
 
 
 
 
 
 
 
 
 

DENDRITIC CELL MIGRATION AND TRACTION FORCE 

GENERATION IN ENGINEERED MICROENVIRONMENTS 

 
 
 

Brendon Guenther Ricart 
 
 
 

A Dissertation 
 

in 
 

Chemical and Biomolecular Engineering 
 

Presented to the Faculties of the University of Pennsylvania in Partial 
Fulfillment of the Requirements for the Degree of Doctor of Philosophy 

 
2010 

 
 

 
 
______________________ 
Professor Daniel A. Hammer 
Supervisor of Dissertation  
 
 
______________________ 
Professor Raymond J. Gorte 
Graduate Group Chairperson 

 
Dissertation Committee: 
Professor Christopher A. Hunter, Pathobiology 
Professor John C. Crocker, C.B.E. 
Assistant Professor Casim A. Sarkar, C.B.E. 
Assistant Professor Matthew J. Lazzara, C.B.E.



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 

DENDRITIC CELL MIGRATION AND TRACTION FORCE 
GENERATION IN ENGINEERED MICROENVIRONMENTS 

 
© Copyright 2010 by Brendon Guenther Ricart 

All Rights Reserved 



 iii

Acknowledgements 
 
 

At the end of my formal education, I don't know how to begin thanking the people who 

have brought me here.  I will start with the two people who have known me longest.  

Thank you to my parents, Glenn Ricart and Patricia Guenther.  From playing math games 

with me as a preschooler to trying to understand my thesis, you have never waivered in 

your support of my education. 

 

To the most important person in my life, Erin Ricart.  You have been unyielding in your 

continuous love and support throughout this process.  I appreciate the sacrifices you have 

made more than you know and I hope you view this thesis as your achievement as well.  

Marrying you overshadows any accomplishment contained in this text. 

 

I am grateful to my advisor, Daniel Hammer.  The student-advisor relationship is crucial, 

and I could not have been paired with a more compassionate yet demanding mentor.  You 

have always supported me, and the trust we have built has contributed greatly to my 

success.  To my thesis committee:  Dr. John Crocker, Dr. Chrisopher Hunter, Dr. 

Matthew Lazarra and Dr. Casim Sarkar.  Our conversations lifted me out of ruts, put new 

tools in my hands, and opened my mind to new perspectives. 

 

To the members of the Hammer Lab, you have made this experience pleasantly bearable.  

My mentors, Risat Jannat and Natalie Christian, laid the groundwork for my thesis and 



 iv

guided me through the most trying period of my research.  Each and every member of the 

Hammer Lab has enriched my experience in their own way.  Thank you Randi, Aaron, 

Dalia, Jered, Josh, Kelly, Kevin, Laurel, Lauren, Lee, Neha, Nimil, Olga, Pam, and 

Steven.  I would also like to thank my collaborators, Beena John, Michael Yang, 

Dooyoung Lee, Fiona Clarke and Debbie Klos Dehring.  I could not have finished this 

work without you. 

 

I have had the blessing of forming some amazing friendships at Penn.  Bob Meyer, 

Michael Beste, Calixte Monaste, Greg Robbins, Parag Shah and Ashley Vissing, you all 

know how special our bond has been over the last three years.  To my other good friends, 

Alex, Andrew, Ben, Dan, Jeremy, Joel, Manash, Matt, Raynaldo and Tom, I look forward 

to a time when our paths cross again. 

 

Finally, I would like to thank the food trucks and cafés on Penn's campus.  Frida's, El 

Rosa, Magic Carpet, Kim's Chinese, King's Wok, Fresh Fruit, MexiPhilly, The Pari Café, 

The Chem Café, Taco Bell and Potbelly's, your delicious and budget-friendly meals truly 

enhanced my graduate school experience. 



 v

ABSTRACT 

DENDRITIC CELL MIGRATION AND TRACTION FORCE 

GENERATION IN ENGINEERED MICROENVIRONMENTS 

 

Brendon Guenther Ricart 

Professor Daniel A. Hammer, Advisor 

 

Dendritic cells (DCs) are potent initiators of the adaptive immune response.  Their 

trafficking from sites of inflammation to lymphoid tissue is essential to their function.  

Exactly how dendritic cells integrate multiple chemotactic cues to organize an accurate 

migratory path is not fully understood.  We first characterize DC random motility 

(chemokinesis) on extracellular matrix proteins in the presence of chemokines.  Then, 

using a microfluidic device, we present both single and competing chemokine gradients 

to murine bone-marrow derived DCs in a controlled, time-invariant microenvironment.  

We show that in counter gradients, CCL19 is 10 to 100 fold more potent than other 

chemokines CCL21 or CXCL12.  Interestingly, when the chemoattractive potencies of 

opposing gradients are matched, cells "home" to a central region in which the signals 

from multiple chemokines are balanced.  These results provide fundamental insight into 

the processes that DCs use to migrate toward and position themselves within secondary 

lymphoid organs.  We extended this work to a combination of the microfluidic gradient 

generator and micropost array detectors to develop a novel method for probing traction 

forces during chemotaxis.  We find DC migration is driven by short-lived traction 
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stresses at the leading edge or filopodia.  We illustrate that spatiotemporal pattern of 

traction stresses can be used to predict changes in the direction of DC motion.  

Additionally, we determine the characteristic duration of local dendritic cell traction 

forces and correlate this duration with force.  Overall, DCs show a mode of migration 

distinct from both mesenchymal cells and other leukocytes, characterized by rapid 

turnover of traction forces in leading filopodia.  In this thesis, we extend the current 

understanding of DC motility to include signal integration and traction forces. 
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Chapter 1:  Introduction 

 

What is important in life?  What makes us happy?  These are the persistent questions we 

have asked ourselves since the beginning of our existence.  If you were to ask the 

Kohelet, a sage of the Old Testament, you may get a bleak answer. 

"'Meaningless! Meaningless!' says the Teacher. 'Utterly meaningless! Everything 

is meaningless.'"  —Ecclesiastes 1:2 (NIV) 

George Vaillant, director of a longitudinal study of 268 Harvard students that began in 

the 1930's, has a more attractive outlook.  Asked to answer the question "What is 

happiness?" he sums up the study's findings this way: 

"Happiness is love. Full stop."  —George Vaillant, The Atlantic, Interview, 2009. 

Indeed, presenting these transcendent questions to 20 of your closest friends is likely to 

yield 20 different answers.  As varied as opinions may be on the human condition, there 

is one thing, at least, we may all agree upon.  Herophilus, no less than a co-inventor of 

the Scientific Method (1), tells us: 

"When health is absent, wisdom cannot reveal itself, art cannot manifest, strength 

cannot fight, wealth becomes useless, and intelligence cannot be applied."  

—Herophilus, per Sextus Empiricus (2) 
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Thus regardless of the true answer to life's persistent questions, this author feels that 

health is essential to achieve and enjoy it. 

Motivation 

Directed cell migration plays a central role in maintaining health, from just prior to 

conception until death.  This migration process choreographs the morphogenesis of 

nascent tissues in the embryo during development.  Failure of cells to migrate, or 

inaccurate navigation of cells to inappropriate loci, can precipitate life threatening 

conditions such as congenital brain defects, dysplasia, and congenital heart disease.  In 

adults, cell migration remains central for homeostatic processes such as mounting an 

innate or adaptive immune response and the repair of wounded tissues.  On the other 

hand, cell motility contributes to disease states including vascular disease, chronic 

inflammatory diseases, and tumor metastasis.  Understanding the mechanisms underlying 

cell migration will also be important for emerging areas of interdisciplinary research such 

as creation of artificial tissues, controlling tumor metastasis, and development of new 

therapeutic strategies for modulating the immune response. 

 

Fetal development is directed by several proteins involved in cell migration.  Defects in 

these proteins can be manifest in the first stages of embryogenesis and can lead to the 

failure of the blastocyst to implant in the uterine wall, resulting in early loss of 

pregnancy.  At later stages in development, defects in cell migration can result in 

malformed embryos with disorganized tissues because their component cells have failed 

to migrate to the correct location.  Non-fatal developmental abnormalities caused by 
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improper cell migration can lead to a number of congenital abnormalities in brain 

development, including epilepsy, focal neurological deficits and mental retardation. 

 

Unfortunately, cell migration also contributes to tumor metastasis. Cancerous cells can 

migrate as individuals or as small groups away from the initial tumor site.  For tumors to 

become metastatic, some cells must acquire an invasive phenotype characterized by 

weakening of cell-cell interactions and increased cell motility.  These cells then undergo 

intravasation to either lymphatics where they travel to lymph nodes, or to the blood from 

which they can extravasate the vasculature to distal organs where they may establish a 

secondary tumor site. 

 

Cell migration is particularly important for immune cell function and the inflammatory 

response.  As a prerequisite for migration, white blood cells (leukocytes) undergo 

polarization with the formation of distinct leading and trailing edges.  Intracellular 

polarization allows cells to convert actomyosin forces into net cell-body displacement.  

Leukocyte chemoattractants, especially chemokines, provide directional cues for 

leukocyte motility, directing cells to sites of infection or to lymphoid tissue to exchange 

information.  A complex system of signal transduction molecules, including G-protein 

coupled receptors, integrins, second messengers and members of the Rho family of small 

GTPases regulate the adhesion, contraction and protrusion underlying leukocyte 

polarization and migration. The elucidation of the signals and mechanisms that 

orchestrate this complex reorganization will lead to a better understanding of critical 

issues in immunology and the treatment of disease. 
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The motility of dendritic cells, in particular, within the mammalian immune system 

facilitates the surveillance and targeted cellular responses that contribute to host defense.  

Compartmental segregation of lymphoid tissue, however, requires precise trafficking of 

dendritic cells and their precursors between the circulation, tissues, and lymph nodes.  

Within lymph nodes, dendritic cells have been identified as an essential element of the 

immune system, acting as an initiator and modulator of the host response due to their 

potential to express high levels of the co-stimulatory molecules that direct and fine-tune 

T-cell activation.  Dendritic cells play the intermediary between local sites of infection 

and lymphoid tissue where they orchestrate the immune response.  Thus, the migration 

toward and within secondary lymphoid organs following infection is essential to the 

function of dendritic cells and will be a major focus of this thesis.   

Organization of the Thesis 

This thesis is comprised of seven chapters; Chapters 1 and 7 are an introduction 

and conclusion, respectively. Chapter 2 is a comprehensive background, describing 

both previous work and topics of study central to this work. Chapter 2 provides an 

overview of dendritic cells, their role in the immune system, chemokines and their 

downstream signals, and a summary of assays for measuring chemotaxis and traction 

forces.  The background should provide sufficient detail for the reader to understand the 

context of the research described here. 
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Chapter 3 begins the experimental section of the thesis, starting with quantification of 

common motility metrics.  We place dendritic cells on the two most commonly studied 

extracellular matrix proteins and quantify their adhesion.  This elucidates understanding 

of previous reports on these substrates.  We also quantify their motility in uniform fields 

of chemokine, specifically studying the response to increasing concentrations of 

chemokine. 

 

In Chapter 4, we examine dendritic cell chemotaxis.  Previous studies have shown that 

DCs migrate toward specific chemokines, but we are the first to capture detailed 

information about cell trajectories in stable, controlled gradients.  This is achieved via a 

microfluidic gradient generator and videomicroscopy which allows quantitative 

investigation of migration in response to varying chemoattractant gradients.  This tool 

allowed us to answer several fundamental questions about chemokine signal integration.  

We showed that DCs respond almost identically to single gradients of chemokine, but 

show a hierarchical preference for some chemokines over others when presented with 

overlapping, counter-gradients.  This helps elucidate how DCs find their ultimate position 

within secondary lymphoid organs, where they interact with T and B cells.  We delve 

further to probe the underlying signaling pathways involved with migration, and 

determine that some common migration pathways are dispensable for DC migration, 

while others regulate either navigation or cell speed, but not both. 

 

Chapter 5 represents the application of our microfluidic gradient technology to a specific 

need.  In this chapter, we study the role of HS1 in dendritic cells.  This protein is not 



 6

well-studied, but believed to be involved in cell migration.  We carefully characterized 

the HS1 knockout phenotype, especially its role in dendritic cell migration.  This chapter 

places greater emphasis on immature dendritic cells, which form podosomes to facilitate 

their migration.  By the application of our microfluidic gradient generator and direct 

observation of migration, we were able to observe subtle effects of HS1 deficiency.  This 

lead to the conclusion that HS1 helps stabilize filopodia extended in the correct direction 

of migration. 

