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Abstract

Microrheology of Soft Matter

Daniel Tien-Nang Chen

Arjun G. Yodh

This thesis describes the application of microrheology to characterize the mechanical proper-

ties of three soft matter systems: an entangled biopolymer solution, a suspension of actively

swimming bacteria, and a gel-forming carbon nanotube network. We demonstrate using these

distinct model systems that it is possible to employ microrheology to extract both local and bulk

information using a combination of one- and two- point measurements and theoretical modeling.

In the first set of experiments, we use microrheology to probethe rheological properties of

semi-dilute polymer solutions ofλ-DNA. In these solutions, the depletion interaction leads to a

layer of reduced DNA density near the particle’s surface. Wedemonstrate a method for deducing

the local microstructure of these layers along with the bulkrheology of the polymer solution.

This work was one of the first to systematically demonstrate that tracer-based microrheological

methods could be used to deduce both local and bulk rheology in a well-characterized model

soft matter system.

In the second set of experiments, we use microrheology to probe the dynamics of a model

active soft matter system: a suspension of swimming bacteria. By comparing measurements

of the fluctuations of passive tracer particles with the response of a driven, optically trapped

tracer in the bacterial bath, we demonstrate a breakdown of the fluctuation-dissipation theorem
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in bacterial baths. These measurements enable us to extractthe power spectrum of the active

stress fluctuations. We develop a theoretical model incorporating coupled stress, orientation, and

concentration fluctuations of the bacteria to explain the observed scaling of the power spectrum.

In the final set of experiments, we report measurements of gelling rigid rod networks, com-

prised of a semidilute dispersion of surfactant stabilizedcarbon nanotubes. Microrheology is

employed to follow the rheological evolution of the suspension from a semidilute solution of

unbonded tubes to a bonded gel network. A theoretical model based on the crossing proba-

bility of rods confined to finite volumes is developed to account for network elasticity. Model

predictions compare well with computer simulations and experiments as a function of nanotube

volume fraction and cure time.
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is projected with a collection lens (L3) onto a split photodiode. The A-B voltage

components of the split PD are fed into a lock-in amplifier which extracts the

components of the differential voltage signal at frequencyω via the reference

signal from the function generator. The DC analog outputs ofthe lock-in are

contain the displacement and phase shift of the signal (D(ω), δ(ω)) which is

digitized using a PC running Labview. . . . . . . . . . . . . . . . . . . .. . . 97xx
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Chapter 1

Introduction

Imagine looking, as people in the 18th Century did, at particles in water under a microscope.

The jiggling motions of micron-sized objects that you are observing might, based on the intu-

itive association between motion and life, be attributed tothe particles being ‘alive’. It wasn’t

until 1826 that the careful experiments of Robert Brown showed that they were in fact the conse-

quence of thermal fluctuations of ‘dead’ matter. In 1905, Einstein considered Brownian motion

using kinetic theory and in a stroke of insight, he offered compelling evidence for the atomic

hypothesis. In this thesis we build on these seminal insights to ‘decode’ the jiggles resulting

from thermal and active motion of particulate matter in a variety of soft materials.

1.1 Soft matter/complex fluids

The rise of soft matter from a subaltern to mainstream discipline of physics has been fueled in

part by the promise of deciphering the ‘rules’ of self-assembly, an endeavor which, if realized,
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Figure 1.1: Structure, Dynamics, and Rheology of Soft Matter

could enable large-scale engineering of complex structures with broad societal impact. More-

over, the potential for leveraging its methods of inquiry toyield new insights about other fields

such as molecular biology and chemical/bio/mechanical engineering has also generated much

scientific interest in soft matter physics.

Characterization of a colloidal suspension, polymer network, or emulsion requires that the

relationship between its structure, its equilibrium and non-equilibrium dynamics, and its rhe-

ology be determined. These categories, sketched in Figure 1.1, are not independent. In most

materials they are coupled, albeit not in a simple universalmanner. A concrete example is the

hard sphere colloidal suspension, illustrated in Figure 1.2. In equilibrium, random collisions

among particles (blue spheres) with liquid-like order makethe suspension resistant to flow. But

as the shear stress or, equivalently, the shear rate increases, the particles become ordered into

lane-like configurations. These lane-like configurations have a lower viscosity relative to the
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Figure 1.2: Relationship between structure, dynamics, andrheology in the shear thinning-shear
thickening transition in hard sphere colloidal suspensions. Adapted from [113].

more randomized configurations. At yet higher shear rates, hydrodynamic forces between par-

ticles dominate over stochastic ones, a change that disrupts the order and spawns hydroclusters,

i.e. transient fluctuations in particle concentration. Thedifficulty that particles have in flowing

around each other in such a strong flow leads to a higher rate ofenergy dissipation and an abrupt

increase in viscosity [113]. Thus, it is clear that a combination of rheological and structural mea-

surements is necessary to fully elucidate such phenomena ineven a relatively simple system; any

single measurement modality would be insufficient.

An important way that we learn about the structure and dynamics of soft matter is to probe

them mechanically. Rheology measurements typically subject a material to shear in a prescribed

geometry and the material’s resulting stress and strain aremeasured to extract its shear and

elastic moduli. These moduli are measures of a material’s intrinsic elastic properties, analogous

to specific heat capacity and various coefficients of heat transport or resistivity and electrical
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transport.

Real materials, and especially soft materials, are neitherideal solids nor ideal liquids. Real

soft materials exhibit both elastic and viscous responses and are therefore called viscoelastic.

The internal structures of soft solids and complex fluids composed of colloidal particles, fil-

amentous and flexible polymers, and other supra-molecular arrangements lead to complicated

mechanical responses. As a result, the relations between stress and strain are not simply defined

by elastic and viscousconstants; rather, these relations can be functions of time, direction, and

extent of deformation. The goal of rheological experimentsis to quantify the viscoelasticity of a

material over as wide a range of time and deformation scales as possible and, ultimately, to relate

these viscoelastic properties to the molecular meso- and macro- structure of the material. Today,

the rheology of many soft materials, both biological and synthetic, is often very different from

that of materials like rubber for which theoretical models have proven highly effective. Thus

many open questions remain about how to relate structure to viscoelastic response.

1.2 Overview of rheology/microrheology techniques

Rheology is a well established methodology for extracting information from material deforma-

tion [21]. Rheometry has been a standard method to characterize materials in industry for most

of the twentieth century. In concert with the tremendous insights generated by computational

advances (e.g. molecular dynamics simulations) that have occurred at the end of the 20th cen-

tury (and continue today), rheology has generated valuableinsight into the detailed microscopic

molecular motions of polymers for example. However, in its conventional implementations,

4



rheology has limitations; it requires a large amount of material, it typically operates at low fre-

quency, and it measures motions over relatively large length scales (mm’s).

Relatively recently, owing in part to innovations in light scattering techniques and digital

video microscopy, it has been realized that rheological information can be extracted from an

analysis of the motions of micron-scale probe particles embedded in the material. This suite

of new measurement technologies, termedmicrorheology, has augmented the scope of mate-

rials and the range of length and time scales that can be studied. Importantly, microrheology

has enabled the study of materials in situations wherein traditional rheometers are difficult to

use, e.g., when the material is available only in very low quantities (< 1mL) . Moreover, mi-

crorheology has been useful in situations where removal of materials from their natural (in situ)

contexts alters their ability to function, such as in livingcells. This thesis describes applications

of microrheology to the study of soft matter.

Rheometers generally measure two quantities: stress, the amount of force per unit area ap-

plied to the sample; and strain, the dimensionless degree towhich the material deforms. The

materials’ properties, quantified as elastic moduli for solids or viscosities for liquids, are cal-

culated from the ratio of stress to strain or stress to strainrate, respectively. To characterize

fully the viscoelastic properties of complex soft materials, the relation of stress to strain must be

measured over a wide range of strains, strain rates, and timescales (Figure 1.3). Unfortunately,

quite often existing instruments and methods either cannotcover a large enough range or else

disrupt the material during measurements. Thus, recent advances in rheological methods have

been motivated in part by attempts to measure delicate samples with complex time-dependent

responses at the micron scale. These microrheological methods have even been extended for
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use in live cells. Additional experimental and theoreticalprogress has been made on systems far

from equilibrium, e.g., systems in which non-thermal sources of energy drive fluctuations and

rheological responses.

As with any other new measurement technology, questions have been raised about the lim-

itations of microrheology. Chief among these, circa the early 2000’s, was the effect of material

heterogeneity on the interpretation of probe based microrheological measurements. For exam-

ple, when these heterogeneities exist, can the bulk moduli even be measured using microrhe-

ology? Whereas these issues can complicate interpretationof experimental data, such compli-

cations can be cleverly turned around to increase the amountof information available from a

microrheology experiment. In a different vein, the abilityto probe miniscule, inhomogeneous,
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Figure 1.4: Number of papers published with keyword “microrheology” in title, abstract, or
sorting field as determined by the ISI (Web of Science) onlinedatabase.

out-of-equilibrium materialsin situ and at high bandwidth holds the potential to reveal new in-

sights about the inner workings of living cells [57], sensorimotor assemblages [67], and novel

materials (e.g., self-healing materials [22]). This excitement has led to a growth of activity in

the subfield of microrheology. Figure 1.4 shows the number ofpublished papers containing the

keyword “microrheology” in the title, abstract, or sortingcategory for each year spanning the

period 1990 - 2008, as determined by Thomson Scientific’s ISIWeb of Knowledge database.

Assuming that the number of papers per year is a reflection of science interest in microrheology,

the results are indeed indicative of exciting progress and potential.

1.3 Organization

The remainder of this thesis is organized as follows. In Chapter Two, we introduce the theo-

retical underpinnings of rheology and microrheology. In doing so, many of the issues that arise

in interpretation of microrheological data will be introduced. In Chapter Three, we describe the
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experimental methods commonly employed in microrheology experiments, many of which have

been used in this thesis. In Chapter Four, we describe measurements of the viscoelastic response

of entangled polymer solutions usingλ-DNA as a model system [18]. This study highlights the

use of thermal microrheology to quantitatively characterize mechanical heterogeneities around

the probe particles, in this case stemming from depletion interactions between the probe and

the DNA solution. Chapter Five describes microrheologicalexperiments on suspensions of ac-

tively swimming bacteria [20]. Bacterial baths constitutea model of active matter in a driven

non-equilibrium steady state. The work explores the extentthat the theoretical framework em-

ployed to interpret results from equilibrium systems can provide an adequate characterization of

a non-equilibrium system. Our work explicitly demonstrates how theory must be modified to

accommodate non-equilibrium systems. In Chapter Six, we describe measurements of a gelling

suspension of single-walled carbon nanotubes [19]. Of primary interest is our new access to

the dynamics of the incipient gel which microrheological measurements permit. We introduce

theoretical models and computer simulations of rigid rods in a confined volume to elucidate

the role of bonding in this network class. The work describedin Chapters 4-6 has been pub-

lished [18–20], and the chapters follow largely from these papers with some amplification of

ideas. Finally, we conclude and give some future directionsfor work in Chapter Seven.
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Chapter 2

Theory

2.1 Introduction

The rheological behavior of most complex materials, particularly soft materials, can exhibit

many regimes depending on the scale, geometry, amplitude, and rate of the imposed deformation.

Consider the classic toy: silly-putty. When squeezed slowly, it deforms and flows like a liquid;

however, when thrown against a wall, it bounces like a rigid elastic solid. Many techniques

have been developed to characterize these behaviors. Broadly speaking, there are two classes of

rheological measurements: macrorheology and microrheology. In this chapter, I will describe

the theoretical underpinnings of these methodologies. Much of the material on macrorheology in

this Chapter can be found in textbooks including Landau and Lifshitz [54], Ferry [36], Macosko

[65], Doi and Edwards [32], Larson [56], and Rubinstein and Colby [87]. Much of the material

on microrheology is covered in review articles [99,114].
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2.2 Macrorheology

2.2.1 Basic Definitions

Consider a material sandwiched between two parallel plates, as depicted in Figure 2.1. This is

a prototypical set-up encountered in macrorheology experiments. In this simple shear appara-

tus, the top plate is displaced with a forcef in the x-direction, and the force is transmitted to

the bottom plate through the material. The adhesion betweenthe material and the surfaces is

considered to be strong enough such that there is no slippageat either surface. If the material is

totally rigid, the bottom plate must be held in place by a force−f to prevent net translation in

the +x direction. The shear stress,σxy (simply denotedσ), resulting from the force exerted in

the+x direction and transmitted to a planar cross-sectional areaA normal to they-direction is

defined as:

σ ≡ f

A
. (2.1)

The units of stress are force per unit area (Pa ≡ kg m−1 s−2 in SI units). The shear strain

γ is defined as the displacement of the top plate∆x divided by the thickness of the sampleh:
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γ ≡ ∆x

h
. (2.2)

If the material is a perfectly elastic solid (as it sometimesis for low strains), then the stress

will be linearly proportional to the strain. The constant ofproportionality, known as the shear

modulusG, is defined by:

G ≡ σ

γ
. (2.3)

The shear modulus has the same units as the shear stress, since strain is dimensionless. Each

sub-parcel of the material subjected to shear will experience the same local stress and strain,

assuming the material deformation is uniform, or affine. Theproperty of elastic materials, that

the modulus is constant over a range of strains is more generally known as Hooke’s law of

elasticity, a constitutive relation valid in the linear response regime (typicallyγ < 4 − 5%).

A generalization of Hooke’s Law is explicated in Landau and Lifshitz’s Theory of Elasticity

[54]. In passing, I remark on some notable features of this formalism that will be of use in

understanding literature associated with the subjects in this thesis.

First, stress (σij) and strain (γkl) are 2nd rank tensors, and stiffness (Cijkl) is a 4th rank

tensor connecting them, i.e.,σij = Cijklγkl. Or, as is sometimes denoted in the literature:

σ = C : γ. The total number of independent components ofCijkl is reduced from 81 to

21 due to the stress and strain tensors being symmetric, i.e., σij = σji, γkl = γlk, implying

Cijkl = Cjikl = Cijlk and the symmetry of the stiffness tensor as a consequence of the strain

energyU being a quadratic function of the strain to lowest order, i.e., U = 1
2

∫
Cijklγijγkld

dx,
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implying Cijkl = Cklij. Since the trace of any tensor is independent of basis, the most complete

coordinate-free decomposition of the strain tensor is to represent it as the sum of a constant

tensor and a traceless symmetric tensor:

γij =
1

3
γkkδij + (γij −

1

3
γkkδij). (2.4)

The first term on the right is known as the volumetric strain tensor; it corresponds to de-

formations akin to hydrostatic compression. It is straightforward to show that for small (linear)

deformations, the volume change given bydV ′ = dV (1 + γii), where the prime denotes the

volume of a parcel of the deformed material. In other words, the relative volume change is

equal to the trace of the strain tensor:(dV ′ − dV )/dV = γii. If the trace of the strain tensor

is non-zero (γii 6= 0), then the resulting deformation will not be volume-conserving. The sec-

ond term, known as the deviatoric strain tensor, or shear tensor, is traceless, corresponding to

a volume-conserving shear deformation. Any arbitrary deformation can be captured by a lin-

ear combination of these two elementary deformations, and thus a generalized Hooke’s Law for

isotropic materials is:

σij = 3K(
1

3
γkkδij) + 2G(γij −

1

3
γkkδij). (2.5)

Here K is known as the bulk modulus, and G is known as the shear modulus. Written

in this way, it is clear thatK andG are elements of the stiffness tensorCijkl for isotropic

media. For other symmetries, e.g. crystalline, there will be additional elements corresponding

to the underlying symmetries of the structure. There are many equivalent ways to express the
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information of Eq. 2.5. For instance, it can also be written as:

σij = λγkkδij + 2µγij , (2.6)

whereλ, µ are known as Laḿe coefficients and are related toK,G via λ = K − 2
3G and

µ = G. It is sometimes more convenient to use the Lamé coefficients because the stiffness

tensor can be written:Cijkl = λδijδkl + µ(δikδjl + δilδjk). Also, the free energy of a deformed

isotropic material is, to lowest (harmonic) order a neat quadratic function of the strains:F =

F0 +
1
2λγ

2
ii + µγ2ij .

The elementary deformations are summarized in Figure 2.2. When a material is stretched in

one direction, it tends to contract (or occasionally, expand) in the other two directions perpen-

dicular to the direction of stretch. Conversely, when a sample of material is compressed in one

direction, it tends to expand (or rarely, contract) in the other two directions. The Poisson ratioν

relates the elongational strain to volumetric change in materials, i.e.,∆V/V = (1− 2ν)∆L/L.

For incompressible materials,ν = 1
2 . In general, the elastic properties of homogeneous isotropic

linear elastic materials are uniquely determined by any twoquantities amongK,G,E, ν; thus,

given any two moduli, any other of the elastic moduli can be determined.

By contrast, if the material is a pure liquid, the shear stress is independent of strain. Rather,

shear stress depends linearly on the shear rateγ̇ ≡ dγ
dt . The constant of proportionality, known

as the viscosityη, is defined by:

η ≡ σ

γ̇
. (2.7)
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Figure 2.2: Elementary deformations, modulus, and strain for homogeneous isotropic materials.
Dashed figure in deformation column corresponds to materialprior to deformation. Shaded
region corresponds to volume-conserving deformations.

Viscosity has units of force per unit area time (Pa s in SI units). Fluids for which Eq. 2.7

holds are known as Newtonian fluids. Note that for such fluids,the resistance to deformation

(shear stress) depends on the rate of deformation and not theamplitude of the deformation, as

for solids. As anyone who swims knows, it’s not how large the stroke that matters, but rather

how fast the stroke. A similar analysis to Eqns. 2.4 - 2.6 can be carried out to generalize the

stress-strain relation for Newtonian fluids. Essentially,it is the same with the substitution of

strain rate tensorvij for uij, and substitution of bulk and shear viscosities for bulk andshear

moduli.
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2.2.2 Viscoelasticity

Most soft materials are viscoelastic, having time-dependent mechanical responses intermediate

between Newtonian fluids and Hookean solids. A time-dependent generalized shear relaxation

modulusG(t) ≡ σ(t)/γ is necessary to describe this behavior. Imagine imposing a constant

stress,σ0, at timet = t0, and then monitoring the stress in the material as shown in Figure 2.3.

For a Hookean solid with shear modulusG, the stress will beγG for as long as the stress is

applied and then it will rapidly return to zero once the strain is released. For a Newtonian liquid,

the stress will exhibit an initial transient spike and then decay rapidly to zero. For a dominantly

liquid-like viscoelastic material, the stress will decay exponentially to zero with a characteristic

relaxation timeτ , as shown in Figure 2.3B.

τ

solid

liquid

Viscoelastic

liquid

γ

time

σ0

t0 t1

σ(A)

σ

σ0
(B)

?

σ

σ

γG

applied stress

Figure 2.3: Stress relaxation in soft materials. (A) Schematic illustration of stressσ0 being
applied to a solid, liquid, or viscoelastic liquid material. (B) Stress profile for solid, liquid, and
viscoelastic liquid materials. (Top) The step stressσ0 is applied at timet0 and removed at time
t1. τ is the relaxation time of the decaying stress in viscoelastic liquid.
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In order to gain insight into the rheological responses of linear viscoelastic materials, includ-

ing the factors that control the relaxation time, simple mechanical models of linear viscoelastic

behavior have proven to be very useful conceptual aids. Mechanical models of viscoelastic ma-

terials utilize linear combinations of springs and dashpots to mathematically model elastic and

viscous components, respectively. The elastic elements can be modeled as springs with elastic

modulusG with a stress-strain relation:

σ = Gγ, (2.8)

whereσ is the stress,G is the shear modulus of the material, andγ is the strain that occurs under

the given stress, similar to Hooke’s Law. The viscous components can be modeled as dashpots

such that the stress-strain rate relationship can be given as

σ = η
dγ

dt
, (2.9)

whereη is the viscosity of the material, anddγdt is the strain rate. Eq. 2.9 predicts that stresses in

the viscous element will be larger whenever sudden deformations are imposed.

The simplest mechanical models for viscoelastic behavior are the Maxwell and Voigt models.

The Maxwell model idealizes the viscoelastic material as a spring in series with a dashpot, as

depicted in Figure 2.4. The Maxwell model captures the essential features of the rheology of

an entangled polymeric network. In such an entangled polymer network, stresses in the network

can relax at long times, whereas for short times, entanglements between polymer strands prevent

relaxation and give rise to a dominantly elastic rheological response. Accordingly, such networks
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possess a relaxation time scale, below which the response isdominantly elastic and above which

the response is dominantly viscous. Under a sudden imposed strain, as depicted in Figure 2.4C,

the spring element will initially bear the full strain in thesystem owing to the fact that the stress

in the viscous element is large. Over time, the strain will relax to zero as the strain is transferred

to the dashpot.

f

- f

η

G

γe
γv

γ

f

time

γ0

t0 t1

γe

γv

(A) (B) (C) γ

γ0

γ0

Figure 2.4: (A) Maxwell elements of spring and dashpot in series. (B) Maxwell Model for
viscoelastic materials is a Newtonian liquid with viscosity η and Hookean solid with shear mod-
ulusG. Shear stress is transmitted serially through each material via the plates. (C) (top) Step
strainγ0 is imposed at timet0 and held constant until timet1 whereupon it is released. (mid-
dle) Time-dependent strain (extension) in the elastic element. Initially the imposed strain is
fully accommodated in the elastic element and then it slowlydecays. (bottom) Time-dependent
strain (extension) in the viscous element. Initially thereis no strain in the dashpot and then it
increases. Note that upon release of strain att = t1, there is no recovery if (as shown) the strain
in the elastic element has completely relaxed.

Under an imposed total strainγ = γe + γv, the strain across the elastic springγe and the

strain across the viscous dashpotγv are free to adjust until stress on both elements is the same,

i.e.,

σ = Gγe = η
dγv
dt

. (2.10)

In the step strain experiment, a constant strainγ0 is applied att = 0 and the time dependent
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strain in the viscous element is given by

τ
dγv(t)

dt
= γ0 − γv(t), (2.11)

where the relaxation timeτ ≡ η/G. Solving,

dγv(t)

γ0 − γv(t)
=

dt

τ
, (2.12)

ln[γ0 − γv(t)] =
−t
τ

+ C. (2.13)

Here the initial conditionγv(0) = 0, yieldsC = ln γ0, and the strain in the elastic element

γe(t) equals:

γe(t) = γ0 − γv(t) = γ0 exp(−t/τ). (2.14)

Since the elements are in series, the stress across both elements is identical thus:

σ(t) = Gγe(t) = Gγ0 exp(−t/τ). (2.15)

The stress decays to its equilibrium value exponentially with a relaxation timeτ = η/G, as

shown in the bottom panel of Figure 2.3C. In the Maxwell model, the stress relaxation modulus

G(t) ≡ σ(t)/γ0 = G exp(−t/τ). Thus, the two main features of the stress relaxation are:

one, the modulus is independent of strain in the linear regime and two, a single relaxation time

governs the stress relaxation.
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This two-element, one-relaxation-time Maxwell model is overly simplified, however; it turns

out that more complex mechanical networks, approximating real polymer networks, can be mod-

eled as multiple basic Maxwell elements of series springs and dashpots. Importantly, in the linear

response regime, each independent mode has its own relaxation time. Network behavior is de-

rived by combining these modes via linear superposition to yield a network stress relaxation

modulus having a broader, multi-timescale decay profile. Inreal entangled polymer networks,

for example, the distribution of relaxation times is a consequence of the multiple length scales

in the underlying polymer length distribution, e.g., lengths of polymer segments between en-

tanglement points or dangling polymer strands. These segments and strands each vibrate with

a characteristic frequency which depends in part on the segment length and segment tension.

Collectively, these thermally excited vibrations, somewhat analogous to a strummed chord on a

guitar, give rise to a broader stress relaxation profile thanpredicted by the Maxwell model.

Another possibility in real polymer networks is for the strands to be cross-linked, as in a

polymeric gel. In such a situation, the stresses in the network will never relax so long as a stress

or strain is imposed. This feature is captured in the Voigt model as a spring in parallel with a

dashpot, as depicted in Figure 2.5. After a step stress is imposed, the strain across both elements

increases to a saturating value (Figure 2.5C). The stress isinitially higher in the dashpot but

eventually the stress is transferred entirely to the springelement at long times.

In the Voigt model, the strain, rather than the stress (as in the Maxwell model), is the same

across both elements:γ = γe = γv. The total stress is thus the sum of the stresses on both

elements and is free to adjust to accommodate the strain:

19



ηG

γ

f

- f

f

time

σ0

t0 t1

γ

γ

σ

(A) (B)
(C)

Figure 2.5: (A) Voigt elements of spring and dashpot in parallel. (B) Voigt model for viscoelastic
materials is a Newtonian liquid with viscosityη and Hookean solid with shear modulusG. Shear
stress is applied simultaneously to both media via the same plate. (C) (top) Step stressσ0 is
imposed at timet0 and held constant until timet1 whereupon it is released. (middle) Time-
dependent strain (extension) in the elastic element. (bottom) Time-dependent strain (extension)
in the viscous element. The strain in both elastic and viscous elements is the same due to the
parallel geometry of the deformation. Note that the strain returns to its initial state upon the
release of the stress att = t1 due to the elasticity in the spring.

σ(t) = Gγ(t) + η
dγ

dt
. (2.16)

Since materials obeying the Voigt model cannot be instantaneously deformed, an alternative

deformation methodology in which a step stress is applied must be used to elicit the rheological

response of the Voigt model. Applying a constant step stressσ(t) = σ0 at t = 0, Eq. 2.16

becomes

τ
dγ

dt
+ γ =

σ0
G

, (2.17)

whereτ = η/G. Eq. 2.17 can be readily solved by following the procedure ofEq. 2.11 - 2.14

and applying the initial conditionγ(0) = 0. The time-dependent strain for the Voigt model is

thus
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γ(t) =
σ0
G

[

1− e−t/τ
]

. (2.18)

The measurement used to illustrate the Voigt model in Figure2.5C, wherein a constant step

stress is applied to a material and its strain recovery is monitored, is known in rheological lit-

erature as creep response.The creep analogue of the shear relaxation modulus is known as the

shear creep compliance,J(t), and is given by the ratio of the time-dependent strain and stress:

J(t) = γ(t)/σ0. It follows from Eq. 2.18 that the creep compliance is:

J(t) =
1

G

[

1− e−t/τ
]

. (2.19)

The main difference between the Voigt and Maxwell model is intheir long time behavior.

In both models the viscous stress in the dashpot is initiallylarger after the step strain (Maxwell)

or stress (Voigt) is applied, and then it decays exponentially with time. In the Maxwell model,

the consequence is that the stress decays to zero. In the Voigt model, the consequence is that

the strain saturates to a constant valueσ0/G owing to the fact that in parallel the strain from the

extension of the spring is always present and bears all the stress after the transients decay. It is

also worth noting that the Voigt model will always return to its initial strain after the stress is

turned off as shown in Figure 2.5C. In contrast, the Maxwell material will not return to its initial

strain state, so long as the duration of the strain deformation exceeds the relaxation time. Thus

the Voigt model is a hallmark of elastic behavior expected for gels. Accordingly, the Voigt model

is a simple idealized model for polymeric gels wherein cross-links prevent long time relaxation

of the deformed network. One such system is a carbon nanotubenetwork cross-linked by van
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Figure 2.6: (A) Schematic of steady shear rheology measurement in a cone-and-plate geometry.
The top cone is rotated at a constant angular velocityω and the resulting stress or strain is mea-
sured. (B) Schematic of oscillatory rheology measurement.The top cone is rotated sinusoidally
and the stress or strain is measured.

der Waals interactions. This gel (Voigt) system is further elaborated in Chapter 6. Entangled

polymeric networks (Maxwell) ofλ-DNA are the subject of Chapter 4.

