that pushes them togeshshown in Figure 4.1B. The
depletion force range is typically short ranged,2a;. There are two equivalent descriptions
of the depletion force. One is in terms of osmotic pressufgalances, as we have presented
above. The other is in terms of entropy: when the two largegshare driven together the loss
in their configurational entropy is offset by the gain in eply for the small spheres, resulting in
a net gain of entropy for the entire system. The gain in egtodpghe small spheres is due to the

gain in their free volume and is thus proportional to the agrolume of the depletion layers
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surrounding the large spheres.

<A).\? b‘ (B)‘ o .V
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Figure 4.1: Depletion in a binary suspension of hard sphéfddsolated large sphere of radius
ay, is bombarded isotropically by small spheres of radiysA spherical shell of thickness;
surrounds the large sphere (shaded region) correspormmgépletion layer where the centers
of small spheres cannot penetrate due to hard sphere it@sac (B) Two large spheres ap-
proach such that their excluded volume regions overlaglingato an imbalance of collisions
with small spheres between the overlapping and non-oygrigpregions. A net attraction be-
tween the larger spheres ensues.

A dilute polymer solution can be modeled as an ideal gas af Bpheres with a mean size
given by the radius of gyration of the individual polymerlspi?,. The case of attractive in-
teractions between two spheres in a dilute polymer suspemgs first considered theoretically
by Asakura and Oosawa (AO) [6]. Unlike hard spheres, polgnersolution can interpene-
trate, significantly reducing any effects due to liquid stawe [25]. The experimental situation
is depicted in Figure 4.2A. The centers of the polymer “sphtare excluded from a region
of thicknessR, surrounding the colloidal particles. When the depletioreta surrounding the
two spheres overlap, the free volume accessible to the molymereases, leading to a gain in
the system entropy. This produces an attractive interadt@iween the two spheres. When the
polymer concentration is increased above the critical lapeconcentrationg*, entanglement
effects become important. In this semidilute regime thepelr is characterized by a correla-
tion length¢ rather than byR,. The length scal€ may be thought of as the average spatial

distance between two neighboring entanglement points. cohelation length decreases with
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increasing concentration abowg scaling ag ~ ¢~'/2. Equivalently,¢ describes the mean size
of a “blob” [30] within which a section of the polymer chainlldbehaves as an independent caoill,
as illustrated in the inset of Figure 4.2B. If the polymeHaid interaction is repulsive, a “deple-
tion layer” with a thickness proportional fo[see Figure 4.2B] develops around each sphere. A
suite of experiments utilizing line-scanned optical tweyszo quantititatively measure the ensu-
ing attractive potential between colloidal spheres immeia suspensions of-DNA provided
strong evidence that depletion occurs well into the semtiglitegime and exhibits scaling con-
sistent with the AO model using blobs of radiss in place of R, [110-112]. Thus, depletion

interactions are a robust phenomena in colloidal mixtures.
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Figure 4.2: Polymer depletion in the (A) dilute and (B) satitite regimes [111]. The shaded
region around the particles corresponds to the depletigr End the overlap region corresponds
to the free volume accessible to the polymer.

In our experiments, we use the particle and depletion lagea enodel system to test the
predictions of the electrostatic analogy of Levine and lngkg discussed in Section 2.3.8. In-
deed, the particle and depletion layer closely resembleadihtion of the shell model depicted

in Figures 2.11 and 4.6C. Our system is ideal for testinghbery because both particle size and
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depletion layer thickness can be varied independently. ddmetion layer thickness is set by
the concentration of DNA . For this situation we expect thatdne-point MSD (MSD1) will be
larger than the two-point MSD (MSD?2), as is indeed obsermealir raw MSD data for a typical
concentration used in our experiments [see Figure 4.3]s $hggests that the MSD1 is more
sensitive to the local shell than the MSD2, which probes tilk DNA solution. As a control,

we also plot the MSD1 and MSD2 for a particle in water and firsdexpected, MSD1 = MSD2.
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Figure 4.3: MSD1 (lines) and MSD2 (circles) fa#¢ = 0.97um tracer particles in two samples:

one with no DNA (top) and one withpy 4 = 397 pg/ml (bottom). MSD1 = MSD2 as expected
for the no DNA control sample whereas MSDMSD?2 for thecpy 4 = 397 pg/ml sample.

4.3 Sample Preparation

Our experiments were carried out on solutions of bactesiggshambda DNA X-DNA; New
England Biolabs Inc.) whose single-stranded ends werd fitlavith standard techniques [90],
suspended in a 10 mM TE buffer (10 mM tris-HCI, 0.1 mM EDTA, pH®8). A-DNA has a

persistence length of 50 nm, a contour length of 16rband a radius of gyration @2, ~ 500nm
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[111]. We worked with four semi-dilute DNA concentration®) (104, 190, 397ug/ml). The
polymer correlation length has been measured t859¢190, 130, and90 nm, respectively, for
these concentrations [111]. The critical overlap conegiatn c¢*, is roughly30 pg/ml [81]. Thus
all our samples, except the lowest concentrati®ig/ml) are well in the semidilute regime

(c>c).

We used fluorescent beads as tracers (Molecular ProbesaRimeiRed-X labeled carboxylate-
modified polystyrene). Beads of three different diametérs £ 2.0,0.97,0.46 pm) were
dispersed in the DNA solutions at a volume fractign~ 10~%. D,O was used for density
matching. We imaged the samples either with bright field ascopy 2a = 0.97um) or epi-
fluorescence microscopgd = 0.46, 2.0m), with the temperature controlled toZ8. We used
a 63X water-immersion objective (NA = 1.2) for the sampleshwd.46 and 0.97:m tracers
and a 20X (NA = 0.7) multi-immersion objective for the sampligh 2.0 um tracer, adjusting
the particle volume fraction so there were about 100 traiceesich image. For the two largest
particle sizes and two highest polymer concentrations timeher of usable tracers fell to 50
due to the formation of depletion-induced aggregates, lmviere screened automatically by our
analysis software. To minimize wall effects, we focusedgidy 60 xm into the 120um thick
sealed sample chambers. To avoid skewing the dynamics, egea’smsec shutter setting on
our NTSC video camera. After recording on an S-VHS video déok images were digitized
and analyzed off-line, using methods described in Chapt&r8 hour of video was recorded
for each sample yielding 107 particle positions with 20 nm spatial resolution and 1/66osel

temporal resolution.
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4.4 Results and Discussion

In Figure 4.4 we exhibit the MSD1 and MSD2 for the three ddfdrparticle sizes at the highest
DNA concentration (397:9/ml, ¢ ~ 13¢*). We have rescaled both sets of curvesagr in
order to highlight the deviations from diffusion whereirtMSD ~ 7, resulting in a horizontal
line in this rescaled plot. Both MSDs exhibit functional dapgencies om which are typical of
weakly entangled polymer solutions descibed by a Maxwgliétmodel (described in Chapter
2). At early lag times, the subdiffusive behavier ¢*, o < 1) of the MSDs reflect an elastic
response arising from topological entanglements in thgrpel network. At longer times, the
MSDs approach diffusive behavior and become haorizontlieaing the relaxation of entangle-
ment stresses via a reptation mechanism [30, 32, 87]. Thebowa data (MSD2) collapse onto
a single curve, separated from the one-point data. Thispea®d since the MSD2 probes the

longer length scale bulk properties of the solution, indeleat of particle size.

The collapse enabled us to globally determine a master M$iD& dor each concentration
by averaging the individual MSD2 obtained from differenttfde sizes. This effectively extends
the temporal range of the smallest particles’ trajectorgsch was limited as a result of their
more rapid diffusion out of the focal plane. The one-pointaddiffer primarily because the
particle to depletion cavity size ratio differs for the difént particle sizes. Agreement between
MSD2 and MSDL1 is best for the largest particle size where dltie of particle-plus-depletion
layer diameter to particle diameter is closest to unity. @reagreement reflects an effective

“slip” between the particles and the bulk DNA network, duelépletion.

We determined the frequency-dependent complex shear m@sff(w), G5(w)) using the
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Figure 4.4: MSD1 (lines) and MSD2 (symbols) rescaled:p9r for fixed DNA concentration
(397 pg/ml, ¢ ~ 13 ¢*) and varying particle size [see text]. Solid, dashed, arieHdsh lines are
MSD1 for2a = 0.46,0.97, and2.0 um respectively. Circles, triangles, and stars are MSD2 for

2a = 0.46,0.97, and2.0 um respectively. Notice, the MSD2 data collapse onto a singister
curve under the rescaling whereas the MSD1 data do not.

procedure described in Section 3.3.6. Figure 4.5A showsethdts for three particle sizes de-
rived from MSD1 and the master MSD2 for a DNA concentratiorB87 ug/ml (¢ ~ 13¢*).
Figure 4.5B shows the moduli for the next lower concentrat®0 pg/ml (¢ =~ 6 ¢*). In both
cases the one-point measurements produce a family of ciimatare clearly displaced from one
another, and from the two-point results. From this obsamatve infer that the>; underesti-

mates the bulk moduli to a greater degree as particle sizeases.

Levine and Lubensky have computed both the effective oné-twn- particle viscoelastic
response functions for a minimal model of depletion laybpimogeneity —tracers surrounded by
shells whose rheological properties differ from the bulk][6I'he major parameters of the model
are defined in Fig. 4.6C, including the particle-cavity casipe radiush = a + A, the local

cavity shear modulué:;, ., and the bulk shear modulds; ;.. Using the electrostatic analogy
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Figure 4.5: (A) MSD1 and MSD2-derived bulk shear modlii(w), G5(w) for cpya = 397
ug/ml, and different particle sizesG” (open circles),G’ (filled circles) from master MSD2.

Dotted, dash-dot, solid lines arg] for 2a = 2.0,0.97,0.46 pm particles respectively. The
upper group of lines ar&” while the lower group ar&’. (B) G (w), G5(w) for cpna = 190

wg/ml.

elaborated in section 2.3.8, they demonstrated that twic[gacorrelations foiR > a, b reflect
predominantly the bulk responses whereas the single [gartieasurement is sensitive to both
bulk and local rheologies. They provide a formula relatimgane- and two- point microrheology

derived shear moduli; (w), G5(w)). For a shell model assuming incompressibility, they find

Gi(w)  AB%K? — 9B°kK’ + 108%kK’ — 9BK"? — 158K + 2kK"

G (w) 2[K" — 2B35K/] (4.1)
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Figure 4.6: (A)G5(w) obtained from shell model using the collapse of thedata forcpna =
397 ug/ml. Circles are the measurédl, G” (open, filled). Lines are different particle diameters
2.0, 0.97, 0.46um (dotted, dash-dot, solid). Lines were computed from Eq. ukibg an
effective shell thicknesa = 194 nm and solvent viscosity; = 0.94 mPa s assumir@;, .(w) =
—iwno. The lines agree with the measured bulk moduli from two- fdif}(w) (open, filled
circles). (B) Results forpy4 = 190 pg/ml obtained withA = 336 nm. (C) Shell model of
Levine and Lubensky [61].

Here s = a/b, k = G}, 1(w)/G},.(w), ¥ = k — 1, ands” = 3 + 2x. Rheological
microscopy uses this relation along with our one- and twantpmeasurements to probe the

depletion- induced mechanical heterogeneity.