 

In the final data chapter, Chapter 6, we extend our knowledge of DC chemotaxis in 

engineered gradients to studies of traction forces.  We compare the magnitude of DC 

stresses to other cells such as neutrophils and mesenchymal cells. We also make 

statements about the orientation of traction stresses underneath a motile DC and place 

them in context with other motile cells.  Based on our findings, we are able to make 

predictions about the direction of migration from a single traction map.  Additionally, we 

were able to determine the characteristic duration of local dendritic cell traction forces, 

and correlate the duration with traction force.  This represents the first measurement of 

traction forces in dendritic cells. 

Specific Aims 

Aim 1: Chemokinesis 

In this aim, we will measure basic migration parameters for dendritic cells and 

hypothesize that migration will go through a maximum as a function of the chemokine 
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concentration in the extracellular environment and the surface ligands available for 

integrin binding. 

Aim 2: Chemotaxis 

In this aim, we seek to quantify chemotactic parameters for DCs in gradients of CCL19, 

CCL21, and CXCL12 as well as characterize their behavior in counter gradients.  We 

hypothesize that there may be a hierarchy of preferred chemokine signals.  Additionally, 

we will probe intracellular pathways to determine their role in DC migration.  Finally, in 

this aim we will examine the effects of HS1 protein deficiency in DC chemotaxis. 

Aim 3: Traction Forces 

In this aim, we will extend the use of microfluidic gradient technology to the study of DC 

migration on substrates suitable for traction force measurements to enable simultaneous 

monitoring of migration and force in individual cells. We hypothesize that traction forces 

will have a characteristic distribution under a motile cell, that force generation may be 

altered or interrupted by conflicting gradients or chemical inhibitors, and that the 

integration of traction forces may be used to predict the direction of motion. 

References 

1. Staden HV (1989) Herophilus: the art of medicine in early Alexandria (Cambridge University 

Press, New York, NY). 

2. Prioreschi P (1996) A history of medicine (Horatius press, Omaha) 2nd Ed. 
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Overview of Dendritic Cells 

Discovery of Dendritic Cells 

 

Although the Dendritic Cell (DC) was formally named in 1973, earlier research had 

described a cell that emigrated from the peripheral tissues to secondary lymphoid organs 

via the lymphatic system.  In this early article by Smith et al., "veiled macrophages" were 

observed in the draining lymph of sheep (1).  This study, performed by cannulating the 

lymphatic vessels of adult sheep, showed that draining lymph is composed of 

approximately 80% lymphocytes and 20% 'veiled', mononuclear, phagocytic cells 

resembling macrophages (1).  They were called 'veiled' for their numerous cytoplasmic 

extensions, which ultimately gave DCs their name.  Later studies were able to link 

'veiled' cells in draining lymph to DCs in other tissues, unifying them as a single cell type 

(2-4). 

 

Dendritic cells were named in 1973 by Steinman and Cohn (5).  Their seminal paper 

described an immune cell identified by unique "stellate" morphological characteristics 

which was found in the spleen and peripheral lymph nodes.  They used the term 

"dendritic" to describe the myriad filopodial protrusions extending from the cell body.  In 

further studies by the same authors, they showed that DCs express high levels of major 

histocompatibility complex (MHC) molecules, which are known to be the primary 

mechanism of antigen presentation (6).  This role as possible antigen presenting cells was 
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confirmed in 1978 by the use of a mixed lymphocyte reaction assay with T lymphocytes; 

an experiment used to determine the DCs' ability to present antigen using MHC and the 

capacity to activate T cells which recognize the specific antigen being presented.  In this 

in vitro experiment, DCs outperformed other splenic cells by two to three orders of 

magnitude, setting DCs apart as the most potent antigen presenting cell characterized to 

date (7). 

 

Reaching further back, the earliest known report of a dendritic cell was made in 1868 by 

a German medical student, Paul Langerhans (8).  He found cells in the epidermis with a 

'dendritic' appearance.  Since neurons were the only known 'dendritic' cell type, he 

mistook these cells for part of the nervous system.  The identification of Langerhans cells 

as DCs, however, would not be made until a century after their discovery.  We now know 

that Langerhans are one of many dendritic-cell subtypes, often differentiated by the 

tissues in which they reside, and by their surface markers.  For example, in the epidermis 

of mucosal tissues, C-type lectins can be used to differentiate Langerhans cells from other 

DC subtypes (9); Non-Langerhans DCs in the subepithelium express DC-SIGN (10), 

whereas Langerhans cells are generally distinguished by their expression of Langerin. 

 

Initial studies on DCs were difficult due to their relatively low abundance both in the 

blood (11) and in secondary lymphoid organs (5).  Indeed, their reported frequency in 

both cases was less than 1% of all nucleated cells.  A major advance in DC research was 

the development of a new technique for culturing large numbers of cells in vitro by Inaba 

et al. in 1992 (12).  They used granulocyte-macrophage colony stimulating factor (GM-
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CSF) to differentiate DCs from a myeloid lineage precursor.  This technique facilitated an 

explosion in DC research, which has now reached saturation with over 2,000 journal 

articles each year containing the term "dendritic cell" in the title (see Figure 2.1). 

 

 

Figure 2.1.  The number of peer-reviewed journal articles with "dendritic cell" in the title, as of June 14th, 

2010.  Source: ISI Web of Knowledge. 

Subtypes of Dendritic Cells 

As noted, DCs can be generally classified by the tissues within which they reside.  Since 

DCs act as sentinels of the immune system, they are posted at the main points of 

pathogen entry.  This includes the skin, gut and airway.  As previously identified, 

Langerhans cells (Langerin+, CD11b+CD207+) are responsible for monitoring the skin.  

Within the gut, conventional DCs are predominantly of the CD11c+CD11b+CD8α–, 

CD11c+CD11b–CD8α+ and CD11c+CD11b–CD8α– subtypes (13), with unique functional 

properties associated with each. 
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An additional distinction within dendritic cells is the myeloid, or conventional 

(sometimes referred to as cDCs, but here referred to only as DCs), and plasmacytoid 

(pDC) subtypes.  They are differentiated based on phenotype, different progenitor cells 

(14), and their expression of toll-like receptors (TLRs) (15).  While both DC subsets 

express TLR1 through TLR6, only pDCs express TLR7 and TLR9, allowing the immune 

system to uniquely respond to pathogen associated molecular patterns (PAMPs) 

recognized through those receptors (15).  In their phenotype, pDCs are relatively small 

and spherical, resembling plasma cells, while conventional DCs are characterized by their 

many membrane protrusions, as discussed above.  While myeloid DCs come from a 

myeloid lineage, pDCs come from a lymphoid progenitor (14).  Despite their differences, 

both subtypes are potent initiators of the immune response.   

 

The present work will focus on bone marrow derived DCs (BMDCs), which are 

generated via the myeloid lineage.  CD34+ stem cells are found in the bone marrow, and 

through the use of granulocyte-macrophage colony stimulating factor (GM-CSF), the 

myeloid lineage is stimulated while other leukocyte lineages are outcompeted.  

Macrophages are also of myeloid decent and are generated in large numbers by the use of 

GM-CSF, but they are easily separated from dendritic cells because of their strong 

adherence to substrates, whereas dendritic cells are only loosely adherent cells.  BMDCs 

are heavily researched because they are easy to harvest and culture, but there may be 

further distinctions between BMDCs and DCs collected from the spleen, lymph nodes, or 

peripheral tissue.  A direct comparison of DC subtypes or generation methods has not 
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been carried out.  In general, it seems that plasmacytoid DCs are primarily involved in 

promoting the innate immune system (16) and are more difficult to prepare than myeloid 

DCs.  Adaptive immunity is more useful in most potential DC applications—such as anti-

cancer treatment or DC-based vaccines—so relatively few studies have been performed 

with plasmacytoid DCs.  We now define DC subsets according to their cell surface 

marker expression.  Murine DCs are essentially identified by their expression of CD11c, 

MHC Class II, CD4, CD8α, CD11b, and CD205.  A summary of DC subtypes, their 

expression of surface markers, and where they are found within the mouse are 

summarized in Table 2.1 (17). 

*Plasmacytoid

CD4-

CD8αhigh CD4-CD8α- CD4+CD8α- CD4-

CD8αlow CD4-CD8α-

Lineage Lymphoid Myeloid Myeloid Myeloid Myeloid Lymphoid/ Myeoild

Phenotype
 CD8α +++ - - var. - var.
 CD4 - - ++ - - var.
 CD11b - var. ++ ++ ++ -
 CD11c +++ var. +++ +++ +++ ++
 CD205 +++ - - +++ + +
 33D1 - - ++ - - -
 B220 - - - - - ++
 Gr-1 - - - - - ++
 128G - - - - - +++
 440c - - - - - +++
 mPDCA-1 - - - - - +++
 CD40 + +,- + +++ ++ -
 CD80 + +,- + +++ ++ -
 CD86 + +,- + +++ ++ -
 MHCII +++ +++ +++ +++ +++ ++
 Langerin - - - +++ - -

Anatomical site T-cell area Marginal 
zone

Marginal 
zone

Skin-
draining 

All lymph 
nodes All areas

IPCs

*Plasmacytoid DCs can be CD4-CD8α+, CD4+CD8α-, CD4-CD8α-, CD4+CD8α+subsets, and they are 
found mostly in the periarteriolar lymphoid sheaths, but scattered plasmacytoid DCs are present in the 
marginal zone and red pulp.

-, negative; +, low; ++, intermediate; +++, high; var., heterogenous.

DC Subsets

Conventional
Spleen and Lymph nodes Lymph nodes

 

Table 2.1. Heterogeneity of murine DCs.  Adapted from reference (17). 
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Role of Dendritic Cells in the Immune System 

Dendritic cells act as sentinels in the immune system, positioned throughout the body, 

constantly sampling for foreign antigen.  They remain relatively sessile in the tissue as 

immature cells, as soldiers waiting for orders.  Dendritic cell maturation is the 

differentiation step taken by an immature DC after encountering a "danger signal".  This 

danger signal is typically generated by local cells under distress, and can include 

interferons, uric acid (18), bradykinin (19), heat-shock proteins, nucleotides, reactive 

oxygen intermediates, and even extracellular-matrix breakdown products (20).  The DC 

may also sense danger signals directly from a pathogen, such as lipopolysaccaride (LPS) 

from bacteria or pathogen-associated molecular patterns (PAMPs) which are bound by 

toll-like receptors (TLRs) on the DC.  When DCs are exposed to these danger signals, 

antigen uptake is downregulated, while MHC expression, costimulatory molecules 

(CD86, CD80, CD83) are upregulated (21). 

 

DCs will also regulate their expression of chemokine receptors depending on maturation 

state.  Monocyte DC precursors circulate through the blood and transmigrate into 

peripheral tissue both constitutively and in response to inflammatory signals (22).   

Immature DCs in peripheral tissue then continue to express a variety of chemokine 

receptors which act to confer responsiveness to inflammatory chemokines and direct 

migration of DCs toward inflammatory stimuli and peripheral tissues in general.   

Specifically, immature DCs can express chemokine receptors CCR1 through CCR6 as 

well as CXCR3 and CXCR4 to navigate through the body (23).  However, upon exposure 
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to danger signals such as inflammatory cytokines and foreign antigens, DCs down-

regulate most chemokine receptors, with the notable exception of CXCR4, while 

upregulating the inflammatory receptor CCR7 (23-26).  A clear role for CXCR4 has not 

been defined, but CCR7 is the receptor that directs DC migration to SLOs where high 

levels of CCR7 ligands CCL19 and CCL21 are constitutively expressed (27).  Overall, 

maturation state dictates the chemokine receptor expression profile. 

 

The remarkable organization of the mammalian immune system facilitates the efficient 

surveillance and targeted cellular response that contribute to host defense. 

Compartmental segregation of lymphoid tissues does, however, rely on the precise 

trafficking of immune cells between the circulation, tissues, and SLOs to achieve this 

efficiency.  To achieve this level of tissue specificity, DCs developmentally regulate their 

expression of chemokine receptors.  As stated above, they are fairly sessile as immature 

cells, but when matured they become highly motile and migrate to SLOs.  The migration 

toward and within SLOs is essential to the function of dendritic cells and will be a major 

focus of research in this thesis. 