2.2.3 Common Rheology Measurements

The two most common macrorheology measurements are steady shear and oscillatory measure-

ments. In steady shear measurements, the top plate is rotated at a constant angular velocityω, as

illustrated in Figure 2.6A. The resulting stress is determined via:

σ(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′. (2.20)

Eq. 2.20 is a general statement of the Boltzmann superposition principle which states that

the stress in the material at any given time is due to a linear superposition of its previous shear

history. Since the shear rateγ̇ = ω is time-independent in steady shear measurements, we have

σ(t) = γ̇

∫ t

−∞
G(t− t′)dt′ = γ̇

∫ ∞

0
G(τ)dτ, (2.21)

where the variable substitutionτ = t− t′ has been made. This leads naturally to a definition of
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viscosity as the time integral of the shear relaxation modulus:

η =

∫ ∞

0
G(t)dt. (2.22)

This viscosity is known as the steady shear viscosity and canbe empirically related to the

more commonly measured dynamic complex viscosityη∗(ω) in many simple polymeric liquids

via the Cox-Merz rule [56], which states thatη(γ̇) ≈ η(ω).

Dynamic viscoelasticity measurements are made by applyinga sinusoidally oscillating strain

(or stress) to a sample and measuring its stress (or strain) response, respectively, as a function of

frequency (Figure 2.6B). For linear viscoelastic materials, the result is two sinusoidal functions,

and both the elastic and dissipative properties of the material are computed from the amplitudes

and phase shifts of the sinusoidal functions, as illustrated in Figure 2.7. In strain-controlled

oscillatory measurements, for example, the applied strainvaries sinusoidally with time:

γ(t) = γ0 sin(ωt), (2.23)

which for a Hookean solid leads to a stress which is in phase with the strain:

σ(t) = Gγ(t) = Gγ0 sin(ωt). (2.24)

For a Newtonian liquid, by contrast, the stress depends on the rate of strain and as a result,

the stress lags the strain by exactlyπ/2 phase shift:

γ(t) = η
dγ

dt
= ηγ0ω cos(ωt) = ηγ0ω sin(ωt+

π

2
). (2.25)
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Figure 2.7: Stressσ0 and strainγ0 amplitudes vsωt in an oscillatory deformation of a viscoelas-
tic material. The stress and strain signals are phase shifted by an angleδ.

More generally, interpolating between these two extremes,viscoelastic materials can be

characterized as having a stress which is out of phase with the strain by a relative phase an-

gle0 ≤ δ ≤ π/2:

σ(t) = σ0 sin(ωt+ δ), (2.26)

with the consequence that the stress and strain are related by the general expression:

σ(t) = γ0
[
G′(ω) sin(ωt) +G′′(ω) cos(ωt)

]
, (2.27)

whereG′(ω) is known as the storage modulus andG′′(ω) is known as the loss modulus. Ex-

panding Eq. 2.26 and comparing it to Eq. 2.27, it becomes clear that the storage and loss moduli

at eachω can be related to the phase angleδ via:
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G′ =
σ0
γ0

cos δ

G′′ =
σ0
γ0

sin δ

tan δ =
G′′

G′ . (2.28)

The ratio of the loss to storage moduli is given bytan δ, known as the loss tangent. The

loss tangent is a useful measure of the degree of elasticity versus viscosity in a material. It is

diverging for Newtonian fluids [tan(π/2) = ∞] and zero [tan(0) = 0] for Hookean solids. In

principle, the oscillatory rheology of the material is completely characterized by knowledge of

any two out of the three quantities:G′, G′′, δ. Equivalently, and more succinctly, the sentiment

of Eqns. 2.28 can be mathematically expressed using the complex function:

G∗(ω) = G′(ω) + iG′′(ω)

tan δ(ω) =
G′′(ω)
G′(ω)

, (2.29)

G∗(ω) is known as the complex shear modulus andtan δ(ω) is the frequency-dependent loss

tangent. The complex shear modulus characterizes the overall resistance to deformation of a

material, regardless of whether that deformation is recoverable (elastic) or non-recoverable (vis-

cous). The information contained in the complex shear modulus can alternatively be expressed in

terms of the complex dynamic viscosityη∗(ω) which is trivially related viaG∗(ω) = −iωη∗(ω).

Typical linear oscillatory rheology data for a variety of common materials is illustrated in Figure
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Figure 2.8: Schematic illustration of frequency-dependent shear moduli for prototypical liquids,
solids, viscoelastic solids described by Voigt model, and viscoelastic liquids described by the
Maxwell model.
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2.3 Microrheology

Instead of using macroscopically applied and detected stress and strain to extract a material’s

moduli, microrheology relies on detecting the displacement of colloidal probe particles embed-

ded in the material to extract similar quantities. These probe displacements can be excited either

by broadband thermal energy (i.e.kBT ) or by externally imposed forces (e.g. via magnetic or

optical tweezers). The former is termedpassive microrheology, while the latter is termedactive

microrheology.

2.3.1 The Stokes-Einstein relation

Consider, as Einstein did circa 1905, a particle diffusing in a Newtonian fluid. In thermal equi-

librium, collisions of the particle with the molecules in the fluid gives rise to Brownian motion

which can be quantified by the particle’s mean square displacement (MSD):

〈∆x2(τ)〉 = 〈[x(t0 + τ)− x(t0)]
2〉. (2.30)

Herex(t) is one omponent of the position of the particle at time t,τ is the lag time, and〈〉

denotes time averaging over all initial timest0 for a single particle or, alternatively, both time

and ensemble averaging for a collection of particles.

For a spherical particle with radiusa diffusing in a Newtonian liquid of viscosityη, the

particle’s MSD is related to the diffusivityD via 〈∆x2(τ)〉 = 2Dτ where

D =
kBT

6πηa
. (2.31)
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Eq. (2.31) is known as the Stokes-Einstein relation and is the theoretical cornerstone of

all passive microrheology measurements. It asserts that measurements of a particle’s thermally

excited diffusivity can be used to extract the viscosity of the fluid, thus relating an embedded

tracer particle’s dynamics with the medium’s rheology. Owing to the importance of the Stokes-

Einstein relation in microrheology, it is useful to derive Eq. 2.31 from first principles. In order

to do so, it is instructive to break the derivation down into two steps and critically examine the

assumptions underlying each of the steps. The first step is toview Eq. 2.31 as a statement that a

stochastic quantity (D) is related to the temperature timesa deterministic material quantity (M ),

i.e. D = kBTM , whereM = 1/6πηa. M is called the particle mobility. This is the “Einstein”

part of “Stokes-Einstein” due to the fact that it was Einstein who first considered it in 1905.

The second step is relating the particle’s mobility (M ) to the medium’s viscosity.M is a

deterministic material property that relates the velocity(v) of a particle embedded in the medium

to the force (F ) applied to it viav = M ·F . The hydrodynamic calculation yieldsM = 1/6πηa

for a spherical particle of radiusa translating with velocityv in a Newtonian fluid with viscosity

η. This result, first carried out by Stokes in 1851, comprises the “Stokes” part of “Stokes-

Einstein”.

Finally, note that Eq. 2.31 is contains a constant (i.e. frequency/time-independent) viscosity.

However, it is clear from the preceding sections that most soft materials are viscoelastic, and

hence frequency-dependent moduli are necessary to describe their rheological response. Thus,

the final step will be to generalize the Stokes-Einstein relation to frequency- dependent material

properties.
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2.3.2 Einstein Component: relating diffusivity to mobility

The phenomena connected most directly with Brownian motionis diffusion: an ensemble of

small particles placed at a point in space will spread out in time, diffusing via Brownian motion.

Consider a collection of particles diffusing in one-dimension. Letc(x, t) be the concentration at

x andt. The process of diffusion is phenomenologically describedby Fick’s Law, which states

that if the concentration is not uniform, there will be a fluxj(x, t) which is proportional to the

spatial gradient of the concentration, i.e.,

j(x, t) = −D ∂c

∂x
, (2.32)

where D is the diffusivity, or diffusion constant. Owing to the minus sign on the right hand

side of Eq. 2.32, the flux of particles will always be from higher concentration regions to lower

concentration regions. Stated another way, in equilibrium, the flux is zero; whereas if the system

is driven out of equilibrium the flux acts to restore equilibrium. If there is an external potential

U(x) acting on the particles, then Fick’s Law must be modified. Thepotential exerts a force

F = −∂U

∂x
(2.33)

on the particles producing in a non-vanishing mean particlevelocityv which, assuming the force

is weak, is linearly related to F via

v = M · F = −M · ∂U
∂x

, (2.34)

whereM is the particle mobility. The average velocity of the particles in response to the external
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potential gives rise to an additional fluxcv which must be added to Eq. 2.32, such that the total

flux will be

j(x, t) = −D ∂c

∂x
− c(M · ∂U

∂x
). (2.35)

In equilibrium, the concentrationc(x, t) is independent of time and is given by the Boltz-

mann distribution

ceq(x) ∝ exp(−U(x)/kBT ). (2.36)

Detailed balance requires the net flux to vanish in equilibrium

j(x, t) = −D ∂

∂x
ceq −Mceq

∂U

∂x
= 0, (2.37)

so that substituting Eq. 2.36 into Eq. 2.37 yields

D = kBTM. (2.38)

This expression is commonly known as the Einstein relation.It relates a stochastic fluctuat-

ing quantity (diffusivity) to a deterministic mechanical property (mobility).

2.3.3 Stokes Component: relating particle mobility to material rheology

The functional form ofM for a spherical particle of radiusa steadily translating in a Newtonian

fluid was obtained by Stokes in 1851. For low-Reynolds numberflows, where viscous damping

dominates inertial effects, the Navier-Stokes equations as applied to fluid phases reduce to
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η∇2~u = ~∇p,

~∇ · ~u = 0. (2.39)

Here~u is the local velocity field of the incompressible flow far awayfrom sources and sinks

andp is the local pressure. Eqns 2.39 are known as the Stokes equations and can be readily

solved for~u, p by considering appropriate boundary conditions for the fluid at the the probe

particle surface (no-slip) and at infinity (bounded) to relate the probe mobility to the viscosity of

the medium.

Once solved for, the velocity field~u and pressurep can be used to determine the stress tensor

σαβ via

σαβ = −pδαβ + η(∇αuβ +∇βuα). (2.40)

Finally, the viscous drag on the particle is given by integrating Eq. 2.40 over the particle

surface:

Fα =

∫

S
σαβdSβ. (2.41)

For a sphere of radiusa translating through a fluid of viscosityη at constant velocity~v = vẑ,

Eqns. 2.39 yield the solutions:

uα(r̂)

v
=

3

4
a

(
δαz
r

+
zrα
r3

)

+
1

4
a3

(
δαz
r3
− 3zrα

r5

)

, (2.42)
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where~r is the distance from the sphere’s center andz is the displacement along the sphere’s

direction of motion. The pressure is given by

p(~r) =
3

2
ηa

~r · ~v
r3

. (2.43)

Substituting Eqns. 2.42 - 2.43 into Eqns. 2.40 - 2.41 and solving for the viscous dragζ via

~F = ζ~v, we obtainζ = 6πηa. The Stokes mobility is thus

M = ζ−1 = (6πηa)−1. (2.44)

Theηa combination could have been guessed from simple dimensional analysis of the drag

force. However the “6π” prefactor is a direct consequence of the no-slip boundary condition

for the fluid velocity field on the sphere’s surface. Interestingly, relaxation of the no-slip bound-

ary condition, e.g., as in the case of a deformable bubble, results in a prefactor value of “4π”.

Combining Eq. 2.44 with Eq. 2.38 yields the Stokes-Einsteinrelation, Eq. 2.31.

2.3.4 Generalized Stokes-Einstein Relation

The first assumption in the generalization of the Stokes mobility is that it adopts the same func-

tional form at all frequencies:

M∗(ω) =
η0

η∗(ω)
M = (6πη∗(ω)a)−1, (2.45)

i.e., simply replaceη0 with η∗(ω). The basis for this assumption can be found in the underly-

ing linearity of Eqns. 2.39 which, when solved in the non-inertial regime, admit viscous and
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viscoelastic solutions exhibiting isomorphic correspondence [119]. With this assumption, Ma-

son and Weitz [70], derived the relationship between the probe MSD and frequency-dependent

mobility starting from the Langevin equation:

mV̇ (t) = fR(t)−
∫ t

0
ζ(t− t′)V (t′)dt′, (2.46)

describing the dynamics of a spherical particle subject to aweak random forcefR(t) in an

isotropic linear viscoelastic material. Herem andV are the mass and velocity of the probe parti-

cle, respectively.ζ(t− t′) is the time-dependent hydrodynamic resistance, defined viaFH(t) =

∫ t
−∞ ζ(t − t′)V (t′)dt′ whose Laplace transform is the inverse of the mobilityζ̃(s) = M̃(s)−1.

Taking the Laplace transform of Eq. (2.46) and solving forṼ (s) yields

Ṽ (s) =
mV (0) + f̃R(s)

ms+ ζ̃(s)
, (2.47)

whereṼ (s) denotes the Laplace transform ofV (t) ands is the Laplace frequency. BecausefR

is a stochastic quantity,V (t) must be treated statistically. Multiplying Eq. (2.47) byV (t = 0)

and ensemble averaging gives

〈V (0)Ṽ (s)〉 = m〈V (0)2〉+ 〈V (0)f̃R(s)〉
ms+ ζ̃(s)

. (2.48)

Assuming that the random force is uncorrelated with the velocity: 〈fRV 〉 = 0 and equiparti-

tion: 1
2m〈V (0)2〉 = 1

2kBT , the Laplace transform of the velocity autocorrelation ford-dimensional

probe motion is thus
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〈V (0)Ṽ (s)〉 = dkBT

ms+ ζ̃(s)
. (2.49)

If the frequency is low enough that the resistanceζ̃(s) dominates over the probe inertiams

(typically < MHz for colloidal systems), then

〈V (0)Ṽ (s)〉 ≈ dkBT ζ̃
−1(s) = dkBTM̃(s). (2.50)

The neglect of inertia will be addressed in a later subsection. Finally the Laplace transform

of the velocity autocorrelation can be related to the MSD viathe identity

〈V (0)Ṽ (s)〉 = s2

2
L 〈∆r2(t)〉 ≡ s2

2
〈∆r̃2(s)〉, (2.51)

whereL denotes Laplace transformation, to give

〈∆r̃2(s)〉 ≈ 2dkBT

s2ζ̃(s)
≡ 2dkBT

s2
M̃(s), (2.52)

or

M̃ (s) ≈ s2〈∆r̃2(s)〉
2dkBT

. (2.53)

Eq. 2.53 is more commonly written in terms of the frequency dependent shear modulus̃G(s)

which is related to the probe mobilitỹM(s) via M̃(s) = (6πa G̃(s)
s )−1. The resulting expression

is known as the Generalized Stokes-Einstein Relation (GSER):
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〈∆r̃2(s)〉 = dkBT

3πasG̃(s)
. (2.54)

The GSER is the basis for all passive (thermal) microrheology. It states that the Laplace

transform of the probes’ MSD is related to the Laplace transform of the shear modulus of the

medium. An equivalent representation of Eq. 2.54 in terms ofthe Fourier components, more

commonly encountered in oscillatory macrorheological data, can be readily obtained via ana-

lytic continuations = iω. In practice, the Laplace or Fourier transformed MSD is typically

not obtained directly from the time-domain data since the dynamic range is limited to a few

decades in conventional measurement schemes. Instead, local power laws are used to approxi-

mate the time-domain MSD and the transforms are generated via algebraic expressions based on

the values of the power law exponents. More details of this procedure will be given in Section

3.3.6.

An alternate but, equivalent approach was used by Gittes et.al. [40] and Schnurr et. al. [93]

in their data analysis. Their experiments involved optically trapping of the probe particle and thus

the introduction of an additional force term into Eq. 2.46 which is more naturally analyzed via

the linear response function. The linear response functionα(t) relates the probe’s displacement

r(t) to a weak applied forceF (t) is defined via the relation

r(t)− r(0) =

∫ t

0
α(t− τ)F (τ)dτ. (2.55)

Taking the Fourier transform of this equation yields
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r(ω) = α(ω)F (ω). (2.56)

The Fluctuation-Dissipation Theorem (FDT) relates the power spectrum of the probe’s dis-

placementS(ω) = 〈∆r(ω)∆r(−ω)〉 to the imaginary part of the Fourier transform of the linear

response function:

S(ω) =
2dkBT

ω
α′′(ω). (2.57)

Onceα′′(ω) is obtained, the Kramers-Kronig relations can be used to obtain the real part

α′(ω) from the imaginary part [16]. The power spectrum representsthe informational endpoint

for microrheology of systems in thermal equilibrium, sinceit is equivalent to a measurement

of the response function as Eq. 2.57 attests. Eq. 2.57 is identical to Eq. 2.53, provided the

substitutions = iω and identityα∗(ω) = M∗(ω)/(iω) are made. A table summarizing the

connections between quantities measured in macroscopic linear rheology and probe dynamics

measured in microrheology is given in Table 2.1.
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Property Symbol Relation

Linear shear rheology
Shear relaxation modulus G(t) σ(t) =

∫ t
0 G(t− t′)γ(t′)dt′

Complex shear modulus G∗(ω) σ(ω) = G∗(ω)γ(ω)
Complex viscosity η∗(ω) G∗(ω) = −iωη∗(ω)
Creep Compliance J(t) iωJ∗(ω) = 1/G∗(ω)
Local probe response
Probe Mobility M(t) V (t) =

∫ t
0 M(t− t′)F (t′)dt′

Probe resistance ζ(t) F (t) =
∫ t
0 ζ(t− t′)V (t′)dt′

ζ̃(s) = M̃−1(s)

Linear response function α∗(ω) M∗(ω) = iωα∗(ω)
Probe statistics
Mean square displacement〈∆r2(t)〉 〈∆r̃2(s)〉 = dkBT

3πasG̃(s)

Positional Autocorrelation 〈r(t)r(0)〉 〈∆r2(t)〉 = 2− 2〈r(t)r(0)〉
Power Spectrum S(ω) = 〈∆r(−ω)∆r(ω)〉 S(ω) = 2dkBT

ω α′′(ω)
Two-Point MSD (MSD2) MSD2 = 2R

a 〈∆r1(t)∆r2(t)〉 MSD2 = 〈∆r2(t)〉 for homog.

Table 2.1: Relations between properties measured in macroscopic linear rheology and probe
dynamics in microrheology. Adapted from Ref. [99].
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2.3.5 One-point Microrheology

One-point passive microrheology uses the generalized Stokes-Einstein equation (GSER),

〈∆r̃2(s)〉 = kBT

πasG̃1(s)
, (2.58)

to determine the single-particle shear modulusG̃1(s) from the measured single-particle mean-

square displacement,〈∆r2(τ)〉 = MSD1 [70]. Here∆r̃2(s) is the Laplace transform of

∆r2(τ) as a function of Laplace frequencys, a is the particle radius, andkBT is the ther-

mal energy. Eq. (2.58) is the familiar Stokes-Einstein relation generalized to a frequency-

dependent viscosity,̃η(s) = sG̃1(s). Shear moduli andMSD1 may be readily converted be-

tween the Fourier, Laplace and lag time domains with simple numerical routines [70]. We will

discuss the approximations used to convert the MSD in more detail in Chapter 3. The GSER

accurately provides the experimenter with the background medium’s complex shear modulus,

G∗
bulk(ω) = G′(ω) + iG′′(ω) when the medium is homogeneous on the scale ofa. When the

sample is heterogeneous, this standard GSER relation can lead to significantly underestimated

shear moduli [59,61].

2.3.6 Limits of the GSER

The validity of one-point microrheology using the GSER to provide an accurate measure of the

complex shear modulusG∗(ω), for even simple homogeneous systems, to say nothing of real

complex materials, was far from certain prior to the year 2000. There were two main sources

of uncertainty. The first concerned the frequencies over which the GSER of Eq. 2.58 was valid.

Theoretical work by Levine and Lubensky [59, 60] showed thatthere exists a certain frequency
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range,ωc < ω < ωi, within which the probe particles’ dynamics provide an accurate measure

of G∗(ω) as measured in bulk rheology. The lower limit,ωc, is the frequency at which compres-

sional modes become significant compared to the shear modes that are excited in a polymeric

network. In bulk rheology, the applied strain has only a shear component, whereas the thermally

driven probe particle responds to all of the thermally excited modes of the system, including the

compressional modes of the elastic network. Consequently,the GSER would measure a different

G∗(ω) than bulk rheology. At frequencies lower thanωc the network compresses and fluid drains

from denser regions of the network to more rarefied regions ina sponge-like manner. Aboveωc,

the network “locks in” with the incompressible fluid with theresult that compressional modes

are suppressed. Consequently, the GSER should measure the sameG∗(ω) as bulk rheology. An

estimate of the lower crossover frequency,ωc, can be determined by balancing local viscous

and elastic forces. The viscous force per unit volume exerted by the solvent on the network is

∼ ηv/ξ2, wherev is the velocity of the fluid relative to the network,η is the viscosity of the

fluid, andξ is the mesh size of the network. The local elastic force per unit volume exerted by

the network isG′∇2u ∼ G′u/a2 at the bead surface whereu is the network displacement field

anda is the radius of the bead. Force balance dictates that viscous coupling between the fluid

and network will occur whenηv/ξ2 > G′u/a2, leading to a crossover frequency

ωc ≥
G′ξ2

ηa2
. (2.59)

For typical soft materials studied using passive microrheology, G′ ≈ 0.1Pa, η ≈ .001Pa s,

andξ ≈ 0.1 a this leads toωc ≈ 1Hz.

The upper limit,ωi, is the frequency at which inertial effects set in at the length scale of
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the bead. Recall that one of the assumptions in the derivation of the GSER in Eq. 2.54 was

the neglect of inertia. Shear waves propagated by the motionof the tracer decay exponentially

from the surface of the bead through the surrounding medium.The characteristic length scale

of the decay is called the viscous penetration depth and is proportional to
√

G/ρω2 whereρ is

the density of the surrounding fluid andω is the frequency of the shear wave [36,60]. When the

viscous penetration depth becomes comparable to the size ofthe bead, inertial effects become

significant and cannot be neglected. For a particle of of radiusa, this occurs at a frequency given

by

ωi =

√

G

ρa2
. (2.60)

For typical soft materials studied using passive microrheology,G ≈ 0.1Pa, ρ ≈ 1000 kg/m3,

anda ≈ 0.5µm this leads toωi ≈ 20 kHz. Note that this is much higher than in macrorheo-

logical measurements where a viscous penetration depth ofO(mm) leads to the onset of inertial

effects at∼ 50 Hz. From these analyses, we find under typical conditions alarge frequency

range1Hz < ω < 20 kHz where the GSER accurately measures the shear modulus..

The second source of uncertainty concerned local inhomogeneities in the sample induced by

the presence of the probe particles. Consider the situationsketched in Figure 2.9. If the tracers

locally modify the structure of the medium, or sample only pores in an inhomogeneous matrix,

then bulk rheological properties will not be determined. Such subtle effects called into question

the widespread applicability of colloidal probe based microrheology. Along with knowledge

about sample homogeneity, the proper interpretation of allmicrorheology methods also relies on

knowing the boundary conditions at the probe/soft materialinterface and the shape of the strain
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Figure 2.9: Schematic of situation in which particles are embedded in pores with a different
compliance than the bulk material.

field, which can be poorly controlled compared to a macroscopic rheometer.

Two-point microrheology (TPM) [26] uses the correlated motion of two well separated trac-

ers to measure the rheological response, with the effect that the measurement becomes insensitive

to tracer boundary conditions [59,61]. This robustness canbe turned around to study the nature

of the probe boundary conditions with the matrix [18, 100] and even inertial effects [9]. While

much early TPM work used an image-based passive approach, ithas been adapted to dynamic

light scattering [83] and optical tweezer-based instruments [53].

2.3.7 Two-point Microrheology

Particles immersed in a fluid excite long-ranged flows as theymove, and similarly move in

response to fluid motion. By generating and reacting to a fluid’s local velocity, colloidal particles

experience hydrodynamic interactions with each other and with the walls of their container.

These interactions, in turn, are dominated by the large-scale ‘bulk’ properties of the medium

rather than ‘local’ regions surrounding the tracers that may arise due to sample inhomogeneity

or boundary effects at the particle-material interface. Two-point microrheology takes advantage
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Δr1(τ) Δr2(τ)
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Figure 2.10: Schematic of two-point displacement component. In this depiction the longitudinal
componentDrr = 〈∆r1(τ)∆r2(τ)〉 is the product of the displacement component projected
along the line separating the tracers by distanceR, with R≫ a ideally.

of the interparticle coupling to robustly extract bulk material properties in the face of these

potentially confounding influences.

Two-point microrheology is based on cross-correlating theequal-time displacements of pairs

of tracers. Ensemble and time averaging such products over all trajectory pairs yields a mobil-

ity correlation tensor,Dαβ , that reports the degree of correlation between the tracers’ random

motion during lag timeτ versus their separationR:

Dαβ(r, τ) = 〈∆riα(t, τ)∆rjβ(t, τ)δ[r −Rij(t)]〉i 6=j,t, (2.61)

wherei andj denote different particles,α andβ denote different coordinates, andRij is the

distance between the distinct particlesi and j. Spatially,Dαβ(r, τ) can be decomposed into

a longitudinalDrr and transverseD⊥ components, where the former is the component of the

motion along the center-to-center separation vector of thetwo tracers (depicted in Figure 2.10),

while the latter two are the components orthogonal to the separation vector. To lowest order in
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a/R, the off-diagonal components (e.g.Dr⊥) are negligible relative to these. For an incom-

pressible medium, the amplitudes are related via

D⊥ =
1

2
Drr, (2.62)

Typically,Drr is the strongest component and hence easiest to measure in experiments from

a signal-to-noise perspective. Moreover, to lowest order in a/R, Drr depends only on the shear

modulus of the medium [59, 61]. By contrast, theD⊥ terms have, to lowest order ina/R,

dependencies on the bulk modulus as well. This dependency can be turned around to measure

frequency- and lengthscale-dependent compressibility using microrheology via the ratioD⊥

Drr
≤

1
2 (= 1

2 for an incompressible medium). Accordingly, the shear modulus may be determined

using the relation

D̃rr(R, s) =
kBT

2πRsG̃(s)
, (2.63)

whereD̃rr(R, s) is the temporal Laplace transform ofDrr(R, τ). It is instructive to derive Eq.

2.63 using the Oseen tensor analysis utilized in Ref. [71]. The overdamped Langevin equa-

tion with pairwise hydrodynamic coupling yields the equations of motion for a collection of N

particles:

vi(t) =
N∑

j=0

Hij(ri − rj)fj(t) + ηi, (2.64)

here the velocity of a particle is the sum of both self (i = j) and distinct (i 6= j) terms represent-

ing hydrodynamic coupling to deterministic external forces fi(t) and stochastic noiseηi(t). The
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hydrodynamic mobility tensor,Hij, is the Oseen tensor and has the components:

Hii(R) =
I

ζ
, Hij(R) =

1

8πηR
(I+ r̂r̂), (2.65)

whereζ = 6πηa is the Stokes drag of a sphere of radiusa in a Newtonian liquid of viscosityη,

I denotes thed × d-dimensional identity matrix,̂r is a unit vector along the vector connecting

the centers of two particles separated by distanceR. Eq. 2.65 is derived from solving the Stokes

equations and is essentially a Green’s function for a point force solution [32, 88]. It is apparent

from Eq. 2.65 that interparticle coupling does not depend onthe radius of the particles. The

elements of the Oseen tensor in Eq. 2.65 are the leading ordercomponents (O(a/R)). The next-

to-leading order components areO[(a/R)4] for the diagonal elements andO[(a/R)3] for the

off-diagonal elements [11]. Brownian forces are represented by the stochastic noise termηi(t)

and satisfy the statistical properties:

〈ηi(t)〉 = 0, 〈ηi(t)ηj(t′)〉 = 2kBTHij(ri − rj)δ(t− t′). (2.66)

Eq. 2.66 assumes that the random forces are consistent with Gaussian white noise with zero

mean and also with the FDT. Explicitly, for two particles 1 and 2, Eq. 2.64 yields the coupled

equations:

v1(t) = H11f1(t) +H12f2(t) + η1(t)

v2(t) = H21f1(t) +H22f2(t) + η2(t)

. (2.67)

In the absence of external forcesf1(t) = f2(t) = 0, Eqns. 2.67 reduce tovi(t) = ηi(t).