If the shell model is valid, then th&(w) generated from thé&; (w) using Eq. 4.1 for
different particle diameters should collapse onto eackrditr a value of the shell thicknegs
that corresponds to the effective depletion layer thickdesa given concentration, independent

of particle size. Our scheme for rheological microscopyhis paper aims to find an effective
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layer thicknessA from the ‘blind" collapse of the syntheti¢’;(w) determined for different
tracer diameters. We expect theto be on the order of the correlation lengttof the DNA
solutions based on a simple model of the viscosity depemrdeith distance from a planar wall
for non-adsorbing flexible polymers [61] (see Figure 4.18)tthermore, we expect the curves
to collapse onto the bulk modulus;, ;. (w), inferred here from the measuréd;(w). This
approach thus affords a simultaneous determination ofgghgas extent of the depletion cavity

and the bulk rheological response from one-point micrddgtoal data.

We determined the collapse of the data for our three parsizes by treating\ as a free
parameter in the minimization of the standard deviationhef $yntheticG;(w). We assume
that the local modulus is predominantly that of a viscousiflmith the viscosity of the solvent,
namelyGj, (w) = —iwno with ny = 0.94 mPa s. In Figure 4.6A we exhibit the results of the
minimization forcpy 4 = 397 ug/mlwherec = 13 ¢*. We found the collapse to be nearly perfect
with A = 194 nm. Significantly, the crossover 6f andG”, which reflects a typical relaxation
time for the network, is captured in the measured and onetperivedG, but undetected in the
raw G, data. As a further check of our method, we apply it to the rexelr concentrationp y 4
=190ug/ml wherec = 6 ¢*. The results, exhibited in Figure 4.6B, again show a goodexgent
between all particle sizes and two-point results. The faat the syntheticz, agrees with the
G} (w) determined from two-point microrheology verifies the apgliility of the shell model

for a polymer network with depletion induced inhomogeiesiti

Lastly, we relate the\ to our previously measuregifor all our concentrations. In Figure
4.7A we show a plot ofA vs £. Our values forA are closer t@ ¢ (dotted line in Figure 4.7A)

suggesting that the “rheological” cavity size for the dégdieparticles are of order, albeit a bit
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Figure 4.7: (A) Effective layer thickness determined from optimal collapse of tli§ data for
all particle sizes vs measured correlation lengtbash-dot line:A =1.33¢. Dotted Line:A =
2¢ . (B) Variation of solution viscosity (dotted line) and DNAmrcentration (dashed line) with
dimensionless distance from the spheredes 190 pg/ml, 2a = 0.97 pum. The width at half
maximum of the viscosity profile is used to define an effectiseity thicknessA for the shell
model (solid line).

larger. A naive mean field treatment (see the width-at-helk of the local viscosity in Figure
4.7B) leads taA = 1.33 &, which is drawn with the dash-dot line. We see that our vafaes\
are closer t@ ¢ as shown with the dotted line. This overestimation of fheould arise from
hydrodynamic penetration of the bead-induced solvent flie the outer shell, as illustrated
in Figure 4.8. ThusA is a rheological slip length corresponding to the distartcetach the
velocity field of the fluid hydrodynamically “locks in” to theetwork rather than the correlation
length characterizing the static thickness of the depletiyer. This higher-order effect is not

captured in the shell model.

4.5 Conclusion

We have demonstrated that concurrent one- and two- poinbrhieological measurements and
theory can be used to determine the local microstructurdefdepletion induced layers sur-

rounding a tracer particle embedded in a semi-dilute potysnution. Our results furthermore
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Figure 4.8: Cartoon illustrating difference between rbgaal slip lengthA and correlation
length¢ in the depletion layer of a moving particle.

show that conventional one-point microrheological measwants can be applied to extract the
bulk viscoelastic modulus, a quantity which has heretof@men unambiguously accessible only
to two-point measurements in such systems. Equivaletithneé has knowledge of the cavity
size, the local rheological properties of the layers candsiided in an analogous way. Refine-
ments, both theoretical and experimental, of the basi®ldgical microscopy’ method we have

presented here should enable its extension to the study ief complex media.
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Chapter 5

Fluctuations and Rheology in Active

Bacterial Suspensions

Support Bacteria. They're the only culture

some people have.

Steven Wright

5.1 Introduction

Active complex fluid systems such as living cells [15, 57], assessbdif motors and filaments
[41], flocks of birds [105], and vibrated granular media [@fer from conventional equilib-
rium media in that some of their components consume andpdigsienergy, thereby creating
a state that is far from equilibrium. An understanding of eloattive systems, even at a phe-
nomenological level, provides insight about fundamental-aquilibrium statistical physics and,

potentially, about the inner workings of biological systerBacterial baths [12,96,106,118] are
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attractive model active systems because energy input isgeneous, because individual bacte-
ria can be directly observed, and because critical paramsteh as density, activity, and swim-
ming behavior can be brought under experimental controtlidEaexperiments have reported
on a rich variety of non-equilibrium phenomena in this sgstdass including anomalous dif-
fusion [118] and pattern formation [79, 106], while thesri® self-propelled organisms readily

predict ordered phases such as “flocks” [104],

In this chapter, we describe microrheological measuresngfithe fluctuations and mechan-
ical responses of an active bacterial suspension. In irtygrevious work [96, 106, 118], we
concurrently measure the one- and two-point correlatiorctfons of embedded passive tracer
particles to assess material fluctuations over a wide raflgagth scales. We found that, similar
to equilibrium systems such as theDNA of Chapter 2, one-point measurements are sensitive
to the local environment of the probe while two-point measwents automatically average over
system inhomogeneities and provide an unambiguous meaftire parameters characterizing
the bulk rheological properties of the bacterial bath. Véaerprevious tracer-based measure-
ments on bacterial baths have exclusively utilized onetpapproaches, our results raise new
questions about the applicability of one-point measurdmas a probe of bacterial dynamics.
We independently measure the effective viscosity of thédoidt bath by using optical tweezer-
based active microrheology as described in Chapter 3. Wedftliat even at a low volume
fraction (p ~ 1072) of bacteria, fluctuations in the medium are substantialgater than they
are in the absence of bacteria while rheological responsadsanged, implying a breakdown
of the fluctuation-dissipation theorem (FDT). This confirfmat the bacterial bath is a far-from-

equilibrium system.
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We found that he mean-square displacements (MSDs) of tpacticles as a function of lag
time At, depend strongly on swimming behavior. For wild-type baatthat both run and tum-
ble, the MSD extracted from two-point correlations scaleesdiffusively asA¢*/2 over the time
scale of our experiments, and the stress power specfs(in) [57] as a function of frequency,
w, scales accordingly as/+/w. For constitutively tumbling bacteria, by contrast, botteeand
two-point MSDs exhibited a crossover between super-diffuand diffusive regimes that could
be completely characterized usingiagle time-scale;r, and theA(w) was well-described by a

functional form a constant plus a Lorentzian with a kneedergy~ 1/7.

5.2 Background

Many species of bacteria, suchB&scoli are rodlike, single-celled organisms that actively nav-
igate their environment by swimming [12]. A common mechanfer motility is based on the
rotation of bacterial flagella propelled by the action ofargtmotors embedded in the cell wall.
When all the motors rotate counterclockwise, the flageltadliup and propel a bacterium for-
ward in the direction of its long axis. This is called a “runWhen some of the flagella rotate
clockwise, the flagella unbundle and the cell body spins amtiles”. These motions are illus-
trated in Figure 5.1. Tumbles randomize the bacterium’srening direction. By “tasting” its
local environment and using the chemical signal to tunedlative frequencies of runs and tum-
bles, a bacterium is able to direct its average motion towsamebasing spatial nutrient gradients,
a process known as chemotaxis. On average, a bacteriumasifoblabout 0.1 s before it “runs”
in a different (random) direction; the typical run time isoab1-10 s. Therefore, at long time, a

bacterium appears to perform a sort of random walk. With &&}size of a bacteriunt, of the
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order of microns, a typical speed, of the order of 1Qum/s, and a density comparable to that

of water (100Qkg/m?3), the Reynolds number (Regw//n) is much less than 1.

n tumble

Figure 5.1: lllustration of running and tumbling motionshafcterium likeE. coli.

Early experimental studies utilizing light-scatteringhaiques demonstrated that the veloc-
ity distribution of motile microorganisms, in general, datteria, in particular, is not Maxwellian
[13], indicating that their motion is far more complex thdmat of Brownian particles [78]. A
key question is: what is the large-scale flow behavior of &ctibn of swimming microor-
ganisms? Experiments on dense suspensions in a varietifasedi geometries including soap
films [95,118], sessile drops [106], and semi-solid agassates [121] point to a consensus that
collective motion in the form of jets and swirls is a genedatiure of active swimmer suspensions
at sufficiently high densities. Thus, active swimmer susfmers, despite being at low Reynolds
number, are a breeding ground for “exotic” fluid phenomenaentmmmonly associated with
systems at higher Reynolds number. This richness is duege fzart to the fact that they are in-

ternally driven to a non-equilibrium regime wherein thealstamiliar balance of energy scales
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is disrupted. Moreover, even a minimal model of interacemgmmers must reckon with non-
linear couplings of orientational order, concentratiortiliations, and long-range hydrodynamic
interactions. One class of models, termed active hydradicsa[44,94], describes the collective
motion of active suspensions by constructing hydrodynagications augmented with dynami-
cal equations accounting for orientational and concentratouplings. This phenomenological
framework leads to many interesting predictions for thealv@r of active suspensions, includ-
ing instabilities [94], giant density fluctuations [17, 7&hd novel rheological effects [44]. One
of the most dramatic predictions of Ref. [44] is viscosithancement or reduction by activity.
This effect can be qualitatively and simply understood bysidering the detailed nature of the

force that an active swimmer exerts on the fluid.

Swimmers that propel themselves through a fluid can be byada$sified as either “push-
ers,” which propel themselves using rear-mounted flagidéathe bacteriunk. coli in a “run”
state, or “pullers,” like the alga€hlamydamonas reinhardtii which use front-mounted flagella
the way a human swimmer uses her/his arms. These two typegafisms exert different
forces on the surrounding fluid. Pushers force fluid backrmktiiem with their propellers and
also push it forward with their bodies as they move, so thafithid is brought in at the sides and
moves away at the front and back. Pullers pull fluid towar@srthvith their flagella and drag it
along with them from behind, so that fluid flows in at the frontldack and away at the sides.
These two types of swimmers, along with the fluid flows theyitexare illustrated in Figure

5.2.

This flow pattern can affect the large-scale flow of a fluid jted the suspension contains

enough of these swimmers and provided the swimmers areheaqued. Imagine that the fluid
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Figure 5.2: Types of swimmers and the fluid flow fields (blue@was) they generate in an im-
posed shear flow. Pusher type swimmers likeoli (top) enhance the imposed shear flow. Puller
type swimmers likeChlamydamonas (bottom) fight back against the imposed shear flow.
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above the rod is moving to the right, while the fluid below isving to the left. This is the

prototypical situation in shear flow, either imposed exadiynor generated by collective motion
of nearby swimmers. According to standard theory, in this,florod (even a passive, non-living
rod) tends to align at a fixed angle, tilted to the right of ioadt In this orientation, a pusher rod
increases the flow velocities above and below, enhancinghkar flow. This enhancement
further increases the orientation of the swimmers, thudyimg instability with respect to shear
perturbations of the homogeneous isotropic state. A ptdiduces the imposed flow velocities
since the flows it produces by swimming tend to cancel outrtipoised shear flow. Viscosity is a

measure of the ease with which the fluid moves in such a sheanflesponse to applied shear

119



forces. So a rod-shaped pusher ought to decrease overdliiftgiosity, whereas a rod-shaped
puller ought to decrease it.