 

Once DCs reach the SLO, they become maestros, orchestrating the adaptive immune 

response (21).  DCs are widely accepted to be the most potent and versatile antigen 

presenting cells (APCs) in the immune system, due to their superior capacity for 

acquiring and processing antigens for presentation to T cells and their potential to express 

high levels of the co-stimulatory molecules that direct and fine-tune T-cell activation 

(22).  Their migration and function is highlighted in Figure 2.2. 
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Figure 2.2.  Overview of DC migration from tissue to lymph nodes.  Adapted from (28). 
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All APCs use Class II MHC molecules as a platform for antigen presentation.  As 

opposed to Class I MHC, which is expressed by nearly every cell in the body and is used 

to present self-antigens to natural killer (NK) cells, Class II MHC is only expressed by 

professional APCs.  Previously endocytosed antigens are degraded in late 

endosome/early lysosomes within the APC.  Separately, vesicles bud from the 

endoplasmic reticulum (ER) loaded with pre-formed MHC Class II molecules, whose 

conformation is preserved by Class II-associated invariant chain peptide (CLIP) which 

sits in the binding pocket.  When the late endosomes fuse with MHC Class II loaded 

vesicles, unfolded or fragmented proteins from the endosome displace CLIP in the MHC 

Class II binding pocket (29).  The complete, loaded, MHC Class II complex is then 

transported to the cell membrane where it is displayed on the cell surface.  The MHC 

Class II complex is the primary means of communication between DCs and lymphocytes. 

 

In SLOs, DCs prime T and B lymphocytes using the "immune synapse".  The immune 

synapse is comprised of MHC Class II on the APC binding to the T cell receptor (TCR) 

on the T lymphocyte (30).  Additionally, several co-stimulatory molecules are involved in 

stabilizing the immune synapse and sending secondary messages from the APC to the 

lymphocyte.  Notably, CD3 is required from the T cell to stabilize the interaction (30).  

Either CD4 or CD8 is also required from the T cell and binds to the MHC complex (31).  

Once a successful immunological synapse has been formed, downstream signaling in the 

T cell through Ras and MAPK leads to gene expression and often proliferation (32).  If 
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no secondary signal is received from the APC, the T cell is "tolerized" and undergoes 

apoptosis (33).  If a secondary signal such as CD86 is presented by the APC (such 

molecules are upregulated upon maturation), the T cell will be activated and proliferate.  

Finally, the DC sends extra information through "Signal 3."  This is interleukin 12 (IL-

12) and interferon-alpha or IL-4 secreted from the DC (34).  IL-12 and interferon-alpha 

generally promote an antibody-based Th1-type adaptive response.  Conversely, IL-4 

stimulates a CD8+ T cell-based Th2-type response.  Thus DCs are able to direct the type 

of adaptive immune response the host will pursue. 

 

Chemokine Signaling: Critical Cues 

Lymphocytes express a variety of chemokine receptors (CCRs) that allow them to 

navigate throughout the body.  The unique combination of CCRs expressed on a cell is 

thought to provide direction toward, and retention within a specific organ.  As previously 

noted, mature dendritic cells upregulate CCR7 which receives signals from CCL21 and 

CCL19 which are expressed on the afferent lymphatics and in the lymph node, directing 

mDCs to the site of T cell activation.   

 

Chemokines themselves are small (approximately 8–14 kDa), generally basic, and 

structurally related cytokines that direct cell migration for a variety of leukocytes via 

their cognate binding interactions with G-protein coupled receptors (GPCRs) (35-36).  

All chemotactic cytokines belong to the chemokine superfamily, but they can be 

subdivided into 4 distinct groups (CXC, CX3C, CC, and C) according to the positioning 
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of the first 2 closely paired and highly conserved cysteines of the amino acid sequence 

which give the chemokine its tertiary structure (37).  Currently, over 40 chemokines are 

known in the human genome, most having homologs in mice.  They main cell types 

directed by chemokines are neutrophils, dendritic cells, monocytes, and lymphocytes, all 

of which have a role in host defense mechanisms.  In addition to providing directional 

cues for chemotaxis, it has been suggested that chemokines play fundamental roles in the 

development, homeostasis, and function of the immune system (35-36, 38).  Further, 

chemokines are used outside of the immune system in a variety of cell types, including 

cells of the central nervous system (39) or endothelial cells, where they can produce 

either angiogenic or angiostatic effects (40). However, we will focus on the chemokines 

relevant for inducing chemotaxis in leukocytes, especially CCL19, CCL21 and CXCL12. 

 

Chemokine receptors are a family of 7-transmembrane G-protein coupled receptors found 

predominantly on leukocytes (37, 41).  To date, 19 chemokine receptors have been 

identified in humans, with homologs in mice (37-38).  CCRs are generally composed of 

approximately 350 amino acids, and have conserved structural motifs.  The N-terminus 

generally has a short section of acidic residues, which is oriented into the extracellular 

space where it acts to bind specific chemokines.  The seven helical transmembrane 

domains orient into a barrel shape butted by three intracellular and three extracellular 

hydrophilic loops, and an intracellular C-terminus containing hydroxyl groups (serine and 

threonine) which provide sites for phosphorylation which in turn regulate receptor 

signaling (41). G-proteins couple to the C-terminal end, which is the only known 

mechanism for receptor signaling following ligand binding.  Although chemokine 
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receptors bear significant homology in their primary sequences, they typically bind only a 

small number of ligands, often only one.  The chemokine receptor is named for the 

subtype of chemokine it binds, and is numbered according to an agreed-upon standard 

(35).  A summary of chemokines and their receptors are shown in Figure 2.3.  Our focus 

is on CCR7 and CXCR4, which are relevant for mature dendritic cell chemotaxis. 

 

Figure 2.3.  Chemokines and the receptors they bind.  Adapted from (38). 
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Chemokines and Dendritic Cells 

CCR7 is a typical member of the 7-transmembrane domain G-protein coupled receptor 

(GPCR) family.  Its two known ligands CCL19 and CCL21 exhibit similar affinities for 

receptor binding (~7nM) (42).  Signaling is thought to proceed by activation of a G-

protein of the Gαi subfamily, which may or may not be precoupled to the receptor.  CCR7 

binds the α-subunit of the G-protein and releases the βγ-subunit, potentially activating 

both for downstream signaling.  It has not been established which of CCR7's effects are 

downstream of the α and βγ subunits, though preliminary evidence points to PI3K 

activity downstream of the βγ subunit (43).  Following activation, GPCRs become 

desensitized and ultimately downregulated through a chain of reactions occurring near 

the cytoplasmic carboxyl terminus.  This process of adaptation begins with receptor 

phosphorylation by GRKs.  In one of the few studies of CCR7 phosphorylation, CCL19 

was shown to induce significantly more phosphorylation than CCL21 in a human T cell 

lymphoma cell line (44-45).  Once the GPCR is phosphorylated, arrestins are recruited 

and bind the carboxyl terminus.  Binding of arrestins then induces clathrin-mediated 

endocytosis.  CCL19 has been shown to induce a lower steady-state level of CCR7 

surface expression by higher rates of endocytosis in a human T cell lymphoma cell line 

(45).   Finally, CCL19 is able to desensitize a T cell's responsiveness to CCL21, but not 

vice versa (42).  In vivo, this may allow cells to respond first to CCL21 expressed on 

afferent lymphatic vessels, then subsequently to CCL19 within the lymph node to find the 

T-cell rich paracortex.  Cumulatively, significant evidence suggests that although CCL19 
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and CCL21 have similar affinities for CCR7, their downstream regulation has the 

potential to activate distinct physiological responses. 

 

Deletion of CCR7 or its ligands CCL19 and CCL21 (in the plt mouse) does not fully 

impair DC migration to lymph nodes, implying that the process is complex and that 

additional chemokine-receptor pairs are likely to be involved. One such candidate is the 

chemokine CXCL12, recently shown to be present in murine dermal lymphatics by 

fluorescent immunohistochemistry, and its cognate receptor CXCR4, shown to be 

expressed in cutaneous MHC class II+ DCs (46).  The relative contributions of 

CCR7/CCL21 and CXCR4/CXCL12 to dendritic cell migration have not been well-

studied, but are a focus of this thesis.  In one study, the effects of the two chemokines 

were not additive (47).  Hence, these chemokine–receptor pairs may function 

independently of one another. 

 

Measuring Chemotaxis: Quantifying Cellular Navigation 

Chemotaxis is the directed motion of cells toward a soluble chemical signal.  Related are 

haptotaxis and durotaxis, which describe directed migration toward a surface-bound 

stimulus or a stiffer surface, respectively.  These types of directed motion are important 

for maintaining organ structure (27, 36, 48), wound repair (40), neuronal function (39), 

bacterial navigation (49) and leukocyte navigation (50-52).  To understand these 

behaviors in greater detail, it has become necessary to develop precise assays to measure 

chemotaxis. 
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Observation of chemotaxis is facilitated by the direct observation of cells, first made 

possible by the application of light microscopy to biological questions lead by Antoine 

van Leeuwenhoek in the early 1700's.  The term chemotaxis was was first used by 

Pfeffer, et al in 1884 (53) to describe the behavior of cells moving in response to 

chemical mediators.  Direct observation of the chemotaxis in leukocytes was made soon 

after in 1888 by Leber, et al in excised rabbit ocular tissues (54).  It was not until the 

1960's, however, that any quantitative technique was developed to measure chemotaxis.  

 

Boyden Chamber Technique 

The introduction of the membrane filter chamber method in 1962 by Australian biologist 

Stephen Boyden greatly facilitated the study of cellular chemotaxis (55). Using this setup, 

cells were introduced into an upper chamber and soluble chemotactic substances were 

added to a lower chamber, separated by a membrane.  This technique allowed 

quantization of the cells that had transmigrated the membrane barrier, making results 

more reproducible and easier to compare across different conditions. The Boyden 

chamber, with subsequent improvements culminating in what is now known as a 

"transwell assay", has since become a popular choice for studies of leukocyte chemotaxis 

in vitro (56-57). 

 

Although it is commonly used, the Boyden chamber/transwell assay has several 

limitations that hinder its use as a quantitative technique.  The setup involves dispensing 
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cells onto a non-physiological, porous membrane.  This membrane may be a good mimic 

of basement membranes, but it is generally far too stiff to simulate tissue.  The 

chemokine is generally placed in a lower chamber, and allowed to diffuse through the 

membrane over time.  This creates a time-dependent diffusion problem presenting an 

ever-changing gradient to the cells.  No analysis of gradient perception is possible, and 

the kinetics of convection/diffusion may change based on subtle differences in the 

experimentalist's technique.  Although results are more reliable than passive 

observations, they are notoriously variable, and sometimes produce spectacular results 

which cannot be repeated, such as in Paoletti et al (51).  Although rigorous mathematical 

analysis can be applied to extract advanced metrics (58), the vast majority of researchers 

do not go to such lengths, and simply report the number of transmigrated cells after an 

arbitrary amount of time. 

 

Under Agarose Technique 

Another widely used technique for measuring chemotaxis is the "under agarose assay."  It 

was originally developed in 1975 as an alternative to the Boyden chamber assay (59).  

According to the original authors, the under-agarose assay  

"has application to both polymorphonuclear leukocytes and monocytes, permits 

measurement of both chemotaxis and spontaneous migration, requires fewer cells 

per test, and is rapid, simple, reproducible, and inexpensive to set up." (59)   

This method involves curing a gel of agarose in a thin layer over a glass or plastic 

surface.  Holes are punched in the gel, then cells are added to one well, while a 
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chemoattractant is added to another.  Using this technique, direct visualization of the 

migrating cells is possible.  Additionally, multiple competing signals can be presented to 

the cells (60).  This technique is a substantial upgrade over transwell assays, but still 

suffers from the fundamental lack of gradient control.  The chemoattractant must diffuse 

under the gel, meaning the concentration profile is a function of time and space.   

 

Zigmond/Dunn Chamber Technique 

In 1977, a further advance in the assays to study leukocyte chemotaxis was made by Sally 

Zigmond et al (61).  This technique is quite similar to the under-agarose technique, but 

since it allows diffusion over a small bridge between two large reservoirs, the gradient is 

significantly more stable over time.  The cells are observed as they move across the 

bridge toward the chemoattractant-containing reservoir.  Using this direct-visualization 

technique,  

"Observational studies can determine whether a given alteration in the 

chemotactic response is due to variations in (a) the percentage of cells responding, 

(b) the accuracy of the orientation, (c) the frequency or magnitude of turns, or (d) 

selective changes in the rate of movement by cells in a certain orientation relative 

to the direction of the gradient." (61) 

 

A highly similar setup was later devised by Graham Dunn and colleagues (62), which 

used a center reservoir for cells encircled by a ring-shaped bridge separating the cells 

from a large outer reservoir containing chemoattractant.  It was proposed as an alternative 
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to the Zigmond chamber and optimized for slower moving cells such as fibroblasts.  It 

also avoids edge-effects that can be present in a Zigmond chamber, but at the expense of 

not being able to replenish the center reservoir during an experiment. 