Computing the ensemble average of the cross-correlation〈v1(t)v2(t
′)〉 yields
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〈v1(t)v2(t′)〉 = 〈η1(t)η2(t′)〉

= 2kBTH12(r1 − r2)δ(t− t′)

=
kBT

4πηR
〈I+ r̂r̂〉δ(t − t′)

=
kBT

2πηR
δ(t− t′). (2.68)

Taking the Laplace transform of Eq. 2.68 and using the identity 〈ṽ1(s)ṽ2(s)〉 =

s2〈∆r̃1(s)∆r̃2(s)〉 = s2D̃rr(R, s) and the frequency generalizationη̃(s) = G̃(s)s−1 yields Eq.

2.63 . Significantly, Eq. 2.63 has no explicit dependence ona, suggesting that it is independent of

the tracer’s size, shape and boundary conditions with the medium in the limitR≫ a. This is the

signal advantage of two-point measurements that has enabled it to surmount the inhomogeneity

issue that limited ‘blind’ application of the GSER in microrheology. Eq. 2.63 can be rendered

identical to the one-point GSER in Eq. 2.58, provided the identification

〈∆r̃2(s)〉 = 2R

a
D̃rr(R, s), (2.69)

is made. Eq. 2.69 suggests that a two-point MSD (MSD2) can be defined from theDrr(R, τ)

component, by mulitplying by a geometric prefactor2R/a:

〈∆r2(τ)〉2 =
2R

a
Drr(R, τ), (2.70)
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Eq. 2.70 represents the MSD of a tracer in a medium in which affine extrapolation of the large-

scale strain field down to the particle length scale is valid.If the material is homogeneous,

isotropic on length scales significantly smaller than the tracer, incompressible, and connected

to the tracers by uniform no-slip boundary conditions over their entire surfaces, then the two

MSDs will be equal〈∆r2(τ)〉2 = 〈∆r2(τ)〉. If these boundary and homogeneity conditions are

not satisfied, the two MSDs will be unequal. In this case, using the MSD2 in the GSER will

still yield the “bulk” rheology of the material (on the long length scale “R”), while using the

MSD1 will report a rheology that is a complicated superposition of the bulk rheology and the

local rheology of the material at the tracer boundary [59,61]. We will discuss this in more detail

in the next section.

2.3.8 Electrostatic Analogy

The introduction of particles into an otherwise homogeneous medium can perturb the medium

out to a radius larger than the particle size as shown in Figure 2.11. This perturbation can

be a result of a reduction of density of the material near the particle’s surface, as in the case

of depletion. This density reduction leads to a spatially inhomogeneous elastic constant tensor

Kijkl(x, ω). Assuming that the stress-strain relation remains local, the equation for displacement

variables is

−∂j[Kijkl(x, ω)∂kul] = fi(x, ω), (2.71)

wherefi(x, ω) is the force density that acts on the surface of the particles. The displacement

responses of the collection of particles to forces upon themcan be described by the two-particle

46



a

b

G(ω)

G(ω)

Figure 2.11: Schematic of a particle of radiusa embedded in a viscoelastic medium with shear
modulusG(ω). The presence of the particle perturbs the medium out to a spherical pocket of
radiusb with a modified shear modulusG(ω).

response function or compliance tensorα
(nm)
ij :

Rn
i (ω) = α

(nm)
ij (rn − rm, ω)Fm

j (ω), (2.72)

whereRn
i is the displacement vector ofnth particle andFm

j is the force on themth particle. The

central question is whether the self components of the compliance tensorα(nn)
ij have a different

dependence on the bead imposed heterogeneities ofKijkl(x, ω) than the distinct components

α
(nm)
ij do. If so, then it will be possible to distinguish the bulk homogeneous part from the local

bead imposed part by measuring the different components ofα
(nm)
ij .

In order to address this question, Levine and Lubensky [59,61] made an analogy to a simpler,

but related, problem encountered in electrostatics, that of determining the bulk dielectric constant

of a medium by measuring the self- and mutual- capacitances of metal spheres whose presence

perturbs the dielectric constant in their vicinity. If the dielectric constant,ǫ(x, ω), remains local,

then the potential,φ(x, ω), satisfies

−∇ · [ǫ(x, ω)∇φ(x, ω)] = 4πρ(x), (2.73)
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(A) electrostatics

(B) viscoelastics
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Figure 2.12: (A) Schematic of electrostatic system in whichconducting sphere of radius a perturb
an otherwise uniform medium of dielectric constantǫ out to a radius b with dielectric constant
ǫ. (B) Similar schematic of elastic system in which rigid spheres perturb an elastic medium with
Laḿe coefficientsµ, λ out to a spherical region with Laḿe coefficientsµ, λ. Adapted from Fig.
1 of Ref. [59].

whereρ(x) is the charge density atx. It is clear from the structure of Eq. 2.71 and Eq. 2.73

that there is an analogy between the electrical and rheological problems with the identification:

φ ←→ u, ǫ ←→ Kijkl, andρ ←→ f . Thus, solving the simpler electrostatic problem for

these quantities will yield insight into the complementaryquantities in the elastic problem. For

example, the total chargeQ on a metal sphere is the analog of the total forceF on a bead in the

viscoelastic medium. The inverse capacitance tensorC−1
nm defined by

φn = C−1
nmQm, , (2.74)

whereφn is the potential on beadn andQm is the total charge on beadm, is the analog of the

compliance tensor:C−1
nm ←→ α

(nm)
ij (ω). This electrostatic analogy is illustrated in Figure 2.12
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and summarized in Table 2.2.

Electrostatics Viscoelastics
Potentialφ(x) Displacementui(x)
Charge Densityρ(x) Force densityfi(x)
Dielectric tensorǫij(x, ω) Elastic tensorKijkl(x, ω)

Inverse capacitance tensorC−1
nm Compliance tensorα(nm)

ij (ω)

Table 2.2: Correspondence between electrostatics and viscoelastics.

To solve Eq. 2.74 forC−1
ij , the method of images can be used to iteratively fix the potential

(φ = const) on each conducting sphere induced by the charge from the other spheres and from

induced charges in its own cavity. The resulting convergentseries may be truncated at the lowest

order in reflections. In general, each higher order of reflection leads to a multiplicative factor of

a/r or b/r in the series, which become negligible in the limit of interest a/r −→ 0. Levine and

Lubensky found that to lowest order ina/r, the inverse self-capacitance is

C−1
11 =

1

4πǫa

[

1 +

(
b

a
− 1

)(

1− ǫ

ǫ

)]

. (2.75)

This result shows that fluctuations of a single bead are sensitive to both the local dielectric

constant (ǫ) and bulk dielectric constant (ǫ) around the bead and therefore do not permit an

unambiguous determination of the bulk dielectric constantǫ. On the other hand, the inverse

mutual capacitance

C−1
12 =

1

4πǫr

[

1 +O
(a

r

)]

, (2.76)

depends only on the bulk dielectric constant to leading order in a/r. Thus correlated voltage
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fluctuations,〈φ1(ω)φ2(−ω)〉 = 2(T/ω)ImC−1
12 (ω), yield a direct measurement ofǫ(ω) pro-

vided the beads are far enough apart thatC−1
12 ∼ 1/r. Based on these results for the electrostatic

problem, it is expected that similar dependencies will be found for the two-particle response

tensorα(nm)
ij . The calculation is more complicated in the elastic problemsince the displacement

field, the quantity analogous to the potential, has more components and hence more boundary

conditions at the interfaces. Nonetheless, carrying out a similar analysis for the elastic problem,

Levine and Lubensky [61] find for the self-componentα
(1,1)
ij of the response function in the

two-shell medium of Figure 2.12B:

α
(11)
ij =

1

6πµ(ω)a
Z(λ, λ, µ, µ, a, b)δij . (2.77)

HereZ is a numerical factor that depends on the size of the perturbed pocket and both

the bulk (µ(ω), λ(ω)) and local (µ(ω), λ(ω)) Laḿe coefficients. As in the electrostatic case,

fluctuations of a single bead will not yield unambiguous measurements of the bulk rheology

unlessb = a and(µ, λ) = (µ, λ).

To compute the cross component,α
(21)
ij , of the response tensor relating the displacement of

bead 2 to the force applied on bead 1, it was found that the response could be decomposed into

parallel (α‖) and perpendicular (α⊥) components along the separation vectorr connecting the

center of the two spheres:

α
(21)
ij = α‖(r)r̂r̂ + α⊥(r)(δij − r̂ir̂j), (2.78)

where, to lowest order ina/r, the response along the line of centers is given by
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α‖ =
1

4πrµ(ω)
, (2.79)

and the response perpendicular to the line of centers is

α⊥ =
1

8πrµ(ω)

[
λ(ω) + 3µ(ω)

λ(ω) + 2µ(ω)

]

. (2.80)

Thus fluctuations parallel to the separation vector depend only on the bulk shear modulus,

µ(ω) = G(ω), whereas those perpendicular to the line of centers depend on both the bulkλ

andµ. The former result is consistent with Eq. 2.63, derived in the previous section for a

homogeneous incompressible fluid. The latter result enables an experimental determination of

frequency-dependent compressibility in viscoelastic materials via the ratio ofα⊥(ω)/α‖(ω).

For incompressible materialsλ(ω) −→ ∞, the ratio of responsesα⊥/α‖ = 1/2, which is

consistent with the results obtained for the ratio of particle diffusivitiesD⊥/Drr for two-point

microrheology in a homogeneous incompressible fluid from the previous section. The ability

of two-point microrheology to isolate and measure distinctcomponents of the shear, bulk, and

elastic moduli is also a major advantage over one-point techniques. In principle, two-point

methods can be extended to determine the elements of the stiffness tensor for lower symmetry

phases such as crystalline or nematically-ordered liquid crystalline phases.

2.4 Active Microrheology

So far we have focused on the basic theory of passive microrheology measurements utilizing

broadband thermal energy to excite fluctuations that can be related to the materials’ underlying
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linear rheology via the FDT. An alternative approach is to apply a gentle external force to the

particle (via e.g. optical or magnetic tweezers) and to measure the amplitude and phase of its

resulting displacement relative to that of the applied external force. The principle is the same

as an oscillatory macroscopic rheometry measurement, however there are several notable dif-

ferences in practice. First, there is a difference in lengthscales probed. Just as in the case of

passive microrheology, the active microrheological measurement is more prone to the confound-

ing effects of micron-scale inhomogeneities than macrorheology. In macrorheology the length

scale of the deformation is much larger than any of the material’s intrinsic length scales with

the consequence that “bulk” rheology is always measured. However, the smaller length scale

of active microrheology measurements is not entirely disadvantageous. For example, inertial

effects, which arise at high frequencies when the viscous penetration depth is comparable to the

sample thickness, can severely limit the upper frequency range of macrorheology measurements

(typically < 100 Hz). The micrometer length scales of microrheology measurements enable

probing of much higher frequency measurements, owing to thefact that the frequency criterion

for the dominance of inertial effects isω ≥
√

G/ρℓ2 whereG is the shear modulus,ρ is the

density of the surrounding fluid, andℓ is the length scale of the shear deformation (ℓ = a for

microrheology) [36,60]. Finally, a more subtle effect is that the strain field around an oscillating

probe is not viscometric (shear-only) but rather contains both shear and extensional components.

At low frequencies in viscoelastic gels, for example, fluid can freely drain from the network,

effectively decoupling the two and causing micro/macro disagreement [60]. No analog occurs

in macroscopic rheometry as the strain field is viscometric (pure shear).

Active microrheology inherits many of the features of passive microrheology, but offers at
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Figure 2.13: (A) Schematic of one-particle active microrheology measurement. An optically
trapped particle is driven sinusoidally by the trapping laser and its position is detected. (B)
Diagram of forces on a particle in an oscillating optical trap embedded in a viscoelastic medium.

least one potential and significant advantage: because the FDT constrains passive microrheology

to the materials’ linear response, it is conceivable that active microrheology can be used to

extend microrheology to characterize the nonlinear rheology of complex fluids [97, 98]. This

could be accomplished using an optical trap, for example, byincreasing the amplitude of the

trap displacement to be much larger than the probe size over aduration much shorter than the

Brownian relaxation time of the material.

To illustrate active microrheology, we work out a simple example of a one-particle measure-

ment using an oscillatory optical tweezer setup, depicted schematically in Figure 2.13A. The

forces on the particle are shown in Figure 2.13B.

The probe particle’s response is described by the equation of motion

mẍ = −6πaη∗(ω)ẋ+ k(Ae−iωt − x), (2.81)

whereA is the displacement amplitude of the oscillating trap,k is the trap stiffness,a is the

particle radius, andη∗(ω) = η′(ω)−iη′′(ω) is the complex dynamic viscosity of the viscoelastic
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medium. Note that in Eq. 2.81 we are treating the displacement x as a complex quantity as well

in order to simplify the mathematical manipulations that follow. The optical trap is approximated

as a harmonic well and the restoring force on the particle is given by the difference between the

particle’s position and the position of the minimum of the oscillating trap. The general solution

for the position of the particle is

x(t) = D(ω)e−i[ωt+δ(ω)], (2.82)

where δ(ω) is the phase lag between the particle and the trap, andD(ω) is the frequency-

dependent amplitude of the particle’s position. Since the system is overdamped, we can safely

ignore themẍ inertial term in Eq. 2.81 and substitute Eq 2.82 into Eq. 2.81to solve forD(ω)

andδ(ω). This yields

D(ω) =
kAeiδ(ω)

(k − 6πaωη′′(ω))− i(6πaωη′(ω))
(2.83)

δ(ω) = tan−1

[
6πaωη′(ω)

k − 6πaωη′′(ω)

]

. (2.84)

For the simple case of a particle in a Newtonian fluid whereη′(ω) = η0 andη′′(ω) = 0,

Eqns. 2.83 - 2.84 can be succinctly written

d(ω) =

∣
∣
∣
∣

D(ω)

A

∣
∣
∣
∣
=

1
√

1 + (τω)2
(2.85)

δ(ω) = tan−1(τω), (2.86)
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Figure 2.14: Normalized displacement and phase as a function of frequency for typical parame-
tersa = 2.0µm, η0 = .001Pa s, k = 1× 10−6 N/m.

whereτ = 6πη0a/k. Eq. 2.85 is the amplitude of the particle displacement normalized by the

amplitude of the oscillating trap. It is clear that for low frequencies (ω ≪ 1/τ ), the particle is

able to displace with the trap (D(ω)/A ≈ 1), whereas forω ≫ 1/τ , the particle’s displacement

amplitude will roll off to zero. Concomitantly, the phase lag δ(ω) increases from 0 forω ≪ 1/τ

to π/2 for ω ≫ 1/τ as shown in Figure 2.14.

It is also useful to solve for the one-particle response function α∗(ω) = x(ω)
Ftrap(ω)

for the

particle in the oscillating trap embedded in a viscoelasticmedium

α∗(ω) =
D(ω)e−iδ

kA
=

1

(k − 6πaωη′′(ω))− i(6πaωη′(ω))
. (2.87)

Written in terms of real and imaginary componentsα∗(ω) = α′(ω) + iα′′(ω), Eq. 2.87

becomes
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α′(ω) =
k − 6πaωη′′(ω)

(k − 6πaωη′′(ω))2 + (6πaωη′(ω))2
(2.88)

α′′(ω) =
6πaωη′(ω)

(k − 6πaωη′′(ω))2 + (6πaωη′(ω))2
. (2.89)

For the simple case of a particle in a Newtonian fluid whereη′(ω) = η0 andη′′(ω) = 0,

Eqns. 2.88 - 2.89 can be succinctly written

α′(ω) =
1

k(1 + τ2ω2)
(2.90)

α′′(ω) =
τω

k(1 + τ2ω2)
, (2.91)

whereτ = 6πη0a/k. A typical response function is plotted in Figure 2.15. At low frequencies,

the particle is able to follow the trap, resulting in a purelyreal and flat response function. At

higher frequencies, the particle is unable to fully follow the trap and the phase lag increases,

resulting in a decrease of the real component and an increasein the imaginary component of the

response function. Finally, at the highest frequencies there is complete loss of phase coherence

between the particle and the trap with the consequence that the particle’s motion approaches

that of constrained diffusion along a “line” traced by the trap’s spatial trajectory [35]. The latter

effect has been exploited to improve statistical power in microscopy-based colloidal interaction

studies utilizing line-scanned optical traps [25,111].

Alternatively, Eqns. 2.81 and 2.82 can be solved directly for the complex shear modulus

G∗(ω) by making use of the relation between the complex shear modulus and complex viscosity
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Figure 2.15: Real and Imaginary components of the response function for typical parameters
a = 2.0µm, η0 = .001Pa s, k = 1× 10−6 N/m.

G∗(ω) = −iωη∗(ω). Doing so yields the storage and loss moduli

G′(ω) =
k

6πa

[
A cos δ(ω)

D(ω)
− 1

]

G′′(ω) =
k

6πa

[
A

D(ω)
sin δ(ω)

]

. (2.92)

Finally, we consider two-particle active microrheology measurements, as illustrated in Fig-

ure 2.16A. The only additional consideration in two-particle active microrheology is that the

response function becomes tensorial, namelyxn(ω) = αnm(ω)Fm(ω), wherexn is the motion

of thenth particle,Fm is the external force on themth particle, andαnm is the response tensor

of the system withn,m = 1, 2. Much of the formalism required to understand these considera-

tions has been covered in the previous sections on two-pointmicrorheology and the electrostatic
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analogy. Here we simply set up the framework for the determination ofα∗
nm .

(A)

(B)

Acos(ωt)

1 2

Ftrap1 = k
1
(Ae-iωt - x1)

Fdrag = 6 πη*(ω)av
1

Ae-iωt

x1

Ftrap2 = k
2 
Δx

2

Fdrag = 6 πη*(ω)av2
x2

xtrap2

Δx2{

F2 = H
21

Ftrap1

F1 = H
12

Ftrap2

Figure 2.16: (A) Schematic of two-particle active microrheology measurement. Particle 1 is
optically trapped and driven sinusoidally by a trapping laser and the position of particle 2 is
detected. (B) Diagram of forces on particles where particle1 is in an oscillating optical trap
while particle 2 is held in a stationary trap.

For the situation sketched in Figure 2.16B in which two particles embedded in a homoge-

neous viscoelastic medium are optically trapped with particle 1 being oscillated while particle

two is held fixed, the coupled equations of motion that must besolved are

ẋ1(t) = H11[k1(Ae
−iωt − x1)] +H12[k2∆x2]

ẋ2(t) = H21[k1(Ae
−iωt − x1)] +H22[k2∆x2]

, (2.93)

where

H11 = H22 =
1

6πaη(ω)
, H12 = H21 =

1

4πRη(ω)
(2.94)

are the lowest order components, in1/R, of the generalized Oseen tensor for motions along the
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separation vectorR. Note that in writing down Eq. 2.93 we have neglected inertiaand random

thermal forces. The latter condition tacitly assumes thatFtrap1,2 ≫ FR. In order to determine

the mutual component of the two-particle response functionα∗
21(ω), Eqns. 2.93 must be solved

following a similar, albeit more mathematically complicated, protocol as Eqns. 2.81 - 2.89.

A two-particle implementation of active microrheology offers many advantages over one-

point active measurements. Just as in the passive case, these include: robustness with respect

to tracer boundary conditions, the ability to extract largescale bulk rheology, and the ability

to measure compressibility. Moreover, two-point implementations of active microrheology can

potentially enable measurement of the linear and nonlinearelasticity of low-symmetry systems

such as crystalline or nematic liquid crystalline phases.
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Chapter 3

Experimental Methods

3.1 Introduction

The work in this thesis relies heavily on digital video microscopy. This chapter will detail the

methods used in the experiments described in Chapters 4-6. In particular, a detailed description

of the experimental protocols will be given, along with a discussion about relevant experimental

conditions and sources of experimental errors. The generalprocedures used for sample prepara-

tion are also described. Figure 3.1 schematically illustrates the workflow of a typical microrheol-

ogy experiment. With the exception of the last section, the remainder of this chapter is organized

according to the steps in the workflow sequence of Figure 3.1.The last section of this chapter

covers active microrheology using oscillating optical tweezers, relevant to the work of Chapter

5.
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Figure 3.1: Workflow of a typical particle tracking microrheology experiment.

3.2 Selection of Tracer Particles

Choice of tracer particles can critically affect particle tracking microrheology results [109].

Among the most important considerations are size of the tracer particles, density of particle

relative to the background fluid, and surface chemistry of the particle.

3.2.1 Tracer Particle Size

The biggest consideration in selecting the tracer particlesize is the characteristic size of struc-

tures in the material of interest. For example, polymer networks are characterized by a mesh size

ξ, which depends in part on the polymer concentration. If information about the bulk rheology

of the network is desired, as determined from macrorheology, then the ideal particle will have a

radiusa that is larger thanξ (Figure 3.2A). If tracers are selected which are much smaller than

the mesh size, then they will “slip” through the network, andthey will not provide an accurate

measure of the bulk rheological response of the network (Figure 3.2B). On the other hand, parti-

cles larger than the mesh size can only report the bulk rheological response of the network; their

motions will not yield information about the pore size distribution of the material. As a rule, it is
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useful to have an idea of the characteristic length scales ofthe material before choosing the size

of the probes. In practice, particle radiusa is limited to the range200nm < a < 10µm. The

lower limit is due to the optical resolution of the microscope. The image processing algorithm

requires at least 5 pixels for the particle centroid to be determined with high fidelity. The upper

limit arises because to the particles become ‘non-Brownian’, with thermal fluctuations reduced

below a measurable level.

ideal (a > ξ)

ξ
a

slip (a < ξ)

(A) (B)

Figure 3.2: (A) The ideal particle for determination of bulkrheology using microrheology is
larger than sample mesh size. (B) Particles that are much smaller will “slip” through the network,
and their motions not reflect the bulk rheology.

3.2.2 Particle Density

Sedimentation can be a problem in particle-based microrheology measurements. In severe in-

stances, sedimentation can drive the system out of equilibrium and/or limit the probe’s residence

time in the imaging volume. These effects limit the measurement duration and statistical resolu-

tion of the experiment. The velocity (vsed) of a sedimenting probe illuminates the role of various

parameters involved. A simple force balance, between gravitational density mismatch and the

Stokes drag experienced by a non-interacting single particle in a purely viscous fluid, gives an

expression for the sedimentation velocity
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vsed =
2a2∆ρg

9η
, (3.1)

wherea is the radius,η is the viscosity,g is gravity, V is the particle volume, and∆ρ is the

difference in density between the particle and the fluid displaced by the particle. In order to

minimize sedimentation, density matching of the particle and solvent is the surefire approach.

In practice, however, it is often impossible or inconvenient to precisely density match. In this

situation, working with smaller particles can decrease theeffects of sedimentation. In general,

the larger the probe particle, the more precise the density matching must be in order to achieve

a givenvsed. Other than decreasing the density mismatch, Eq. 3.1 suggests that increasing the

viscosity,η, may also counteract sedimentation due to density or size differences.

Another complication of sedimentation in microrheology experiments is that over time the

probe particles will settle near the bounding surface of thedensity mismatched sample. The

equilibrium distribution of the particle number density,N(z), as a function of the height z above

the bounding surface, is readily predicted by the Boltzmanndistribution

N(z)

N(0)
= e−∆ρV gz/kBT , (3.2)

whereN(0) is the probe density at the surface. Ideally, probe concentration should be uniform

and low (φ ≈ 10−4). Higher densities can render the tracking algorithms inefficient, e.g., by

disrupting the unique identification of the particles due tospatial overlap. Moreover, proximity

to the boundary can complicate interpretation of microrheology results, as will be discussed in a

later section.
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3.2.3 Surface Chemistry

Nearly all beads commonly employed in colloidal studies require surface chemistry modifica-

tions in order to stabilize them against flocculation. This is most commonly accomplished by

coating the particle surface with charged groups or by adding a layer of polymer for steric sta-

bilization. Charge functionalization schemes such as adding carboxylate (−COOH), amine

(−NH4), or sulfonate (−SO4) groups on polystrene (PS) particles, or hydroxyl (−OH) groups

on silica (Si) particles, is best for aqueous systems of low ionic strength (< 10mM ). These

groups ionize in water, releasing theirH+ counterion, with the result that the particle becomes

charged and repulsively stabilized. For a10mM NaCl solution, the screening length is≈ 3 nm.

The long range nature of the electrostatic repulsion keeps the particles far apart, keeping the par-

ticles from feeling the relatively shorter range minima of nonspecific attractive interactions such

as van der Waals and depletion. At higher ionic strengths, orif divalent counterions are present,

the charges on the spheres will be screened and flocculation will generically occur. By contrast,

steric stabilization is better suited for stabilizing short range attractive forces such as the van der

Waals forces that are ubiquitous whenever the particle and solvent are index mismatched. In

practice, we have found carboxlyate PS spheres to be the mostuseful non-stick surface chem-

istry for most uncharged polymers in aqueous systems such aspolyethylene oxide (PEO) under

typical conditions. For samples of more highly charged species such as biopolymers or bacteria,

Bovine Serum Albumin (BSA) is a useful blocking agent. Typically, incubating the spheres in a

0.1 wt % BSA is sufficient to coat them.
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3.2.4 Microscope Slide Chamber

For most of the experiments in this thesis, the samples (i.e., material + particles) were mixed and

loaded into microscope chambers made of a microscope slide and coverslip attached with either

heated parafilm, 5-minute epoxy, or UV-curable optical glue. A typical chamber construction

used for aqueous samples is shown in Figure 3.3. The sample chamber is constructed by sand-

wiching two parafilm strips cut into an L-shape between a microscope slide and a coverslip. The

narrow opening on both opposite ends is necessary for fillingthe chamber with capillary forces.

Heating the construction on a hotplate at a moderate settingfor ∼ 10 seconds is sufficient to

melt the parafilm, and gently pressing on the coverslip with apair of tweezers is sufficient to

adhere the coverslip to the slide. In practice, this procedure reproducibly yields chambers with

a thickness of 50 - 80µm. Thicker samples may be produced by stacking more parafilm layers,

with each layer contributing a multiple of 50-80µm, up to at least 4 layers. After loading the

sample chamber, the two open ends can be hermetically sealedwith epoxy or UV-curing optical

glue. Aqueous samples can last for approximately a week in these chambers with no visible sign

of sample evaporation (e.g., air bubbles).

para�lm strips

coverslip

microscope

 slide

Figure 3.3: Sample chamber construction used in typical experiments.

If longer lifetime chambers are desired or if non-aqueous (e.g. organic solvents) samples are
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to be used, then the chamber seals should be constructed of optical glue (Norland) or epoxy (De-

vcon) instead of parafilm. The principle of the constructionis the same, including the necessity

of leaving a gap for facile loading. Control of the chamber thickness can be achieved using com-

merically available spacers (McMaster-Carr). In practice, these chambers can last several weeks

without visible evaporation. Ultimately, the lifetime depends on the volatility of the solvent.

3.3 Digital Video Microscopy

The ability to quantitatively track the motion of micron-sized probe particles is critical to our

work. To do this, we need an optical microscopy system with high resolution imaging capabil-

ities, and also high-quality image processing algorithms to analyze the recorded image data. In

this section, we describe the methods of digital video microscopy that were used to obtain and

process the images in this thesis.

Methods of digital video microscopy are by now standard, anddetailed information is read-

ily available in the form of textbooks, methods articles, and websites. Much of the descriptions

in this section are sourced from these references. For details on the microscope’s inner workings,

the textbook on video microscopy by Inoué and Spring [51] is an excellent source of information.