These dramatic effects on viscosity have been recentlyrobdeexperimentally for high
concentrationsg > .05) of pushers [95] and pullers [84]. While interesting anckvaht to the
work described in this thesis on the whole, the work desdribethis chapter instead focuses
on the effects of non-thermal noise in diluig & .01) swimmer suspensions with the aim of
advancing a detailed understanding of fluctuations in swemsuspensions. One of the pri-
mary motivations of our work is to advance the developmerat pfienomenological framework
for fluctuating active hydrodynamics [58]. This theoreltiaark extends earlier active hydro-
dynamic theories [44] by accounting for previously uncdaeséd effects of noise terms and
concentration fluctuations in the equations governing §manhics of the bacterial bath. One
notable prediction of the theory of Ref. [58] is the scalifidhe power spectrum\ (w) ~ ¢/v/w
observed in microrheology measurements on wild-type biacéises only when concentration
fluctuations are considered. Active hydrodynamic theotiieg do not include concentration
fluctuations [44] do not predict the observed scaling. Aaptiotable result is that the superdif-
fusive MSDs observed for both wild-type and tumbler baetdsaths arises naturally from the
fluctuating active hydrodynamic theory. Existing theoéactive media [94] predict long-time

tails and anomalous corrections to diffusion but not suffesson.

5.3 Materials and Sample Preparation

We used two strains d&. coli, a rod-shaped bacterium with dimensidhs 1 um, in our stud-

ies: RP437, the “wild-type”, which runs and tumbles [80] &RE1616, the “tumbler”, which
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predominantly tumbles [3]. Overnight cultures in statignphase were diluted 1/300 in Luria
Broth (Difco) and grown aerobically &5 °C under 220 RPM shaking for 6 hrs. Subsequently,
they were centrifuged for 10 minutes at 5000 RPM and reswigukto the desired concentration
in a buffer comprised of 10 mM ¥HPQ,, 0.1 mM EDTA, and 0.2 wt % glucose (pH = 8.2),
which was added to maintain vigorous bacterial motility enthe anaerobic conditions of our
sample chambers [1]. We determined the concentratida obli in our experiments by direct
counting under a microscope. The bacterial suspension ikasdi1/200 in a pluronic surfac-
tant F127 (BASF). The pluronic has the useful property that $olid at room temperature and
liquid at~ 4° C. This enabled us to immobilze the bacteria, facilitatiogrting. The diluted
bacterial suspension was mixed into the pluronic in a freaz¢° C, loaded into a microscope
slide, and then counted under a microscope at room temperdiypically, 5 randomly selected
subvolumes of the sample were counted and averaged for ea¢h determine the concentra-

tion.

We added a small amounp{ = 10~%) of fluorescently labeled polystyrene spheres (Duke
Scientific) of diameteR2a = 2 — 10 pm to the bacterial suspension, and to density match them,
we added 15 wt % sucrose to the solution. To prevent bactadhaksion, we prepared the
chambers from BSA coated glass slides and coverslips. Wk peafilm spacers to bring the
thickness of the chambers 40 240 um. Images were recorded via quasi-2D image slices from
the middle of the 3D chamber. Samples were loaded into thenlbbaand sealed with optical

glue just prior to each run.
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5.4 Results and Discussion

We quantified the fluctuations in the bacterial bath by comguMSDs from the motions
of embedded micron-sized tracers [26]. The one-point digghent (MSD1) is defined by
(AT2(AL)) = (Ary(t, At)Ar,(t, At)), where Ar,(t, At) = r.(t + At) — r.(t) is the par-
ticle displacement in the-direction during lag timeAt¢. Thetwo-point displacement (MSD2)
is defined agAr?(At))s = (2R/a) D, (R, At), whereD,..(R, At) is the longitudinal compo-
nent of D;; (R, At) = <Arf1)(t, At)Arj(.Z) (t, At)), which measures correlations of two distinct
particles(1,2) with an initial separatiofR. Over the time scale of our experimeni,lies in
the focus plane of our microscope and its magnitide: |R| is greater than that of individual
particles’ displacements. The main advantage of two-pwiictorheology is that it provides a
more reliable measure of length scale dependent fluctisatiomedia where the length scale of
heterogeneities and tracer boundary conditions areotori known [26,57]. Indeed, since
D;;(R, At) is ensemble averaged over tracer pairs Vith> a, it reflects the dynamics of the
medium on larger length scales than the tracer size, parmiuantitative measurements even
in the presence of heterogeneities. In general, MSD2 wiliaed/SD1 if heterogeneities in
the medium have length scales smaller than the tracer dizerwdse they will differ in both

magnitude and functional form.

Typical MSD data are presented in Figure 5.3, which showsttieaone-point MSD in both
bacterial strains displays a crossover from superdifeusishavior at short lag timegXr?); ~
At*,1 < a < 1.5) to diffusive behavior ¢ = 1) at long lag times. The diffusivity of identical
particles in water is constant and about an order of magaitoer than the bacterial bath at

long times. These observations are similar to that of R&B]in which one-point measurements
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Figure 5.3: MSD for particles in bacterial baths. 1-pt (opgmbols) and 2-pt (closed symbols)
mean square displacements divided by the lag tifyte for 2a = 2um particles in bath of wild-

type RP437 (triangles) and tumbler RP1616 (circles) becttr = .003. MSD1 for 2a = 2zm
particles in water (squares) is a flat line in this rescaled. pl

were made of bacterial baths in soap films. However, our teiotpdata for the wild-type,

by contrast, exhibit a nearly power-law superdiffusigih(?)s ~ At!-5) over 2.5 decades of
observation time. We also verified that..(R,At) ~ 1/R [see Figure 5.4] for both wild-
type and tumbler baths, indicating that the bacterial bdthugh an active medium, can be
treated on the separation scéles a coarse-grained continuum whose properties can bedgorobe
with two-point microrheology [26,57]. Theoretical pretiims [58] and simulations [107] have
corroborated that equal-time correlation functions of aetiva swimmer suspension’s velocity
field on intermediate length scales should decay as 1/Raat Ebove an orientational decay
length, £y, accounting for orientational alignment of the rod-shapedteria. & is further
discussed in Section 5.5. That MSDs exhibit superdiffusgsuggestive of but not a proof

of the breakdown of the FDT, which requires an independerasorement of the rheological
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response function.
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Figure 5.4: Rescaled two-point correlatidtD,, (R, At = .067 sec) vs R for wild-type (tri-
angles) and tumbler (circles) bacterial baths both at ameld@raction¢ = .003. The data
demonstrate®,.. ~ 1/R for R > 10 um, and implies orientational decay lendih < 10 um.
Response measurements were performed using the osgilbgtiital tweezer setup of Figure
3.14 in Section 3.4.1. Briefly, an optical trap with typicalg stiffness of 1 x 102 pN/nm was
formed by focusing an- 100 mW laser beamX = 1054 nm) through a 1.3 NA oil immersion
objective (Zeiss). The trapping beam position was sinalyicanned using a galvanometer-
drvien mirror at frequencies from 0.5 to 500 Hz2A = 4.0 um PS sphere was trapped6 um
from the coverslip. The position of the tracer was detectadguforward scattered light from
a co-linearly aligned HeNe laser beam focused onto a sptitqufiode (Hamamatsu S4204).
The photodiode signal was fed into a lock-in amplifier (StadfResearch Systems 530) along
with the reference from the driving function generator signThe displacement and phase of

the trapped patrticle output by the lock-in amplifier wereged into a PC running LabView

(National Instruments).
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The equation of motion for a particle of radiusrapped in an oscillating harmonic potential
may be written astrnai = —k [z — Acos(wt)], wheren is the viscosity of the mediunk

is the stiffness of the trap, and is the driving amplitude. Its steady state solution yiels t

. . . —1/2
normalized displacement of the sphere in the ti&p:) = {1 + [6man(w)w/k? } . Fora
more detailed discussion see Section 3.4.1.
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Figure 5.5: (A) Normalized Displacement of a 4:h diameter sphere in the optical trap as a
function of driving frequency for wild-type (triangles)bler (circles), and water (squares).
Line is a fit tod(w) (see text). (B) Frequency dependent viscosity derived fosaillating trap
measurements for 4,0m diameter sphere in water (solid squares), the tumbleid(sotles),
and the wild-type (solid triangles) bath at= .003. Viscosities),(w) derived from the aver-

aged two-point measurements using the generalized SEikstein relation are plotted for the
tumbler (open circles), the wild-type (open triangles)] arbead in water (open squares).

Figure 5.5A shows the raw normalized displacement data particle in water and in active
bacterial baths of tumblers and wild-types. The solid Ima fit tod(w) with = 0.001 Pa- s,
trap stiffnessc = 8 x 10~* pN/nm, and radius, = 2.0 xm. The experimental data agree with
each other and with the theoretical curve. From them, weaekthe viscosity;(w) shown
in Figure 5.5B. Clearly, the presence of actively swimmiragteria at volume fraction0—3
does not modify the viscosity of the medium significantlynfrehat of water,n(w) = ny =

0.001 Pa- s.
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While recent theories of pusher type active swimmers pteudicel reduction in the viscos-
ity [44], our experiments are well below the concentratibwhich these effects are observable.
Instead, our results are consistent with the Einstein résuhard spheresy = no(1 + ggzb),
namely, a negligible modification in the viscosity for~ 10~3. Moreover, assuming for the
moment the generalized Stokes-Einstein relation, we caaaxhe (FDT consistent) response
from the collapsed two-point displacement (MSD2) [5if}{w) = kpT/3nw?a(Ar?(w))s, as
shown in Figure 5.5. The difference betwegv) andn.(w) explicitly indicates a strong vi-
olation of FDT. We can moreover conclude that the supersiidfu in the MSDs is due purely
to noise and not a novel viscosity enhancement as predigt&®eb [44] and qualitatively con-
sidered in Section 5.2. The apparent importance of noise avdilute densities of swimmers

motivated Lau and Lubensky [58] to augment the equationstdfeahydrodynamics with noise

terms, discussed in detail in Section 5.5.

Next, to access the heterogeneity of the bacterial bath, xplored the length-scale de-
pendence of fluctuations by systematically varying the sizthe tracers at a fixed bacterial
concentration. Figure 5.6A shows MSDs obtained for sphiarése tumbler bath. All samples
and all tracer sizes exhibit a crossover from superdiffusam diffusion on similar timescales,
with an enhanced diffusion coefficie® = vDr, wherey = 4.3 and Dy = kgT/(6mnoa)
is the equilibrium coefficient. Moreover, MSD1 and MSD2 aearly equal in magnitude and
functional form, suggesting that the activity in the tunmltdath is homogeneous. Rescaling time
by the crossover time and the MSDs by Dy At collapses all the data onto a master curve:
[(AT2(At)1, (AT2(At))2]/(2DrAt) = v+ (1 —v)(1 — %) /x, wherez = At/7. Figure
5.6B shows the collapsed MSD data along with the master auither = 0.1 s.
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Figure 5.6: (A) Raw 1-pt (open symbols) and 2-pt (closed sys)MSDs for tumblers. Circles,
triangles, and squares are for particle diame2ers= 2.0,5.0, and10.0 um, respectively. (B)
Collapsed 1-pt (open symbols) and radius collapsed average (closed symbols) MSDs for
the tumblers ap = .003. The solid line is the master curvest (1 —v)(1—e™)/x (See text).