 

Ultimately, both techniques were an improvement over the Boyden/transwell assay 

because they allowed direct observation of moving cells and significantly better control 

of the chemical gradient.  These were critical steps forward in gaining engineering 

control over the experimental system.  The main drawback presented by these techniques 

are that only a small number of cells can be observed in an experiment, and importantly, 

the gradient changes as a function of time.  During startup, the gradient changes rapidly 

as a diffusion front crosses the bridge.  The gradient is then pseudo-stable and 

approximately linear, with the endpoints changing as the chemoattractant slowly bleeds 

into the opposing reservoir.  After long observation periods, the gradient will ultimately 

flatten as the chemoattractant becomes equally distributed between the reservoirs.  Thus 

despite the advances of the Zigmond/Dunn chambers, limitations remain. 
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Figure 2.4.  Survey of available chemotaxis assays.  Adapted from (63).   

 

Microfluidic Devices 

Recently, microfluidic devices (MFDs) have been applied to the study of leukocyte 

chemotaxis (64-71).  The implementation of this technique varies widely, but generally 

involves mixing two microfluidic streams—one containing chemokine and one empty—

to create a gradient.  The gradient flows over cells that are adhered to a substrate.  Thus 

this technique offers all the advantages of direct observation, with the improvement of a 

time-invariant gradient.  The hydrodynamic flow can be a confounding factor of cell 

behavior, but the flow rate is generally minimized to reduce shear on the cells and limit 

impact on their migration.  Another key advantage of microfluidic gradient generators is 

the possibility of presenting multiple, overlapping gradients to the cells, which can aid in 

detecting a signaling hierarchy. 

 



 28

Despite being developed only 10 years ago, MFDs have already been used to study a 

variety of cell types in a vast array of configurations.  The most popularly studied cell 

type is neutrophils (64, 66-67, 69, 71-72), but slower moving cells such as endothelial 

cells (73) and cancer cells (74) have also been examined.  Importantly, Francis Lin was 

the first to extend the use of MFDs to the study of lymphocytes in 2006 (65).  Some basic 

studies using dendritic cells have also been recently reported by Haessler et al (71).  In 

their study, they combine the agarose and MFD techniques to show that dendritic cell 

chemotaxis is possible to a microfluidic gradient of CCL19.  On the whole, these studies 

show the value of microfluidics for presenting stable, time-invariant gradients of 

chemokine to motile cells. 

The Rise of Microfluidic Devices 

The evolution of microfluidic devices began with the application of photolithography, 

literally "optical stone writing", to silicon substrates in the 1950's (75).  This process 

allowed patterns of arbitrary complexity to be etched into very flat surfaces.  Indeed, 

photolithography was originally developed for use in the semiconductor industry, where 

patterning ever-smaller features was the driving force behind Moore's Law (76), which 

describes the ever-increasing speed of transistor-based processors as feature sizes 

decrease.  Building upon photolithography, the invention of soft lithography by George 

Whitesides in the late 1990's (77) was the next step toward microfluidic devices.   

Soft lithography uses photomasks, polymer-based stamps and molds in various 

combinations to fabricate or replicate patterns.  The term "soft" is derived from soft 

lithography's use of elastomeric materials, especially polydimethylsiloxane (PDMS). The 
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soft lithography platform is generally used to create features on the micron scale, but can 

be scaled down to the nanometer scale (78-79). 

PDMS: A crucial material 

Polydimethylsiloxane (PDMS) is the material that makes current bio-microengineering 

applications possible.  PDMS is one of a family of organic silicon polymers that together 

are referred to as silicones.  Of the silicones, PDMS is by far the most widely used in 

biological applications, due to a number of factors.  It's rheological properties make it 

suitable for casting into complex 3D structures, and cured to permanently maintain its 

shape.  For its physical properties, PDMS is ideal for microscopy because it is optically 

clear, and it is stiff enough to withstand high pressures seen in microfluidic devices.  The 

shear modulus of PDMS varies with the ratio of prepolymer to crosslinker, and it can 

vary from approximately ~100 kPa to ~10 MPa (80).  For its chemical properties, PDMS 

is not fully bio-compatible, but it is considered to be inert, non-toxic and non-flammable.  

After polymerization/cross-linking, the surface of solid PDMS presents a hydrophobic 

surface (80).  The predominant -Si surface chemistry makes it difficult for polar solvents 

like water to wet the PDMS surface, and makes the surface attractive for binding 

hydrophobic compounds such as proteins.  Plasma cleaning and ozone treatment can be 

used to oxidize the surface, creating silanol (Si-OH) groups at the surface. After 

oxidation, the PDMS surface is hydrophilic, making it easy to wet channels with water 

and the oxidized surface resists hydrophobic protein adsorption.  More often, however, 

the surface is simply blocked with serum proteins or bovine serum albumin (BSA) 

because oxidized surfaces are only stable for approximately 30 minutes.  Even solid 
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PDMS is able to undergo hydrophobic recovery of the surface, regardless of the 

surrounding medium (water, air, vacuum).  While other applications for PDMS include 

shampoos, caulking, heat-resistant tiling, and lubricating oils, the physical and chemical 

properties of PDMS make it ideal for studying reductionist biological systems on a small 

scale.   

Soft Lithography 

The soft lithography process is comprised of two parts.  First, the fabrication of a pattern 

onto a substrate creating a 'master', and second, the use of that pattern to produce features 

negatively defined by the pattern's relief structure in an elastomeric substrate.  The two 

steps are generally quite distinct, though in some cases the stamp created from the master 

can be used to generate a replica of the original master.  The master can be produced 

using any number of techniques that produce a well-defined structure on a surface.  

Several elastomeric replicates can be fabricated from a single master.  Typically, the 

pattern on the master is created by the previously mentioned photolithography.  In this 

process, a thin layer of photoresist is deposited on a hyper-flat silicon substrate by spin-

coating.  The pattern is then created in the photoresist by shining collimated light through 

a high-resolution photomask.  The photomask is typically a pattern printed onto a 

transparency, and feature size is limited only by printer resolution. Two types of 

photoresist are used: negative photoresists cure upon exposure to light, while positive 

photoresists are pre-cured, then degrade upon exposure to light.  Due to the development 

of optimized materials and chemistries, this fabrication technique has remarkably high 

fidelity (81).  Once the master has been created, the creation of a negative replicate in 
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PDMS is relatively simple.  PDMS pre-polymer is poured over the master, the system is 

degassed to remove any bubbles, and the PDMS is then cured at 25-150°C to crosslink 

the polymer. 

Recent Advances in Microfluidic Devices 

With the advent of facile methods for rapidly fabricating and testing prototypes of 

microfluidic devices has come an avalanche of innovative applications for this flexible 

platform.  Some of the most basic gradient generators used a simple Y-junction, and 

depended upon diffusion to establish a non-linear gradient (65).  Other more advanced 

gradient generators use a "Christmas-tree" splitting and recombining of streams to create 

stepped gradients and serpentine channels to fully mix streams, smoothing the gradients 

(82).  These chambers can also be manipulated to give non-linear profiles by using 

asymmetric flow (83), or serial dilutions schemes (84).  Since not all biological gradients 

are linear, these approaches are valuable.  Taken to an extreme, exponential shaped 

gradients have been formed to simulate a constant ratio of CC /Δ .  Another interesting 

extension of the microfluidic platform has been rapid gradient switching to show how 

cells make turns (66).  This is especially important for neutrophils, which are following a 

moving target—bacteria—but less important for DCs, which follow relatively time- and 

space-invariant gradients to reach stable structures. 

 

Previous work using microfluidic devices to study leukocytes other than neutrophils is 

sparse.  Neutrophils are well-studied because they are readily obtained from human 

peripheral blood, and are reliably motile across a wide variety of substrate ligands and 
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stiffnesses.  As mentioned above, the first application of microfluidics to T cells was 

completed by Francis Lin in 2006 (65).  Although DC migration has been shown in 

confined microchannels (85), it did not use a gradient generator to present a chemotactic 

signal.  Thus the use of microfluidic gradient generators in leukocyte research (especially 

DC research), is an open area of investigation. 

Cell Polarity and Motility 

To properly respond to an external gradient, a cell must polarize its cellular response 

(43).  This polarization is generally considered in terms of two distinct regions: the 

"front" and the "rear".  The front leading edge, or pseudopod, is characterized by f-actin 

rich protrusions, either lamellipodia or filopodia.  Lamellipodia are broad, flat coherent 

protrusions, whereas filopodia are long, thin finger-like projections from the cell 

membrane.  The rear trailing edge, or uropod, is generally characterized by the retraction 

of old adhesions from the substratum.  The two edges of a cell are also thought to be 

governed by distinct signaling molecules and pathways.  Molecules typically found near 

the leading edge of a migrating cell are PI3K (86), Rac, CDC42 (87) and most molecules 

associated with actin polymerization such as ARP 2/3 and ENA/VASP (52).  At the other 

end, molecules associated with the trailing edge are PTEN, Rho signaling molecules such 

as ROCK, and the crucially important myosin IIb (88).  Although several relevant 

molecules have been identified and their spatial structure determined, there is still much 

debate about the precise combination of molecules and signaling pathways that govern 

the migration seen in various cell types, not least dendritic cells (89).   
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Amoeboid Cell Motility 

Although many molecules and pathways associated with motility are conserved across a 

wide variety of species and cell types, an important distinction should be made between 

amoeboid and lamellipodial cell migration.  Amoeboid motility may be considered a 

primitive mode of cell migration, as even prokaryotes are able to display this relatively 

fast locomotion.  Amoeboid cells do not use the long-lasting, highly stable focal 

adhesions used in the lamellipodial model; rather, they manipulate their body shape to 

effect cell displacement.  These cells are capable of squeezing through tight junctions 

such as gaps in barrier membranes and transwell plate assays.  In contrast, the 

lamellipodial model prefers to remodel the extracellular matrix through proteolysis using 

matrix metalloproteases (MMPs).  

 

Neutrophils are classical exhibitors of amoeboid migration, but are surpassed by the 

slime-mold Dictyostelium discoideum (52, 90-91) and fish keratocytes (92-93) as the 

most intensively studied amoeboid cell models.  Although recent research has begun to 

focus on DCs as models for amoeboid cell migration (94-95), the field is still in its 

nascent stages and many open questions remain. 

 

Cell Polarization 

Though much progress has been made, the question of how a cell establishes and 

maintains the polarity necessary for directed migration remains unsolved.  One leading 

theory is the mutual inhibition hypothesis (43).  In this scheme, there are two distinct 



 34

signaling pathways that are both triggered by GPCRs.  Since they mutually inhibit one 

another, small fluctuations are easily amplified into stable signals at the front and rear.  A 

schematic of this theory is shown in Figure 2.5. 

 

 

Figure 2.5.  Mutual inhibition pathways establish cell polarity and provide directionality for chemotaxis.  

Adapted from (43). 

 

Under the mutual inhibition theory, signaling in the front of the cell is initiated by Gαi 

proteins.  The βγ subunit separates from Gαi and signals through at least three 

downstream pathways: Cdc42, PI3K and Rac.   Thus these proteins are typically found at 

the leading edge.  For DCs, Cdc42 has been shown to be particularly important for 

directional navigation toward chemokines (87).  In neutrophils, PI3K is an important 

molecule for organizing the leading edge (96-97).  In monocytes and some T cells, 

however, it was shown to be dispensable for directed migration (98).  In dendritic cells, it 



 35

was shown to be necessary for chemotaxis to LBT4 (99).  Rac is an important activator of 

actin assembly, often found at the leading edge of migrating cells (100). 

 

Signaling at the rear of the cell is thought to be directed by Gα13 proteins.  They activate 

the small GTPase RhoA, which is commonly localized to the uropod or trailing edge 

(101-102).  Rho and Rac work in concert to maintain the mutual inhibition at the front 

and rear.  Rho then activates Rho-associated protein kinase (ROCK), which in turn 

phosphorylates the light chain of myosin II, inducing contractility (103).  Another 

important molecule for maintaining polarity is PTEN, which is localized to the rear of the 

cell.  PTEN is inhibited by Cdc42, and it inhibits PIP3, so it is a critical fulcrum of the 

front-rear mutual inhibition (90).  Loss of PTEN is associated with endothelial-

mesenchymal transitions (EMT) and subsequent cancer metastasis (104). 