The best resources for the image processing methods employed in this thesis are the methods ar-

ticles by Crocker and Grier [23] and, more recently, by Crocker and Hoffman [24]. An excellent

systematic study of static and dynamic errors in particle tracking is contained in articles by Savin

and Doyle [91, 92]. Eric Week’s group maintains a website [115] that is a valuable resource for

the particle tracking community. In addition to having a detailed tutorial on particle tracking, it

is also an aggregator of source code for particle tracking inIDL, MatLab, and C++. All of the

66



IDL routines referenced in this chapter are freely available for download there.

The purpose of this section is not to replicate the material in the aforementioned articles, but

rather to present a general picture and provide references for the specific details. We will focus

instead on highlighting topics that are not addressed in theexisting literature and experimental

details are particular to the suite of experiments in this thesis.

3.3.1 Microscope

In its simplest form, an optical microscope consists of two positive lenses: an objective lens of

short focal length that images the object and a magnifier thatfunctions as an eyepiece. Most mod-

ern microscopes use infinity-corrected optics, i.e., the objective forms the intermediate image at

infinity (rays are parallel) and another lens to focus the intermediate image before the eyepiece.

The advantage of this design is that additional elements (e.g. polarizers, prisms, dichroic flats,

spatial filters, etc.) can be inserted into the optical trainas needed since the light will remain

parallel so long as the elements do not focus the rays.

A bright field microscope image is the consequence of the interference of direct light from

the light source and transmitted light diffracted by the specimen. This concept was introduced

by Ernst Abbe in 1870 and is illustrated in Figure 3.4. Light from a point source in the form

of spherical wavefronts is collimated by a condenser and converted into plane waves which are

sent into the specimen. Some of this light is diffracted by regions of varying index of refraction

in the specimen while some pass through unaltered. Both the diffracted and undiffracted light

are collected by the objective and focused in the Back Focal Plane (BFP) of the objective. The

intermediate image is then formed by the interference of thelight. Interference is the mechanism

by which contrast is generated in the image of the specimen. Thus image contrast depends
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Figure 3.4: (A) Schematic of image formation in a bright fieldmicroscope [62]. (B) Bright field
image of a 4µm diameter Polystrene (n = 1.6) particle taken with a 20X waterimmersion NA =
0.7 objective.

on both the variations in index of refraction of the specimenand also on the coherence of the

light source. A concrete example of interference-based image formation process can be found

in a bright field image of a particle. As a consequence of interference, the intensity profile

of the particle is not a circularly symmetric Gaussian, as isexpected for an incoherently self-

luminous particle in an aberration-free fluorescence imaging setup, but rather the particle’s image

is an Airy disk consisting of central bright maximum, surrounded by alternating bright and dark

circularly symmetric rings as shown in Figure 3.4B. The rings are the result of interference

between the light diffracted from different regions of the particle and the undiffracted light.

68



The schematic of the simple microscope setup also motivatesthe concept of reciprocal and

conjugate planes in microscopy. Two planes are called reciprocal planes when points in one

plane are mapped onto the other via a lens and vice versa. In the setup of Figure 3.4A, the BFP

is the reciprocal plane of the specimen image plane. Anotherway of looking at the relationship

between reciprocal planes is as a spatial Fourier transform. For instance, the BFP is the spatial

Fourier transform of the specimen image plane since the objective focuses the plane waves from

the specimen plane to a point via conversion into spherical waves. By contrast, two planes which

share common focus are called conjugate planes. In Figure 3.4A, the specimen and intermediate

image planes are conjugate planes, as are the BFP and the light source plane. Modern micro-

scopes typically contain two sets of conjugate planes, image and aperture planes. The images

planes include field diaphragm, specimen plane, intermediate image plane, and retina. The aper-

ture plane consists of the light source, condenser diaphragm, objective back focal plane, and

pupil. These planes are illustrated in Figure 3.5. Most high-end microscopes, including ours,

contain a removable lens known as a Bertrand lens that can be used toggle between the two con-

jugate planes, permitting the user to observe the back focalplane of the objective. This is useful

for aligning the phase ring for phase-contrast microscopy and for doing quick-and-dirty Bragg

scattering measurements of e.g. colloidal crystals in a microscope.

69



Figure 3.5: Image beam path (left) and illumination beam path (right) in Kohler illumination
design [4].
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In order to achieve optimal image quality it is important to set up Kohler illumination in

the microscope’s optical train. Kohler illumination is an alignment protocol that ensures every

point in the specimen plane is evenly illuminated with parallel light rays emanating from the

lamp filament, as shown in Figure 3.5. Essentially, this makes the illumination plane reciprocal

to the image plane, eliminating contamination in the form ofgranularities from dirty surfaces

which may be present in the aperture planes. For instance, this scheme has the effect of ensuring

that the lamp filament is not imaged along with the specimen, amajor problem in the early days

of microscopy. A good step-by-step procedure for achievingKohler illumination can be found

in [82].

The most important optical parameter of a lensing element (e.g. objective or condenser) is

the numerical aperture (NA) defined as

NA = n sin θ, (3.3)

where n is the index of refraction of the medium between the objective or condenser and the

coverslip andθ is half-cone angle of light captured by the lensing element (Figure 3.6). Common

values of n are n = 1.00 (Air), n = 1.33 (water), and n = 1.5 (immersion oil). The system NA

sets both the working distance and the lateral resolution ofthe of the lensing element, i.e., the

minimum distance between two diffraction-limited objectsthat can be resolved in the image

plane. For transmitted light (bright field) illumination, this distance is

r = 1.22λ0/(NAobj +NAcond). (3.4)
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For self-luminous objects, as in reflection fluorescence (epi-fluorescence) illumination where

the objective focuses both excitation and emission, the resolution r is determined solely by the

NA of the objective lens and is

r = 1.22λ0/2NAobj . (3.5)

Eqns. 3.4 and 3.5 are statements of the Rayleigh criterion which dictates that two non-

interfering Airy disks are barely resolvable when the first minimum of one and zeroth-order

peak of the other are separated by a distance r. Higher resolution corresponds to a smaller value

of r and is produced by increasing the NA. Conversely, lower resolution corresponds to a larger

value of r and occurs when the NA is reduced. High-end microscopes contain irises in the

condenser back focal plane which can be used to adjust the working NA by the modulating the

angleθ, as shown in Figure 3.6. Reducing the condenser iris has the dual effect of reducing the

NAcond and increasing the coherence of the illumination light since the light that is collected

then originates from a smaller region of the illuminating filament. This reduction of condenser

iris diameter has the effect of increasing image contrast due to increased diffraction in the image

from the enhanced coherence, but this gain comes at a cost of lower resolution.

Another important optical microscope imaging parameter controlled by the NA is the depth

of field, d. The depth of field sets the longitudinal resolution of the optical system. The depth

of field is the axial distance from the nearest object plane infocus to the farthest plane that also

appears in focus. It is given by

d = 1.22
λ0n

NA2
+

n

M ·NA
e, (3.6)
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Figure 3.6: Numerical apertures and paths of light rays in the condenser and objective lens. The
working numerical aperture of the condenser isNAcond = n′ sin θ′ and the working numerical
aperture of the objective isNAobj = n sin θ. NAcond is proportional tor′, the radius of the
condenser iris opening [51].

wheren andλ0 are defined as before, and the variablee is the smallest distance that can be

resolved by a detector placed in the image plane of the microscope objective whose lateral mag-

nification isM .

3.3.2 Bright field vs Fluorescence Microscopy

Most of the images we used in our studies were acquired with bright field or epi-fluorescence

microscopy. There are advantages and disadvantages to bothmodalities. By far the biggest
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drawback of fluorescence is the requirement of a labeling dyeto be added to the particle or back-

ground. A related drawback of fluorescence is that many of thecommonly available dyes exhibit

photobleaching over time, requiring the user to monitor thelevels of intensity and make adjust-

ments to the microscope or image processing parameters accordingly. In practice, however, com-

mercially available particles such as rhodamine-labeled FluoSpheres (Invitrogen) have a fairly

robust fluorescence and do not bleach appreciably over the course of a typical microrheological

measurement of duration≈ 20 minutes. An advantageous feature of fluorescent particles is that

they are ideally suited for particle tracking, appearing asnearly circularly symmetric Gaussian

spots against a dark background. Moreover, the point spreadfunction in fluorescence imaging is

independent of particle size, permitting a wider range of particle sizes to be used. By contrast,

the Airy disk profile of coherent bright field particles is a sensitive function of the height of the

particle relative to the image focal plane, as shown in Figure 3.7, requiring a careful setting of

tracking parameters. In particular, bright field particlesbelow the image plane acquire a “donut”

shaped intensity profile which is problematic for centroiding algorithms. Note, the shallower

depth of field required in bright field tracking is not entirely disadvantageous. In two-point mi-

crorheology measurements, for instance, bright field permits a more precise determination of

interparticle separations.

3.3.3 Particle Tracking

The first step in particle tracking is to obtain optimal images of the particles themselves. In

practice, this entails setting up the microscope in Kohler illumination and adjusting camera set-

tings (gain, offset, shutter time) to ensure maximal signal-to-noise ratios. For a monochrome

8-bit CCD camera, such as our Hitachi KP-M1 NTSC camera, thismeans adjusting the gain
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0 μm-5 μm +5 μm

Figure 3.7: Bright field image of seven 1µm diameter silica spheres held using holographic
optical tweezers from 5µm below to 5µm above the image focal plane [28].

and offset to get the full linear dynamic range. When this condition is satisfied, a histogram

of pixel intensities should span≈ 40 - 200 in intensity values. Ideally, every particle should

have an unsaturated (Gaussian) intensity profile, a strong prerequisite for sub-pixel positional

accuracy. Oversaturation leads to a clipped, “flat-top” intensity profile for which sub-pixel accu-

racy on the centroid is compromised. Under optimal illumination conditions, the IDL routines,

when properly used, are capable of locating the center of an isolated 1.0µm particle to within

≈ 10nm.

Previously, the images in our lab were recorded to an S-VHS videotape deck (Sanyo GVR-

S950) and subsequently digitized via a framegrabber card (Scion LG-3) onto hard disk. More

recently, circa 2005, we have upgraded to a custom image capture system (Advanced Digital

Vision, Natick, MA) that digitizes directly onto a RAID5 hard disk array. This eliminates the

electronic noise from the video tape-to-drive read-write transfer step.

After the images are acquired, image processing is done offline using routines written in

IDL (Interactive Data Language, ITTVIS Inc.). The process of tracking particles can be broken

down into three main stages, as shown in the workflow diagram of Figure 3.8. The first stage,

collectively termed pretracking, involves starting from astack of sequential images and filtering
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the images to eliminate noise and unwanted features so that it is readily possible to accurately

locate the particle centers in these images. The second stage, tracking, involves linking the

features found in the pretracked images to identify each particle uniquely in each successive

frame; we thus obtain a trajectory for each particle. Finally, the last stage, broadly termed post-

tracking, involves the manipulating the information contained in the trajectories into a form that

can be readily compared with model predictions, e.g., MSDs or linear viscoelastic moduli.

bandpass �lter

load image

stack

�at-�eld images

identify

likely features;

best guess

output tracked 

data to disk

iteratively 

re�ne feature 

parameters

link features

from sequential 

frames into 

trajectories; best 

guess

iteratively re�ne

track parameters
compute MSD1,

MSD2,  g(r,t), 

S(k,t), etc.

pretrack track post-track

drift removal

Figure 3.8: Workflow of image processing and particle tracking steps. Elliptical enclosures
denote optional steps.
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For details on the algorithms used in the image processing steps, the reader is referred to

the Weeks group online tutorial [115]. In this tutorial, thereader will find a step-by-step dis-

cussion on particle tracking using IDL along with the routines. A thorough discussion of the

considerations involved in setting optimal parameters forthe routines is contained in [24].

3.3.4 Static and Dynamic Errors in Particle tracking

There are two main categories of error in the determination of particle position: static and dy-

namic errors. Static error originates from random errors inthe determination of particle postition

and are “static” in the sense that they occur even in an image of an immobilized particle. These

static random errors are the result of photon counting statistics and are intrinsic to the imaging

process. Basically, all image processing algorithms determine the position of the particle as the

mean, or center of mass, of a distribution of photons hittingthe CCD. Accordingly, the standard

error on the mean (ε) is subject to statistical fluctuations in photon count number (N) given by

ε =
σ√
N

, (3.7)

whereσ is the standard deviation of a Gaussian distribution ofN photons. Under typical ex-

perimental conditions,σ is the apparent radius of the particlea andN is sufficiently large to

saturate the dynamic range of the CCD. When the latter condition is met and near-optimal image

processing parameters are set, thenε is the spatial resolution of the setup, roughly1/10th of a

pixel.

The static error results in a random offset,χ, in the measured position,x, of the particle:
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x(t) = x(t) + χ(t), (3.8)

wherex(t) is the true position of the particle center andχ(t) is a stationary random offset with

mean〈χ(t)〉 = 0 and variance〈χ2(t)〉 = ε2. The static error results in an additive offset to the

MSD [66,92] given by

〈∆x2(τ)〉 = 〈∆x2(τ)〉+ 2ε2. (3.9)

The error is most apparent at short lag times in highly viscous media for which the diffusive

particle displacement in one timestep is comparable to the measurement spatial resolutionε ≈

1/10th of a pixel. On a log-log plot of the MSD, it manifests asan apparent subdiffusion at early

times even in a purely viscous Newtonian fluid, such as a mixture of glycerol and water. The

apparent subdiffusion spoofs a short time elastic responsecharacteristic of the MSD expected

for entangled polymeric solutions for lag times shorter than the relaxation time, as described

by the Maxwell model. In practice, the static error can be subtracted off the measured MSD

(〈∆x2(τ)〉) to yield the true MSD (〈∆x2(τ)〉). Figure 3.9 shows the effect of the static error in

the MSD of a particle in an 80 % glycerol in water mixture before and after the2ε2 has been

subtracted off, recovering the expected linear dependenceon τ . Note the false plateau from

the noise floor at short lag times in the uncorrected MSD. In general using a higher illumination

intensity will reduce the static error, but this approach isultimately limited by detector saturation

and the tradeoff for minimization of dynamic error.
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Figure 3.9: Mean square displacement vs. lag time for a 2a = 1 µm particle diffusing in 80 wt
% glycerol in water mixture withη = .070 Pa s. Open circles are the raw MSD. Solid circles are
the MSD with static error2ε2 subtracted off.
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Dynamic error stems from the “smearing” of the particle image that results if a particle moves

significantly during the time interval,σ, during which the CCD camera’s electronic shutter is

open and collecting photons. The position acquired at timet thus contains the history of the

successive positions occupied by the particle during the time interval[t − σ, t]. The particle’s

measured position,x(t, σ), can be mathematically described as a convolution of the particle’s

true position,x(t), with a blur kernel,H(t), accounting for the finite shutter time,σ, via

x(t, σ) = (H ∗ x)(t) ≡
∫

H(ξ)x(t− ξ)dξ, (3.10)

whereH(t) is defined by

H(t) =







1
σ 0 < t ≤ σ

0 elsewhere

(3.11)

with the result that

x(t, σ) =
1

σ

∫ σ

0
x(t− ξ)dξ. (3.12)

The smearing affects centroiding that the image processingalgorithm uses to determine the

position of the particle’s center. The net effect of the dynamic error is to systematically cause

the apparent displacement of the tracked particle to be smaller than the actual displacement.

This effect, in turn, results in a measured mean square displacement〈∆x2(τ)〉 with downward

curvature at short lag timeτ . Savin and Doyle [91,92] have carried out a detailed analysis of the

dynamic error on the MSD and obtained a general formula, derived from Eq. 3.12, which yields

an expression for the dynamic error-biased MSD:
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〈∆x2(τ, σ)〉 = 1

σ2

∫ σ

0
[〈∆x2(τ + ξ)〉+ 〈∆x2(τ − ξ)〉 − 2〈∆x2(ξ)〉](σ − ξ)dξ. (3.13)

where〈x2(τ, σ)〉 is the measured dynamic error-biased MSD,〈∆x2(τ)〉 is the true unbiased

MSD, andσ is the shutter time. In theory, any functional form describing the MSD can be

plugged into Eq. 3.13 and a functional form for the dynamic error-biased MSD can be ob-

tained. This is the basic procedure that we use for our MSD data of Chapter 6 (detailed in the

Appendix). Here we demonstrate its use on experimental datafor a relatively simple system -

particle diffusion in a Newtonian fluid. In the absence of static and dynamic errors, the mea-

sured ensemble-averaged MSD will be described by the functional form: 〈∆x2(τ)〉 = 2Dτ

whereD = kbT/(6πηa) is the self-diffusion coefficient with temperatureT , viscosityη, and

particle radiusa. However, in the presence of static and dynamic errors, the measured MSD

becomes:

〈∆x2(τ, σ)〉 = 2D(τ − σ/3) + 2ε2. (3.14)

where the first term on the right hand side was derived from Eq.3.11. In the data of Figure 3.10,

we have subtracted off the static error, and only the consider the remaining dynamic error.

The dynamic error results in a downward curvature qualitatively resembling superdiffusion

in a log-log plot of the MSD, typically most apparent at shortlag times, as shown in Figure

3.10 where the open circles are data for 1µm diameter particles in water withσ = 1/30 s. We

have plotted the lag time rescaled MSD〈∆x2(τ)〉/2τ as a function ofτ , in order to highlight
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this downward curvature. In the absence of dynamic error, the data should be a flat line with

y-interceptD. The solid line is a fit to Eq. 3.14 from which we extractD = 0.512µm2/s as

expected for a 1µm diameter particle diffusing at T = 298 K withη = 1mPas. Once D is

extracted, the dynamic error can be completely removed by adding2Dσ/3 to the MSD data, and

the expected flat line is recovered, as the solid circles in Figure 3.10 attest.

<∆x2(τ)>

2τ

τ [s]

[µm2/s]

Figure 3.10: Scaled mean square displacement as a function of lag time for a 1µm particle
diffusing in water. Open circles are the msd obtained withσ = 1/30 s on the CCD camera.
Solid line is a fit to Eq. 3.14 withσ = 1/30 s yieldingD = 0.512µm2/s as expected for a 1µm
diameter particle diffusing at T = 298 K withη = 1mPas. Solid circles are the msd corrected
for dynamic error as outlined in the text.

This procedure can be generalized to arbitrary functional forms of the MSD:f(τ, x) where

x includes all model parameters. First,f(τ, x) is convolved with instrumental resolution to yield

f(τ, x, σ). Thenf(τ, x, σ) is fitted to the dynamic error-biased experimental data to extract x,

the parameters for the unbiased MSD. Note that the derivation of f(τ, x, σ) does not incur the

cost of introducing a new parameter; the value ofσ is known. The dynamic error for each lag

time δ(τ) can then be estimated asδ(τ) = |f(τ, x) − f(τ, x, σ)|. Onceδ(τ) is obtained, the
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dynamic error corrected MSD:〈∆x2(τ)〉 = 〈∆x2(τ, σ)〉 + δ(τ) can be obtained. An example

of this procedure can be found in the Appendix, wherein we corrected the MSD data of Chapter

6 for dynamic errors.

3.3.5 Influence of boundaries

The no-slip boundary condition of the fluid’s velocity field on the boundaries of the particle and

the walls of the sample chamber can affect microrheology measurements. In the simplest case

of an isolated sphere of radius,a, in a fluid of viscosity,η0, at a distance,h, from a planar wall,

Faxen’s Law [43] gives the drag coefficientζ as

ζ =
6πη0a

1− 9
16

(
a
h

)
+ 1

8

(
a
h

)3 − 45
256

(
a
h

)4 − 1
16

(
a
h

)5 . (3.15)

Here the bare drag coefficient,6πη0a, is modified near the wall by higher order terms in

powers ofa/h. Eq. 3.15 predicts that the effective viscosityη is increased by the presence

of the wall. To leading orderη = η0(1 + 9
16

a
h). It is tempting to simply “double” Eq. 3.15 to

calculate the drag for a sphere between two walls, as in a typical sample chamber (Figure 3.11C).

However, doing would underestimate the drag coefficient [43].

It is relatively straightforward to account for wall effects in one-point passive microrheol-

ogy measurements since the particle size and distance of image plane from the walls are both

known. For example, this knowledge permits a determinationof η from the GSER using the

wall-effect modified viscosity of Eq. 3.15 at no additional cost. Additionally, a high NA water

immersion objective can be used to minimize refractive aberration in aqueous samples, permit-

ting measurements deep into the chamber. Two-point passivemicrorheology experiments, by
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contrast, present a greater experimental challenge than one-point measurements due to the fact

that interpretation of results requires that the longitudinal component of the two-point correlation

Drr ∼ 1/R, whereR is the particle separation.

h

h

(A)

R [μm]

R
D

rr
 [
μ

m
3
]

h = 250 μm

h = 200 μm

h = 146 μm

h = 73 μm

h = 20 μm

(B)

(C)

Figure 3.11: (A) Four basic pair motions described byDrr. The relative displacements (boxed)
are suppressed to a greater degree from the no-slip fluid boundary interaction than the net trans-
lations, for a given amplitude of motion. (B) Plot of the separation scaled two-point correlation
R∗Drr(R, τ = .083s.) vs. particle separationR for varying chamber thicknessesh. The arrows
indicateR = 20µm andR = 73µm corresponding to the distanceh of the two thinnest cham-
ber data sets.The particle radius in all the data sets isa = 1µm. (C) Schematic ofDrr depth
dependence measurement. The image plane is at the center of the sample chamber a distance h
from both walls.

Physically,Drr describes four basic motions illustrated in Figure 3.11A. Two are net trans-

lations in which the two particles move in the same direction, along their line of separation.

Two are relative displacements in which the particles move toward or away from each other,

along their line of separation. In an unbounded medium, these motions are excited by ther-

mal fluctuations with equal probability, in harmony with theobservation thatDrr ∼ 1/R. In

a bounded medium, however, the latter motions require “squeezing out” or “pulling in” the in-

tervening incompressible fluid. The relative motions are therefore strongly suppressed by the

no-slip boundary conditions from the walls, whereas the nettranslational motions are affected to
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a lower degree. Thus, the presence of the boundaries breaks the “degeneracy” of these motions,

with the consequence thatDrr will decay faster than1/R, i.e.,Drr ∼ 1/Rα whereα > 1.0.

Figure 3.11B showsRDrr(R, τ = .083s) plotted as a function of separation R for two-point

data taken from the middle of the chamber for varying thicknesses h, as illustrated in Figure

3.11C. The image plane of the microscope was at a distanceh from the walls, exactly at the

middle of the chamber with total thickness2h. The data clearly show a depth dependence in the

scaling behavior ofDrr. In Figure 3.11B, the thickest chambers (in whichh > R) were nearly

flat over the entire range ofR whereas the thinner chambers (in whichh < R) exhibit an initially

flat RDrr at low R that begins to roll off whenR ≈ h. This demonstrates that hydrodynamic

interactions with the boundaries suppresses relative displacements along the line of separation

of two particles, resulting inDrr ∼ 1/Rα whereα > 1 for separations larger than the distance

to the nearest boundary. Qualitatively similar conclusions were reached in experiments utilizing

blinking optical tweezers to carefully study the dependence of particle pair diffusivity as a func-

tion of distance from the wall [33]. Thus, the range of usefulR in two-point measurements is

practically limited by the thickness of the chamber and thisfactor must be carefully considered

in experimental design and data analysis.

One- and two- particle optical trap-based active microrheology measurements are also sub-

ject to the same depth considerations as passive measurements. However, they present even

more stringent experimental requirements, since the need for high light gradient forces neces-

sitates trapping to within (< 10µm) of the coverslip, and thus precludes the use of all but the

highest NA oil-immersion objectives.
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3.3.6 MSD Inversion procedures

Passive thermal microrheology relies on the generalized Stokes-Einstein relation (GSER), de-

tailed in Chapter 2, to relate the probe particle MSD to the linear viscoelastic shear modulus

of the material. Briefly, the GSER yields the shear modulus interms of Laplace transformed

quantities as

G̃(s) =
kBT

πas〈∆r̃2(s)〉 , (3.16)

and in terms of comparable Fourier transformed quantities as

G∗(ω) =
kBT

πaiω〈∆r2(ω)〉 , (3.17)

whereG̃(s), G̃(ω) and〈∆r̃2(s)〉, 〈∆r2(ω)〉 are the Laplace and Fourier transformed shear mod-

ulus and MSD, respectively. Note that althoughG∗(ω) is a complex quantity with real and

imaginary components, it does not contain any more information thanG̃(s) since both are de-

rived from the shear relaxation modulusG(t).

Image-based passive microrheology schemes typically report the MSD in terms of time,

i.e., 〈∆r2(τ)〉. It is clear from Eqns. 3.16 and 3.17 that in order to determine the frequency-

dependent shear modulus from〈∆r2(τ)〉 (a procedure we term inversion), the MSD must first be

converted to a frequency-space representation (Laplace orFourier). Conventional image-based

methods yield MSD data that are limited to< 5 decades of temporal dynamic range, precluding

direct numerical calculation of the transform using eithernumerical integration or Fast Fourier

Transform (FFT) algorithms. In both cases, truncation of the data introduces substantial errors
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into the transformed MSD, particularly near the dynamic range extrema, which can then be

propagated into the moduli.

One early approach attempted to circumvent the problem by fitting an empirical functional

form to either〈∆r2(τ)〉 or 〈∆r̃2(s)〉, and then using the empirical functional form with fitted

parameters in place of the experimental MSD to compute the transform analytically [70]. The

weakness of this approach is that it requires the choice of anarbitrary functional form that can

potentially distort the data by, for instance, smoothing out subtle features of the data. More recent

approaches have instead determined〈∆r2(ω)〉 from 〈∆r2(τ)〉 algebraically using local power

law approximations [68]. The first step is to expand〈∆r2(τ)〉 locally around the frequency of

interest,ω, using a power law and retaining the leading term:

〈∆r2(τ)〉 ≈ 〈∆r2(1/ω)〉(ωt)α, (3.18)

where〈∆r2(1/ω)〉 is the magnitude of〈∆r2(τ)〉 at τ = 1/ω and

α(τ) =
d ln〈∆r2(τ)〉

d ln τ
|τ=1/ω , (3.19)

is the power law exponent describing the logarithmic slope of 〈∆r2(τ)〉 atτ = 1/ω. In practice,

the slope is obtained by fitting the logarithm of〈∆r2(τ)〉 in a local neighborhood of eachτ . Note

that Eq. 3.18 is an identity if the MSD is an exact power law, i.e., 〈∆r2(τ)〉 ∼ τα. Thus Eq.

3.18 is a good approximation for near power law functional forms of the MSD. For thermally-

driven spheres,α must lie between zero and one, corresponding to a particle embedded in a

Newtonian fluid and Hookean solid, respectively. Substitution of Eq. 3.18 into the evaluation of
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the unilateral Fourier transform

〈∆r2(ω)〉 =
∫ ∞

0
〈∆r2(τ)〉eiωτdτ ≈ 〈∆r2(1/ω)〉

∫ ∞

0
(ωτ)αe−iωτdτ, (3.20)

leads to

〈∆r2(ω)〉 ≈ (iω)−1〈∆r2(1/ω)〉Γ[1 + α(1/ω)] exp[−iπα(1/ω)/2], (3.21)

whereΓ is the gamma function,Γ(z) =
∫∞
0 τ z−1e−τdτ . Substitution of Eq. 3.21 into Eq. 3.17

yields

G∗(ω) =
kBT

πa〈∆r2(1/ω)〉Γ[1 + α(1/ω)]
exp[iπα(1/ω)/2], (3.22)

for the complex shear modulus. The elastic (G′) and loss (G′′) moduli are

G′(ω) = G(ω) cos[πα(1/ω)/2]

G′′(ω) = G(ω) sin[πα(1/ω)/2]

, (3.23)

where

G(ω) =
kBT

πa〈∆r2(1/ω)〉Γ[1 + α(1/ω)]
. (3.24)

Eqns. 3.23 provide physical intuition into the relation between the moduli in terms of the

power law behavior of〈∆r2(τ)〉. For the case of a Newtonian fluid,α = 1, and theG∗(ω) is

purelyG′′. Conversely for the limit of a Hookean solid,α = 0 andG∗(ω) is purelyG′. Note

that Eqns. 3.23 and 3.24 yield an exact value forG∗(ω) whenever the MSD is an exact power
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law, i.e.,〈∆r2(τ)〉 ∼ τα and provide an excellent approximation for slowly varying power laws.