The functional form of the master curve can be derived froengganeralized Langevin equa-
tion (GLE) in the overdamped limit with thermal and activeismaoterms:ffC>O dt’'¢(t—t")v(t') =
fr(t) + f4(t). Here((t — t') is the probe resistancgy(t) is the thermal noise, anfty (¢) is the
active noise due to the bacteria. The noise terms have tlwviof properties:(fr(t)) = 0,
(Fa(®)) = 0, (fr(t)fa(t)) = 0, (fr(t) fr(t)) = 2D7o(t — 1), (fa(t)fa(t)) = 22 =01/
wherer is a time scale characterizing bacterial activity [96, 118]follows that the MSD1

derived from the GLE has the following form [86, 118]:

(AT2(At))1 = 2D At 4 2D 47 [At)T — 1 + exp(—At/7T)], (5.1)

which yields the tumbler master curve upon rescaling batessof the equation by/2Dr At
and substituting the variables= At/7 andy = (D4 + Dr)/Dr. We can draw two important
conclusions from the fact that the one and two-point MSDgtiertumblers can be collapsed

by such a functional form. The first is that the activity in thenbler bath is well described by
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a single timescaler. The second is that the activity in the tumbler bath is homegas since
the MSD2, averaged over large length scalésfn < R < 100 um), is trivially related to the

MSD1 via affine extrapolation (MSD1&R/a) x D,,), as in equilibrium homogeneous media.
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Figure 5.7: (A) Raw 1-pt (open symbols) and 2-pt (closed 9318)MSDs for wild-type bacteria.
(B) Radius rescaled 1-pt(open symbols) and 2-pt (closedeishMSDs for the wild-types at
¢ = .003. Circles, triangles, and squares are for particlmeiars2a = 2.0,5.0, and10.0 um,
respectively.

The MSD behavior for the wild-type bacteria are strikinglffatent: the MSD1 exhibits a
crossover dependent on tracer size, while all of the MSD2béxsuperdiffusion with nearly
the same exponent af5 over 2.5 decades of time, independent of the tracer sizéyasnsin
Figure 5.7A. Fits of the wild-type MSD1 to Eq. 5.1 were poarggesting that the activity in
the wild-type bath cannot be described in terms of a sindkxagion timer. We found that
the trivial rescalinga(Ar2(At))s /At collapsed the respective MSD2 data [see Figure 5.7B].
Under this rescaling, however, (and other simple scalimgtional forms as well) the wild-type
MSD1 failed to collapse, signaling the presence of hetareige on the tracer length scale. The
superdiffusive exponent of the MSD1 approaches that of weepoint data ¢ ~ 1.5) asa

increases. This suggests that one-point measurementstramsically ambiguous: the activity

inferred depends on the tracer size and boundary conditié)$7]. Two-point measurements,
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in contrast, provide a more robust characterization of dmgdwavelength fluctuations of the

medium than one-point measurements.

We employ a recently developed phenomenological theateframework for an active
medium to interpret the experimental MSD data [57, 58]. Thetérial activity gives rise to
non-thermal stress fluctuations whose power spectfiim) can unambiguously be extracted

from two-point microrheology data via

AW
672 R (@)

DM«(R,(U) (52)

The power spectrum (w) can be interpreted as a frequency-dependent effectivestettuype
which quantifies the departure from equilibrium. For thereystems in equilibrium, the FDT
relates the noise power spectrum to the viscosity of the mnediesulting inA(w) = Ay where
Ap = 2kgT Re[n*(w)].

Our results are exhibited in Figure 5.8A. For water, we fingt ttihe power spectrum is
flat. This is expected since particles diffusing in water iarequilibrium and viscosity is a
constant, i.e.p(w) = no implying Ap = 2nokgT. This can be explicitly shown as well since
the MSD2 is linear imAt, implying D,..(R, At) ~ At for purely diffusive systems, resulting in
a frequency dependence after Fourier transformation diyen,.. (R, w) ~ w~2. The frequency
dependence thus cancels out in Eq. 5.2. For the tumbleflsM®D1 and MSD2 have functional
forms described by Eq. 5.1, resulting ildw) that is a constant plus a Lorentzian, flat at low
frequencies with a knee at higher frequencies. The Lorantis the Fourier transform of the
exponential term in Eq. 5.1 and originates from the expoakytcorrelated active noise term

in the GLE. For wild-types, the MSD2 At!® implying thatA(w) also exhibits power-law
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behavior,A(w) ~ w™3, over 2.5 decades. In both tumbler and wild-type casés) > Ar

, With a greater deviation occuring at low frequencies. Har wild-type, the prefactor,
of A(w) = Ap/+/w rises linearly with the bacterial concentration, as showirigure 5.8B.
In the following section, we discuss the microscopic oisgaf the scaling observed fak(w)
using a fluctuating active hydrodynamic theory developashiterstand microrheology in active

swimmer suspensions.
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Figure 5.8: (A) The spectrum\ (w) of active stress fluctuations obtained from two-point mi-
crorheology and active response measurements. The gmagh the wild-types, circles are the
tumblers (bothp = .003), squares are watep (= 0). (B) Linear dependence of the prefactor
Ay in A(w) on the volume fractiom of the wild-type bacteriaAr = 2nokpT.
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5.5 Theory of Fluctuating Active Hydrodynamics

An active medium comprised of rod-like swimming organisras be modeled by constructing
dynamical equations which couple concentration and atemtal dynamics of the swimmers
with a Navier-Stokes equation for the velocity field,of the suspension. Essentially, the equa-
tions stem from the key assumption that the active bacteatl can be modeled via a two-fluid
description wherein one component is a thermal fluid (sd)wehile the other is an active fluid
comprised of force dipoles with nematic order (bacteriafldifionally, we include noise terms
in the equations and consider density fluctuations of théebia¢c which were not considered in
Ref. [44]. These additional terms were necessary to acdounur observations in the tumbler
and wild-type bacterial bath measurements. The readdieiged to Ref. [58] for the full details
of how the equations are built up from “first-principles”. dnder to give the reader a bird’s-
eye view of the structure of the theory, we bedmmedias res, by writing down the linearized

governing equations used to account for our observations:

Momentum of fluid pow; = Vv — Oip  + 0j0); + 0507 (5.3)
~—— ~— N ,
viscous pressure  4hermal active
stress stress stress

Orientational dynamics 0, Q;; = — Tél (1- fé VHQij + sij (5.4)
~~ ~~

~— ~—
force  relazation correlation random
dipole time length notse
density
Concentration dynamics ~ 9,6c = DV?dc +ac0;0;Qij +V \5.,1_/ (5.5)
N ~—
dif fusion active random

term current

current
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Eg. 5.3 is essentially the linearized Navier-Stokes eqnadiccounting for momentum bal-
ance with two additional noise terms, one due to thermal aedioe to active noise. In principle,
there is another term in Eq. 5.3 that is required to accourthfotorque that a velocity gradient
exerts on the nematic order parameter, as expected fod layystalline systems in the isotropic
phase. However, we have set that term to zero, since it pisealicery strong viscosity renormal-
ization, whereas our results indicate that the viscositthefbacterial bath is indistinguishable
that of water [Figure 5.5]. In the process of tumbling or swimg, the bacteria generates an
active force density 4(x,t) = —V - o which contributes the active stress term in Eq. 5.3. The

active stress tensczr,;‘}, is

oiy = We(x, £)Quj(x, 1), (5.6)

wherec(x,t) is the concentration of the bacteri@,; is a traceless, symmetric force-dipole
density whose dynamics in given by Eq. 5.4, and W is strenfytiiecforce dipole characterizing

the swimmer, positive for pushers and negative for pulleeg [Figure 5.2].

When this form of the active stress tensor is considereds ttléar that Eqns. 5.3-5.5
are coupled, i.e., each equation contains at least one pteamontained in the others. The
form of the active stress term in Eq. 5.6 was first considengdiatwalne and Ramaswamy
[44]. In their active stress term, however, the concemratvas assumed to be constant, i.e.,
c(x,t) = ¢o. In Lau and Lubensky [58], the concentration is decomposga & constant
and a fluctuating parte(x,t) = co + dc(x,t) which leads to a full active stresg?(x,t) =
WepQij(x,t) +Wae(x,t)Qi; (%, t) with the consequence that active stress fluctuations become
(S0 (q,w)dofi(~a, —w) ) /W2 =
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§(Qij(a,w) Qi (—a, —w)) + (dc(q, w)de(—a, —w) )(Qij (a, w) Qi (—aq, —w)) +
(0c(q,w)Qri(—aq, —w) )(Qi;(q,w)dc(—q, —w) ) after Gaussian decoupling. Active processes
enhance stress fluctuations, and assuming long-rang®pgptthe active stress fluctuations
can be expressed d$0;;(q,w)déop(—q, —w)) = Aa(q,w) [6xdji + 61djr — 3 8i;0k] for
both tumblers and wild-types. The power spectrum in Eq. 5.2elated toA 4(¢q,w) by
A(w) = Au(q = 0,w), i.e., in the long wavelength limit. The long-wavelengtmili is
probed by two-point measurements, but not by one-point areasents. For the tumblers, the
power spectrum is nearly Lorentzian with(w) = Ap + W2c3r2(kpT/v)/[1 + (wT)?], where
Ar = 2nokpT is the thermal contribution. The non-thermal term comemfignoring the
concentration fluctuations and considering only ¢be, t) = ¢, contribution toA 4(¢ = 0,w).
While this assumption seems reasonable for tumblers shigedo not move around much, it
seems unreasonable for wild-types. Since the wild-typesamming around, it is conceivable
that their density fluctuates in space and time. Consideraif thec(x,t) = dc(x,t) contri-
bution to A4(¢ = 0,w) leads toA(w) ~ ¢/+/w observed in two-point measurements in the

wild-type bath [Figure 5.8].

Next, we turn to discussion of orientational dynamics ofbheterial governed by Eq. 5.4.
Active swimmers have ho monopole moment because mutuadafswimmer and fluid cancel
by Newton'’s third law. The minimal description of an activeismer is thus a permanent force
dipole. In wild types and tumblers, forces are directedpeetvely, along and perpendicular
to the long-bacterial axes, as illustrated in Figure 5.9usTlin wild-types,Q;; is equal to the
uniaxial nematic order paramet@g whereas in tumblers, itis equal to a biaxial order parameter

5. The equation governing the dynamics(@f; is assumed to be the same as for equilibrium

133



nematics in the isotropic phase [58]. To allow for the patisitof two order parameters Eq. 5.4

becomes

Q5 = -1 (1-&V?) Qf + sij, (5.7)

where A = (U, B) denoting either uniaxial or biaxial quargtir, is the relaxation timeg 4 the

A
ij

correlation length of)!>, ands;; is a spatial-temporal white noise with zero mean. Although
both wild-type and tumbler bacteria obey Eq. 5.7, the dedaibrms ong and Qf; are quite
different [58]. Importantly, interactions among bacteiasor long-range order ix@g but not

in QZ.B;., implying thattp < 7y andép <« &y. This fact is crucial to the explanation for the
difference in the behavior of the MSDs between the tumbler waitd-type bacteria shown in
Figures 5.6 and 5.7. Notably, the wild-type bacterial bathilgts a length scale dependence,
possibly in the form of jets and swirls, that leads to a tratze-dependent MSD1 and to MSD2
# MSD1. For the tumblers, by contrast, MSD2 = MSD1 for all trasizes, implying that
&g < 2 um, the diameter of the smallest tracer in our studies. Thugpliysical picture of the
tumbler bath is that of a fluid homogeneously stirred at ssedles by a random force with a
characteristic relaxation times ~ 0.1 seconds. For the wild-type bath; > 10 seconds since

the MSD2 is superdiffusive up until that time [Figure 5.7Blrthermore, our measurement of

D,, ~ 1/Rfor R > 10 pm in Figure 5.4 constraingg ;y < 10 pm.