 

Traction Forces: Measuring Cellular Footsteps 

Measuring traction forces is a non-trivial endeavor.  Several techniques have been 

developed over the last 30 years to enable to measurement of forces exerted by the cell on 

its surroundings.  Starting with silicone films, moving to elastic polymer networks, and 

even a bed of needles, there are several ways to approach the problem, each with unique 

advantages and drawbacks. 
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Silicone Films 

One of the first observations of cells producing force was made using fibroblasts on a 

thin film.  The observations were published in 1959 by biologist Paul Weiss using 

fibroblasts on thin films of plasma clots (105).  Weiss developed a methodology for 

studying the fibroblasts and during cell culture he observed the formation of thin lines 

and wrinkles underneath and emanating from the fibroblasts.  Interestingly, Weiss 

believed that the presence of the wrinkles was a result of dehydration and shrinkage of 

the protein networks within the clot film, and not actually produced by the cells 

themselves.  The wrinkles extended in a radial fashion from both individual cells and 

groups of cells.  Further, Weiss observed that cells would reorient themselves with along 

the axis of the wrinkles, providing the first observations of what is now a well-studied 

phenomenon: contact guidance (106).   

 

It was not until a few decades later that a new—also incorrect—explanation was 

proposed for the wrinkles in cell substrata.  In 1980, Harris et al. began using a new type 

of substratum: silicone films (106).   Harris, like Weiss, observed wrinkles in a film 

beneath a cell, but Harris hypothesized that the wrinkles were due to the presence of a 

cell's rearward-directed traction force.  This was the first use of thin films of silicone in 

the field of cell mechanics and it represented a major step forward in the detection of 

cellular traction forces.  

 

Using silicone films to detect traction forces represented a breakthrough, because it 

allowed direct observation of cellular forces.  Although the results were qualitative, they 
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were able to provide information about the location of forces underneath the cell and give 

a rough idea of their magnitude.  This allowed for the observation that wrinkles started 

just behind the leading edge and were less prominent in the lamellipodia itself.   

 

The response of cells to substrates of different stiffnesses has become a relevant area of 

research for stem cell differentiation (107-108) and leukocyte migration (64, 109).  Using 

silicone substrates, the substrate stiffness could be modulated by differential curing of the 

substrate; notably by varying exposure to heat and using different silicone polymers.   

 

Despite making some early and important contributions to the field, silicone films present 

a number of limitations that ultimately led to the use of other substrates for measuring 

traction forces.  Most importantly, the use of silicone substrates gives only qualitative 

results.  Some authors attempted to correlate cell wrinkling patterns with those obtained 

my mechanically applying a known force (110), but the results remain correlative.  They 

did, however, make the first estimates of fibroblast force, stating that chick heart 

fibroblasts exert shear forces of approximately 0.001 dynes/m.  Another disadvantage 

was the difficulty in reproducibly making substrates of the same stiffness.  Due to these 

important disadvantages, the use of silicone gels to study traction forces seems to have 

run its course.  Ultimately, polyacrylamide gels would prove themselves superior for 

studying cellular response to stiffness due to the limitations listed above and the 

advantages of gels listed below. 
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Polyacrylamide Gels with Fluorescent Beads 

Motivated by the difficulty of controlling the stiffness of silicone films, Pelham and 

Wang pioneered the use of functionalized polyacrylamide (PA) gels to study traction 

forces (111).  These PA gels were thin films, but did not wrinkle like silicone films.  To 

prevent wrinkling of the gels, the PA is covalently attached to a glass coverslip using 

glutaraldehyde.  This was a major advance in traction force studies, and the use of PA 

gels remains popular.  Non-wrinkling PA gels also have a major advantage in that they 

are elastic.  Elasticity greatly simplifies force measurements, because measured strains 

are linearly related to imposed stresses.  As Pelham and Wang were the first to 

demonstrate, the stiffness of the PA gel can be easily modulated by varying the amount of 

pre-polymer (acrylamide) and crosslinker (bis-acrylamide) used in the uncured solution.  

Both the absolute amount of pre-polymer and crosslinker and their relative ratio are 

critical for determining gel stiffness, and the possible combinations lead to a range of gel 

stiffnesses from 400 to over 70,000 Pa (112).  

 

Polyacrylamide itself is inert to cells, and considered non-adhesive to proteins and cells.  

Thus another moiety must be added to the gel surface to provide a foothold for the cells.  

Typically this is a protein found in the extracellular matrix (ECM) such as fibronectin, 

collagen, or a peptide mimicking such proteins (113).  The ECM protein is covalently 

linked to the surface—either via a photo-activated crosslinker (64) or via a protein-

adhesive group copolymerized into the gel (114)—providing a solid linkage from the gel 

to the adhesion ligand. 
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To make quantitative measurements of strain, the PA gel is embedded with nanometer-

scale fluorescent beads.  The beads are able to report gel displacements.  Bead 

displacements can then be used to infer cell traction forces.  Micah Dembo collaborated 

with Pelham and Wang to develop a complex computational method for mapping bead 

displacements to traction forces (115).  Despite the linear response of PA gels to imposed 

forces, this reverse mapping is extremely complex.  Dembo breaks the problem down 

into several small, overlapping strain fields acting on a single plane.  His theory defines 

the displacement field of the elastic substrate as an integral over the traction field.  Since 

an arbitrary number of displacement fields can produce the same traction field, the 

equation does not have an analytic solution and must be solved numerically using 

statistical methods.  This method can resolve traction forces with an arbitrary mesh size, 

so forces can be visualized at fine spatial resolution within a cell.  Other laboratories have 

developed similar mathematical techniques for determining traction forces from bead 

displacements; their work is reviewed in reference (116).  The technique developed by 

Dembo and coworkers is now referred to as traction force microscopy (TFM). 

 

TFM has been used to study a variety of cell types, starting with fibroblasts (115) and 

ranging to endothelial cells (113) and neutrophils (117).  The traction forces produced by 

endothelial cells are quite strong, on the order of fibroblasts (118) and their orientation 

profile resembles that of fibroblasts.  Specifically, mesenchymal cells seem to exert their 

traction forces at the leading edge, with the newest focal adhesions generating the 

greatest force (119).  In contrast, Smith and colleagues were the first to use TFM to 

analyze neutrophils, and found that their forces are concentrated at the rear of a migrating 
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cell (117), similar to their amoeboid cousins, fish keratocytes (110).  The magnitude of 

neutrophil forces was found to be significantly lower than mesenchymal cells, at 

approximately 70 nN/cell (117). 

 

Until recently, TFM was limited to measuring traction forces in two dimensions.  Recent 

advances have allowed the measurement of traction forces in the third dimension.  This 

problem was first tackled by the Chien lab, providing calculations for forces that cells 

may exert in three dimensions even on two dimensional substrates (120).  This was 

quickly followed by experimental data showing that indeed, cells do exert upward forces 

in the uropod as cells retract old adhesions, and can sometimes produce downward forces 

in the lamellipod (121).  Finally, a fully three dimensional traction force technique is 

being developed in Christopher Chen's laboratory at the University of Pennsylvania, 

where cells are embedded in a three dimensional environment.  This represents the future 

of traction force microscopy. 

 

Micromachined Cantilevers 

The methods for measuring traction force discussed above all use substrates that provide 

a continuous surface for cell migration.  In addition to these surface continuum methods, 

there are techniques that define patterned surfaces to which cells can adhere.  An initial 

study in this discrete surface approach was presented by Galbraith and Sheetz using 

micromachined cantilevers (122).  The force on each cantilever can be calculated as a cell 

migrates across a densely packed field, yielding highly specific information about the 
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local force.  Deflections are recorded using standard microscopy techniques, and are 

easily converted to forces using the known stiffness of a cantilever.  Since the cantilevers 

are independent of one another, measurements of single focal adhesions are possible.  In 

this system, the cantilevers are restricted to motion in one-dimension, so three 

dimensional calculations are not possible.  Additionally, machining of the cantilever 

array is technically challenging. 

Microfabricated Post Array Detectors 

Capitalizing on the advantages of micromachined cantilevers, an improved discrete 

method was developed by Chen and colleagues (123).  In their experimental system, 

ECM proteins are stamped onto the tips of microposts fabricated in PDMS.  The 

simplified production technique based on soft lithography allows rapid production of 

several substrates.  As with micromachined cantilevers, micropost deflections are easily 

correlated to forces by a linear relationship.  Initially, spring constants of microposts were 

determined by recording the deflection of calibrated glass pipettes which had been 

manipulated to deflect individual microposts by predetermined distances.  With this 

simple but reproducible fabrication technique, once a post pattern has been calibrated, it 

can be replicated with high fidelity.  To functionalize the tips of the microposts, the 

PDMS is exposed to oxygen plasma to break the silicone chains at the surface, activating 

them to bind hydrophilic proteins (80).  Then a separate, flat PDMS stamp with ECM 

protein is brought into contact with the microposts, transferring the ECM to the micropost 

tips.  The mPAD system is quite flexible because the height and diameter of the 

microposts can be varied to give different effective stiffnesses.  A range from 1.5 kPa to 
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over 1000 kPa can be generated simply by changing micropost height (124).  Another 

advantage of the high-fidelity manufacturing technique is that the unstressed state of the 

posts can be reliably estimated from the grid pattern, so a "null" image is not required to 

calculate displacements.   

 

Micropost array detectors are quite useful for force measurement, but like any technique, 

they have drawbacks.  The most important is the discrete nature of the substrate.  It is 

difficult to compare the results from a micropost array with those on a continuous 

substrate, but both are difficult to compare to a true three-dimensional in vivo 

environment.  Another issue is the limitation of adhesion sizes to micropost tips.  By 

using deep reactive ion etching process, however, smaller resolutions can be realized in 

the silicon templates used to fabricate the microposts (125).  Microposts 1 micron in 

diameter and 3 microns center-to-center spacing can now be produced.  By increasing the 

number of posts underneath each cell, the spatial resolution of forces was improved, but 

the sensitivity was decreased since the force applied per post was smaller.  Overall, 

mPADs are accurate assays of cellular force whose analysis is straightforward and results 

are reliable. 
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Abstract 

Dendritic cells (DCs) are potent initiators of the adaptive immune system, but they must 

migrate from peripheral tissue to lymphoid organs to perform their function.  Thus 

motility is essential for DC function in vivo.  Despite the prominent role of locomotion in 

DC function, it remains poorly understood and basic responses to chemokines have not 

been well characterized.  In the present work, we examine DC response to uniform fields 

of chemoattractants and characterize this chemokinesis.  We augment our understanding 

of DC motility by analyzing their adhesion to multiple extracellular matrix proteins and 

adhesion to chemokines directly (i.e. haptokinesis).  We find that DCs show a biphasic 

response to chemokines in both adhesion and motility, and that fibronectin is preferred to 

collagen for integrin-dependent migration.  This work lays the foundation for 

understanding basic DC motility and forms the basis of more advanced studies. 
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Introduction 

Dendritic cells (DCs) acquire information about foreign antigens at sites of infection.  

They later deliver this informational cargo to T and B cells in secondary lymphoid organs 

(SLOs) (1-2).  The transit from peripheral tissue to SLOs is central to DC function.  

While dendritic cells have been of increasing interest, we still lack basic information 

about their motility on common substrates. 

 

Collagen and fibronectin represent two of the most physiologically relevant extracellular 

matrix (ECM) proteins.  Collagen is found throughout the body, but especially in 

connective tissue and basement membranes (3).  Fibronectin is more ubiquitous, being 

found in both a soluble plasma form, and in an insoluble cellular form; both are products 

of the same gene but undergo alternate splice patterns (4).  Due to their physiological 

relevance and ease of use, these two ECM proteins are among the most widely studied for 

cell adhesion and migration.  Collagen in particular has become popular for three-

dimensional studies because it is readily polymerized into a 3D network (5-9).  

Fibronectin has received considerably less attention from DC researchers. 

 

In addition to providing a substrate for integrin binding, ECM proteins can also signal 

into the cell.  The primary function of ECM proteins is to form a lattice in which cells can 

adhere and grow, yet this relationship is complex because cells themselves produce ECM 

proteins and shape their patterns (4, 10).  There is a secondary effect of binding ECM 

proteins, however.  Activated integrins which bind ligands generate intracellular signals 
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in a process known as outside-in signaling (11).  These signals ultimately activate Rac, 

Cdc42 and Rho (12), similar to chemokine signals.  Thus it is unclear whether DCs 

receive migration signals from ECM proteins in addition to chemokines. 