However, when the MSD contains regions of high curvature, asin the case of the MSD for a

harmonically bound particle in a viscous fluid where〈∆r2(τ)〉 = r20[1 − exp(−τ/τ0)], Eqns.

3.23 and 3.24 can be in error by≈ 15% atω = 1/τ0. Another limitation is that the weaker of

the two moduli always contains larger error. To remedy thesesituations, Crocker has derived

empirically modified versions of Eqns. 3.23 and 3.24 which include second order logarithmic

time derivatives of the MSD [29]. This modification helps to better account for curvature, gives

a better estimate of the moduli in curved regions of the data,and improves the results for the

weaker component of the modulus. The scheme works best with at least 7-10 points per decade;

however, it is sensitive to long wavelength ripples in the data. The modified equations that are

used for extracting the moduli are

G′(ω) = G(ω){1/[1 + β′(ω)]} cos
[
πα′(ω)

2 − β′(ω)α′(ω)(π2 − 1)
]

G′′(ω) = G(ω){1/[1 + β′(ω)]} sin
[
πα′(ω)

2 − β′(ω)[1 − α′(ω)](π2 − 1)
]
, (3.25)

where

G(ω) =
kBT

πa〈∆r2(1/ω)〉Γ[1 + α(1/ω)][1 + β(ω)/2]
. (3.26)

The second-order logarithmic time derivative of the MSD is denoted byβ(ω), while α′(ω)

andβ′(ω) denote the local first- and second- order logarithmic derivatives ofG(ω), i.e.,α′(ω) =

d lnG(ω)
d lnω andβ′(ω) = d2 lnG(ω)

d(lnω)2
. Crocker tested the accuracy of these equations using simulated

data of the form
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G∗(ω) = (iω)a + (iω)b, (3.27)

which broadly captures the power law crossover behavior encountered in many soft materials.

Slopes of one and zero capture viscous fluids and elastic solids, respectively. The sum of the two

components captures the crossover between the two extreme limits. Materials that are neither

strongly elastic nor predominantly viscous will lie in the knee region of the complex modulus.

The exponentsa andb were varied from 0 to 1 in steps of 0.05 and the frequency rangechosen

for the test ranged from10−5 rad/s to 105 rad/s. Figure 3.12 shows the error surface computed

by taking the difference between the exact value given by Eq.3.27 and the approximation given

by Eqns. 3.25 and 3.26. The error is normalized by the larger of the two moduli at that frequency.

The maximum error in each modulus is less than 4 % over the whole frequency range for the

family of curves represented by Eq. 3.27. By contrast, the same error surface procedure using

Eqns. 3.23 and 3.24 yields a maximum error of 40 % over the sameparametric range.
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(A)

(B)

Figure 3.12: Surface plot of the maximum error over the entire frequency range of the (A) elastic
and (B) viscous moduli obtained from data simulated using Eq. 3.17. The x and y axes denote
the difference between the values calculated using Eqns. 3.25 and 3.26. The accuracy of the
estimated elastic and loss moduli lies within 4 % of the exactvalue over the entire parameter
space. The error is normalized by the larger of the two moduli. From Ref. [29].
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3.4 Active Microrheology

The common version of active microrheology involves using an optical tweezer to grab a particle

and to exert local stresses on the surrounding material in order to probe rheological response.

For the active micrheology measurements of Chapter 5, we used an oscillating optical tweezer

instrument built around an inverted microscope that was modified from an existing line trapping

setup detailed in [110]. Electronic detection was added to the setup based in large part on the

scheme developed by the Ou-Yang group [48,108].

3.4.1 Optical Tweezers

The use of a highly focused beam of light to trap micron-scaledielectric particles was pioneered

by Ashkin and coworkers at Bell Labs in the 70’s and 80’s [7, 8]. Since then, optical tweezers

have become a standard tool for measuring and manipulating sub-picoNewton scale forces on

micron scale objects. It has enabled many notable discoveries in biological systems [73]. It

has also been employed in various forms for measurement of colloidal interactions across a

wide range of soft materials [25,45,72]. In the soft matter community, recent innovations using

holographic methods to generate multiple steerable traps have provided a powerful suite of tools

for probing soft materials [28, 42]. A detailed review of theprinciples and technical aspects of

optical trapping can be found in Ref. [77].

An optical trap is formed by tightly focusing a laser beam with an objective lens of high

NA. When such a beam is focused near a dielectric particle, itexerts two kinds of optical forces

on the particle: (1) a scattering force which pushes the particle in the direction of propagation

of the light beam and (2) a gradient force which pulls the particle in the direction of the light
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intensity gradient. The scattering force arises from a net momentum transfer to the particle

from the photons impinging on it. The gradient force arises from the fact that a dipole in an

inhomogeneous electric field experiences a force in the direction of the field gradient. In an

optical trap the laser effectively induces fluctuating dipoles within the particle which interact

with the field (also oscillating at some frequency). In orderfor the particle to be stably trapped

by the beam in three dimensions, it is necessary for the axialcomponent of the gradient force

to exceed the axial component of the scattering force. This condition requires a very steep

gradient produced by sharply focusing a laser beam to a diffraction-limited spot using a high-

NA objective. Once trapped, the particle can be held in position and manipulated by moving

the focus of the laser beam. When the particle experiences slight displacements from the focus

of the light beam, it experiences a restoring force which push it back toward the focus (Figure

3.13). For small displacements (∆x), the trap acts as a Hookean spring whose characteristic

stiffness (k) is proportional to the light intensity (I0), i.e.,Ftrap = −k∆x, wherek ∝ ∇I0.

Theoretical descriptions ofFtrap are usually given in two limiting regimes: (1) the ray optics

regime wherein the radius of the particle is much greater than the wavelength of the light,a≫ λ,

and (2) the Rayleigh scattering regime whena≪ λ. In the first case, the net force on the particle

can be calculated by summing the momentum change experienced by the particle as it refracts

each incident ray. When the index of the particle is higher than the medium, the net force on

the particle is always in the direction of increasing intensity gradient, as shown in Figure 3.13.

The opposite situation in which the particle has lowern than the medium results in the particle

being pushed away from the intensity gradient maximum. A complete mathematical description

of the resulting force can be found in Ref. [103]. For case (2), the particle can be approximated
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as a point-like dielectric sphere and the total force exerted by the trap is readily separated into a

scattering force (Fscatt) and gradient force (Fgrad) given by [8]

Ftrap = Fscatt + Fgrad =
E2

c

128π5a6

3λ4

(
m2 − 1

m2 + 2

)2

n0 −
n3
0a

3

2

(
m2 − 1

m2 + 2

)

(∇E)2, (3.28)

wheren0 is the index of the medium andm is the ratio of the index of the particle to the index

of the medium (n/n0).

In practice, Eq. 3.28 is useful to get a qualitative sense forhow the trapping force depends

on various physical parameters, but it is not exact. This is due to the fact that most particles

of interest fall into an intermediate size range (0.1 - 10λ) where neither regime is strictly valid.

Nonetheless, Eq. 3.28 reveals the balance of microscopic parameters that control the optical

trap’s stiffness. It is clear from Eq. 3.13 that in order to make a stronger trap, one should

maximize the NA, the laser power, and index mismatch betweenthe particle and medium. Trap-

ping as close to the laser as possible is also important, because longitudinal spherical aberration

increases with depth into the sample, distorting the beam profile and degrading trap stability.

From Figure 3.13 we see that if the particle moves out of the beam focus, restoring forces

act to pull it back to the focus. Consequently, if the trap is scanned back and forth within the

image plane, then the particle should follow the focus provided the scanning is sufficiently slow.

However, if the trap moves too fast then the particle will notbe able follow the trap and will

escape from the trap. The criteria for the speed is given by the balance of the the Stokes drag

forceFStokes = 6πηav, whereη is the viscosity of the medium, andFtrap. This is the conceptual

basis behind using an oscillating optical trap for active microrheology; in the simplest case of
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a particle in a viscous fluid, the velocity with which the particle escapes from the trap yields a

measurement of the viscosity, providedk anda are known. A natural generalization of this basic

measurement to soft materials having a complex, frequency-dependent viscosityη∗(ω) is to scan

the trap sinusoidally for a range of frequencies and to measure the displacement and phase of the

particle in response to the trap. The details of this scenario have been worked out previously in

the active microrheology section of Chapter Two (Section 2.4).
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(A)

net force

net force
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net force
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(C) (D)

Figure 3.13: Ray optics description of the forces on a dielectric sphere with higher index of
refraction than the medium. The boxes above the spheres represents the light gradient where
white is high intensity and black is low intensity. Two rays from the light source (represented by
black lines of different thicknesses) are shown. The refraction of the light by the bead changes
the momentum of the photons equal to the change in direction of the incident and refracted rays.
By Newton’s third law, the momentum of the bead must change byan equal amount, exerting a
equal and opposite force on the bead shown by the grey arrows.(A) The particle sits below the
laser focus and the net force pushes the particle toward the focus. (B) The particle sits in front
of the focus and the net force pulls the particle up toward thefocus. In (C) and (D) the particle is
off-axis relative to the beam intensity maximum and the net lateral force brings the particle back
toward the beam intensity maximum. In all cases, the net forces bring the particle back to the
stable equilibrium point at the focus of the beam.
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Figure 3.14: Schematic of oscillating optical tweezer setup. The trapping laser (Nd:YLFλt =
1054nm) and detection laser (HeNeλd = 633nm) are coupled into a single-mode optical
fiber. The emitted, collimated light from the fiber containing both wavelengths is split by a
dichroic mirror (D1) which transmitsλt and reflectsλd. The trapping component is passed
through a barrier filter (BF1) which further attenuatesλd before going into a galvanometer-
driven scanning mirror set to sinusoidally oscillate at frequencyω by a function generator. The
trapping component is directed by a fixed mirror (M1) into an identical dichroic mirror (D2)
which co-linearly recombines the oscillating trapping laser and stationary detection laser. The
two components are steered into a Zeiss inverted microscopewith a fixed mirror (M2) situated
between a telescope lens pair (L1-L2) which expands the beamto overfill the back aperture
of the microscope objective (OBJ). The back aperture is conjugate to the galvo-mirror such
that small deflections of the mirror results in translation of the trapping laser’s focus in the
image plane. The beam is collected by the condenser (COND) and the trapping component
is attenuated by passing through a barrier filter (BF2) and dichroic mirror (D3). The detected
component consists of the “shadow” of the moving trapped particle illuminated by the stationary
detection beam. The detected component is projected with a collection lens (L3) onto a split
photodiode. The A-B voltage components of the split PD are fed into a lock-in amplifier which
extracts the components of the differential voltage signalat frequencyω via the reference signal
from the function generator. The DC analog outputs of the lock-in are contain the displacement
and phase shift of the signal (D(ω), δ(ω)) which is digitized using a PC running Labview.
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The experimental setup for our active microrheology measurements reported in Chapter

Five is shown in Figure 3.14. To create the trap, we used the CWoutput of an Nd:YLF laser

(Quantronix) at its fundamental frequencyλ = 1054nm. We also used a HeNe laser (Hughes)

that is collinear with the IR trapping beam to provide a stationary reference for detecting the

displacement of the particle in the lab frame. Both lasers are coupled into a single mode fiber

before entering the active optical train of the setup. The fiber serves two important purposes: (1)

to act as a spatial filter to clean up the beam and, more importantly, (2) to ensure that the trapping

beam is aTEM00 mode having a Gaussian intensity profile that is optimal for stable trapping.

After entering the active optical train, theλd = 633nm detection component and the

λt = 1054nm trapping component are separated so that the trapping beam can be scanned

by the galvanometer-driven mirror independent of the detection beam. To accomplish this, a

dichroic mirror (D1) reflecting 633 nm and transmitting 1054nm is placed into the beam path.

A subsequent barrier filter (BF1) further attenuates any residual 633 nm remaining in the trap-

ping beam’s optical path. The galvo-mirror is conjugate to the back focal plane of the objective,

with the result that small deflections of the mirror (driven via a function generator) translates the

trap’s focus in the image plane. In our measurements, we typically drive the mirror to displace

the trap with a sinusoidal amplitudeA = 0.25µm. Usinga = 2µm PS particles, this induces

A/a = 0.25µm/2.0µm = 12.5% maximum strain at the particle level.

After the scanning mirror, the trapping beam is steered (M1)to recombine with the detection

beam at dichroic mirror (D2). The combined beam is then expanded using a telescope pair (L1-

L2) to overfill the BFP of the objective and steered into the fluorescence port of an inverted

microscope (Zeiss Axiovert 135). The power of the trapping laser is typically≈ 40mW going
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into the objective while the detection beam is typically≈ 10µW . The trapping is monitored

via the microscope’s bright field (transmitted) light imaging setup (not shown). Once trapped,

the forward scattered light from the detection laser on the trapped particle forms a geometrical

“shadow” which is collimated by the condenser. Note that forour 2a = 4µm particles, the

forward scattered light is very shadow-like owing to the fact that we are in the ray-optics regime

(a > 633nm). Whereas for smaller particles (a ≈ 633nm), the forward scattered image is more

closely resembles interference fringes rather than a circular shadow. To eliminate crosstalk, the

IR trapping component is removed via a barrier filter (BF2) and dichroic mirror (D3) before

being projected onto a split photodiode (Hamamatsu S4204).The split photodiode is centered

so that when the trapped particle is not oscillating, the voltage difference between the two halves

|A-B| is minimized. The voltages from the two halves of the split are then fed into a Lock-

in amplifier (SR530, Stanford Research Systems) which extracts the displacementD(ω) and

phaseδ(ω) at frequencyω by homodyning the A-B difference voltage signal with the function

generator reference, followed by low-pass filtering. The output of the lock-in is digitized onto a

PC running Labview.
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Chapter 4

Rheological Microscopy: Bulk and

Local Properties from Microrheology

4.1 Introduction

The microscopic propagation of force in mechanically inhomogeneous materials is central to

many issues in condensed-matter research, including forcechains in granular and jamming ma-

terials, dynamical heterogeneity in glassy systems, and the behavior of nanocomposite materials.

In a different vein, cell biologists have discovered that many aspects of a cells gene expression,

locomotion, differentiation, and apoptosis are governed at least in part by the stress and elas-

ticity of its surroundings, through a coupling of intracellular stress and biochemical signaling

pathways. Experimental methods for directly studying microscopic stress and viscoelasticity,

however, have been slow to appear.

The past decade has seen the development of microrheology, which uses tracer motion to
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assess rheology in much smaller samples and over a broader range of frequencies than conven-

tional rheometry. Typically, the frequency-dependent shear modulus of a material is derived by

tracking the driven [34, 49] or thermal [40, 69, 70, 93, 120] motions of embedded micron-sized

tracers. To date, microrheology has been applied to biopolymer solutions [40, 69, 70, 93], con-

centrated emulsions [70], gels [19, 55], and the cytoskeleton of living cells [34, 57]. Tracers

naturally probe viscoelasticity on length scales comparable to their size. In materials that are

heterogeneous on these scales, tracer motion depends on both the local and the bulk rheology

in a complex way [59, 61]. This fact has largely precluded theuse and interpretability of mi-

crorheology in mechanically heterogeneous materials where such microscopic information is

most needed.

In this chapter, we introduce and demonstrate an analyticalframework to separately de-

termine the local and the bulk mechanical properties from microrheology data. We call the

method “rheological microscopy.” Elaborations of this approach provide routes to understand-

ing nonuniform force propagation in a variety of heterogeneous media. We demonstrate rheo-

logical microscopy on a model system of polystyrene spheresin an aqueous semidilute solution

of nonadsorbing, monodisperse semiflexible polymerλ-DNA. Previous experiments have char-

acterized this model semidilute polymer solution, determining correlation length and, ergo, the

microstructure of the depletion layer surrounding the embedded particles, as a function of poly-

mer concentration [111,112]. Measurements were performedat a variety of sphere diameters and

polymer concentrations, permitting us to vary the bulk solution viscoelasticity and the depletion

layer thickness relative to the particle size. Experimentsreveal the extent of the rheologically
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distinct layer, which was approximately 2 times the correlation length in the semi-dilute poly-

mer solution, significantly different from the predictionsof mean-field theory. The computed

bulk rheology is in excellent agreement with independent measurements made using two-point

microrheology [26].

4.2 Background

4.2.1 Depletion

In a binary suspension of small and large hard-spheres interacting via steric interactions alone,

there exists a spherical shell around the large particles with thickness≈ as, the radius of the

smaller particle, from which the smaller particles are excluded [see Figure 4.1A]. This “deple-

tion layer” exists because the particles are rigid and the smaller particles cannot approach the

larger particles within a distanceas without interpenetration or deformation. This fact has dra-

matic consequences for phase behavior of the suspension. One immediate consequence is that

when two larger particles are close enough such that their depletion layers overlap, then there

will be an imbalance of forces on the particles between the overlapping and non-overlapping

regions and this leads to a net force that pushes them together, as shown in Figure 4.1B. The

depletion force range is typically short ranged,≈ 2as. There are two equivalent descriptions

of the depletion force. One is in terms of osmotic pressure imbalances, as we have presented

above. The other is in terms of entropy: when the two large spheres are driven together the loss

in their configurational entropy is offset by the gain in entropy for the small spheres, resulting in

a net gain of entropy for the entire system. The gain in entropy of the small spheres is due to the

gain in their free volume and is thus proportional to the overlap volume of the depletion layers
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surrounding the large spheres.

(A) (B)

Figure 4.1: Depletion in a binary suspension of hard spheres. (A) Isolated large sphere of radius
aL is bombarded isotropically by small spheres of radiusas. A spherical shell of thicknessas
surrounds the large sphere (shaded region) corresponding to a depletion layer where the centers
of small spheres cannot penetrate due to hard sphere interactions. (B) Two large spheres ap-
proach such that their excluded volume regions overlap, leading to an imbalance of collisions
with small spheres between the overlapping and non-overlapping regions. A net attraction be-
tween the larger spheres ensues.

A dilute polymer solution can be modeled as an ideal gas of hard spheres with a mean size

given by the radius of gyration of the individual polymer coils, Rg. The case of attractive in-

teractions between two spheres in a dilute polymer suspension was first considered theoretically

by Asakura and Oosawa (AO) [6]. Unlike hard spheres, polymers in solution can interpene-

trate, significantly reducing any effects due to liquid structure [25]. The experimental situation

is depicted in Figure 4.2A. The centers of the polymer “spheres” are excluded from a region

of thicknessRg surrounding the colloidal particles. When the depletion layers surrounding the

two spheres overlap, the free volume accessible to the polymer increases, leading to a gain in

the system entropy. This produces an attractive interaction between the two spheres. When the

polymer concentration is increased above the critical overlap concentration,c∗, entanglement

effects become important. In this semidilute regime the polymer is characterized by a correla-

tion lengthξ rather than byRg. The length scaleξ may be thought of as the average spatial

distance between two neighboring entanglement points. Thecorrelation length decreases with
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increasing concentration abovec∗, scaling asξ ∼ c−1/2. Equivalently,ξ describes the mean size

of a “blob” [30] within which a section of the polymer chain still behaves as an independent coil,

as illustrated in the inset of Figure 4.2B. If the polymer-colloid interaction is repulsive, a “deple-

tion layer” with a thickness proportional toξ [see Figure 4.2B] develops around each sphere. A

suite of experiments utilizing line-scanned optical tweezers to quantititatively measure the ensu-

ing attractive potential between colloidal spheres immersed in suspensions ofλ-DNA provided

strong evidence that depletion occurs well into the semidilute regime and exhibits scaling con-

sistent with the AO model using blobs of radius≈ ξ in place ofRg [110–112]. Thus, depletion

interactions are a robust phenomena in colloidal mixtures.

2Rg

Rg

  

 

correlation length

 

ξ

2a

ξ

(A) (B)

Figure 4.2: Polymer depletion in the (A) dilute and (B) semi-dilute regimes [111]. The shaded
region around the particles corresponds to the depletion layer and the overlap region corresponds
to the free volume accessible to the polymer.

In our experiments, we use the particle and depletion layer as a model system to test the

predictions of the electrostatic analogy of Levine and Lubensky discussed in Section 2.3.8. In-

deed, the particle and depletion layer closely resembles idealization of the shell model depicted

in Figures 2.11 and 4.6C. Our system is ideal for testing the theory because both particle size and
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depletion layer thickness can be varied independently. Thedepletion layer thickness is set by

the concentration of DNA . For this situation we expect that the one-point MSD (MSD1) will be

larger than the two-point MSD (MSD2), as is indeed observed in our raw MSD data for a typical

concentration used in our experiments [see Figure 4.3]. This suggests that the MSD1 is more

sensitive to the local shell than the MSD2, which probes the bulk DNA solution. As a control,

we also plot the MSD1 and MSD2 for a particle in water and find, as expected, MSD1 = MSD2.

τ (sec) 

0 μg/ml

395 μg/ml

C
DNA

=

M
S

D
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, 
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Figure 4.3: MSD1 (lines) and MSD2 (circles) for2a = 0.97µm tracer particles in two samples:
one with no DNA (top) and one withcDNA = 397 µg/ml (bottom). MSD1 = MSD2 as expected
for the no DNA control sample whereas MSD1> MSD2 for thecDNA = 397 µg/ml sample.

4.3 Sample Preparation

Our experiments were carried out on solutions of bacteriophage lambda DNA (λ-DNA; New

England Biolabs Inc.) whose single-stranded ends were filled in with standard techniques [90],

suspended in a 10 mM TE buffer (10 mM tris-HCl, 0.1 mM EDTA, pH =8.0). λ-DNA has a

persistence length of 50 nm, a contour length of 16.5µm and a radius of gyration ofRg ∼ 500nm
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[111]. We worked with four semi-dilute DNA concentrations (30, 104, 190, 397µg/ml). The

polymer correlation length has been measured to be350, 190, 130, and90 nm, respectively, for

these concentrations [111]. The critical overlap concentrationc∗, is roughly30 µg/ml [81]. Thus

all our samples, except the lowest concentration (30µg/ml) are well in the semidilute regime

(c > c∗) .

We used fluorescent beads as tracers (Molecular Probes, Rhodamine Red-X labeled carboxylate-

modified polystyrene). Beads of three different diameters (2a = 2.0, 0.97, 0.46 µm) were

dispersed in the DNA solutions at a volume fraction,φ ∼ 10−4. D2O was used for density

matching. We imaged the samples either with bright field microscopy (2a = 0.97µm) or epi-

fluorescence microscopy (2a = 0.46, 2.0µm), with the temperature controlled to 28◦C. We used

a 63X water-immersion objective (NA = 1.2) for the samples with 0.46 and 0.97µm tracers

and a 20X (NA = 0.7) multi-immersion objective for the samplewith 2.0µm tracer, adjusting

the particle volume fraction so there were about 100 tracersin each image. For the two largest

particle sizes and two highest polymer concentrations the number of usable tracers fell to∼ 50

due to the formation of depletion-induced aggregates, which were screened automatically by our

analysis software. To minimize wall effects, we focused roughly 60µm into the 120µm thick

sealed sample chambers. To avoid skewing the dynamics, we used a2 msec shutter setting on

our NTSC video camera. After recording on an S-VHS video deck, the images were digitized

and analyzed off-line, using methods described in Chapter 3. One hour of video was recorded

for each sample yielding∼ 107 particle positions with 20 nm spatial resolution and 1/60 second

temporal resolution.
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4.4 Results and Discussion

In Figure 4.4 we exhibit the MSD1 and MSD2 for the three different particle sizes at the highest

DNA concentration (397µg/ml, c ∼ 13 c∗). We have rescaled both sets of curves bya/2τ in

order to highlight the deviations from diffusion wherein the MSD∼ τ , resulting in a horizontal

line in this rescaled plot. Both MSDs exhibit functional dependencies onτ which are typical of

weakly entangled polymer solutions descibed by a Maxwell-type model (described in Chapter

2). At early lag times, the subdiffusive behavior (∼ τα, α ≤ 1) of the MSDs reflect an elastic

response arising from topological entanglements in the polymer network. At longer times, the

MSDs approach diffusive behavior and become horizontal, reflecting the relaxation of entangle-

ment stresses via a reptation mechanism [30, 32, 87]. The two-point data (MSD2) collapse onto

a single curve, separated from the one-point data. This is expected since the MSD2 probes the

longer length scale bulk properties of the solution, independent of particle size.

The collapse enabled us to globally determine a master MSD2 curve for each concentration

by averaging the individual MSD2 obtained from different particle sizes. This effectively extends

the temporal range of the smallest particles’ trajectories, which was limited as a result of their

more rapid diffusion out of the focal plane. The one-point data differ primarily because the

particle to depletion cavity size ratio differs for the different particle sizes. Agreement between

MSD2 and MSD1 is best for the largest particle size where the ratio of particle-plus-depletion

layer diameter to particle diameter is closest to unity. Thedisagreement reflects an effective

“slip” between the particles and the bulk DNA network, due todepletion.

We determined the frequency-dependent complex shear moduli (G∗
1(ω), G

∗
2(ω)) using the
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Figure 4.4: MSD1 (lines) and MSD2 (symbols) rescaled bya/2τ for fixed DNA concentration
(397 µg/ml, c ∼ 13 c∗) and varying particle size [see text]. Solid, dashed, and dot-dash lines are
MSD1 for 2a = 0.46, 0.97, and2.0 µm respectively. Circles, triangles, and stars are MSD2 for
2a = 0.46, 0.97, and2.0 µm respectively. Notice, the MSD2 data collapse onto a singlemaster
curve under the rescaling whereas the MSD1 data do not.

procedure described in Section 3.3.6. Figure 4.5A shows theresults for three particle sizes de-

rived from MSD1 and the master MSD2 for a DNA concentration of397µg/ml (c ≈ 13 c∗).

Figure 4.5B shows the moduli for the next lower concentration, 190µg/ml (c ≈ 6 c∗). In both

cases the one-point measurements produce a family of curvesthat are clearly displaced from one

another, and from the two-point results. From this observation, we infer that theG1 underesti-

mates the bulk moduli to a greater degree as particle size decreases.