Eq. 5.5 is an advection-diffusion equation with an activeeation term and an additional
noise current termd(/) describing concentration dynamics of the bacteria . Ftin lald-types
and tumblers, the concentration of bacteria obeys therahtiequation:0;6c = —V - J with

J; = —D0g;6c — acoﬁjQ{‘j + dJ;, wherecy is the average concentratioh) is the diffusion
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Figure 5.9: Cartoon of wild-type and tumbler bacteria swimgrmotions. For wild-type bacte-
ria, motion is primarily translational, directed alongliimg-axis. Thus the active dipolar stress
it exerts on the medium is described by a uniaxial order parar@g. For tumblers, the motion
is primarily rotational, resulting from flagellar forcedemted perpendicular to its long axis. The
resulting active stress is described by a biaxial orderrpataer;.

constantgJ; is a random current, and the second term stems from the niibeéigm driving of

mass flow [104, 105].

The use of nematic order to model the bacteria, rather thkm pader, as might be expected
for swimmers that move unidirectionally, is somewhat coversial. Both polar [5] and nematic
[44,94] order have been employed in the literature to moelélsopelled organisms. A recent
simulation [89] provides evidence that instabilities aieg in self-propelled rods are consistent
with both polar and nematic fluctuations. Theoretical stadif active gels [64] also suggest the

possibility that there is a region of phase space whereirstesyof active polar particles has a
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preference for nematic rather than polar order. Ultimatabguming incipient polar instead of
nematic order in our model leadster alia, to a power spectrum which scales/®gv) ~ w=3/2,
in clear disagreement with th&(w) ~ w~'/2 observed in our experiments and obtained with

the nematic order in our model.

5.6 Conclusion

Using a combination of passive one- and two-point microldgo and active response mea-
surements, we have observed a number of striking effectiute dacterial baths including: (i)
superdiffusive scaling of the MSDs that depends on swimnbigigavior in a length scale de-
pendent manner, (ii) Active stress power spectiliifw) ~ ¢/+/w for wild-type bacteria and
Lorentzian for tumblers, and (iii) breakdown of the FDT résg from enhanced noise due to
activity rather than viscosity enhancement. Importarftjyand (ii) suggest that two-point mea-
surements are essential to robustly extract the fluctuatiobhacterial baths, surmounting length
scale heterogeneities as in equilibrium systems.

A theoretical framework of fluctuating active hydrodynamimoupling concentration fluc-
tuations and orientational dynamics of liquid crystallgystems with hydrodynamic equations
was developed and used to explain microrheological meamnes in bacterial baths. Although
viscosity renormalization is predicted in our theory aslvasl previous theories, our suspen-
sions were too dilute to observe these effects. Attemptadmease density were hindered by
unvigorous motility due to the anaerobic environment ofsample chamber. Potentially, future
work reiterating these measurements in soap films, whemaig aerobic motility and higher

densities can be achieved, will observe viscosity enhaasoeeffects.

136



Chapter 6

Rheology of Carbon Nanotube

Networks During Gelation

6.1 Introduction

Filamentous networks play a crucial role in many biologiaal materials contexts. In liv-
ing cells, for example, networks of biopolymers facilitswcesses such as cell division and
motility. Understanding the macroscopic mechanical prioge of such networks, even vitro,

is challenging because of a complex interplay between theréé rigidity of constituent fila-
ments and inter-filament interactions such as crosslinkliagdate, the most intensively studied
model systems are semiflexible filament networks, such agtbomprised of F-actin wherein
entropic stretching of individual filaments dominates ratwlinear and non-linear viscoelastic-

ity [38,102]. Rigid rod networks, by contrast, are relajvenexplored and should differ from
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their semiflexible counterparts as a result of enthalpieatéf associated with bending, compres-
sion, and inter-filament bonding. Carbon nanotube netwprksent opportunities to explore

these latter issues. In addition, interest in carbon ndr@ohetworks has grown as a result of
their technological potential in composite materials [B®,74]. These applications often de-
pend on network connectivity, thus corroborating the nee@etter understanding of network

formation in this system class.

In this chapter, we describe work wherein we employ a contioinaf rheological measure-
ments, analytic theory, and computer simulation to inge$é network formation in aqueous
dispersions of single wall carbon nanotubes (SWNTSs). Oreperimental side, an aqueous
dispersion of SWNTSs in surfactant is prepared, and, ovee,tithe SWNTSs crosslink due to
strong localized van der Waals interactions at contact. [44$ the dispersion ages, clusters
of bonded SWNTs form and eventually percolate across th@leamiriving its rheological re-
sponse from that of a Newtonian fluid to a gel. Microrheolagimeasurements were made
on this system at various time points along the sol-gel ttians Observation of time-resolved
‘rigidity percolation’ in this system of fixed SWNT volumeaittion suggests inter-tube bonding
as the dominant contributor to the elasticity. We demotesgaperimentally that the rheology of
SWNTs can be scaled onto a single time-cure superpositiatemeurve, consistent with other

gelling systems [55].

The time-resolved experiments are closely related to themtetry of fully cured SWNT
gels at varying rod volume fractions[47]. The latter work found that the low-frequency elastic
modulus G’) exhibited rigidity percolation above a critical volumadtion ¢* with power law

form, i.e.,G'(¢) ~ [(¢ — ¢*)/#*]*3. In this Chapter we introduce a microscopic model to
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understand this behavior. The model accounts for the nuibieter-tube contacts in a static
randomly oriented rod network as a function of rod volumeticm, length, and diameter; it
is based on the crossing probability of rods in finite volum&s assumption about the relative
contributions to the shear modulus of bonds of varying degyo connectivity permits derivation

of an analytic expression for the scaling of shear modultls wid volume fraction.

Finally, we extend the static model to account for time-hesah sol-gel dynamics. By incor-
porating bonding kinetics into the static model, we pretlietvariation of bonding between rods
as a function of gelation time The new model provides a marked improvement over empirical
power law forms that can be and often are used to describeathe lth contrast to previous sim-
ulations [31,37,116] and rheological measurements [463]0f rigid rod networks, ours is the
first study to directly relate thmeasured elasticity of a rigid rod system to its bond connectiv-
ity. Importantly, the work provides predictions about tlemaectivity of rigid rod networks, and
potentially, a means for tailoring the mechanical, eleafriand thermal properties in materials

comprised of rigid rod networks.

6.2 Experimental Section

6.2.1 Materials

Primary experiments were conducted on dispersions of SWiNdde by the HiIPCO process
(Carbon Nanotechnologies Inc.) at volume fractiba 0.0027. The nanotubes were purified
and suspended in filtered deionized water (Millipore) witNDBS surfactant (Sigma Aldrich)

following the protocol outlined in Ref. [52]. Further ddtadf SWNT processing procedures can
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be found in Ref. [14]. The ratio of SWNT to NaDDBS was 1:10 byigie. We prepared the dis-
persion by mechanical agitation for 6 hrs in a high-freqyeeth sonicator (Cole-Palmer model
08849-00). A small amountg( ~ .0001) of fluorescently labeled carboxylated polystyrene
spheres (Molecular Probes FluoSpheres) of nominal diayige= 0.46,m, was added to the
SWNT-NaDDBS dispersion. The samples were then loaded imfoamber and hermetically

sealed with optical glue (Norland 63) just prior to each run.

6.2.2 Methods

Particle tracking microrheology [18, 69] was employed thofe the rheological evolution of
the network. This method is well suited for measuring visgstic moduli of incipient gels,
since they are generally fragile under shear and their madal often too weak to measure
using conventional rheology. Formation of the SWNT bondvoek was followed by tracking
the displacement of 100 tracer particles in the field of view using digital video ndscopy
[23]. Typically, 1-5 minutes of video data were obtainedrgv& minutes over a 4 hour period
spanning the gelation process. For cure times longer thani@ hthe displacement of the tracers
was comparable to the experimental noise; thus we limiteditita presented herein to 3 hours
or less cure time.

From the tracer trajectories we compute tracer particlemsgare displacement (MSD):
(Ar2(A)) = (Arg(t, At)Ary(t, At)), whereAr, (t, At) = r,(t + At) — r,(t) is the particle
displacement in the:-direction during lag timeA¢. Note, we calculated two-point MSDs as
well [26] and obtained very similar data, but henceforthyomhe point MSD results will be
shown due to its higher statistical resolution at the lohtgstimes. Owing to the difficulty of

imaging through the strongly absorbing SWNT suspensiontamdinimize sample heating, it
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was necessary for us to use a relatively long camera shirtterdf o = 1/60 s. on the video

CCD camera (Hitachi KP-M1) to achieve adequate signaleisenlevels in imaging. This led to
the introduction of dynamic errors in the MSD, as descrilreRéfs. [91,92]. We have followed
the procedure discussed in Ref. [92] to correct MSD data yorathic error. The details of this
procedure can be found in the Appendix. In the MSD resultsftimw, the data exhibited are

dynamic error corrected.

6.2.3 Results and Discussion

As gelation proceeds, both the magnitude and functionah fofrthe MSD changes. In Figure
6.1, we exhibit the particle MSD for different waiting timesiring gelation. For the earliest
cure time (t = 10 min), the MSD is linear over the entire measwent window, corresponding
to a particle diffusing in a Newtonian fluid with viscosityughly three times larger than that of
water. This observation indicates that steric entanglésneetween unbonded SWNTs do not
induce non-Newtonian behavior at this volume fraction. iksetprogresses, the long lag time
behavior of the MSD changes markedly, becoming progrdgsiere sub-diffusive att=1 hr,
and finally exhibiting a nearly flat plateau at t = 3 hr. Thugirtube bonding has progressed to
modify the medium’s rheological response from purely viscto strongly elastic.

To extract the frequency-dependent (ie-gdependent) viscoelastic moduli;* (w), from the
MSD, we analyze the data using the numerical approximatberae detailed in Section 3.3.6
of Chapter 3. The moduli, exhibited in Figure 6.2, show cheaological evidence of the sol-gel
transition in the SWNT network as a function of gelation tirBelow the critical gelation time
1 hr < t* < 2 hr, the rheology is dominated by the loss modulif§w). Abovet*, the elastic

modulusG’ (w) dominates at low frequency. For all gelation times in ouadat (w) exhibits
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Figure 6.1: Mean Square Displacement for 2a = QudBparticles inp = 0.27 wt% SWNT, 10:1
NaDDBS:SWNT suspension for t =10 min, 1 hr, 2hr, 3hr (top ttdra). Solid line is slope =
1.0, dashed line is slope = 0.12.

a weak frequency dependence (") characteristic of soft ~ 1 Pa) physical gels and of
chemical gels of unbalanced stoichiometry [27]. (Note, weeet for strong gels{’ > 100 Pa)
thatG'(f = 52 = 1 Hz) = G'(f — 0) = Gy, whereGy is the plateau modulus.)