 

In this chapter we investigate the basic adhesion and migration of mature dendritic cells 

on two well studies ECM proteins, collagen and fibronectin.  We apply standard 

engineering approaches to measure cell speed, random motility coefficient, and strength 

of adhesion on these substrates.  Our results show that mature, bone marrow derived 

murine dendritic cells do not appreciably bind collagen, but are able to bind fibronectin.  

Further, we show that in the absence of integrin outside-in signaling, chemokines affect 

speed and random motility in a biphasic manner.  We conclude that this biphasic 

response is primarily due to adaptation to high concentrations of chemokine and not 

increased adhesion to the substrate, because the adhesion response is a relatively weak 

function of chemokine stimulation. 
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Materials and Methods 

Cell Culture 

Dendritic cells were generated from murine bone marrow cells according to the 

procedure of Lutz et al. (13) with minor modifications.  Briefly, bone marrow was 

flushed from the tibias and femurs of 8 to 10-week-old C57BL/6 mice and depleted of 

red blood cells using ammonium chloride lysis buffer.  The cells were plated in 10-cm 

petri dishes (2 × 106 cells/ml; 10ml/plate) in RPMI-1640 supplemented with 10% heat-

inactivated fetal bovine serum, 100 U/ml penicillin, 100 mg/ml streptomycin, 50 nM 

BME, and 20 ng/ml rmGM-CSF (Peprotech, Rocky Hill, NJ) at 37°C in 5% CO2. On day 

3 fresh media was added, and on day 6 half of the media was gently replaced.  To mature 

DCs, 10 ng/ml TNF-α (PeproTech) and 1 μg/ml LPS (Sigma-Aldrich, St. Louis, MO) 

were added on day 6 and cells were used in experiments on day 7.  On day 7, 80% or 

more of the non-adherent cells expressed the monocyte lineage marker CD11c as 

confirmed by flow cytometry.   

Chemokinesis Assay 

Migratory speed was measured by videomicroscopy.  DCs suspended in growth medium 

were allowed to attach to collagen (PureCol, 550 ug/cm2) or fibronectin (Sigma-Aldrich, 

10 ug/cm2) coated glass coverslips for 30 min.  Protein coating was performed by first 

cleaning the coverslips with methanol, then incubating with the protein solution for 90 

minutes at room temperature, followed by blocking with 1% BSA in PBS for 60 minutes 

at room temperature.  Movement was recorded using a video camera attached to a Nikon 
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Inverted Eclipse TE300 microscope using a 10x objective for 2 h in a custom-built stage 

maintained at 37°C and 5% CO2.  Tracks of individual cells (100 or more cells) were 

captured using the Manual Tracking or ParticleTracker plugins for ImageJ (NIH, 

Bethesda, MD), and the data are presented as microns per hour.  For automated tracking, 

cells were incubated with 5 uM CellTracker Red CMTPX (Invitrogen) for 30 min prior to 

imaging, and fluorescence images were captured using a Texas Red filter.  The 

parameters that have been used to describe this random motility are the cell speed and 

persistence time according to the Dunn Equation (14): ( )[ ]PtePPtnSd /222 1 −−−= .  

The random motility coefficient can be calculated by either PS
n

21
=μ  or 

tn

d
2

2

=μ  for  

t >> P.  Each cell’s persistence time (P) was fit using nonlinear least-squares regression 

in a custom-build MATLAB (The Mathworks, Natick, MA) program by inserting its 

speed (S) into a persistent random walk model for cell migration. 

Haptokinesis Assay 

Haptokinesis experiments were performed as chemokinesis experiments with a different 

adsorbed protein.  Instead of using collagen or fibronectin, haptotaxis experiments used 

CCL19 or CCL21.  The chemokine coating was performed on plastic non-tissue culture 

treated 96 well plates (Falcon, BD Biosciences, San Jose, CA), then incubating with the 

chemokine solution for 90 minutes at room temperature, followed by blocking with 1% 

BSA in PBS for 60 minutes at room temperature. 
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Adhesion Assay 

Cell adhesion to protein-coated surfaces was measured using a centrifugation assay (15). 

Tissue culture polystyrene 96-well plates (Falcon 3077, BD, Franklin Lakes, NJ) were 

coated with bovine serum fibronectin (Sigma-Aldrich, 10 μg/ml) in PBS or type I 

collagen (PureCol, 550 μg/ml) in PBS for 1 h at room temperature. The protein-coating 

concentrations ranged from 0.015 to 45 μg/cm2 in addition to a negative control with no 

adsorbed protein. Conditions were replicated in three separate columns on the same 

microplate. All wells were then blocked in 1% heat-denatured BSA for 1 h to prevent 

nonspecific cell adhesion.  DCs (5 x 104 cells/well) were added to wells with CCL19 

concentrations ranging from 0 to 100nM.  The plates were incubated for 60 min at 37°C 

to allow adhesion.  Each well was then carefully aspirated to remove floating cells and 

refilled with fresh HBSS for an initial cell count before detachment. The lid was 

removed, and the plate was covered with sealing tape (Nunc, Rochester, NY) and 

centrifuged upside down at a specified speed for 5 min on an Allegra 25R centrifuge 

(Beckman Coulter, Fullerton, CA) to detach the cells. The wells were carefully aspirated 

and refilled with fresh HBSS for a post-spin cell count.  The post-spin data were 

normalized by the pre-spin data to obtain adherent fractions, which were plotted against 

protein-coating concentration to determine adhesion profiles.  Alternatively, cells were 

fixed for 15 min at room temperature with 4% PFA and stained for 15 min with 0.5% 

crystal violet.  The cells were then washed with PBS and read on a Tecan plate reader at 

590 nm. 
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Results 

Migratory cells are expected to display random motility in the absence of a chemotactic 

gradient.  Mean squared displacement for dendritic cells migrating on a collagen/glass 

surface in the absence of chemokine has been plotted in Figure 3.1.  By taking an average 

over the cell population, we can accurately fit our data to the Dunn Equation using least 

squares regression. 

 

Figure 3.1. Trajectories of the squared displacement from initial location are plotted over time.  The black 

line represents the mean of the displayed data, error bars indicate standard error of the mean.  The orange 

line indicates the Dunn Equation curve fit by the parameters S = 3.0 μm/min, P = 9.0 min. 

 

The resulting parameters are calculated to be 3.0 ± 0.3 μm/min for cell speed, 9.0 minutes 

for persistence time, and 24 μm2/min for the random motility coefficient.   

 

An inverse relationship has been observed between persistence time and cell speed for a 

variety of cells (see Figure 3.2).  We show that dendritic cells obey the general inverse 

relationship between speed and persistence time (Figure 3.2). 
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Figure 3.2  A demonstration of the inverse relationship between migratory speed and persistence time 

(reproduced from reference (16)).  Datum for dendritic cells has been added from our observations. 

 

Having calculated the baseline parameters of DC migration, we are now concerned with 

how they change upon activation by chemokines.  We show here that dendritic cells 

modulate their migratory velocity in response to CCL19 and CCL21 (Figure 3.3).  We 

find that on collagen substrates, the speed reaches a maximum of approximately double 

the resting velocity.  On fibronectin coated substrates, however, the cells do not seem to 

respond to chemokine with any discernable pattern.  On collagen, the random motility 

coefficient goes through a maximum at approximately 10 nM CCL19 or CCL21. 
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Figure 3.3.  Velocity of dendritic cells on a glass surface functionalized with collagen Type 1 (A and C) or 

bovine fibronectin (B).  For CCL19+21, the chemokine concentration is reported as the sum (total) 

concentration.  Cells respond to chemokine on collagen, going through a maximum before adapting to large 

doses.  On fibronectin, DCs do not respond to chemokine stimulation. 

 

There are two important observations that we make regarding the response to increasing 

chemokine concentration.  First, the response is biphasic, going through a maximum at 

~1-10 nM, which is close to the KD for these receptor/ligand pairs (17).  Second, CCL21 
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exhibits a significantly stronger response than either CCL19 or CCL19 and CCL21 

combined, especially at higher chemokine concentrations.   

 

To understand whether chemokines need to be bound to the substrate to elicit 

chemokinetic signals, we coated the surface of 96-well plates with CCL19 or CCL21.  

Results are summarized in Figure 3.4.   

 

 

Figure 3.4.  Mature dendritic cells exhibit haptokinesis on chemokine coated surfaces.  Greater chemokine 

concentrations used to treat the surface resulted in higher cell speed and higher random motility 

coefficients.  CCL21 triggers greater haptokinesis than CCL19. 

 

It has been well established for a variety of cell types that a "goldilocks" level of 

adhesion is necessary for maximal motility (18).  If cells are too weakly adherent, they 

cannot generate the traction needed to counteract protrusion.  If the cells are too strongly 

adherent, they are unable to break integrin bonds at the uropod and become "stuck".  

Thus it is reasonable to expect that if chemokine signaling becomes too strong, it may 

inhibit migration. 
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To determine whether this correlation between motility and adhesion holds for dendritic 

cells, we conducted centrifugation experiments to assess adhesion at varying chemokine 

concentrations.  Cells were plated on a fibronectin-coated 96-well plate, allowed to 

adhere for 1 hour, and then spun at 100RPM (~1.6 x g) for 5 minutes.  As shown in 

Figure 3.5, adhesion strength is indeed a function of chemokine concentration.  It appears 

that the adhesion goes through a maximum with chemokine concentration before 

adapting to high concentrations, as observed with cell speed. 
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Figure 3.5.  Adhesion of cells to a plastic TC surface functionalized with bovine fibronectin.  Cells were 

allowed to adhere for 1h before being inverted and centrifuged at 1.6 x g.  Data is reported as the 

percentage of cells that remain adhered after 5 minutes. 

 

We can also use a centrifugation assay to determine the mean force required for 

detachment.  In this assay, the cells are again allowed to adhere to 96-well plates coated 

with various concentrations of fibronectin for 1 hour.  The plates are then inverted and 
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spun at various speeds ranging from 0 to 42 x g to generate a range of applied forces.  

The fraction of adhered cells was calculated for each fibronectin and force combination 

(Figure 3.6).  From this data we calculate an applied force: RVFapplied
2ωρΔ= . By 

assuming rcell = 10 um, ρcell = 1.05 g/cm3, ρmedia = 1.00 g/cm3, and R (radius of centrifuge 

arm) = 15 cm, we are able to calculate the average force required to remove 50% of the 

cells to be 4 pN.  This is significantly lower than traction forces observed for DCs (see 

Chapter 6), which may be due to variable adhesion during the 5 min spin.  If the 

migrating cells lose adhesion while migrating during the assay, they will detach, leading 

to an artificially low value of F50. 

18045154.51.5
0.45

0.150

0.0
1.0

1.7
15.1

42.0

0.000

0.200

0.400

0.600

0.800

1.000

Fraction 
Adherent
Cells (%)

Fibronectin (ug/cm2)
Applied 

Force (g)

 

Figure 3.6.  Adhesion of DCs on a plastic TC surface coated with various concentrations of fibronectin as 

a function of applied centrifugal force.   
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A crucial assay is to determine whether DCs use integrins to bind either collagen or 

fibronectin.  Literature shows hints that fibronectin may be more potent than collagen for 

binding DCs (6).  We coated 96 well plates with either fibronectin or collagen and 

observed the adhesion of cell to this simple substrate at 1 x g (9.8 m/s2).  To determine 

whether chemokine stimulation would affect adhesion, we dosed 0 to 100 nM CCL19 

into the wells with the cells.  We clearly observe that DCs are able to bind fibronectin, 

but have a negligible ability to bind collagen (Figure 3.7).  There was a mild dependence 

on CCL19 concentration for fibronectin, with a characteristic maxima at 10 nM.  Under 

no doses of chemokine were cells able to bind collagen.  This is highly elucidative for 

understanding dendritic cell locomotion. 

 

Figure 3.7.  Mature dendritic cells are able to bind fibronectin, but not collagen.  Wells in a 96-well plate 

were coated with either fibronectin or collagen.  Cells were then introduced and allowed to bind for 30 

minutes.  Loose cells were removed by washing and adherent cells were fixed and stained.  Background 

levels of absorbance were subtracted.  Results are reported as absorbance at 590 nm as a function of 

chemokine (CCL19) concentration. 
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Discussion 

The data for cell speed is in good agreement with published data for dendritic cells 

trafficking in the lymph node in vivo, which has been reported to be 3.8 μm/min in tissue 

near lymphatic vessels and 4.2 μm/min for dendritic cells within the lymph node (6).  