Levine and Lubensky have computed both the effective one- and two- particle viscoelastic

response functions for a minimal model of depletion layer inhomogeneity –tracers surrounded by

shells whose rheological properties differ from the bulk [61]. The major parameters of the model

are defined in Fig. 4.6C, including the particle-cavity composite radiusb = a + ∆, the local

cavity shear modulusG∗
loc, and the bulk shear modulusG∗

bulk. Using the electrostatic analogy
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Figure 4.5: (A) MSD1 and MSD2-derived bulk shear moduliG∗
1(ω), G

∗
2(ω) for cDNA = 397

µg/ml, and different particle sizes.G′′ (open circles),G′ (filled circles) from master MSD2.
Dotted, dash-dot, solid lines areG∗

1 for 2a = 2.0, 0.97, 0.46 µm particles respectively. The
upper group of lines areG′′ while the lower group areG′. (B) G∗

1(ω), G
∗
2(ω) for cDNA = 190

µg/ml.

elaborated in section 2.3.8, they demonstrated that two particle correlations forR≫ a, b reflect

predominantly the bulk responses whereas the single particle measurement is sensitive to both

bulk and local rheologies. They provide a formula relating the one- and two- point microrheology

derived shear moduli (G∗
1(ω), G

∗
2(ω)). For a shell model assuming incompressibility, they find

G∗
2(ω)

G∗
1(ω)

=
4β6κ′2 − 9β5κκ′ + 10β3κκ′ − 9βκ′2 − 15βκ′ + 2κκ′′

2[κ′′ − 2β5κ′]
. (4.1)

109



(A)

(B)  

a

b

Gbulk(ω)

b = a + Δ

Gloc(ω)

G
',
 G

"
(ω

) 
(P

a
)

ω (rad/s)

(C)

 G1*,  0.46 μm

 G1*,  0.97 μm

G1*, 2.0 μm

G2
' , G2

''

Figure 4.6: (A)G∗
2(ω) obtained from shell model using the collapse of theG1 data forcDNA =

397 µg/ml. Circles are the measuredG′, G′′ (open, filled). Lines are different particle diameters
2.0, 0.97, 0.46µm (dotted, dash-dot, solid). Lines were computed from Eq. 4.1using an
effective shell thickness∆ = 194 nm and solvent viscosityη0 = 0.94 mPa s assumingG∗

loc(ω) =
−iωη0. The lines agree with the measured bulk moduli from two- point, G∗

2(ω) (open, filled
circles). (B) Results forcDNA = 190 µg/ml obtained with∆ = 336 nm. (C) Shell model of
Levine and Lubensky [61].

Hereβ = a/b, κ = G∗
bulk(ω)/G

∗
loc(ω), κ

′ = κ − 1, andκ′′ = 3 + 2κ. Rheological

microscopy uses this relation along with our one- and two- point measurements to probe the

depletion- induced mechanical heterogeneity.

If the shell model is valid, then theG∗
2(ω) generated from theG∗

1(ω) using Eq. 4.1 for

different particle diameters should collapse onto each other for a value of the shell thickness∆

that corresponds to the effective depletion layer thickness for a given concentration, independent

of particle size. Our scheme for rheological microscopy in this paper aims to find an effective
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layer thickness∆ from the ‘blind’ collapse of the syntheticG∗
2(ω) determined for different

tracer diameters. We expect the∆ to be on the order of the correlation lengthξ of the DNA

solutions based on a simple model of the viscosity dependence with distance from a planar wall

for non-adsorbing flexible polymers [61] (see Figure 4.7B).Furthermore, we expect the curves

to collapse onto the bulk modulusG∗
bulk(ω), inferred here from the measuredG∗

2(ω). This

approach thus affords a simultaneous determination of the spatial extent of the depletion cavity

and the bulk rheological response from one-point microrheological data.

We determined the collapse of the data for our three particlesizes by treating∆ as a free

parameter in the minimization of the standard deviation of the syntheticG∗
2(ω). We assume

that the local modulus is predominantly that of a viscous fluid with the viscosity of the solvent,

namelyG∗
loc(ω) = −iωη0 with η0 = 0.94 mPa s. In Figure 4.6A we exhibit the results of the

minimization forcDNA = 397µg/ml wherec ≈ 13 c∗. We found the collapse to be nearly perfect

with ∆ = 194 nm. Significantly, the crossover ofG′ andG′′, which reflects a typical relaxation

time for the network, is captured in the measured and one-point derivedG2 but undetected in the

rawG1 data. As a further check of our method, we apply it to the next lower concentrationcDNA

= 190µg/ml wherec ≈ 6 c∗. The results, exhibited in Figure 4.6B, again show a good agreement

between all particle sizes and two-point results. The fact that the syntheticG2 agrees with the

G∗
bulk(ω) determined from two-point microrheology verifies the applicability of the shell model

for a polymer network with depletion induced inhomogeneities.

Lastly, we relate the∆ to our previously measuredξ for all our concentrations. In Figure

4.7A we show a plot of∆ vs ξ. Our values for∆ are closer to2 ξ (dotted line in Figure 4.7A)

suggesting that the “rheological” cavity size for the depleted particles are of orderξ, albeit a bit
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Figure 4.7: (A) Effective layer thickness∆ determined from optimal collapse of theG1 data for
all particle sizes vs measured correlation lengthξ. Dash-dot line:∆ = 1.33 ξ. Dotted Line:∆ =
2 ξ . (B) Variation of solution viscosity (dotted line) and DNA concentration (dashed line) with
dimensionless distance from the sphere forc = 190 µg/ml, 2a = 0.97 µm. The width at half
maximum of the viscosity profile is used to define an effectivecavity thickness∆ for the shell
model (solid line).

larger. A naive mean field treatment (see the width-at-half-max of the local viscosity in Figure

4.7B) leads to∆ = 1.33 ξ, which is drawn with the dash-dot line. We see that our valuesfor ∆

are closer to2 ξ as shown with the dotted line. This overestimation of the∆ could arise from

hydrodynamic penetration of the bead-induced solvent flow into the outer shell, as illustrated

in Figure 4.8. Thus,∆ is a rheological slip length corresponding to the distance at which the

velocity field of the fluid hydrodynamically “locks in” to thenetwork rather than the correlation

length characterizing the static thickness of the depletion layer. This higher-order effect is not

captured in the shell model.

4.5 Conclusion

We have demonstrated that concurrent one- and two- point microrheological measurements and

theory can be used to determine the local microstructure of the depletion induced layers sur-

rounding a tracer particle embedded in a semi-dilute polymer solution. Our results furthermore
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Figure 4.8: Cartoon illustrating difference between rheological slip length∆ and correlation
lengthξ in the depletion layer of a moving particle.

show that conventional one-point microrheological measurements can be applied to extract the

bulk viscoelastic modulus, a quantity which has heretoforebeen unambiguously accessible only

to two-point measurements in such systems. Equivalently, if one has knowledge of the cavity

size, the local rheological properties of the layers can be deduced in an analogous way. Refine-

ments, both theoretical and experimental, of the basic ‘rheological microscopy’ method we have

presented here should enable its extension to the study of more complex media.
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Chapter 5

Fluctuations and Rheology in Active

Bacterial Suspensions

Support Bacteria. They’re the only culture

some people have.

Steven Wright

5.1 Introduction

Active complex fluid systems such as living cells [15, 57], assemblies of motors and filaments

[41], flocks of birds [105], and vibrated granular media [75]differ from conventional equilib-

rium media in that some of their components consume and dissipate energy, thereby creating

a state that is far from equilibrium. An understanding of model active systems, even at a phe-

nomenological level, provides insight about fundamental non-equilibrium statistical physics and,

potentially, about the inner workings of biological systems. Bacterial baths [12,96,106,118] are
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attractive model active systems because energy input is homogeneous, because individual bacte-

ria can be directly observed, and because critical parameters such as density, activity, and swim-

ming behavior can be brought under experimental control. Earlier experiments have reported

on a rich variety of non-equilibrium phenomena in this system class including anomalous dif-

fusion [118] and pattern formation [79, 106], while theories of self-propelled organisms readily

predict ordered phases such as “flocks” [104],

In this chapter, we describe microrheological measurements of the fluctuations and mechan-

ical responses of an active bacterial suspension. In contrast to previous work [96, 106, 118], we

concurrently measure the one- and two-point correlation functions of embedded passive tracer

particles to assess material fluctuations over a wide range of length scales. We found that, similar

to equilibrium systems such as theλ-DNA of Chapter 2, one-point measurements are sensitive

to the local environment of the probe while two-point measurements automatically average over

system inhomogeneities and provide an unambiguous measureof the parameters characterizing

the bulk rheological properties of the bacterial bath. Whereas previous tracer-based measure-

ments on bacterial baths have exclusively utilized one-point approaches, our results raise new

questions about the applicability of one-point measurements as a probe of bacterial dynamics.

We independently measure the effective viscosity of the bacterial bath by using optical tweezer-

based active microrheology as described in Chapter 3. We found that even at a low volume

fraction (φ ∼ 10−3) of bacteria, fluctuations in the medium are substantially greater than they

are in the absence of bacteria while rheological response isunchanged, implying a breakdown

of the fluctuation-dissipation theorem (FDT). This confirmsthat the bacterial bath is a far-from-

equilibrium system.
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We found that he mean-square displacements (MSDs) of tracerparticles as a function of lag

time∆t, depend strongly on swimming behavior. For wild-type bacteria that both run and tum-

ble, the MSD extracted from two-point correlations scale superdiffusively as∆t3/2 over the time

scale of our experiments, and the stress power spectrum∆(ω) [57] as a function of frequency,

ω, scales accordingly asφ/
√
ω. For constitutively tumbling bacteria, by contrast, both one- and

two-point MSDs exhibited a crossover between super-diffusive and diffusive regimes that could

be completely characterized using asingle time-scale,τ , and the∆(ω) was well-described by a

functional form a constant plus a Lorentzian with a knee frequency≈ 1/τ .

5.2 Background

Many species of bacteria, such asE. coli are rodlike, single-celled organisms that actively nav-

igate their environment by swimming [12]. A common mechanism for motility is based on the

rotation of bacterial flagella propelled by the action of rotary motors embedded in the cell wall.

When all the motors rotate counterclockwise, the flagella bundle up and propel a bacterium for-

ward in the direction of its long axis. This is called a “run”.When some of the flagella rotate

clockwise, the flagella unbundle and the cell body spins or “tumbles”. These motions are illus-

trated in Figure 5.1. Tumbles randomize the bacterium’s swimming direction. By “tasting” its

local environment and using the chemical signal to tune the relative frequencies of runs and tum-

bles, a bacterium is able to direct its average motion towardincreasing spatial nutrient gradients,

a process known as chemotaxis. On average, a bacterium tumbles for about 0.1 s before it “runs”

in a different (random) direction; the typical run time is about 1-10 s. Therefore, at long time, a

bacterium appears to perform a sort of random walk. With a typical size of a bacterium,ℓ, of the
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order of microns, a typical speed,v, of the order of 10µm/s, and a densityρ comparable to that

of water (1000kg/m3), the Reynolds number (Re =ρvℓ/η) is much less than 1.

{
run

tumble

Figure 5.1: Illustration of running and tumbling motions ofbacterium likeE. coli.

Early experimental studies utilizing light-scattering techniques demonstrated that the veloc-

ity distribution of motile microorganisms, in general, andbacteria, in particular, is not Maxwellian

[13], indicating that their motion is far more complex than that of Brownian particles [78]. A

key question is: what is the large-scale flow behavior of a collection of swimming microor-

ganisms? Experiments on dense suspensions in a variety of different geometries including soap

films [95,118], sessile drops [106], and semi-solid agar substrates [121] point to a consensus that

collective motion in the form of jets and swirls is a generic feature of active swimmer suspensions

at sufficiently high densities. Thus, active swimmer suspensions, despite being at low Reynolds

number, are a breeding ground for “exotic” fluid phenomena more commonly associated with

systems at higher Reynolds number. This richness is due in large part to the fact that they are in-

ternally driven to a non-equilibrium regime wherein the usual, familiar balance of energy scales
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is disrupted. Moreover, even a minimal model of interactingswimmers must reckon with non-

linear couplings of orientational order, concentration fluctuations, and long-range hydrodynamic

interactions. One class of models, termed active hydrodynamics [44,94], describes the collective

motion of active suspensions by constructing hydrodynamicequations augmented with dynami-

cal equations accounting for orientational and concentration couplings. This phenomenological

framework leads to many interesting predictions for the behavior of active suspensions, includ-

ing instabilities [94], giant density fluctuations [17, 76], and novel rheological effects [44]. One

of the most dramatic predictions of Ref. [44] is viscosity enhancement or reduction by activity.

This effect can be qualitatively and simply understood by considering the detailed nature of the

force that an active swimmer exerts on the fluid.

Swimmers that propel themselves through a fluid can be broadly classified as either “push-

ers,” which propel themselves using rear-mounted flagella like the bacteriumE. coli in a “run”

state, or “pullers,” like the algaeChlamydamonas reinhardtii which use front-mounted flagella

the way a human swimmer uses her/his arms. These two types of organisms exert different

forces on the surrounding fluid. Pushers force fluid back behind them with their propellers and

also push it forward with their bodies as they move, so that the fluid is brought in at the sides and

moves away at the front and back. Pullers pull fluid towards them with their flagella and drag it

along with them from behind, so that fluid flows in at the front and back and away at the sides.

These two types of swimmers, along with the fluid flows they excite, are illustrated in Figure

5.2.

This flow pattern can affect the large-scale flow of a fluid provided the suspension contains

enough of these swimmers and provided the swimmers are rod-shaped. Imagine that the fluid
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Puller

Pusher

Figure 5.2: Types of swimmers and the fluid flow fields (blue arrows) they generate in an im-
posed shear flow. Pusher type swimmers likeE. coli (top) enhance the imposed shear flow. Puller
type swimmers likeChlamydamonas (bottom) fight back against the imposed shear flow.

above the rod is moving to the right, while the fluid below is moving to the left. This is the

prototypical situation in shear flow, either imposed externally or generated by collective motion

of nearby swimmers. According to standard theory, in this flow, a rod (even a passive, non-living

rod) tends to align at a fixed angle, tilted to the right of vertical. In this orientation, a pusher rod

increases the flow velocities above and below, enhancing theshear flow. This enhancement

further increases the orientation of the swimmers, thus implying instability with respect to shear

perturbations of the homogeneous isotropic state. A pullerreduces the imposed flow velocities

since the flows it produces by swimming tend to cancel out the imposed shear flow. Viscosity is a

measure of the ease with which the fluid moves in such a shear flow in response to applied shear
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forces. So a rod-shaped pusher ought to decrease overall fluid viscosity, whereas a rod-shaped

puller ought to decrease it.

These dramatic effects on viscosity have been recently observed experimentally for high

concentrations (φ > .05) of pushers [95] and pullers [84]. While interesting and relevant to the

work described in this thesis on the whole, the work described in this chapter instead focuses

on the effects of non-thermal noise in dilute (φ < .01) swimmer suspensions with the aim of

advancing a detailed understanding of fluctuations in swimmer suspensions. One of the pri-

mary motivations of our work is to advance the development ofa phenomenological framework

for fluctuating active hydrodynamics [58]. This theoretical work extends earlier active hydro-

dynamic theories [44] by accounting for previously unconsidered effects of noise terms and

concentration fluctuations in the equations governing the dynamics of the bacterial bath. One

notable prediction of the theory of Ref. [58] is the scaling of the power spectrum∆(ω) ∼ φ/
√
ω

observed in microrheology measurements on wild-type bacteria arises only when concentration

fluctuations are considered. Active hydrodynamic theoriesthat do not include concentration

fluctuations [44] do not predict the observed scaling. Another notable result is that the superdif-

fusive MSDs observed for both wild-type and tumbler bacterial baths arises naturally from the

fluctuating active hydrodynamic theory. Existing theoriesof active media [94] predict long-time

tails and anomalous corrections to diffusion but not superdiffusion.

5.3 Materials and Sample Preparation

We used two strains ofE. coli, a rod-shaped bacterium with dimensions3 × 1µm, in our stud-

ies: RP437, the “wild-type”, which runs and tumbles [80] andRP1616, the “tumbler”, which
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predominantly tumbles [3]. Overnight cultures in stationary phase were diluted 1/300 in Luria

Broth (Difco) and grown aerobically at25 ◦C under 220 RPM shaking for 6 hrs. Subsequently,

they were centrifuged for 10 minutes at 5000 RPM and resuspended to the desired concentration

in a buffer comprised of 10 mM K2HPO4, 0.1 mM EDTA, and 0.2 wt % glucose (pH = 8.2),

which was added to maintain vigorous bacterial motility under the anaerobic conditions of our

sample chambers [1]. We determined the concentration ofE. coli in our experiments by direct

counting under a microscope. The bacterial suspension was diluted 1/200 in a pluronic surfac-

tant F127 (BASF). The pluronic has the useful property that it is solid at room temperature and

liquid at≈ 4◦ C. This enabled us to immobilze the bacteria, facilitating counting. The diluted

bacterial suspension was mixed into the pluronic in a freezer at 4◦ C, loaded into a microscope

slide, and then counted under a microscope at room temperature. Typically, 5 randomly selected

subvolumes of the sample were counted and averaged for each run to determine the concentra-

tion.

We added a small amount (φs = 10−4) of fluorescently labeled polystyrene spheres (Duke

Scientific) of diameter2a = 2− 10µm to the bacterial suspension, and to density match them,

we added 15 wt % sucrose to the solution. To prevent bacterialadhesion, we prepared the

chambers from BSA coated glass slides and coverslips. We used parafilm spacers to bring the

thickness of the chambers to≈ 240µm. Images were recorded via quasi-2D image slices from

the middle of the 3D chamber. Samples were loaded into the chamber and sealed with optical

glue just prior to each run.
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5.4 Results and Discussion

We quantified the fluctuations in the bacterial bath by computing MSDs from the motions

of embedded micron-sized tracers [26]. The one-point displacement (MSD1) is defined by

〈∆r2x(∆t)〉 = 〈∆rx(t,∆t)∆rx(t,∆t)〉, where∆rx(t,∆t) = rx(t + ∆t) − rx(t) is the par-

ticle displacement in thex-direction during lag time∆t. The two-point displacement (MSD2)

is defined as〈∆r2(∆t)〉2 = (2R/a)Drr(R,∆t), whereDrr(R,∆t) is the longitudinal compo-

nent ofDij(R,∆t) = 〈∆r
(1)
i (t,∆t)∆r

(2)
j (t,∆t)〉, which measures correlations of two distinct

particles(1, 2) with an initial separationR. Over the time scale of our experiments,R lies in

the focus plane of our microscope and its magnitudeR ≡ |R| is greater than that of individual

particles’ displacements. The main advantage of two-pointmicrorheology is that it provides a

more reliable measure of length scale dependent fluctuations in media where the length scale of

heterogeneities and tracer boundary conditions are nota priori known [26, 57]. Indeed, since

Dij(R,∆t) is ensemble averaged over tracer pairs withR ≫ a, it reflects the dynamics of the

medium on larger length scales than the tracer size, permitting quantitative measurements even

in the presence of heterogeneities. In general, MSD2 will equal MSD1 if heterogeneities in

the medium have length scales smaller than the tracer size, otherwise they will differ in both

magnitude and functional form.

Typical MSD data are presented in Figure 5.3, which shows that the one-point MSD in both

bacterial strains displays a crossover from superdiffusive behavior at short lag times (〈∆r2〉1 ∼

∆tα, 1 < α < 1.5) to diffusive behavior (α = 1) at long lag times. The diffusivity of identical

particles in water is constant and about an order of magnitude lower than the bacterial bath at

long times. These observations are similar to that of Ref. [118] in which one-point measurements
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Figure 5.3: MSD for particles in bacterial baths. 1-pt (opensymbols) and 2-pt (closed symbols)
mean square displacements divided by the lag time,∆t, for 2a = 2µm particles in bath of wild-
type RP437 (triangles) and tumbler RP1616 (circles) bacteria atφ = .003. MSD1 for 2a = 2µm
particles in water (squares) is a flat line in this rescaled plot.

were made of bacterial baths in soap films. However, our two-point data for the wild-type,

by contrast, exhibit a nearly power-law superdiffusion (〈∆r2〉2 ∼ ∆t1.5) over 2.5 decades of

observation time. We also verified thatDrr(R,∆t) ∼ 1/R [see Figure 5.4] for both wild-

type and tumbler baths, indicating that the bacterial bath,though an active medium, can be

treated on the separation scaleR as a coarse-grained continuum whose properties can be probed

with two-point microrheology [26,57]. Theoretical predictions [58] and simulations [107] have

corroborated that equal-time correlation functions of an active swimmer suspension’s velocity

field on intermediate length scales should decay as 1/R, at least above an orientational decay

length, ξU , accounting for orientational alignment of the rod-shapedbacteria. ξU is further

discussed in Section 5.5. That MSDs exhibit superdiffusionis suggestive of but not a proof

of the breakdown of the FDT, which requires an independent measurement of the rheological
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response function.
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Figure 5.4: Rescaled two-point correlationRDrr(R,∆t = .067 sec) vs R for wild-type (tri-
angles) and tumbler (circles) bacterial baths both at a volume fractionφ = .003. The data
demonstratesDrr ∼ 1/R for R ≥ 10µm, and implies orientational decay lengthξU ≤ 10µm.

Response measurements were performed using the oscillating optical tweezer setup of Figure

3.14 in Section 3.4.1. Briefly, an optical trap with typical trap stiffness of∼ 1×10−3 pN/nm was

formed by focusing an∼ 100 mW laser beam (λ = 1054nm) through a 1.3 NA oil immersion

objective (Zeiss). The trapping beam position was sinusoidally scanned using a galvanometer-

drvien mirror at frequencies from 0.5 to 500 Hz. A2a = 4.0µm PS sphere was trapped∼ 6µm

from the coverslip. The position of the tracer was detected using forward scattered light from

a co-linearly aligned HeNe laser beam focused onto a split photodiode (Hamamatsu S4204).

The photodiode signal was fed into a lock-in amplifier (Stanford Research Systems 530) along

with the reference from the driving function generator signal. The displacement and phase of

the trapped particle output by the lock-in amplifier were logged into a PC running LabView

(National Instruments).
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The equation of motion for a particle of radiusa trapped in an oscillating harmonic potential

may be written as:6πηaẋ = −k [x−A cos(ωt)], whereη is the viscosity of the medium,k

is the stiffness of the trap, andA is the driving amplitude. Its steady state solution yields the

normalized displacement of the sphere in the trap:d(ω) =
{

1 + [ 6πaη(ω)ω/k ]2
}−1/2

. For a

more detailed discussion see Section 3.4.1.
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Figure 5.5: (A) Normalized Displacement of a 4.0µm diameter sphere in the optical trap as a
function of driving frequency for wild-type (triangles), tumbler (circles), and water (squares).
Line is a fit tod(ω) (see text). (B) Frequency dependent viscosity derived fromoscillating trap
measurements for 4.0µm diameter sphere in water (solid squares), the tumbler (solid circles),
and the wild-type (solid triangles) bath atφ = .003. Viscositiesη2(ω) derived from the aver-
aged two-point measurements using the generalized Stokes-Einstein relation are plotted for the
tumbler (open circles), the wild-type (open triangles), and a bead in water (open squares).

Figure 5.5A shows the raw normalized displacement data for aparticle in water and in active

bacterial baths of tumblers and wild-types. The solid line is a fit tod(ω) with η = 0.001Pa· s,

trap stiffnessk = 8 × 10−4 pN/nm, and radiusa = 2.0µm. The experimental data agree with

each other and with the theoretical curve. From them, we extract the viscosityη(ω) shown

in Figure 5.5B. Clearly, the presence of actively swimming bacteria at volume fraction10−3

does not modify the viscosity of the medium significantly from that of water,η(ω) = η0 =

0.001Pa· s.
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While recent theories of pusher type active swimmers predict novel reduction in the viscos-

ity [44], our experiments are well below the concentration at which these effects are observable.

Instead, our results are consistent with the Einstein result for hard spheres:η = η0(1 + 5
2φ),

namely, a negligible modification in the viscosity forφ ∼ 10−3. Moreover, assuming for the

moment the generalized Stokes-Einstein relation, we can extract the (FDT consistent) response

from the collapsed two-point displacement (MSD2) [57]:η2(ω) = kBT/3πω
2a〈∆r2(ω)〉2, as

shown in Figure 5.5. The difference betweenη(ω) andη2(ω) explicitly indicates a strong vi-

olation of FDT. We can moreover conclude that the superdiffusion in the MSDs is due purely

to noise and not a novel viscosity enhancement as predicted by Ref. [44] and qualitatively con-

sidered in Section 5.2. The apparent importance of noise even at dilute densities of swimmers

motivated Lau and Lubensky [58] to augment the equations of active hydrodynamics with noise

terms, discussed in detail in Section 5.5.

Next, to access the heterogeneity of the bacterial bath, we explored the length-scale de-

pendence of fluctuations by systematically varying the sizeof the tracers at a fixed bacterial

concentration. Figure 5.6A shows MSDs obtained for spheresin the tumbler bath. All samples

and all tracer sizes exhibit a crossover from superdiffusion to diffusion on similar timescales,

with an enhanced diffusion coefficientD = γDT , whereγ = 4.3 andDT = kBT/(6πη0a)

is the equilibrium coefficient. Moreover, MSD1 and MSD2 are nearly equal in magnitude and

functional form, suggesting that the activity in the tumbler bath is homogeneous. Rescaling time

by the crossover timeτ and the MSDs by2DT∆t collapses all the data onto a master curve:

[〈∆r2x(∆t)〉1, 〈∆r2(∆t)〉2]/(2DT∆t) = γ + (1 − γ )( 1 − e−x )/x, wherex = ∆t/τ . Figure

5.6B shows the collapsed MSD data along with the master curvewith τ = 0.1 s.
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Figure 5.6: (A) Raw 1-pt (open symbols) and 2-pt (closed symbols) MSDs for tumblers. Circles,
triangles, and squares are for particle diameters2a = 2.0, 5.0, and10.0 µm, respectively. (B)
Collapsed 1-pt (open symbols) and radius collapsed averaged 2-pt (closed symbols) MSDs for
the tumblers atφ = .003. The solid line is the master curve:γ+(1− γ )( 1− e−x )/x (see text).

The functional form of the master curve can be derived from the generalized Langevin equa-

tion (GLE) in the overdamped limit with thermal and active noise terms:
∫ t
−∞ dt′ζ(t−t′)v(t′) =

fT (t) + fA(t). Hereζ(t− t′) is the probe resistance,fT (t) is the thermal noise, andfA(t) is the

active noise due to the bacteria. The noise terms have the following properties:〈fT (t)〉 = 0,

〈fA(t)〉 = 0, 〈fT (t)fA(t)〉 = 0, 〈fT (t)fT (t′)〉 = 2DT δ(t − t′), 〈fA(t)fA(t′)〉 = 2DA

τ e−|t−t′|/τ

whereτ is a time scale characterizing bacterial activity [96, 118]. It follows that the MSD1

derived from the GLE has the following form [86,118]:

〈∆r2x(∆t)〉1 = 2DT∆t+ 2DAτ [∆t/τ − 1 + exp(−∆t/τ)], (5.1)

which yields the tumbler master curve upon rescaling both sides of the equation by1/2DT∆t

and substituting the variablesx = ∆t/τ andγ = (DA +DT )/DT . We can draw two important

conclusions from the fact that the one and two-point MSDs forthe tumblers can be collapsed

by such a functional form. The first is that the activity in thetumbler bath is well described by
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a single timescaleτ . The second is that the activity in the tumbler bath is homogeneous since

the MSD2, averaged over large length scales (10µm < R < 100µm), is trivially related to the

MSD1 via affine extrapolation (MSD1 =(2R/a) ∗Drr), as in equilibrium homogeneous media.
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Figure 5.7: (A) Raw 1-pt (open symbols) and 2-pt (closed symbols) MSDs for wild-type bacteria.
(B) Radius rescaled 1-pt(open symbols) and 2-pt (closed symbols) MSDs for the wild-types at
φ = .003. Circles, triangles, and squares are for particle diameters2a = 2.0, 5.0, and10.0 µm,
respectively.

The MSD behavior for the wild-type bacteria are strikingly different: the MSD1 exhibits a

crossover dependent on tracer size, while all of the MSD2 exhibit superdiffusion with nearly

the same exponent of1.5 over 2.5 decades of time, independent of the tracer size, as shown in

Figure 5.7A. Fits of the wild-type MSD1 to Eq. 5.1 were poor, suggesting that the activity in

the wild-type bath cannot be described in terms of a single relaxation timeτ . We found that

the trivial rescalinga〈∆r2(∆t)〉2/∆t collapsed the respective MSD2 data [see Figure 5.7B].