For times longer than*, the moduli exhibit a point of crossover at which the viscans
elastic components are equal. This defines a crossover oxdiyl, and crossover frequency,
w., both of which increase with the gelation time aboVveBy scaling the magnitude @f by G..
and the frequency by w,, we find that the network moduli exhibit a striking collapségure
6.3A shows the data collapse under time-cure superpo$idi7]. The resulting master curve
reveals the viscoelastic relaxation of the NT gel over fagatles in frequency. We can collapse
the data from different NT concentrations and surfactatimsanto the same master curve.

We parameterize the extent of the gelation via the dimetessrtime parameter = |t —

t*|/t*. Above the gel point, a zero-frequency finite elastic modidppears and increases as
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Figure 6.2: Viscoelastic Moduliz'(w) (closed symbols) and?”’(w) (open symbols) derived
from the MSD at different gelation times ¢ > 1.5 hr are in the gel regime®’ > G”) data.

t < 1.5 hr are in the the sol regimé&s( < G”) data. Note that in the gel regime, there exists a
crossover point., G.] whereG’'(w.) = G”(w.) = G, indicated by the arrows.

a power law withe. Experimentally we find5. ~ ¢* wherez = 1.03 [Figure 6.3B]. For all
gelation times in our datay. is comparable ta = 27 f ~ 6.3rad/s [Figure 6.3C]; thu&. and
indeed, the low-frequency elastic modul@4(t, f = 1 Hz), exhibit very similar scaling with

gelation extent.

In any gelling network wherein both. andG. scale as power laws with the cure time [see
Figures 6.3B,C], the viscoelastic moduli should be of smfiinctional form and should collapse
under rescaling. Intuitivelyy. is related to the mean relaxation time of the bonded rod elsist
andG. is related to their mean elastic modulus, both of which seéille the size of the bonded
clusters. Thus the effect of an increase in the number of daodresponds, essentially, to a
rescaling of time in the curing gel. As gelation proceeds ¢*) the bonds percolate, producing

a change in connectivity without reorganization of the raknstructure. The collapse of the

143



T T T T T
i ] L (B
" (A) 1 _0rB) 4 3
10.00 F i ©
3 3hr o 3 =
- 26hr oy ¢ g
| vV23hr Qe i 0.1F
o ®02hr ‘SQ?‘
= 1.00¢ e E 0.1 V10
) ik (-t
o
L
© _ O
0.10F = Qm- 0.66
F = . v
: 5 B
)
I 3
0.01 L il el R | e
0.001 0.010 0.100 1.000 10.000 0.01 0.10 1.0
U‘)/(DC (t = t*)/t*
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viscoelastic moduli for the curing SWNT network under tigwge superposition highlights the

crucial role of bonding between rods which we explicatehertbelow.

6.3 Theory Section

Clearly, bonding between rods is the dominant contributothe elasticity in the gel, since
the number of rods is constant in time, wherédsncreases with time. Here we introduce a
microscopic theory which establishes the relationshiprben elastic modulus’ and number of
contactsN, in the system, first for static and then dynamic networks. fireepart of the theory
derives, from the crossing probability of rods, a relati@fiming the number of contacts for a
given density of randomly oriented rods. We then derive atit for the shear modulus given
aneffective number of contacts which is a fraction of all contacts. Threselts are corroborated

with computer simulations and are used to fit both static #ht] dynamic experimental rheology
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data.

6.3.1 Static Model

The crossing probability of randomly oriented rods confiteed finite volume has an expected
number of contactsV., which depends purely on geometric parameters. A simplailzion
yields an expression for the number density of contacts:
N, L?0N?
v

=C ngd ~ P2 (6.1)

Here¢ = ’”ngi{jL"Q is the volume fraction of rods and rod diameteis assumed to be constant.
Eg. 6.1 predicts the number of contacts in a randomly orientgwork of rods as a function of
the number of rodsV, 4, rod lengthZ, and rod diametes (note similarL?¢ scaling is found in
the excluded volume analysis of percolation at large roeetsm@tios [10]). The volume of the
sample space iB. A full derivation of Eq. 6.1 is detailed in the remainder bistsubsection.

We begin by considering the crossing probability of two redth length I, and center-
to-center separatio¥. Both rods can assume any orientation in 3-dimensionalespaicd
the boundary of possible orientations delimits a sphereiahdter. around each rod center.
Clearly, the separation between rod centers must be lesdtlbdength of the rods, i.eS, < L,
in order for them to potentially cross, as illustrated inbti6.4A. There are two cases of inter-
est: ()0 < S < L/2and (i) L/2 < S < L. When (i) is satisfied, the centers of both rods are in
the overlap region, regardless of their angular oriematid herefore, the probability of overlap

is one. When (ii) is satisfied, the two spheres will overlap the solid angl€2 subtending their

overlap region is directly proportional to the fraction afgsible angular orientations that each
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rod can assume whilst having a non-zero probability of @aming the other rod. In turn, the
probability of overlapP,,.. is just the product of the probabilities of each rod havirng same
angular restriction. Thus, having both rods in the overtagian is proportional to the square of

the solid angle subtended by the overlap region:

Q\* 1 [4arL(L-9)) S\
s (8 - [ () e

Taken together, the probability of overlap for the two cdses

1 if 0<S<L (i)
Poper = (6.3)

Ax(1-22 if L<S<L (i)

(B)

Figure 6.4: (A) Geometry of crossing probability of 2 rodderigth L separated by distance S.
Shaded region is overlap of the rod’s spheres of possiblalangrientation ) is the solid angle
subtended by the overlap region. (B) Angles of possiblesetions.s is the angular range of
rod 1 that will cross rod 2 given rod 2 forms an anglevith respect to the separation axis.
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Having both rods in the overlap region is a necessary but ufitient condition to guar-
antee contact. There is an additional probabilty,, which depends on the relative angular
orientations of the rods. The probability of crossing isep\by P.,oss = Pover X Pang. When
both rods are in the overlap region, let the angle betweer2 mrd the axis connecting two rod
centers to bey, as shown in Figure 6.4B. The probability of rod 2 crossing) tds proportional
to the angles subtending the projection of rod 2 onto the sphere of rod hs@ering rotational
symmetry with respect to the axis connecting the centersds & and 2, and the fact that the

diameter of the rods << L, Py, iS

[ B BRol a2 sina gy if < §< Lo (i)

Pong = (6.4)

0 B(,2)20L rI2sina . B
Jo wL(f 5) 47r]i(L gyda if 3<S<L (i)

where for case (ii)f¢ is the largest angle that rod 2 can adopt whilst making contéb the

sphere of rod 1. For case (ii), the angle breaks down into tvbocases (iia)z’i < S < % and

(ub) > < S < L:

arcsin(%) if 2<S<L (iia)
o= vz (6.5)

arccos(%) if % <S<L (iib)

Therefore,P,,.ss Of two rods with length L and separation S is

o (8
Pcross = Fover X Pang - ZI <E>> (66)
wherel (%) f (5.0} Bla, L) sin a do for cases (i) and (i) respectively.
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Now consider the number of contacts or crosses one rod cam gy other rods in its

vicinity. Let the rod number density to be= N(;’d, whereN,.,4 is the total number of rods and

V is the volume of the gel. The mean number of contacts perived, is

Nc,l = /Pcrossndv
o (S

dmno (1 S\ o
=7 /OI<E>SdS

1
:47T’I’LL2O'/ I(z)z?dz. (6.7)
0

The contact density thus is

Nc _ Nrod X Wc,l

L?0N?
= 477.]% ~ @2, (6.8)

where J:fol I(x)r2dx=0.0403, and this is Eq. 6.1 above. A value of the numericetiofal
obtained from simulations (detailed in the following sendiis 0.11. The discrepancy between
simulation and numerical evaluation of the integral is lijikdue to an underestimate of solid

angles when is very small.
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6.3.2 Simulations of Rigid Rod Networks

Since we cannot directly observe the bonding between nafleosods in solution, computer
simulations are employed to test the predictions of thi®mhe We construct static networks
of monodisperse rods of lengtti, = 10, diameter,c = .05, and aspect ratiol./o = 200,
chosen to be comparable to the SWNTSs in our experiments.e(tiat the SWNTs used in the
experiments are polydisperse in length. We also carriedsioutilations for rods with lengths
drawn from a Gaussian distribution of comparable polydisipe to the SWNTs used in the
experiments; a significant deviation &f./V from the results for monodisperse rods was not

found.) The results that follow are from simulations of mdisperse rods.

Figure 6.5: Snapshot of simulation for N = 100 rods of aspatibil./oc = 200 confined to a
volumeV = 103. Spheres indicate contacts between rods.

Rods are deposited randomly (off-lattice) in a 3-dimernaiqeriodic cube with linear di-
mension/ = 20 — 40. Then, we determine whether the randomly deposited rodalemtes

approach one another within a prescribed distance. PHiysiage choose this distance to be
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the rod diameter. A contact is said to form between two rodemthe distance between their
points of closest separation is less than or equal to the iandeder. Note, this definition for

contact permits rods to interpenetrate (i.e. soft core).népshot taken from a simulation is
given in Figure 6.5, where dark spheres mark the points efgettion between rods located by

the algorithm.

To test the scaling prediction of Eq. 6.1, we varied the samplume § ranged fron20?
to 40%) and rod length I, ranged from to 10) while keeping rod diameter constant & .05)
in the simulations. In Figure 6.6A, we plot the number of eats, V.., versus the total number
of rods, N,.q, in our simulations. Rescaling th€. by V/L? in accordance with Eq. 6.1 yields
a collapse of the data as shown in Figure 6.6B. This collapdidates the first piece of our
theoretical model for the crossing probability of rigid sodWe next extend the model in two
successive steps: first, we derive the macroscopic sheanlasoffom consideration of only
elastically effective bonds, and, second, we derive thg@teat evolution of elasticity assuming

first order bonding kinetics.

Some bonds do not contribute to the shear modulus of the rleteg., some rods will have
only a single bond, and these non-contributing bonds nebd &xcluded when the shear modu-
lus is computed. Physically, these bonds are akin to ‘daggitrands in polymer melts [30]. In
Figure 6.7B, we illustrate two types of bonds that occur itugter of rods. The bonds denoted
by circles belong to a pair of rods which are both connectedtter rods, i.e., multiply connected
bonds. The bonds denoted by stars, on the other hand, b&@npgair of rods for which one of
the rods is not connected to any other rods, i.e., singly ected bonds. Physically we expect

only the multiply connected bonds to respond elasticallgjanrshear and thus to contribute to
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Figure 6.6: (A) Number of contacts vs number of rods in theusittion box. Data shown are for

different box volumes and rod lengths. (B) Data collapseeuméscaling of contact number by
V/L2. Solid line is slope 2.0.

the measured shear modulus in a rheology measurement,iateddp Figure 6.7D. We define
an exclusion probability?.,. = Ny/N., where N, is the number of non-contributing bonds.
When the volume fraction is low, almost all bonds are nornti@outing bonds. The exclusion
probability decreases as the packing fraction increases,isprogressively more difficult for
a rod or a cluster of rods to be isolated from the rest of theptamWe extract the volume
fraction dependence of the .. from a simulated network with’ = 203, L = 10, o = .05.