Persistence time for dendritic cells has not been reported to our knowledge; our group is 

the first to apply such an analysis to dendritic cell motility.  Persistence time is related to 

cell polarity, because it allows a cell to retain a memory its direction of motion and it is 

thought to be related to the time-scale of the biological signaling processes that regulate 

polarity, but research in this area has not lead to conclusive models.  Also, we are the first 

to quantify a random motility coefficient for dendritic cells.  This parameter is analogous 

to a diffusion coefficient for the cells, expressing the time scale over which they will 

randomly "diffuse" away from their original position during random motion. 

 

Mesenchymal cells generally are not required to move to perform their function; indeed, 

their motility is generally associated with abnormal states, such as traumatic wound 

healing (19), or growth of new blood vessels (20-21).  These cells generally act in a 

coordinated, unidirectional fashion, which implies that a long persistence time is 

beneficial.  White blood cells (WBCs) including macrophages and neutrophils must 

migrate to sites of infection to perform their function, thus they are highly motile (22-24).  

Additionally, they must be able to change direction to chase down mobile prey, such as 

bacteria (25).  Thus they benefit from shorter persistence times.  We expect dendritic 

cells to fall within the WBC regime because they are required to migrate quickly to 
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perform their function, but they signals they respond to (lymphatics, SLOs) are 

stationary.  Indeed, we saw that they fall between mesenchymal cells and faster moving 

neutrophils. 

 

Chemokines provide the directional signals for chemotaxis, but they may also elicit 

increased migratory response when presented in a uniform field by signaling through 

Gαi, PI3Ps (26), Rac, Cdc42 (7) and F-actin for protrusion (27), as well as G12 and G13 

(28), which stimulate Rho, ROCK, and Myosin II for contraction.  Indeed, we show that 

dendritic cells modulate their migratory velocity in response to CCL19 and CCL21. 

We submit that there are two possible explanations we observe a biphasic response to 

soluble chemokines on collagen surfaces.  First, adhesion may be a function of 

chemokine concentration, as has been previously shown in rolling leukocytes that require 

chemokine signals to activate integrins, which allow them to firmly adhere to their 

substratum (see Figure 3.8). 
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Figure 3.8. Signal cascade for chemokine ligation leading to integrin activation and binding to the 

extracellular matrix.  Note that signaling proceeds though the βγ-subunit of an activated G protein. 
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The second justification for a biphasic response of DCs to chemokine concentration 

stems from receptor desensitization.  A naïve observer may expect that the response 

would not be biphasic, since increasing the ligand concentration (L) should increase the 

number of occupied receptors (C), according to the simple one-step binding equilibrium 

equation: 
DT

T

KL
LRC

+
=][ .  This would lead to a sigmoidal saturation response.  However, 

GRKs are known to phosphorylate active GPCRs, including CCR7.  Once a receptor has 

been phosphorylated, it is considered unable to bind and activate G-proteins.  

Phosphorylated receptors can be bound by β-arrestins, which then recruit clathrin and 

ultimately lead to endocytosis (29).  In the adhesion versus desensitization debate, we 

reason that desensitization is the likely explanation because we do not observe a 

significant increase in adhesion at high chemokine concentrations. 

 

In the present work, we have identified the characteristic behavior of mature, bone-

marrow derived murine dendritic cells.  We examined their behavior on typical 

extracellular matrix proteins and found that they are able to bind fibronectin but not 

collagen.  On fibronectin surfaces, integrins are likely activating motility, so no increase 

is observed upon chemokine stimulation.  On collagen surfaces, chemokines increase 

random motility with a maximal effect at approximately 10 nM.  We also show that DCs 

are able to migrate on chemokine surfaces, with CCL21 eliciting a greater effect than 

CCL19, consistent with current reports in the literature (30).  Thus studies using collagen 

matrices are likely to show no traction forces, but with fibronectin-based substrates, DC 

traction forces may be significant. 
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Abstract 

Dendritic cells (DCs) respond to chemotactic signals to migrate from sites of infection to 

secondary lymphoid organs where they initiate the adaptive immune response.  The key 

chemokines directing their migration are CCL19, CCL21 and CXCL12, but how signals 

from these chemokines are integrated by migrating cells is poorly understood.  Using a 

microfluidic device, we present both single and competing chemokine gradients to 

murine bone-marrow derived DCs in a controlled, time-invariant microenvironment.  

Experiments performed with counter gradients reveal that CCL19 is 10 to 100 fold more 

potent than CCL21 or CXCL12.  Interestingly, when the chemoattractive potencies of 

opposing gradients are matched, cells "home" to a central region in which the signals 

from multiple chemokines are balanced; in this region, cells are motile but display no net 

displacement.  Actin and myosin inhibitors affected the speed of crawling, but not 

directed motion, while pertussis toxin inhibited directed motion, but not speed.  These 

results provide fundamental insight into the processes that DCs use to migrate toward and 

position themselves within secondary lymphoid organs.
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Introduction 

Dendritic cells (DCs) are widely accepted to be the most potent and versatile antigen 

presenting cells in the immune system (1).  In peripheral tissues, these cells are highly 

motile (2), possess superior capacity for acquiring and processing antigens for 

presentation to T lymphocytes, and within SLO have the potential to express high levels 

of the co-stimulatory molecules that direct and fine-tune T-cell activation (3-5).  These 

characteristics are essential components of DC biology that allow them to act as the 

intermediary between local sites of infection and the SLOs where interactions with T and 

B cells take place. 

 

Compartmental segregation of lymphoid tissues, which facilitates both efficient 

surveillance and targeted cellular response, relies on the precise trafficking of immune 

cells between the circulation, tissues, and SLOs.  Specific responses, however, require 

directed cell migration that DCs accomplish through selective expression of chemokine 

receptors, coupled with generation of specific chemokines in immune organs.  Immature 

DCs (iDCs), which often reside in or traffic through peripheral tissue, express a variety of 

chemokine receptors that confer responsiveness to inflammatory chemokines and direct 

DC migration towards inflammatory stimuli and peripheral tissues (6).  Specifically, 

iDCs express the chemokine receptors CCR1, CCR2, CCR5 and CCR6 as well as 

CXCR3 and CXCR4, which direct their pattern of migration throughout the body (7-8).  

However, upon exposure to signals such as inflammatory chemokines or cytokines (such 

as IL-8 or TNF-alpha) (9-10) and foreign antigens (LPS, TLR ligands, etc) (11-12), DCs 
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mature and down-regulate most chemokine receptors, with the exception of CXCR4, 

while up-regulating the crucial receptor CCR7 (13).  CXCR4 binds the widely-expressed 

CXCL12 (SDF1-α) which allows iDCs access to many peripheral tissues; however, its 

role for guiding the motility of mature DCs (mDCs) is unclear.  CCR7 has two cognate 

ligands, CCL19 (ELC, MIP-3 β) and CCL21 (SLC, 6Ckine, Exodus-2), which are highly 

expressed in SLOs (14).  In mice lacking CCR7, the organization of lymphoid organs is 

compromised and mature DCs fail to migrate to SLOs (15). 

 

It is generally accepted that CCR7-dependent migration is primarily directed by a 

chemotactic gradient of CCL21 (16), a molecule expressed by afferent lymphatic vessels.  

Evidence for this interaction is based on histological studies which show CCL21 co-

localizes with lymphatic endothelial cells (17), and upregulation of CCL21 on those cells 

during inflammation (18).  An alternative hypothesis, however, suggests that DCs secrete 

chemokines (including CCL19) following activation and during migration (7, 19).  In this 

model, the local extracellular gradient of CCL19 will be weakly influenced by interstitial 

flow velocities, which are typically on the order of 1 μm/s near the cell (20).  Thus, 

motile DCs may respond to extrinsic or intrinsic, self-generated gradients of chemokine 

to direct their chemotaxis to draining lymph nodes (1), or use a combination of paracrine 

and autocrine signaling to home to appropriate locations. 

 

Investigation of fundamental modes of DC chemotaxis requires the creation of well-

defined gradients on biologically relevant length-scales from tens to hundreds of microns.  

Unfortunately, creation of these gradients has proven to be a substantial experimental 
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challenge (21).  Transwell assays (Boyden chamber assays) are commonly used for 

chemotaxis (6, 8, 22) because they are easily employed, but present limitations for the 

interpretation of results because the chemotactic gradient is non-linear and varies with 

time and results are difficult to quantify (23).  Simple methods for generating gradients in 

solution, such as secreting chemokine using a micropipette or delivering chemokine from 

a reservoir in a gel cannot be designed to deliver a time-independent gradient of 

chemokine.  Even recent advances in three dimensional methods limit the shape of 

gradients that can be created, because they rely on diffusion of the chemical species 

between a “source” and a “sink” (2, 24-25).  Thus, these techniques cannot fully meet the 

challenges of quantifying chemotactic migration. 

 

To address these challenges, we and others previously developed a method to deliver 

linear, time-invariant gradients of chemokine using microfluidic chambers made by 

microfabrication (26-28).  While neutrophils have been studied extensively using 

microfluidic chambers (29-30), Butcher and co-workers were the first to extend the use of 

simple microfluidic gradients to T cells (31). In their study, T cells were presented with 

overlapping microfluidic gradients of two homeostatic chemokines, CCL19 and 

CXCL12.  This experiment uncovered a subtle preference of naïve T lymphocytes for the 

CCR7 ligand CCL19.  In the current work, we extend the use of such a device to 

dendritic cells; since dendritic cells have a different role in the immune system, there is 

no reason to expect their response to be identical to that of T-cells.  This system allows us 

to address questions about how DCs integrate chemotactic signals and provides insight on 

how they may navigate in vivo to reach SLOs.  We find that mDCs are at least an order of 
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magnitude more sensitive to CCL19 than to CCL21 or CXCL12.  Additionally, when 

opposing gradients have similar potency, we observe a central homing behavior in which 

the net flux of DCs is zero.  Using inhibitors, we found that actin and myosin inhibition 

affected the speed of crawling, but not directed motion, while pertussis toxin inhibited 

directed motion, but not speed.  Overall, our fundamental understanding of how multiple 

chemokine signals are coordinated by DCs may explain accumulation at specific 

locations in vivo and may be exploited for ex vivo immune therapy. 
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Materials and Methods 

Cell isolation and culture conditions 

Dendritic cells were generated from murine bone marrow cells according to the 

procedure of Lutz et al. (32) with minor modifications.  Briefly, bone marrow was 

flushed from the tibias and femurs of 8 to 10-week-old C57BL/6 mice and depleted of 

red blood cells using ammonium chloride lysis buffer.  The cells were plated in 10-cm 

petri dishes (2 × 106 cells/ml; 10ml/plate) in RPMI-1640 supplemented with 10% heat-

inactivated fetal bovine serum, 100 U/ml penicillin, 100 mg/ml streptomycin, 50 nM 

BME, and 20 ng/ml rmGM-CSF (Peprotech, Rocky Hill, NJ) at 37°C in 5% CO2. On day 

3 fresh media was added, and on day 6 half of the media was gently replaced.  Immature 

DCs were used in experiments on day 7.  For mature DCs, 10 ng/ml TNF-α (PeproTech) 

and 1 μg/ml LPS (Sigma-Aldrich, St. Louis, MO) were added on day 6 and cells were 

used in experiments on day 7.  On day 7, 80% or more of the non-adherent cells 

expressed the monocyte lineage marker CD11c as confirmed by flow cytometry.  When 

inhibitors were used, they were added to cell culture 1 hour prior to imaging, with the 

exception of pertussis toxin, which was added 24 hours prior.  All inhibitors were 

supplied by Sigma-Alrich, St. Louis, MO.  Inhibitors were PD-98059 (100μM), LY-

294002 (50μM), Latrunculin A (150nM, 1μM), blebbistatin (10, 50 μM), Y-27632 (10 

μM), and pertussis toxin (100 ng/ml). 
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Western blotting 

Fully matured DCs were treated with 50 μM LY-294002 or 100 μM PD-98059 for 90 

minutes with or without addition of 20 nM CCL19 at 60 minutes. DCs (105/sample) 

washed in PBS were pelleted and then lysed in NuPAGE SDS LDS Sampler Buffer 

(Invitrogen, Carlsbad, CA) at 100°C for 20 minutes. Lysates were loaded on a SDS-

PAGE gel and blots were transferred on a PVDF membrane (Invitrogen). A mixture of 

anti-phospho Akt rabbit polyclonal antibody (Cell Signaling Technology, Danvers, MA) 

and anti-GAPDH mouse monoclonal antibody (Ambion, Austin, TX) or a mixture of 

anti-phospho Erk1/2 rabbit monoclonal antibody (Cell Signaling Technology, Danvers, 

MA) and anti-GAPDH antibody was added to detect the protein blots on the membrane. 