Under this rescaling, however, (and other simple scaling functional forms as well) the wild-type

MSD1 failed to collapse, signaling the presence of heterogeneity on the tracer length scale. The

superdiffusive exponent of the MSD1 approaches that of the two-point data (α ∼ 1.5) asa

increases. This suggests that one-point measurements are intrinsically ambiguous: the activity

inferred depends on the tracer size and boundary conditions[18, 57]. Two-point measurements,
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in contrast, provide a more robust characterization of the long-wavelength fluctuations of the

medium than one-point measurements.

We employ a recently developed phenomenological theoretical framework for an active

medium to interpret the experimental MSD data [57, 58]. The bacterial activity gives rise to

non-thermal stress fluctuations whose power spectrum∆(ω) can unambiguously be extracted

from two-point microrheology data via

Drr(R,ω) =
∆(ω)

6πω2 R | η∗(ω)|2 . (5.2)

The power spectrum∆(ω) can be interpreted as a frequency-dependent effective temperature

which quantifies the departure from equilibrium. For thermal systems in equilibrium, the FDT

relates the noise power spectrum to the viscosity of the medium, resulting in∆(ω) = ∆T where

∆T ≡ 2kBTRe[η∗(ω)].

Our results are exhibited in Figure 5.8A. For water, we find that the power spectrum is

flat. This is expected since particles diffusing in water arein equilibrium and viscosity is a

constant, i.e.,η(ω) = η0 implying ∆T = 2η0kBT . This can be explicitly shown as well since

the MSD2 is linear in∆t, implying Drr(R,∆t) ∼ ∆t for purely diffusive systems, resulting in

a frequency dependence after Fourier transformation givenbyDrr(R,ω) ∼ ω−2. The frequency

dependence thus cancels out in Eq. 5.2. For the tumblers, both MSD1 and MSD2 have functional

forms described by Eq. 5.1, resulting in a∆(ω) that is a constant plus a Lorentzian, flat at low

frequencies with a knee at higher frequencies. The Lorentzian is the Fourier transform of the

exponential term in Eq. 5.1 and originates from the exponentially correlated active noise term

in the GLE. For wild-types, the MSD2∼ ∆t1.5 implying that∆(ω) also exhibits power-law
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behavior,∆(ω) ∼ ω−0.5, over 2.5 decades. In both tumbler and wild-type cases∆(ω) > ∆T

, with a greater deviation occuring at low frequencies. For the wild-type, the prefactor∆0

of ∆(ω) = ∆0/
√
ω rises linearly with the bacterial concentration, as shown in Figure 5.8B.

In the following section, we discuss the microscopic origins of the scaling observed for∆(ω)

using a fluctuating active hydrodynamic theory developed tounderstand microrheology in active

swimmer suspensions.
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Figure 5.8: (A) The spectrum∆(ω) of active stress fluctuations obtained from two-point mi-
crorheology and active response measurements. The triangles are the wild-types, circles are the
tumblers (bothφ = .003), squares are water (φ = 0). (B) Linear dependence of the prefactor
∆0 in ∆(ω) on the volume fractionφ of the wild-type bacteria;∆T ≡ 2η0kBT .
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5.5 Theory of Fluctuating Active Hydrodynamics

An active medium comprised of rod-like swimming organisms can be modeled by constructing

dynamical equations which couple concentration and orientational dynamics of the swimmers

with a Navier-Stokes equation for the velocity field,v, of the suspension. Essentially, the equa-

tions stem from the key assumption that the active bacterialbath can be modeled via a two-fluid

description wherein one component is a thermal fluid (solvent) while the other is an active fluid

comprised of force dipoles with nematic order (bacteria). Additionally, we include noise terms

in the equations and consider density fluctuations of the bacteria, which were not considered in

Ref. [44]. These additional terms were necessary to accountfor our observations in the tumbler

and wild-type bacterial bath measurements. The reader is referred to Ref. [58] for the full details

of how the equations are built up from “first-principles”. Inorder to give the reader a bird’s-

eye view of the structure of the theory, we begin,in medias res, by writing down the linearized

governing equations used to account for our observations:

Momentum of fluid ρ∂tvi = η∇2vi
︸ ︷︷ ︸

viscous
stress

− ∂ip
︸︷︷︸

pressure

+ ∂jσ
T
ij

︸ ︷︷ ︸

thermal
stress

+ ∂jσ
A
ij

︸ ︷︷ ︸

active
stress

(5.3)

Orientational dynamics ∂t Qij
︸︷︷︸

force
dipole
density

= − τ−1
Q

︸︷︷︸

relaxation
time

(1− ξ2Q
︸︷︷︸

correlation
length

∇2)Qij + sij
︸︷︷︸

random
noise

(5.4)

Concentration dynamics ∂tδc = D∇2δc
︸ ︷︷ ︸

diffusion
term

+αc∂i∂jQij
︸ ︷︷ ︸

active
current

+∇ · δJ
︸︷︷︸

random
current

(5.5)
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Eq. 5.3 is essentially the linearized Navier-Stokes equation accounting for momentum bal-

ance with two additional noise terms, one due to thermal and one due to active noise. In principle,

there is another term in Eq. 5.3 that is required to account for the torque that a velocity gradient

exerts on the nematic order parameter, as expected for liquid crystalline systems in the isotropic

phase. However, we have set that term to zero, since it predicts a very strong viscosity renormal-

ization, whereas our results indicate that the viscosity ofthe bacterial bath is indistinguishable

that of water [Figure 5.5]. In the process of tumbling or swimming, the bacteria generates an

active force densityfA(x, t) = −∇ · σA which contributes the active stress term in Eq. 5.3. The

active stress tensor,σA
ij , is

σA
ij = Wc(x, t)Qij(x, t), (5.6)

wherec(x, t) is the concentration of the bacteria,Qij is a traceless, symmetric force-dipole

density whose dynamics in given by Eq. 5.4, and W is strength of the force dipole characterizing

the swimmer, positive for pushers and negative for pullers [see Figure 5.2].

When this form of the active stress tensor is considered, it is clear that Eqns. 5.3-5.5

are coupled, i.e., each equation contains at least one parameter contained in the others. The

form of the active stress term in Eq. 5.6 was first considered by Hatwalne and Ramaswamy

[44]. In their active stress term, however, the concentration was assumed to be constant, i.e.,

c(x, t) = c0. In Lau and Lubensky [58], the concentration is decomposed into a constant

and a fluctuating part:c(x, t) = c0 + δc(x, t) which leads to a full active stressσA
ij(x, t) =

Wc0Qij(x, t)+Wδc(x, t)Qij(x, t) with the consequence that active stress fluctuations become

〈 δσA
ij(q, ω)δσ

A
kl(−q,−ω) 〉/W 2 =
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c20〈Qij(q, ω)Qkl(−q,−ω)〉+ 〈 δc(q, ω)δc(−q,−ω) 〉〈Qij (q, ω)Qkl(−q,−ω)〉+

〈 δc(q, ω)Qkl(−q,−ω) 〉〈Qij(q, ω)δc(−q,−ω) 〉 after Gaussian decoupling. Active processes

enhance stress fluctuations, and assuming long-range isotropy, the active stress fluctuations

can be expressed as〈 δσA
ij(q, ω)δσ

A
kl(−q,−ω) 〉 = ∆A(q, ω)

[
δikδjl + δilδjk − 2

3 δijδkl
]

for

both tumblers and wild-types. The power spectrum in Eq. 5.2 is related to∆A(q, ω) by

∆(ω) = ∆A(q = 0, ω), i.e., in the long wavelength limit. The long-wavelength limit is

probed by two-point measurements, but not by one-point measurements. For the tumblers, the

power spectrum is nearly Lorentzian with∆(ω) = ∆T +W 2c20τ
2(kBT/γ)/[1 + (ωτ)2], where

∆T ≡ 2η0kBT is the thermal contribution. The non-thermal term comes from ignoring the

concentration fluctuations and considering only thec(x, t) = c0 contribution to∆A(q = 0, ω).

While this assumption seems reasonable for tumblers since they do not move around much, it

seems unreasonable for wild-types. Since the wild-types are swimming around, it is conceivable

that their density fluctuates in space and time. Consideration of thec(x, t) = δc(x, t) contri-

bution to∆A(q = 0, ω) leads to∆(ω) ∼ φ/
√
ω observed in two-point measurements in the

wild-type bath [Figure 5.8].

Next, we turn to discussion of orientational dynamics of thebacterial governed by Eq. 5.4.

Active swimmers have no monopole moment because mutual forces of swimmer and fluid cancel

by Newton’s third law. The minimal description of an active swimmer is thus a permanent force

dipole. In wild types and tumblers, forces are directed, respectively, along and perpendicular

to the long-bacterial axes, as illustrated in Figure 5.9. Thus, in wild-types,Qij is equal to the

uniaxial nematic order parameterQU
ij whereas in tumblers, it is equal to a biaxial order parameter

QB
ij . The equation governing the dynamics ofQij is assumed to be the same as for equilibrium
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nematics in the isotropic phase [58]. To allow for the possibility of two order parameters Eq. 5.4

becomes

∂tQ
A
ij = −τ−1

A

(
1− ξ2A∇2

)
QA

ij + sij , (5.7)

where A = (U, B) denoting either uniaxial or biaxial quantities.τA is the relaxation time,ξA the

correlation length ofQA
ij, andsij is a spatial-temporal white noise with zero mean. Although

both wild-type and tumbler bacteria obey Eq. 5.7, the detailed forms ofQU
ij andQB

ij are quite

different [58]. Importantly, interactions among bacteriafavor long-range order inQU
ij but not

in QB
ij , implying thatτB ≪ τU andξB ≪ ξU . This fact is crucial to the explanation for the

difference in the behavior of the MSDs between the tumbler and wild-type bacteria shown in

Figures 5.6 and 5.7. Notably, the wild-type bacterial bath exhibits a length scale dependence,

possibly in the form of jets and swirls, that leads to a tracersize-dependent MSD1 and to MSD2

6= MSD1. For the tumblers, by contrast, MSD2 = MSD1 for all tracer sizes, implying that

ξB < 2µm, the diameter of the smallest tracer in our studies. Thus thephysical picture of the

tumbler bath is that of a fluid homogeneously stirred at smallscales by a random force with a

characteristic relaxation timeτB ≈ 0.1 seconds. For the wild-type bath,τU > 10 seconds since

the MSD2 is superdiffusive up until that time [Figure 5.7B].Furthermore, our measurement of

Drr ∼ 1/R for R > 10µm in Figure 5.4 constrainsξB,U < 10µm.

Eq. 5.5 is an advection-diffusion equation with an active advection term and an additional

noise current term (δJ) describing concentration dynamics of the bacteria . For both wild-types

and tumblers, the concentration of bacteria obeys the continuity equation:∂tδc = −∇ · J with

Ji = −D∂iδc − αc0∂jQ
A
ij + δJi, wherec0 is the average concentration,D is the diffusion
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Figure 5.9: Cartoon of wild-type and tumbler bacteria swimming motions. For wild-type bacte-
ria, motion is primarily translational, directed along itslong-axis. Thus the active dipolar stress
it exerts on the medium is described by a uniaxial order parameterQU

ij . For tumblers, the motion
is primarily rotational, resulting from flagellar forces oriented perpendicular to its long axis. The
resulting active stress is described by a biaxial order parameterQB

ij .

constant,δJi is a random current, and the second term stems from the nonequilibrium driving of

mass flow [104,105].

The use of nematic order to model the bacteria, rather than polar order, as might be expected

for swimmers that move unidirectionally, is somewhat controversial. Both polar [5] and nematic

[44, 94] order have been employed in the literature to model self-propelled organisms. A recent

simulation [89] provides evidence that instabilities occuring in self-propelled rods are consistent

with both polar and nematic fluctuations. Theoretical studies of active gels [64] also suggest the

possibility that there is a region of phase space wherein a system of active polar particles has a
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preference for nematic rather than polar order. Ultimately, assuming incipient polar instead of

nematic order in our model leads,inter alia, to a power spectrum which scales as∆(ω) ∼ ω−3/2,

in clear disagreement with the∆(ω) ∼ ω−1/2 observed in our experiments and obtained with

the nematic order in our model.

5.6 Conclusion

Using a combination of passive one- and two-point microrheology and active response mea-

surements, we have observed a number of striking effects in dilute bacterial baths including: (i)

superdiffusive scaling of the MSDs that depends on swimmingbehavior in a length scale de-

pendent manner, (ii) Active stress power spectrum∆(ω) ∼ φ/
√
ω for wild-type bacteria and

Lorentzian for tumblers, and (iii) breakdown of the FDT resulting from enhanced noise due to

activity rather than viscosity enhancement. Importantly,(i) and (ii) suggest that two-point mea-

surements are essential to robustly extract the fluctuations in bacterial baths, surmounting length

scale heterogeneities as in equilibrium systems.

A theoretical framework of fluctuating active hydrodynamics coupling concentration fluc-

tuations and orientational dynamics of liquid crystallinesystems with hydrodynamic equations

was developed and used to explain microrheological measurements in bacterial baths. Although

viscosity renormalization is predicted in our theory as well as previous theories, our suspen-

sions were too dilute to observe these effects. Attempts to increase density were hindered by

unvigorous motility due to the anaerobic environment of oursample chamber. Potentially, future

work reiterating these measurements in soap films, where vigorous aerobic motility and higher

densities can be achieved, will observe viscosity enhancement effects.
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Chapter 6

Rheology of Carbon Nanotube

Networks During Gelation

6.1 Introduction

Filamentous networks play a crucial role in many biologicaland materials contexts. In liv-

ing cells, for example, networks of biopolymers facilitateprocesses such as cell division and

motility. Understanding the macroscopic mechanical properties of such networks, evenin vitro,

is challenging because of a complex interplay between the flexural rigidity of constituent fila-

ments and inter-filament interactions such as crosslinking. To date, the most intensively studied

model systems are semiflexible filament networks, such as those comprised of F-actin wherein

entropic stretching of individual filaments dominates network linear and non-linear viscoelastic-

ity [38, 102]. Rigid rod networks, by contrast, are relatively unexplored and should differ from
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their semiflexible counterparts as a result of enthalpic effects associated with bending, compres-

sion, and inter-filament bonding. Carbon nanotube networkspresent opportunities to explore

these latter issues. In addition, interest in carbon nanotube networks has grown as a result of

their technological potential in composite materials [39,50, 74]. These applications often de-

pend on network connectivity, thus corroborating the need for a better understanding of network

formation in this system class.

In this chapter, we describe work wherein we employ a combination of rheological measure-

ments, analytic theory, and computer simulation to investigate network formation in aqueous

dispersions of single wall carbon nanotubes (SWNTs). On theexperimental side, an aqueous

dispersion of SWNTs in surfactant is prepared, and, over time, the SWNTs crosslink due to

strong localized van der Waals interactions at contact [47]. As the dispersion ages, clusters

of bonded SWNTs form and eventually percolate across the sample, driving its rheological re-

sponse from that of a Newtonian fluid to a gel. Microrheological measurements were made

on this system at various time points along the sol-gel transition. Observation of time-resolved

‘rigidity percolation’ in this system of fixed SWNT volume fraction suggests inter-tube bonding

as the dominant contributor to the elasticity. We demonstrate experimentally that the rheology of

SWNTs can be scaled onto a single time-cure superposition master curve, consistent with other

gelling systems [55].

The time-resolved experiments are closely related to the rheometry of fully cured SWNT

gels at varying rod volume fractionsφ [47]. The latter work found that the low-frequency elastic

modulus (G′) exhibited rigidity percolation above a critical volume fractionφ∗ with power law

form, i.e.,G′(φ) ∼ [(φ − φ∗)/φ∗]2.3. In this Chapter we introduce a microscopic model to
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understand this behavior. The model accounts for the numberof inter-tube contacts in a static

randomly oriented rod network as a function of rod volume fraction, length, and diameter; it

is based on the crossing probability of rods in finite volumes. An assumption about the relative

contributions to the shear modulus of bonds of varying degrees of connectivity permits derivation

of an analytic expression for the scaling of shear modulus with rod volume fraction.

Finally, we extend the static model to account for time-resolved sol-gel dynamics. By incor-

porating bonding kinetics into the static model, we predictthe variation of bonding between rods

as a function of gelation timet. The new model provides a marked improvement over empirical

power law forms that can be and often are used to describe the data. In contrast to previous sim-

ulations [31,37,116] and rheological measurements [46,47,63] of rigid rod networks, ours is the

first study to directly relate themeasured elasticity of a rigid rod system to its bond connectiv-

ity. Importantly, the work provides predictions about the connectivity of rigid rod networks, and

potentially, a means for tailoring the mechanical, electrical, and thermal properties in materials

comprised of rigid rod networks.

6.2 Experimental Section

6.2.1 Materials

Primary experiments were conducted on dispersions of SWNTsmade by the HiPCO process

(Carbon Nanotechnologies Inc.) at volume fractionφ = 0.0027. The nanotubes were purified

and suspended in filtered deionized water (Millipore) with NaDDBS surfactant (Sigma Aldrich)

following the protocol outlined in Ref. [52]. Further details of SWNT processing procedures can
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be found in Ref. [14]. The ratio of SWNT to NaDDBS was 1:10 by weight. We prepared the dis-

persion by mechanical agitation for 6 hrs in a high-frequency bath sonicator (Cole-Palmer model

08849-00). A small amount (φ ∼ .0001) of fluorescently labeled carboxylated polystyrene

spheres (Molecular Probes FluoSpheres) of nominal diameter, 2a = 0.46µm, was added to the

SWNT-NaDDBS dispersion. The samples were then loaded into achamber and hermetically

sealed with optical glue (Norland 63) just prior to each run.

6.2.2 Methods

Particle tracking microrheology [18, 69] was employed to follow the rheological evolution of

the network. This method is well suited for measuring viscoelastic moduli of incipient gels,

since they are generally fragile under shear and their moduli are often too weak to measure

using conventional rheology. Formation of the SWNT bond network was followed by tracking

the displacement of≈ 100 tracer particles in the field of view using digital video microscopy

[23]. Typically, 1-5 minutes of video data were obtained every 30 minutes over a 4 hour period

spanning the gelation process. For cure times longer than 3 hours, the displacement of the tracers

was comparable to the experimental noise; thus we limited the data presented herein to 3 hours

or less cure time.

From the tracer trajectories we compute tracer particle mean square displacement (MSD):

〈∆r2x(∆t)〉 = 〈∆rx(t,∆t)∆rx(t,∆t)〉, where∆rx(t,∆t) = rx(t+∆t)− rx(t) is the particle

displacement in thex-direction during lag time∆t. Note, we calculated two-point MSDs as

well [26] and obtained very similar data, but henceforth only one point MSD results will be

shown due to its higher statistical resolution at the longest lag times. Owing to the difficulty of

imaging through the strongly absorbing SWNT suspension andto minimize sample heating, it
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was necessary for us to use a relatively long camera shutter time of σ = 1/60 s. on the video

CCD camera (Hitachi KP-M1) to achieve adequate signal-to-noise levels in imaging. This led to

the introduction of dynamic errors in the MSD, as described in Refs. [91,92]. We have followed

the procedure discussed in Ref. [92] to correct MSD data for dynamic error. The details of this

procedure can be found in the Appendix. In the MSD results that follow, the data exhibited are

dynamic error corrected.

6.2.3 Results and Discussion

As gelation proceeds, both the magnitude and functional form of the MSD changes. In Figure

6.1, we exhibit the particle MSD for different waiting timesduring gelation. For the earliest

cure time (t = 10 min), the MSD is linear over the entire measurement window, corresponding

to a particle diffusing in a Newtonian fluid with viscosity roughly three times larger than that of

water. This observation indicates that steric entanglements between unbonded SWNTs do not

induce non-Newtonian behavior at this volume fraction. As time progresses, the long lag time

behavior of the MSD changes markedly, becoming progressively more sub-diffusive at t = 1 hr,

and finally exhibiting a nearly flat plateau at t = 3 hr. Thus inter-tube bonding has progressed to

modify the medium’s rheological response from purely viscous to strongly elastic.

To extract the frequency-dependent (i.e.,ω-dependent) viscoelastic moduli,G∗(ω), from the

MSD, we analyze the data using the numerical approximation scheme detailed in Section 3.3.6

of Chapter 3. The moduli, exhibited in Figure 6.2, show clearrheological evidence of the sol-gel

transition in the SWNT network as a function of gelation time. Below the critical gelation time

1 hr< t∗ < 2 hr, the rheology is dominated by the loss modulusG′′(ω). Abovet∗, the elastic

modulusG′(ω) dominates at low frequency. For all gelation times in our data,G′(ω) exhibits

141



2 hr

1 hr

10 min

3 hr

1.0

0.12

<
∆

r x
2
(∆

t)
>
 [

µ
m

2
]  

∆t [sec]
0.01

10.0

1.00

0.10

0.01

.001

.0001

0.10 1.00 10.0 100.0

Figure 6.1: Mean Square Displacement for 2a = 0.46µm particles inφ = 0.27 wt% SWNT, 10:1
NaDDBS:SWNT suspension for t = 10 min, 1 hr , 2hr, 3hr (top to bottom). Solid line is slope =
1.0, dashed line is slope = 0.12.

a weak frequency dependence (∼ ω0.3) characteristic of soft (G′ ≈ 1Pa) physical gels and of

chemical gels of unbalanced stoichiometry [27]. (Note, we expect for strong gels (G′ ≥ 100Pa)

thatG′(f = ω
2π = 1Hz) = G′(f → 0) = G′

0, whereG′
0 is the plateau modulus.)

For times longer thant∗, the moduli exhibit a point of crossover at which the viscousand

elastic components are equal. This defines a crossover modulus,Gc, and crossover frequency,

ωc, both of which increase with the gelation time abovet∗. By scaling the magnitude ofG byGc

and the frequencyω by ωc, we find that the network moduli exhibit a striking collapse.Figure

6.3A shows the data collapse under time-cure superposition[2,117]. The resulting master curve

reveals the viscoelastic relaxation of the NT gel over four decades in frequency. We can collapse

the data from different NT concentrations and surfactant ratios onto the same master curve.

We parameterize the extent of the gelation via the dimensionless time parameterε = |t −

t∗|/t∗. Above the gel point, a zero-frequency finite elastic modulus appears and increases as
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Figure 6.2: Viscoelastic ModuliG′(ω) (closed symbols) andG′′(ω) (open symbols) derived
from the MSD at different gelation timest. t > 1.5 hr are in the gel regime (G′ > G′′) data.
t < 1.5 hr are in the the sol regime (G′ < G′′) data. Note that in the gel regime, there exists a
crossover point [ωc, Gc] whereG′(ωc) = G′′(ωc) = Gc indicated by the arrows.

a power law withε. Experimentally we findGc ∼ εz wherez ≈ 1.03 [Figure 6.3B]. For all

gelation times in our data,ωc is comparable toω ≡ 2πf ≈ 6.3 rad/s [Figure 6.3C]; thusGc and

indeed, the low-frequency elastic modulusG′(t, f = 1Hz), exhibit very similar scaling with

gelation extent.

In any gelling network wherein bothωc andGc scale as power laws with the cure time [see

Figures 6.3B,C], the viscoelastic moduli should be of similar functional form and should collapse

under rescaling. Intuitively,ωc is related to the mean relaxation time of the bonded rod clusters

andGc is related to their mean elastic modulus, both of which scalewith the size of the bonded

clusters. Thus the effect of an increase in the number of bonds corresponds, essentially, to a

rescaling of time in the curing gel. As gelation proceeds (t > t∗) the bonds percolate, producing

a change in connectivity without reorganization of the network structure. The collapse of the
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Figure 6.3: (A) Collapsed rheological master curve obtained by scalingG′(ω) (closed symbols)
andG′′(ω) (open symbols) by their respective crossover frequencyωc and modulusGc. (B) Gc

vs gelation extent, scaling asGc ∼ [(t− t∗)/t∗]1.03 with t∗ = 6777 s. (C) ωc vs gelation extent,
scaling asωc ∼ [(t− t∗)/t∗]0.66 with t∗ = 6957 s.

viscoelastic moduli for the curing SWNT network under time-cure superposition highlights the

crucial role of bonding between rods which we explicate further below.

6.3 Theory Section

Clearly, bonding between rods is the dominant contributor to the elasticity in the gel, since

the number of rods is constant in time, whereasG′ increases with time. Here we introduce a

microscopic theory which establishes the relationship between elastic modulusG′ and number of

contactsNc in the system, first for static and then dynamic networks. Thefirst part of the theory

derives, from the crossing probability of rods, a relation defining the number of contacts for a

given density of randomly oriented rods. We then derive a relation for the shear modulus given

aneffective number of contacts which is a fraction of all contacts. Theseresults are corroborated

with computer simulations and are used to fit both static [47]and dynamic experimental rheology
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data.

6.3.1 Static Model

The crossing probability of randomly oriented rods confinedto a finite volume has an expected

number of contacts,Nc, which depends purely on geometric parameters. A simple calculation

yields an expression for the number density of contacts:

Nc

V
= C

L2σN2
rod

V 2
∼ φ2. (6.1)

Hereφ = πNrodLσ
2

4V is the volume fraction of rods and rod diameterσ is assumed to be constant.

Eq. 6.1 predicts the number of contacts in a randomly oriented network of rods as a function of

the number of rodsNrod, rod lengthL, and rod diameterσ (note similarL2σ scaling is found in

the excluded volume analysis of percolation at large rod aspect ratios [10]). The volume of the

sample space isV . A full derivation of Eq. 6.1 is detailed in the remainder of this subsection.

We begin by considering the crossing probability of two rodswith lengthL and center-

to-center separationS. Both rods can assume any orientation in 3-dimensional space, and

the boundary of possible orientations delimits a sphere of diameterL around each rod center.

Clearly, the separation between rod centers must be less than the length of the rods, i.e.,S < L,

in order for them to potentially cross, as illustrated in Figure 6.4A. There are two cases of inter-

est: (i)0 < S < L/2 and (ii)L/2 < S < L. When (i) is satisfied, the centers of both rods are in

the overlap region, regardless of their angular orientations. Therefore, the probability of overlap

is one. When (ii) is satisfied, the two spheres will overlap, and the solid angleΩ subtending their

overlap region is directly proportional to the fraction of possible angular orientations that each
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rod can assume whilst having a non-zero probability of overlapping the other rod. In turn, the

probability of overlapPover is just the product of the probabilities of each rod having the same

angular restriction. Thus, having both rods in the overlap region is proportional to the square of

the solid angle subtended by the overlap region:

Pover ∝
(

Ω

4π

)2

=
1

(4π)2

[
4πL(L− S)

L2

]2

=

(

1− S

L

)2

. (6.2)

Taken together, the probability of overlap for the two casesis

Pover =







1 if 0 < S < L
2 (i)

4× (1− S
L)

2 if L
2 < S < L (ii)

(6.3)

L

1 2
Ω

S

(A)

(B)

1 2

α
β

Figure 6.4: (A) Geometry of crossing probability of 2 rods oflength L separated by distance S.
Shaded region is overlap of the rod’s spheres of possible angular orientation.Ω is the solid angle
subtended by the overlap region. (B) Angles of possible intersections.β is the angular range of
rod 1 that will cross rod 2 given rod 2 forms an angleα with respect to the separation axis.