The results, exhibited in Figure 6.7A, show that the exolugirobability is well approximated
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Figure 6.7: (A) Ratio of number of single bonds to number ¢dltoontacts Vs /N.) vs volume
fraction from simulation. Solid line is fit te~5(®=¢")/¢" with ¢* = (1.0 + 0.1) x 1072 and

B = 0.345 + 0.036. Shaded region corresponds to concentration regime ofatpeaata in
Figure 6.8. (B) Cartoon of rod network showing multiply cected bonds (circles) and single
bonds (stars). Multiply connected rods are black. (C) Nundfecontacts with single bonds
removed (\f; = N. — Ng) vs. (¢ — ¢*)/¢* from simulation. Solid line is fit to Eq. 6.9 (see
text) with A = (781.5 & 2.2) x 10°, ¢* = (8.35 & 1.46) x 10~*, andB = 0.253 4 0.068. (D)
Cartoon illustrating that only the non-single bonds cdmiie to an elastic response under shear.

by an exponential function?,,. = e~ 5(¢~¢")/¢" where¢* is the volume fraction at which
the sample starts to develop a shear modulusfaigla dimensionless parameter characterizing
the rate of decrease of non-contributing bonds with inéngas. Note, this theoretical form is

one of several possible functions; here we chose a naturalvigth a minimum number of free

parameters.

Thus the density of bonds that contribute to the sample shedulus is
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— Ag(1 — e BT, (6.9)

where A is a constant of proportionality. The number of étadlyy effective contacts¥.) is
given by the total number of contacts minus the number ofisibgnds (i.e.N. = N. — Ny).
From the simulation data of Figure 6.7A, we obtain the nundieffective contacts and plot it
versus the volume fraction of rods. The results, exhibiteBigure 6.7C, show thaV is well

fit by Eq. 6.9.

6.3.3 Comparison with Rheology Experiments

Our previous rheological measurements yielded a scalinigeofow frequency elastic modulus
G'(¢,f = 1Hz) with rod volume fraction which was well described by theicat power
law form A[(¢ — ¢*)/¢*]? with ¢* = 0.0027 & 0.0002 and f = 2.3 £ 0.1 [47]. It is worth
noting that the simple power law¢? does not fit the rheology data at all, confirming that
the data are in a regime (indicated in the shaded areas ofeBSigu7A and 6.7C) where we
expect a relatively high fraction of single bonds to havegmificant effect on the measured
shear modulus. It follows that i’ ~ N/, then Eq. 6.9 should also fit the volume-fraction
dependen&’ rheological data with only a different constant of propmmtlity. Indeed, as Figure
6.8 attests, we find comparable fit quality when comparingg®againsti[(¢ — ¢*)/¢*]? for
the rheological data of Ref. [47]. Note, both expressiongeharee free parameters. While

the critical power law form is more commonly used to fit scgldata for gelation, it is largely

153



empirical. EQ. 6.9, on the other hand, has been derived fngnarossing probability of rods in a
confined geometry, augmented with minimal assumptionstabeuelative contribution to the
shear modulus from bonds with differing degrees of conuigtiThe discrepancy between the
values of¢* and B obtained from fitting Eq. 6.9 to simulationg( = (8.35 & 1.46) x 1074,

B = 0.253 £ 0.068) and experiments¢f = 0.0028 + 0.0001, B = 0.053 =+ 0.007) is likely
due to the fact that our model does not exclude the bonds hehigrder structures such as non-
spanning clusters and dangling closed loops. In areal mktiivese structures will not contribute
to elasticity, resulting in a higher value fgf, consistent with our fitted values fgi*. Instead,
we have focused on excluding the simplest structures ¢sipghds) which, while sidestepping
complicated considerations such as finite-size effecty, mas&e come at the expense of exact

guantitative agreement betwegéhand B between the simulations and experiments.
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Figure 6.8: Low-frequency elastic modulG8(f = 1 Hz) vs. volume fraction from rheology.
Data is taken from Ref. [47]. Dashed line is fit to Eq. 6.9 with= 0.0028 + 0.0001 and B =
0.053 £ 0.007. Solid line is fit to critical power lawA[(¢ — ¢*)/¢*]? with ¢* = .0027 & 0.0002
andg = 2.3 +0.1.
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6.3.4 Comparison with Microrheology Experiments

To compare with the dynamic results from the present miewlidgy experiments, we extend
our theoretical model for static rod networks to accountliertime evolution of rod bonding in
an adequately dispersed sample. At any given tiMgefree rods are not bonded to any other
rods, andN, rods are bondedY; + N, = Ny;. Att=0, we takeNy = Ny, and N, = 0.
Conversely, at t =0, we takeN;, = Ny, and Ny = 0. The rate of bonding is proportional
to the number of free rods that are actively seeking bondgatite total number of rods that
are candidates for additional bonding. Accordingly, timeetidependence of bond formation is
given by the rate equatiori’l:ilv—tf = —vNyN;,; Wherey is the bonding rate. Integrating the rate
equation and applying boundary conditions yields the nunobd&onded rods as a function of

time:

Ny = Nygy (1 — e71Ntot?), (6.10)

SubstitutingV,, for NV,.,4 in the static analysis of Egns. 6.1 and 6.9 yields the timéutiem
of the low-frequency elastic modulus:

_ po(—e P g*
o B( 5 )

G = A¢*(1 —e 7?2 |1 — (6.11)

Eq. 6.11 suggests th&t’ will eventually saturate (i.e(’ — A¢? ast — o) when all
possible bonding rods are exhausted. The elastic modliisf = 1 Hz) for different cure
times, shown in Figure 6.9, can be fit by a power law foff@t — ¢*)/¢*]* with z = 1.3 £ 0.2.

This is not surprising as the sample is rather dilute, andithe it takes forG’ to saturate lies
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Figure 6.9: Low-frequency elastic modul@&(f = 1 Hz) vs. cure time from microrheology.
Dashed line is fit to Eq. (6.11) with = 0.006 &+ 0.001, v = 0.0175 + 0.007, ¢* = .0028,
and B = 0.053. Solid line is fit to power lawA((t — t*)/t*)* with t* = 5793 + 479 s. and
z=134+0.2

outside our experimental window. Physically, howew&rmust saturate on approach to its fully
cured value, corresponding to the modulus at which all alskel rods are bonded. Clearly this
saturation behavior is not captured in the power law, whicwg indefinitely G/ — A(t/t*)?
ast — oo). Thus, the power law is at best an empirical local approxitnato a saturating
functional form. We can fit the microrheology data equallylweeither Eq. 6.11 or the power
law A[(t — t*)/t*]*, as shown in Figure 6.9, due to the limited dynamic range efd#ta. In
fitting Eq. (6.11), we have fixegg* = .0028 and B = 0.053, the values extracted from the
rheology data fitting of Figure 6.8. As a result, both funeéibforms have three parameters. In
principle, we could have further constraineédn Eq. 6.11. However, to account for modulus
variations between the two datasets due to sample prepardtiwas necessary to létvary.

Nonetheless, the nearly indistinguishable fitting over diipamic range of our data suggests
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that its time dependence is well captured by our model. Measents for longer cure times are

clearly needed to conclusively test Eq. 6.11.

6.4 Conclusions

We have performed microrheological measurements of thegigelof a semidilute suspension
of single-wall carbon nanotubes. The results implicateritibe bonding as the dominant con-
tributor to elasticity in the system. To elucidate the quative dependence of the number of
bonds on geometric parameters characterizing the rodsawe dierived an expression, based
on the crossing probability of rods confined to a finite volumvhich yields the dependence of
number of contacts on the density, length, and diametereotdmstituent rods. The relation
is shown to be in agreement with the scaling of the number ofamts for simulated rigid rod
networks. To make connection with the shear modulus medsandeology experiments, we
have assumed that only the fraction of bonds belonging taiphyitonnected rods contribute to
the network’s elasticity. With this assumption, we derivgecelation that fits the static macro-
and dynamic micro- rheological data with a goodness-ofdihparable to empirically derived
critical power laws. Future rheological measurements taildel finite element simulations with

larger dynamic range are needed to decisively test the model
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Chapter 7

Conclusions and Future Work

7.1 Summary

In recent years, an interdisciplinary community of phyatiei chemical- and bio-engineers, and
cell biologists has coalesced around the suite of expetahtechniques termed microrheology.
What do they, and we, hope to gain from this endeavor? To arisngequestion, we need only
step back and unpack what we have learned from the expegnetitis thesis.

We have described experiments in this thesis wherein nhieadogy has been used to ex-
tend the possibilities of traditional macrorheology meaments in soft materials. A unifying
theme of our work is that a combination of simple microrhggl@experiments and theoretical
modeling can yield powerful insights into the inner worlsngf soft materials. In the experi-
ments of Chapter Four ok-DNA, we have shown how a combination of one- and two-point
passive microrheology measurements can be used to extthdblsal and bulk shear moduli of
a polymeric network with depletion-induced mechanicabmiogeneities surrounding the parti-

cle. Whereas bulk macrorheology is ttefacto standard method for obtaining the bulk response
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of materials, it remains relatively mute on local materiaperties. Thus the significance of our
work is that we have shown how microrheology, alone, can lee ts derive a comprehensive
characterization of an inhomogenous soft material. The&kwa@s the first systematic measure-
ment in a well-characterized model system to convincinglljdate the two-point hypothesis of
Crocker [26] and the theoretical framework for understagdine- and two-point microrheology

developed by Levine and Lubensky [59-61].

In the bacterial bath experiments described in Chapter, Righave demonstrated that one-
and two-point microrheology can be used fruitfully to clwesize the fluctuations and responses
of an active non-equilibrium system, comprised of actielymming bacteria. A bacterial bath
constitutes an instance of a frontier class of soft matgrtakrmed active matter, whose utilities
and ramifications are just beginning to be explored [85].iv&cinatter differs from its equilib-
rium counterpart primarily in that fluctuations and respgmnare no longer constrained by the
Fluctuation-Dissipation Theorem. Our work quantitatyveteasured the departure from equi-
librium for a dilute bacterial bath. We found that the depertform equilibrium depends on
the manner in which the bacteria are actively forcing theiomadi.e., whether they are running
or tumbling. Whereas previous tracer-based investigatarbacterial baths have relied exclu-
sively on one-point measurements, we have shown that oné-peasurements yield results
which can depend on the size of the tracer and are thus iicillysambiguous in situations
wherein tracer and active particle are of comparable siz®-goint measurements, by contrast,
yield fluctuations which are independent of tracer size. sTawignificant contribution of our

work is to show that two-point measurements are essentiabiastly characterize fluctuations
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in active swimmer systems, confirming expectations baseshdier studies in passive equilib-
rium materials [18] and active living cells [57]. Additiolha the phenomenological theoretical
framework developed by Lau and Lubensky [58] to understamdeasults, may also prove useful

for other active matter systems such as active gels of byopais and motor proteins.