146



Having both rods in the overlap region is a necessary but not sufficient condition to guar-

antee contact. There is an additional probabilityPang which depends on the relative angular

orientations of the rods. The probability of crossing is given byPcross = Pover × Pang. When

both rods are in the overlap region, let the angle between rod2 and the axis connecting two rod

centers to beα, as shown in Figure 6.4B. The probability of rod 2 crossing rod 1 is proportional

to the angleβ subtending the projection of rod 2 onto the sphere of rod 1. Considering rotational

symmetry with respect to the axis connecting the centers of rods 1 and 2, and the fact that the

diameter of the rodsσ << L, Pang is

Pang =







∫ π/2
0

β(α, S
L
)2σL

πL2
πL2 sinα

πL2 dα if 0 < S < L
2 (i)

∫ θ
0

β(α, S
L
)2σL

πL(L−S)
πL2 sinα
4πL(L−S)dα if L

2 < S < L (ii)

(6.4)

where for case (ii),θ is the largest angle that rod 2 can adopt whilst making contact with the

sphere of rod 1. For case (ii), the angle breaks down into two subcases (iia)L2 < S < L√
2

and

(iib) L√
2
< S < L:

θ =







arcsin( L
2S ) if L

2 < S < L√
2

(iia)

arccos(SL ) if L√
2
< S < L (iib)

(6.5)

Therefore,Pcross of two rods with length L and separation S is

Pcross = Pover × Pang =
σ

L
I

(
S

L
,

)

(6.6)

whereI(SL ) =
2
π

∫ {π
2
,θ}

0 β(α, SL) sinαdα for cases (i) and (ii) respectively.
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Now consider the number of contacts or crosses one rod can have with other rods in its

vicinity. Let the rod number density to ben = Nrod

V , whereNrod is the total number of rods and

V is the volume of the gel. The mean number of contacts per rod,N c,1, is

N c,1 =

∫

Pcrossndv

=

∫
σ

L
I

(
S

L

)

ndv

=
4πnσ

L

∫ L

0
I

(
S

L

)

S2dS

= 4πnL2σ

∫ 1

0
I(x)x2dx. (6.7)

The contact density thus is

Nc

V
=

Nrod ×N c,1

V

= 4πJ
L2σN2

rod

V 2
∼ φ2, (6.8)

where J=
∫ 1
0 I(x)x2dx=0.0403, and this is Eq. 6.1 above. A value of the numerical factor J

obtained from simulations (detailed in the following section) is 0.11. The discrepancy between

simulation and numerical evaluation of the integral is likely due to an underestimate of solid

angles whenα is very small.
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6.3.2 Simulations of Rigid Rod Networks

Since we cannot directly observe the bonding between nanoscale rods in solution, computer

simulations are employed to test the predictions of this theory. We construct static networks

of monodisperse rods of length,L = 10, diameter,σ = .05, and aspect ratio,L/σ = 200,

chosen to be comparable to the SWNTs in our experiments. (Note that the SWNTs used in the

experiments are polydisperse in length. We also carried outsimulations for rods with lengths

drawn from a Gaussian distribution of comparable polydispersity to the SWNTs used in the

experiments; a significant deviation ofNc/V from the results for monodisperse rods was not

found.) The results that follow are from simulations of monodisperse rods.

Figure 6.5: Snapshot of simulation for N = 100 rods of aspect ratio L/σ = 200 confined to a
volumeV = 103. Spheres indicate contacts between rods.

Rods are deposited randomly (off-lattice) in a 3-dimensional periodic cube with linear di-

mensionℓ = 20 − 40. Then, we determine whether the randomly deposited rod central axes

approach one another within a prescribed distance. Physically, we choose this distance to be
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the rod diameter. A contact is said to form between two rods when the distance between their

points of closest separation is less than or equal to the rod diameter. Note, this definition for

contact permits rods to interpenetrate (i.e. soft core). A snapshot taken from a simulation is

given in Figure 6.5, where dark spheres mark the points of intersection between rods located by

the algorithm.

To test the scaling prediction of Eq. 6.1, we varied the sample volume (V ranged from203

to 403) and rod length (L ranged from5 to 10) while keeping rod diameter constant (σ = .05)

in the simulations. In Figure 6.6A, we plot the number of contacts,Nc, versus the total number

of rods,Nrod, in our simulations. Rescaling theNc by V/L2 in accordance with Eq. 6.1 yields

a collapse of the data as shown in Figure 6.6B. This collapse validates the first piece of our

theoretical model for the crossing probability of rigid rods. We next extend the model in two

successive steps: first, we derive the macroscopic shear modulus from consideration of only

elastically effective bonds, and, second, we derive the temporal evolution of elasticity assuming

first order bonding kinetics.

Some bonds do not contribute to the shear modulus of the network; e.g., some rods will have

only a single bond, and these non-contributing bonds need tobe excluded when the shear modu-

lus is computed. Physically, these bonds are akin to ‘dangling’ strands in polymer melts [30]. In

Figure 6.7B, we illustrate two types of bonds that occur in a cluster of rods. The bonds denoted

by circles belong to a pair of rods which are both connected toother rods, i.e., multiply connected

bonds. The bonds denoted by stars, on the other hand, belong to a pair of rods for which one of

the rods is not connected to any other rods, i.e., singly connected bonds. Physically we expect

only the multiply connected bonds to respond elastically under shear and thus to contribute to
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Nc

(A)

2.0

VNc

Nrod

L2

(B)

L = 10,  V = 403

L = 5,  V = 303

L = 7.5,  V = 303

L = 10,  V = 303

L = 7.5,  V = 203

L = 10,  V = 203

Figure 6.6: (A) Number of contacts vs number of rods in the simulation box. Data shown are for
different box volumes and rod lengths. (B) Data collapse under rescaling of contact number by
V/L2. Solid line is slope 2.0.

the measured shear modulus in a rheology measurement, as depicted in Figure 6.7D. We define

an exclusion probabilityPexc = Ns/Nc, whereNs is the number of non-contributing bonds.

When the volume fraction is low, almost all bonds are non-contributing bonds. The exclusion

probability decreases as the packing fraction increases, as it is progressively more difficult for

a rod or a cluster of rods to be isolated from the rest of the sample. We extract the volume

fraction dependence of thePexc from a simulated network withV = 203, L = 10, σ = .05.

The results, exhibited in Figure 6.7A, show that the exclusion probability is well approximated
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(A) (B)

(D)

Ns

Nc

(φ − φ∗)/φ∗

(C)

Figure 6.7: (A) Ratio of number of single bonds to number of total contacts (Ns/Nc) vs volume
fraction from simulation. Solid line is fit toe−B(φ−φ∗)/φ∗

with φ∗ = (1.0 ± 0.1) × 10−3 and
B = 0.345 ± 0.036. Shaded region corresponds to concentration regime of rheology data in
Figure 6.8. (B) Cartoon of rod network showing multiply connected bonds (circles) and single
bonds (stars). Multiply connected rods are black. (C) Number of contacts with single bonds
removed (N

′

c = Nc − Ns) vs. (φ − φ∗)/φ∗ from simulation. Solid line is fit to Eq. 6.9 (see
text) withA = (781.5 ± 2.2) × 105, φ∗ = (8.35 ± 1.46) × 10−4, andB = 0.253 ± 0.068. (D)
Cartoon illustrating that only the non-single bonds contribute to an elastic response under shear.

by an exponential function:Pexc = e−B(φ−φ∗)/φ∗

, whereφ∗ is the volume fraction at which

the sample starts to develop a shear modulus andB is a dimensionless parameter characterizing

the rate of decrease of non-contributing bonds with increasing φ. Note, this theoretical form is

one of several possible functions; here we chose a natural form with a minimum number of free

parameters.

Thus the density of bonds that contribute to the sample shearmodulus is
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N ′
c

V
=

Nc

V
(1− Pexc)

= Aφ2(1− e
−B(φ−φ∗

φ∗
)
), (6.9)

where A is a constant of proportionality. The number of elastically effective contacts (N ′
c) is

given by the total number of contacts minus the number of single bonds (i.e.N ′
c = Nc − Ns).

From the simulation data of Figure 6.7A, we obtain the numberof effective contacts and plot it

versus the volume fraction of rods. The results, exhibited in Figure 6.7C, show thatN ′
c is well

fit by Eq. 6.9.

6.3.3 Comparison with Rheology Experiments

Our previous rheological measurements yielded a scaling ofthe low frequency elastic modulus

G′(φ, f = 1Hz) with rod volume fraction which was well described by the critical power

law form A[(φ − φ∗)/φ∗]β with φ∗ = 0.0027 ± 0.0002 andβ = 2.3 ± 0.1 [47]. It is worth

noting that the simple power lawAφ2 does not fit the rheology data at all, confirming that

the data are in a regime (indicated in the shaded areas of Figures 6.7A and 6.7C) where we

expect a relatively high fraction of single bonds to have a significant effect on the measured

shear modulus. It follows that ifG′ ∼ N ′
c, then Eq. 6.9 should also fit the volume-fraction

dependentG′ rheological data with only a different constant of proportionality. Indeed, as Figure

6.8 attests, we find comparable fit quality when comparing Eq.6.9 againstA[(φ− φ∗)/φ∗]β for

the rheological data of Ref. [47]. Note, both expressions have three free parameters. While

the critical power law form is more commonly used to fit scaling data for gelation, it is largely
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empirical. Eq. 6.9, on the other hand, has been derived from the crossing probability of rods in a

confined geometry, augmented with minimal assumptions about the relative contribution to the

shear modulus from bonds with differing degrees of connectivity. The discrepancy between the

values ofφ∗ andB obtained from fitting Eq. 6.9 to simulations (φ∗ = (8.35 ± 1.46) × 10−4,

B = 0.253 ± 0.068) and experiments (φ∗ = 0.0028 ± 0.0001, B = 0.053 ± 0.007) is likely

due to the fact that our model does not exclude the bonds in higher-order structures such as non-

spanning clusters and dangling closed loops. In a real network these structures will not contribute

to elasticity, resulting in a higher value forφ∗, consistent with our fitted values forφ∗. Instead,

we have focused on excluding the simplest structures (single bonds) which, while sidestepping

complicated considerations such as finite-size effects, may have come at the expense of exact

quantitative agreement betweenφ∗ andB between the simulations and experiments.

(φ − φ∗)/φ∗

G
' 
[P

a
]

Figure 6.8: Low-frequency elastic modulusG′(f = 1Hz) vs. volume fraction from rheology.
Data is taken from Ref. [47]. Dashed line is fit to Eq. 6.9 withφ∗ = 0.0028 ± 0.0001 andB =
0.053± 0.007. Solid line is fit to critical power lawA[(φ−φ∗)/φ∗]β with φ∗ = .0027± 0.0002
andβ = 2.3± 0.1.
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6.3.4 Comparison with Microrheology Experiments

To compare with the dynamic results from the present microrheology experiments, we extend

our theoretical model for static rod networks to account forthe time evolution of rod bonding in

an adequately dispersed sample. At any given time,Nf free rods are not bonded to any other

rods, andNb rods are bonded,Nf + Nb = Ntot. At t = 0, we takeNf = Ntot, andNb = 0.

Conversely, at t =∞, we takeNb = Ntot, andNf = 0. The rate of bonding is proportional

to the number of free rods that are actively seeking bonds andto the total number of rods that

are candidates for additional bonding. Accordingly, the time dependence of bond formation is

given by the rate equation:dNf

dt = −γNfNtot whereγ is the bonding rate. Integrating the rate

equation and applying boundary conditions yields the number of bonded rods as a function of

time:

Nb = Ntot(1− e−γNtott). (6.10)

SubstitutingNb for Nrod in the static analysis of Eqns. 6.1 and 6.9 yields the time evolution

of the low-frequency elastic modulus:

G′ = Aφ2(1− e−γφt)2
[

1− e
−B(φ(1−e−γφt)−φ∗

φ∗
)
]

. (6.11)

Eq. 6.11 suggests thatG′ will eventually saturate (i.e.,G′ → Aφ2 as t → ∞) when all

possible bonding rods are exhausted. The elastic modulusG′(t, f = 1Hz) for different cure

times, shown in Figure 6.9, can be fit by a power law formA[(t− t∗)/t∗]z with z = 1.3 ± 0.2.

This is not surprising as the sample is rather dilute, and thetime it takes forG′ to saturate lies
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Figure 6.9: Low-frequency elastic modulusG′(f = 1Hz) vs. cure time from microrheology.
Dashed line is fit to Eq. (6.11) withφ = 0.006 ± 0.001, γ = 0.0175 ± 0.007, φ∗ = .0028,
andB = 0.053. Solid line is fit to power lawA((t − t∗)/t∗)z with t∗ = 5793 ± 479 s. and
z = 1.3± 0.2

outside our experimental window. Physically, however,G′ must saturate on approach to its fully

cured value, corresponding to the modulus at which all available rods are bonded. Clearly this

saturation behavior is not captured in the power law, which grows indefinitely (G′ → A(t/t∗)z

as t → ∞). Thus, the power law is at best an empirical local approximation to a saturating

functional form. We can fit the microrheology data equally well to either Eq. 6.11 or the power

law A[(t − t∗)/t∗]z, as shown in Figure 6.9, due to the limited dynamic range of the data. In

fitting Eq. (6.11), we have fixedφ∗ = .0028 andB = 0.053, the values extracted from the

rheology data fitting of Figure 6.8. As a result, both functional forms have three parameters. In

principle, we could have further constrainedφ in Eq. 6.11. However, to account for modulus

variations between the two datasets due to sample preparation, it was necessary to letφ vary.

Nonetheless, the nearly indistinguishable fitting over thedynamic range of our data suggests
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that its time dependence is well captured by our model. Measurements for longer cure times are

clearly needed to conclusively test Eq. 6.11.

6.4 Conclusions

We have performed microrheological measurements of the gelation of a semidilute suspension

of single-wall carbon nanotubes. The results implicate inter-tube bonding as the dominant con-

tributor to elasticity in the system. To elucidate the quantitative dependence of the number of

bonds on geometric parameters characterizing the rods, we have derived an expression, based

on the crossing probability of rods confined to a finite volume, which yields the dependence of

number of contacts on the density, length, and diameter of the constituent rods. The relation

is shown to be in agreement with the scaling of the number of contacts for simulated rigid rod

networks. To make connection with the shear modulus measured in rheology experiments, we

have assumed that only the fraction of bonds belonging to multiply connected rods contribute to

the network’s elasticity. With this assumption, we deriveda relation that fits the static macro-

and dynamic micro- rheological data with a goodness-of-fit comparable to empirically derived

critical power laws. Future rheological measurements or detailed finite element simulations with

larger dynamic range are needed to decisively test the models.
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Chapter 7

Conclusions and Future Work

7.1 Summary

In recent years, an interdisciplinary community of physicists, chemical- and bio-engineers, and

cell biologists has coalesced around the suite of experimental techniques termed microrheology.

What do they, and we, hope to gain from this endeavor? To answer this question, we need only

step back and unpack what we have learned from the experiments in this thesis.

We have described experiments in this thesis wherein microrheology has been used to ex-

tend the possibilities of traditional macrorheology measurements in soft materials. A unifying

theme of our work is that a combination of simple microrheology experiments and theoretical

modeling can yield powerful insights into the inner workings of soft materials. In the experi-

ments of Chapter Four onλ-DNA, we have shown how a combination of one- and two-point

passive microrheology measurements can be used to extract both local and bulk shear moduli of

a polymeric network with depletion-induced mechanical inhomogeneities surrounding the parti-

cle. Whereas bulk macrorheology is thede facto standard method for obtaining the bulk response
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of materials, it remains relatively mute on local material properties. Thus the significance of our

work is that we have shown how microrheology, alone, can be used to derive a comprehensive

characterization of an inhomogenous soft material. The work was the first systematic measure-

ment in a well-characterized model system to convincingly validate the two-point hypothesis of

Crocker [26] and the theoretical framework for understanding one- and two-point microrheology

developed by Levine and Lubensky [59–61].

In the bacterial bath experiments described in Chapter Five, we have demonstrated that one-

and two-point microrheology can be used fruitfully to characterize the fluctuations and responses

of an active non-equilibrium system, comprised of activelyswimming bacteria. A bacterial bath

constitutes an instance of a frontier class of soft materials, termed active matter, whose utilities

and ramifications are just beginning to be explored [85]. Active matter differs from its equilib-

rium counterpart primarily in that fluctuations and responses are no longer constrained by the

Fluctuation-Dissipation Theorem. Our work quantitatively measured the departure from equi-

librium for a dilute bacterial bath. We found that the departure form equilibrium depends on

the manner in which the bacteria are actively forcing the medium, i.e., whether they are running

or tumbling. Whereas previous tracer-based investigations of bacterial baths have relied exclu-

sively on one-point measurements, we have shown that one-point measurements yield results

which can depend on the size of the tracer and are thus intrinsically ambiguous in situations

wherein tracer and active particle are of comparable size. Two-point measurements, by contrast,

yield fluctuations which are independent of tracer size. Thus a significant contribution of our

work is to show that two-point measurements are essential torobustly characterize fluctuations
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in active swimmer systems, confirming expectations based onearlier studies in passive equilib-

rium materials [18] and active living cells [57]. Additionally, the phenomenological theoretical

framework developed by Lau and Lubensky [58] to understand our results, may also prove useful

for other active matter systems such as active gels of biopolymers and motor proteins.

Finally in the work on gelling carbon nanotube networks of Chapter Six, we demonstrated

an important application of microrheology: characterization of the process of gelation in rigid

rod networks. The process of gelation between macromolecular constituents is relevant in both

materials (e.g. composite materials) and biological (e.g.cell motility) contexts. In the former

case, the initial stages of gelation are difficult to characterize using traditional macrorheological

methods due to the fact that the incipient gel is characterized by extremely small initial moduli

and fragile structures that are easily compromised in a typical stress-controlled bulk rheometer.

In the latter case, the stringent requirement not to denature biological functionality requires an

in situ method of characterization such as microrheology, rather than bulk characterization via

macrorheology on reconstituted cell lysates. To rationalize our micro- and macro- rheological

data for the time and concentration dependence of the shear modulus in the gelling nanotube

network, we have utilized computer simulations in concert with analytical modeling; this ap-

proach led us to deduce that the number of inter-tube contacts is a key parameter governing the

rheological response of the network. Elementary considerations of inter-tube bonding lead to

predictions beyond empirical power laws for the scaling of shear modulus with concentration

and cure time. For time dependence in particular, consideration of first order bonding kinetics

readily predicts saturation in the number of contacts with cure time which should also lead to
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saturation in the shear modulus of the gelling network. Decisive tests of our model can be ob-

tained via higher dynamic range rheological measurements in nanotube networks. In principle,

electrical and thermal conductivity should depend on inter-tube contacts and thus our model,

with modest modifications, should also yield insight into these types of measurements.

7.2 Future Directions

Here we describe new directions for the work in this thesis. New work encompasses both fur-

ther exploitation of microrheology and also further exploration of the system classes we have

considered.

7.2.1 Characterization of inhomogeneities in soft materials

In our study of depletion, we learned that the the hydrodynamic layer is different from the deple-

tion layer. This leads us to consider what other types of local boundary effects may be studied.

One possibility arises in particle diffusion in two-fluid systems, where the fluids demix with one

fluid component preferentially wetting the particle surface, leading to a shell of different fluid

composition surrounding the particle. This situation is encountered in, e.g., water-lutidine mix-

tures close to the critical temperature [45]. Thus, a microrheological analysis similar to ours may

be useful to characterize the thickness of the fluid boundarylayer in this system class.

While we have worked out the detailed case of depletion in Chapter Four, there remain

many other possibilities for the mechanical inhomogeneities surrounding a probe particle which

have yet to be carefully considered. This class of phenomenahas relevance for probe-based mi-

crorheology measurements and also for study of inclusions in composite materials and transport
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in crowded environments, e.g., in the interior of cells. A simple and potentially interesting re-

lated experiment could explore whether a local shell of higher density, as expected for a particle

with attractive interactions with the medium, would lead toan inverse situation in which one-

point measurements overestimate the bulk rheology. And if so, whether the basic shell model of

Levine and Lubensky [61], with modest modifications, could also quantitatively account for the

measured particle mobilities. To date, this scenario has not been experimentally considered.

7.2.2 Active Matter: active depletion and time-reversal microrheology

The study of active matter is currently in its infancy and, consequently, many opportunities exist

for microrheological techniques to contribute to our understanding. A general avenue of investi-

gation under consideration in the community concerns whether active systems can be harnessed

to enable self-assembly beyond what is possible in equilibrium systems. In equilibrium sys-

tems, for example, depletion interactions can be used to assemble large particles in a suspension

of smaller particles. What would happen if the smaller particles were active? Alternatively,

what happens to the depletion phenomena in systems at high Peclet number, wherein the sea of

smaller particles constitutes an ‘active fluid’ microstructure driven out of equilibrium via active

internal forces. Viewed in this way, the depletion force induced by the active smaller particles

on the larger particles might be more appropriately described as Bernoulli-like forces in which

an imbalance between the velocity of the flowing active fluid within an excluded volume region

between two large particles and the bulk fluid velocity surrounding them gives rise to a pressure

imbalance that drives them together, rather than an osmoticpressure imbalance as in the case of

equilibrium depletion.
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While we have demonstrated that a combination of active and passive microrheology can re-

veal whether a system is in thermal equilibrium, an intriguing possibility is whether such a deter-

mination could be made via passive microrheology measurements alone. One possible analytic

scheme to achieve this goal was proposed by Steinberg in Ref.[101]. In this paper, it was the-

oretically shown that time reversal of higher order autocorrelation functions of a system’s noise

can be used to distinguish systems that are in equilibrium from systems that are out of equilib-

rium. Conventional first-order time-forward autocorrelation functions,G(τ) = 〈f(t+ τ)f(t)〉,

are invariant under time reversal (t −→ −t), i.e. Gr(τ) ≡ 〈f(−(t + τ))f(−t)〉 = G(τ)

wheref(t) denotes a function of the system’s stochastic noise which can be, e.g., voltage fluc-

tuationsV (t) of a patch-clamped ion channel or positionx(t) of a fluctuating Brownian parti-

cle. However, higher order moments of the autocorrelation function of the system’s noise, i.e.,

Gαβ(τ) = 〈fα(t + τ)fβ(t)〉 whereα 6= β ≥ 1, are in general not necessarily invariant un-

der time reversal, i.e.,Gαβ
r (τ) 6= Gαβ(τ). It can be shown thatGαβ

r (τ) = Gαβ(τ) holds in

general if and only if the underlying process that generatesthe noise obeys detailed balance, as

is the case for systems in equilibrium. This opens the possibility that a comparison ofGαβ
r (τ)

andGαβ(τ) would constitute a “one-shot” method to determine whether asystem is in equi-

librium via analysis of the noise fluctuations of the system alone. Moreover, if true, then the

departure from equilibrium may perhaps be quantitatively correlated with the difference be-

tween the time-reversed autocorrelation function and the time-forward autocorrelation function,

∆(τ) = Gαβ
r (τ) − Gαβ(τ). Bacterial baths, owing to the relative ease with which control pa-

rameters could be tuned, are an attractive model system to test the validity of this “time-reversal
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microrheology” scheme for active matter systems. A preliminary experiment would entail mea-

suring the trajectories of particles in an active bacterialbath and computing theGαβ(τ) and

Gαβ
r (τ) using the time-forward and time-reversed trajectories, respectively. The next step would

be to check whether there are systematic deviations betweenthe two and how they depend on

the lag timeτ . Naively, we would expect the deviation∆(τ) to be larger at long lag times where

the deviation from equilibrium is largest for the bacterialbath, based on our passive and active

microrheology measurements.

7.2.3 Self-healing Materials

The ability of the nanotube gel (and many other soft glassy materials) to be rejuvenated un-

der shear (e.g. with sonication) classifies them as “self-healing” materials. Currently, there

is widespread interest in identifying the mechanisms of self-healing in various materials with

the goal of engineering them for use in “real-world” applications [22]. From a technological

standpoint, there are many obvious potential uses for self-healing materials. These range from

materials to reinforce structures subject to high stressessuch as building columns in seismi-

cally active regions or airplane wings to biocompatible materials such as DARPA’s proposal to

develop a “battlefield putty” that is capable of temporarilymending wounds in battlefield situ-

ations. Microrheology is well suited as a technique to characterize the detailed mechanisms of

these materials. For example, variants of the active microrheology experiment can be used to

locally tear the material and then passive microrheology could be used to subsequently monitor

the recovery of the material as a function of both length and time.

What lies in the future is anybody’s guess. But it seems fair to say that given the current

trend toward miniaturization (and accompanying small-scale measurements) across the scientific
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disciplines, the knowledge afforded by microrheological techniques will play an increasing role

in our understanding of soft materials.
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Appendix A

Correction for Dynamic Errors in MSD data of Chapter

6

We use the procedure outlined in Section 3.3.4 of Chapter 3 tocorrect our dynamic error

in our MSD data. The first step is to find a suitable functional form to fit the MSD. With the

exception of the earliest time data at t = 10 minutes, our MSDsare not linear, thus precluding

the use of the Newtonian fluid model of Eq. 3.14. The next simplest form is a power law MSD:

〈∆x2(τ)〉 = Aτα. Plugging this form into Eq. 3.13 yields:

〈∆x2(τ, σ)〉 = Aσα

(
τ
σ + 1

)2+α
+

(
τ
σ − 1

)2+α − 2
(
τ
σ

)2+α − 2

(1 + α)(2 + α)
(A.1)

which is Eq. (30) in Ref. [92]. Eq. A.1 described the t = 1 hr data well, shown in Figure A.1.

However, the power law form did not work fort ≥ 2 hr post-gel data, as shown in Figure

A.1. The poorness of the fits, particularly at the short lag times, indicates that the downward

curvature cannot wholly be accounted for by dynamic error alone. Otherwise, we would have

been able to obtain good fits of the MSDs with Eq. A.1 as in the t =1 hr data. Thus, the
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Figure A.1: mean square displacement for t = 1 hr data. Solid line is a fit to Eq. A.1

downward curvature is a feature of the relaxation of the gel network.

A natural choice to describe the tracer MSD expected for a gelwould be the Voigt model,

considered in Eq. (22) of Ref. [92]. However, we found that the single relaxation time ex-

ponential saturation described by the Voigt model was insufficient to capture the slow satu-

ration of our data which grows as a weak power law over our entire experimental time win-

dow. Moreover, we have a further constraint due to scaling considerations: the functional

form for the data must be consistent with collapse under time-cure superposition scaling (i.e.

f(G,ω) = (G/G0)f(ω/ω0)). The simplest functional form that described the behaviorof our

data well was the empirical form:〈∆x2(τ)〉 = A ln(1 + τ/τ0). Note that this form is not ex-

pected to be the true form since gels must saturate at long times and the logarithm does not, but

it is good over the dynamic range of our data. Plugging into Eq. 3.13 yields:
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Figure A.2: Post-gel MSD data (circles) along with the best fit (lines) to Eq. A.1.
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We find a good fit for the post-gel data using Eq. A.2, as shown inFigure A.3.

Using Eq. 3.14 for t = 10 min, Eq. A.1 for t = 1 hr, and Eq. A.2 fort ≥ 2hr, we are able

to correct for the dynamic errors in all our MSD data. In Figure A.4 we show the results of the

correction. The solid line is the dynamic error-biased dataand the dashed lines are the data after

their respective corrections have been made. For thet ≤ 1hr data, the downward curvature has
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Figure A.3: Post-gel MSD data (circles) along with the best fit (lines) to Eq. A.2.

been largely eliminated, confirming that it was an artifact of dynamic error. For thet ≥ 2hr

data, however, the downward curvature persists, indicating that it is a feature of the relaxation

dynamics of the SWNT gel.
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Figure A.4: mean square displacement for t = 10 min, 1hr, 2hr,and 3 hr. Solid lines are the
uncorrected MSD. Dashed lines are the dynamic error corrected MSD.
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The dynamic error corrected MSDs, denoted by the dashed lines in the figure, are exhibited

in Figure 6.1 and is used to calculate the viscoelastic moduli exhibited in Figures 6.2 and 6.3.

Comparing the moduli obtained with the dynamic error-biased data and without in Figure A.5,

indicates that dynamic error can shift the crossover of the moduli and tends to affect the viscous

modulus to a greater extent than the storage modulus in our post-gel data.
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Figure A.5: Viscoelastic moduli derived from the MSD for geltimes above the percolation
transition. G’ and G” derived from dynamic error-biased MSDdata are solid and open circles
respectively. Solid and dashed lines are the G’ and G”, respectively, derived from the dynamic
error corrected MSD.

The dynamic error correctedG∗(ω) data denoted by the solid and dashed lines is exhibited

in Figures 6.2, 6.3, and 6.9.
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