Finally in the work on gelling carbon nanotube networks ob@ter Six, we demonstrated
an important application of microrheology: charactei@atof the process of gelation in rigid
rod networks. The process of gelation between macroma@ecohstituents is relevant in both
materials (e.g. composite materials) and biological (el motility) contexts. In the former
case, the initial stages of gelation are difficult to chaazé using traditional macrorheological
methods due to the fact that the incipient gel is charaadrizy extremely small initial moduli
and fragile structures that are easily compromised in a&y@itress-controlled bulk rheometer.
In the latter case, the stringent requirement not to deediiniogical functionality requires an
in situ method of characterization such as microrheology, rathem bulk characterization via
macrorheology on reconstituted cell lysates. To rati@eatiur micro- and macro- rheological
data for the time and concentration dependence of the shedulos in the gelling nanotube
network, we have utilized computer simulations in conceathwanalytical modeling; this ap-
proach led us to deduce that the number of inter-tube caniset key parameter governing the
rheological response of the network. Elementary consiides of inter-tube bonding lead to
predictions beyond empirical power laws for the scaling ledas modulus with concentration
and cure time. For time dependence in particular, condideraf first order bonding kinetics

readily predicts saturation in the number of contacts wittedime which should also lead to
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saturation in the shear modulus of the gelling network. Bieeitests of our model can be ob-
tained via higher dynamic range rheological measurememsamotube networks. In principle,
electrical and thermal conductivity should depend on itibe contacts and thus our model,

with modest modifications, should also yield insight inteda types of measurements.

7.2 Future Directions

Here we describe new directions for the work in this thesiswNvork encompasses both fur-
ther exploitation of microrheology and also further exptayn of the system classes we have

considered.

7.2.1 Characterization of inhomogeneities in soft materiks

In our study of depletion, we learned that the the hydrodyindayer is different from the deple-
tion layer. This leads us to consider what other types ofl Iboandary effects may be studied.
One possibility arises in particle diffusion in two-fluidstgms, where the fluids demix with one
fluid component preferentially wetting the particle suefateading to a shell of different fluid
composition surrounding the particle. This situation is@mtered in, e.g., water-lutidine mix-
tures close to the critical temperature [45]. Thus, a miweotogical analysis similar to ours may
be useful to characterize the thickness of the fluid bountdasr in this system class.

While we have worked out the detailed case of depletion inp&haFour, there remain
many other possibilities for the mechanical inhomogeegisurrounding a probe particle which
have yet to be carefully considered. This class of phenorhasaelevance for probe-based mi-

crorheology measurements and also for study of inclusioesinposite materials and transport
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in crowded environments, e.g., in the interior of cells. Mgie and potentially interesting re-
lated experiment could explore whether a local shell of digtensity, as expected for a particle
with attractive interactions with the medium, would leadato inverse situation in which one-
point measurements overestimate the bulk rheology. Anadl fvhether the basic shell model of
Levine and Lubensky [61], with modest modifications, coukbajuantitatively account for the

measured particle mobilities. To date, this scenario habeen experimentally considered.

7.2.2 Active Matter: active depletion and time-reversal mcrorheology

The study of active matter is currently in its infancy andiseqguently, many opportunities exist
for microrheological techniques to contribute to our ustimding. A general avenue of investi-
gation under consideration in the community concerns vérathtive systems can be harnessed
to enable self-assembly beyond what is possible in equitibrsystems. In equilibrium sys-
tems, for example, depletion interactions can be used tndss large particles in a suspension
of smaller particles. What would happen if the smaller pteti were active? Alternatively,
what happens to the depletion phenomena in systems at hagt Bamber, wherein the sea of
smaller particles constitutes an ‘active fluid’ microsture driven out of equilibrium via active
internal forces. Viewed in this way, the depletion forceliodd by the active smaller particles
on the larger particles might be more appropriately deedriss Bernoulli-like forces in which
an imbalance between the velocity of the flowing active fluithim an excluded volume region
between two large particles and the bulk fluid velocity sunding them gives rise to a pressure
imbalance that drives them together, rather than an osrpagsure imbalance as in the case of

equilibrium depletion.
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While we have demonstrated that a combination of active asdipe microrheology can re-
veal whether a system is in thermal equilibrium, an intmgupossibility is whether such a deter-
mination could be made via passive microrheology measurenadone. One possible analytic
scheme to achieve this goal was proposed by Steinberg ifHHfl. In this paper, it was the-
oretically shown that time reversal of higher order autoglation functions of a system’s noise
can be used to distinguish systems that are in equilibrim fsystems that are out of equilib-
rium. Conventional first-order time-forward autocorr@atfunctions,G(7) = (f(t + 7) f(t)),
are invariant under time reversal (— —t), i.e. G,.(1) = (f(—(t + 7)) f(—t)) = G(1)
where f(t) denotes a function of the system’s stochastic noise whiotbeae.g., voltage fluc-
tuationsV (t) of a patch-clamped ion channel or positioft) of a fluctuating Brownian parti-
cle. However, higher order moments of the autocorrelatiorction of the system’s noise, i.e.,
GP(1) = (f*(t + 7)fP(t)) wherea # B > 1, are in general not necessarily invariant un-
der time reversal, i.e(’ (1) # G*?(r). It can be shown that®” (7) = G*#(7) holds in
general if and only if the underlying process that genertitesioise obeys detailed balance, as
is the case for systems in equilibrium. This opens the piiggithat a comparison oG?ﬁ(T)
and G*A (1) would constitute a “one-shot” method to determine whetheysdem is in equi-
librium via analysis of the noise fluctuations of the systdone. Moreover, if true, then the
departure from equilibrium may perhaps be quantitativalyrelated with the difference be-
tween the time-reversed autocorrelation function andithe-forward autocorrelation function,
A(T) = G?‘ﬁ(r) — G“%(7). Bacterial baths, owing to the relative ease with which cana-

rameters could be tuned, are an attractive model systersttthievalidity of this “time-reversal
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microrheology” scheme for active matter systems. A preadamy experiment would entail mea-
suring the trajectories of particles in an active bactesath and computing the®?(r) and
GoP (7) using the time-forward and time-reversed trajectoriespeetively. The next step would
be to check whether there are systematic deviations bettireetwvo and how they depend on
the lag timer. Naively, we would expect the deviatial() to be larger at long lag times where
the deviation from equilibrium is largest for the bactehbakh, based on our passive and active

microrheology measurements.

7.2.3 Self-healing Materials

The ability of the nanotube gel (and many other soft glassjeras) to be rejuvenated un-
der shear (e.g. with sonication) classifies them as “sdfing’ materials. Currently, there
is widespread interest in identifying the mechanisms dflsehling in various materials with
the goal of engineering them for use in “real-world” appficas [22]. From a technological
standpoint, there are many obvious potential uses forrealfing materials. These range from
materials to reinforce structures subject to high stresses as building columns in seismi-
cally active regions or airplane wings to biocompatible enats such as DARPA's proposal to
develop a “battlefield putty” that is capable of temporarignding wounds in battlefield situ-
ations. Microrheology is well suited as a technique to ctterize the detailed mechanisms of
these materials. For example, variants of the active ntiemlogy experiment can be used to
locally tear the material and then passive microrheologydcbe used to subsequently monitor
the recovery of the material as a function of both length @mé.t

What lies in the future is anybody’s guess. But it seems fagay that given the current

trend toward miniaturization (and accompanying smallesogeasurements) across the scientific
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disciplines, the knowledge afforded by microrheologiemhniques will play an increasing role

in our understanding of soft materials.
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Appendix A

Correction for Dynamic Errors in MSD data of Chapter

6

We use the procedure outlined in Section 3.3.4 of Chaptercédtect our dynamic error
in our MSD data. The first step is to find a suitable functiomehf to fit the MSD. With the
exception of the earliest time data at t = 10 minutes, our M&i@snot linear, thus precluding
the use of the Newtonian fluid model of Eq. 3.14. The next sésiplorm is a power law MSD:
(Az?(T)) = AT, Plugging this form into Eq. 3.13 yields:

C‘((g + 1)2+a + (1 . 1)2+a _9 (§)2+a _9

g

(Az*(1,0)) = Ao lroEra)

(A1)

which is Eg. (30) in Ref. [92]. Eq. A.1 described the t = 1 hradagll, shown in Figure A.1.
However, the power law form did not work fér> 2 hr post-gel data, as shown in Figure

A.1l. The poorness of the fits, particularly at the short lages, indicates that the downward

curvature cannot wholly be accounted for by dynamic erron@l Otherwise, we would have

been able to obtain good fits of the MSDs with Eq. A.l as in thelt b data. Thus, the
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Figure A.1: mean square displacement for t = 1 hr data. Sokdi$ a fit to Eq. A.1

downward curvature is a feature of the relaxation of the géiork.

A natural choice to describe the tracer MSD expected for avgpelld be the Voigt model,
considered in Eq. (22) of Ref. [92]. However, we found tha lingle relaxation time ex-
ponential saturation described by the Voigt model was figeht to capture the slow satu-
ration of our data which grows as a weak power law over ouremxperimental time win-
dow. Moreover, we have a further constraint due to scalingsickerations: the functional
form for the data must be consistent with collapse under-tinre superposition scaling (i.e.
f(G,w) = (G/Gy) f(w/wp)). The simplest functional form that described the behasfaur
data well was the empirical formAz?(7)) = AIn(1 + 7/7). Note that this form is not ex-
pected to be the true form since gels must saturate at lorggtand the logarithm does not, but

it is good over the dynamic range of our data. Plugging intoE#3 yields:
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Figure A.2: Post-gel MSD data (circles) along with the begtifies) to Eq. A.1.

2
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2
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We find a good fit for the post-gel data using Eq. A.2, as showkigare A.3.

Using Eqg. 3.14 for t = 10 min, Eq. A.1 fort=1 hr, and Eq. A.2 for 2hr, we are able
to correct for the dynamic errors in all our MSD data. In Fgé.4 we show the results of the
correction. The solid line is the dynamic error-biased dawa the dashed lines are the data after

their respective corrections have been made. Fot the hr data, the downward curvature has
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Figure A.3: Post-gel MSD data (circles) along with the begtifies) to Eq. A.2.
been largely eliminated, confirming that it was an artifactlgnamic error. For theé > 2hr

data, however, the downward curvature persists, indigatiat it is a feature of the relaxation

dynamics of the SWNT gel.
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Figure A.4. mean square displacement for t = 10 min, 1hr, &hd, 3 hr. Solid lines are the
uncorrected MSD. Dashed lines are the dynamic error cedddSD.
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The dynamic error corrected MSDs, denoted by the dasheslilingme figure, are exhibited
in Figure 6.1 and is used to calculate the viscoelastic madhlibited in Figures 6.2 and 6.3.
Comparing the moduli obtained with the dynamic error-biladata and without in Figure A.5,
indicates that dynamic error can shift the crossover of thduti and tends to affect the viscous

modulus to a greater extent than the storage modulus in @tiged data.
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Figure A.5: Viscoelastic moduli derived from the MSD for gghes above the percolation
transition. G’ and G” derived from dynamic error-biased M8&ta are solid and open circles
respectively. Solid and dashed lines are the G’ and G”, wisedy, derived from the dynamic
error corrected MSD.

The dynamic error correcte@* (w) data denoted by the solid and dashed lines is exhibited

in Figures 6.2, 6.3, and 6.9.
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