GAPDH was used as a loading control. Fluorescently labeled blots were detected using 

ODYSSEY Infrared Imaging System (LICOR, Lincoln, NE). The membranes were 

immersed with 0.2 M NaOH for 30 minutes to strip the antibodies and antibody against 

total Akt or total Erk1/2 was applied to the membrane. The expression levels of proteins 

on the blots were evaluated using the Gel Analyzer in ImageJ software (NIH, 

http://rsbweb.nih.gov/ij/).  Antibodies against mouse phospho-Akt (Ser473) (Cat #9271), 

total Akt (Cat #9272), phospho-Erk1/2 (p44/42 MAPK) (Thr202/Tyr204) (Cat #4377) 

and total Erk1/2 (Cat #4695) were purchased from Cell Signaling Technology (Danvers, 

MA). 
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Fabrication of microfluidic device 

A microfluidic gradient generator was fabricated in polydimethylsiloxane (PDMS) using 

soft lithography as described previously (33).  Briefly, a high-resolution printer was used 

to generate a mask from a CAD file. The mask was used in 1:1 contact photolithography 

with SU-8-2050 photoresist (MicroChem, Newton, MA) to generate a negative master, 

consisting of patterned photoresist on a 3-inch Si wafer. Positive replicas with embedded 

channels were fabricated by molding PDMS (Sylgard 184, Dow Corning, Midland, MI) 

against the master.  The PDMS replica and a glass microscope slide were activated by 

oxygen plasma treatment (15 sec, 30 W, 600 mTorr O2), then irreversibly contact-

bonded; this assembly produced the required systems of microfluidic channels.  Inlet and 

outlet ports were punched out of the PDMS using a 20-gauge blunt end needle.  The 

adhesion surface was functionalized by incubation with fibronectin (Sigma, 10 μg/ml) for 

1h at 20°C and blocked with BSA (Sigma, 1%) in PBS for 2h at 20°C.  Inlet flow was 

controlled by a syringe pump (Harvard Apparatus, South Natick, MA).   

 

Chemotaxis Assay 

The chemotaxis assay was performed as described previously (34) with modifications.  

Additional information for the microfluidic device can be found in Figure 4.1.  
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Figure 4.1. Schematic of the microfluidic device.  Top-down view of microfluidic device used to present 

controlled gradients of chemokine to dendritic cells.  The chamber is initially filled with PBS.  Chemokine 

solutions are introduced at the inlet ports (left) and flow through a mixing region to form a smooth gradient 

in the viewing region.  Cells are introduced via a side port and allowed to adhere to the migration surface in 

the cell viewing region.  The gradient is then restarted and held constant for the duration of the experiment. 

 
Figure 4.2.  Flow profiles and chemokine gradients in a microfluidic device were modeled using COMSOL 

Multiphysics (A).  A minimum flow of 9 μL/min was required to maintain a stable gradient in the chamber 

(A, inset).  Using this flowrate, fluorescence images of tracer dyes were captured at 10× magnification at 

the inlet to the viewing chamber.  Fluorescent intensity of rhodamine (B) and fluorescein (C) were 

quantified and showed linear, overlapping gradients (D, solid line), closely matching theoretical predictions 

(D, dashed line).
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Assembled microfluidic devices were submerged in PBS and filled under vacuum.  

Chemoattractant solutions of CCL19, CCL21 or CXCL12 (Peprotech, Rocky Hill, NJ) in 

complete culture media were prepared for each of the three inlets.  Fluorescein (Fluka) 

was added to one inlet at 10-5 M final concentration to aid visualization of the gradient 

and to confirm its persistence during the experiment.  Sterile, 1-ml syringes were loaded 

with chemoattractant solutions and connected to the inlet ports while submerged to 

prevent the formation of air bubbles.  A 1-ml syringe was loaded with mature dendritic 

cells at 106 cells/ml and connected to the side inlet.  To complete assembly, tubing with 

an in-line valve was connected to the outlet, and the device was mounted in a custom-

built microscope enclosure at 37°C and 5% CO2.  The total flowrate within the chamber 

was maintained at 9 μL/min using a syringe pump, resulting in a wall shear rate of 6 s-1.  

After the gradient was visually established, the flow was stopped, and cells were injected 

via the side port and allowed to adhere for 10 min before resuming flow.  Using custom 

built LabView (National Instruments, Austin, TX) software, 8-12 fields of view were 

imaged at 10X magnification by phase and green-channel fluorescence microscopy on a 

Nikon Eclipse TE300 (Nikon Inc., Melville, NY).  Images were captured every 60 

seconds for 60 minutes.  Cell trajectories were captured using the ImageJ 

ManualTracking plugin (http://rsbweb.nih.gov/ij), and chemotactic parameters were 

calculated using a custom-written MATLAB (Mathworks, Natick, MA) script.  

Chemokine concentrations (a) are non-dimensionalized according to the relevant receptor 

dissociation constant as
DK

a
=α (see Table 4.1 for KD).   
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Receptor Ligand KD 

CCR7 CCL19 10 nM (35) 

CCR7  CCL21 10 nM (35) 

CXCR4 CXCL12 3-15 nM (36-37) 

Table 4.1. Dissociation constants for chemokine receptor/ligand pairs involved in dendritic cell 

chemotaxis. 

Additionally, the percent difference in concentration across a cell is defined by the 

parameter 
a
aΔ

=ε where Δa represents the difference in concentration between front and 

rear of the cell and a  represents the mean concentration over the cell.  The chemotactic 

index (CI) is a ratio of the displacement of the cell up the gradient ( yΔ ) to the total path 

length ( pathL ). CI can be related to the persistence time, P,  
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over which the cell was tracked.  The persistence time can be calculated (P) by a one-

parameter fit to the Langevin-type equation for random cell motility from the mean 
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(PL) and random motility coefficient (μ) are then calculated as PSPL =  and PS 22=μ  

(39). 
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COMSOL Modeling of Microfluidic Device 

CAD renderings of the original microfluidic device mask were imported in COMSOL 

Multiphysics (COMSOL, Inc., Burlington, MA).  Boundary conditions for the Navier-

Stokes (NS) flow problem were no-slip at the walls and 3 µL/min at each of the three 

inlet ports with an atmospheric-pressure outlet condition.  Boundary conditions for the 

convection-diffusion (CD) problem were no flux at the walls, 0, 10 and 20 nM at the 3 

inlets and convective flux at the outlet. 

 

Optimization of microfluidic chamber gradients 

 

The microfluidic device was designed to facilitate generation and maintenance of stable 

chemokine gradients required for DC chemotaxis experiments.  Since mature DCs are 

only weakly adherent, a low flow rate is required to minimize the effect of hydrodynamic 

shear on migration paths.  At low enough flow rates, however, the relative rate of 

diffusion over convection is sufficient to dissipate the magnitude of the gradient. Thus, a 

moderate flow rate (corresponding to 1>>=
chemokine

chamber

D
vL

Pe ) is required to maintain a 

consistent gradient within the viewing area.  A COMSOL simulation determined that the 

minimum flow rate required to achieve less than 5% variance in gradient steepness within 

the chamber was 9 µL/min (Figure 4.2, A).  The results of the simulation were then 

experimentally verified using two fluorescent tracers.  Antiparallel gradients of 
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fluorescein and rhodamine were generated at 9 µL/min, and fluorescence intensities 

compared favorably to simulated concentrations (Figure 4.2, B-D). 

 

Results 

Dendritic cell expression of CXCR4 and CCR7 

To determine relative receptor expression levels on several populations of BMDCs, we 

analyzed CD11b+/CD11c+ cells for CCR7, CXCR4, MHC Class II and CD86 expression 

by flow cytometry (Figures 4.3, 4.4).  CCR7 expression was highest on mature DCs, 

which is essential for their migration to and within SLOs.  Slightly elevated CCR7 

expression was observed on a subset of immature DCs, which is associated with 

constitutive trafficking to lymph nodes and induction of tolerance (40).  As expected, 

CCR7 knockout cells showed no expression of CCR7 on immature or mature cells.  

CXCR4, a ubiquitous monocyte/lymphocyte receptor, was observed in all CD11c+ 

populations.  Importantly, expression of CXCR4 on either immature or mature cells was 

not altered by knocking out CCR7, indicating that expression of these receptors is 

independently controlled.  Additionally, CXCR4 expression is increased upon maturation 

for both the wt and CCR7 knockout DCs, suggesting a role for CXCR4 in mDC 

trafficking.   
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Figure 4.3. Flow cytometry results for BMDCs.  Cells were gated on CD11chi/low and analyzed for CXCR4 

and CCR7 expression.  CD11c- cells do not express CXCR4 or CCR7 in either mature or immature states.  

CD11b+/CD11c+ DCs express higher levels of CXCR4 upon maturation.  No difference in CXCR4 

expression is observed between CCR7-/- and wt.  CCR7 is upregulated upon maturation and is absent in 

knockout cells. 

 

 

Figure 4.4.  MHC Class II and CD86 expression on DCs.  DCs upregulate both CD86 and MHC Class II 

expression upon maturation.  This upregulation was observed regardless of CCR7 expression. 
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CCL19, CCL21 and CXCL12 induce directed DC migration 

When placed in a uniform concentration of chemoattractant without an imposed gradient 

DCs exhibit chemokinesis (purely random motion).  Chemokinesis can be described by a 

characteristic speed and persistence time.  On a fibronectin surface in the absence of 

chemokine, mDCs migrated at 7.3 +/- 0.3 μm/min with a persistence time of 4.5 minutes, 

giving a random motility coefficient of 120 μm2/min.  Empirical observations show that 

speed and persistence time are inversely correlated across a variety of cell types (38), and 

these data for mDCs are consistent with this relationship, with mDCs crawling slower 

than lymphocytes/neutrophils but faster than macrophages/mesenchymal cells (38).  

When DCs experience a gradient of chemoattractant, their ability to respond is governed 

by levels of receptor expression.  Single gradients of 2 KD/mm steepness ( a = KD) were 

used to measure the chemotactic response of both mature and immature DCs.  This 

gradient was chosen because in shallow gradients, few ligands are available, leading to 

sub-optimal signal generation while in steep gradients, receptors become saturated.  Thus, 

the optimal chemotactic response is given when ligand concentrations are near the KD for 

the receptor/ligand pair (Figure 4.5, A).  Directional migration is quantified using the 

chemotactic index, which is the ratio of the cell displacement up the gradient to the total 

path length, with a correction for the temporal duration of the trajectory (38).  Immature 

DCs showed no response to the CCR7 ligands, CCL19 and CCL21 (Figure 4.5,B) but 

strongly migrated toward the CXCR4 ligand, CXCL12, despite lower receptor expression 

levels of CXCR4 compared to mature cells (8, 41).  Mature DCs migrated strongly 



 90

toward CCR7 ligands and weakly toward the CXCR4 ligand with a typical bell-shaped 

response curve, consistent with results from transwell assays and with their receptor 

expression (8).  Mature DCs migrated with significantly greater velocity than immature 

DCs (Figure 4.5, D), which are often sessile within tissue until matured by the presence 

of a pathogen. 

We used CCR7 knockout cells to confirm that CCL19 and CCL21 act only through the 

CCR7 receptor.  Indeed, cells lacking this receptor were not able to respond to a gradient 

of either CCR7 ligand, but maintained their ability to migrate toward the CXCR4 ligand 

CXCL12 (Figure 4.5, B).  Further, in mDCs the lack of CCR7 increased chemotactic 

response to CXCR4 ligand, despite no change in CXCR4 expression levels.  We observe 

that DC chemotaxis is governed by receptor expression levels, but may be enhanced by 

the absence of non-cognate receptors. 
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Figure 4.5. Response of BMDCs to chemokines CCL19, CCL21 and CXCL12 measured by chemotactic 

index.  Mature DC chemotaxis toward chemokines was measured as a function of maximum chemokine 

concentration (A).  Mature DCs (black bars), Immature DCs (grey bars) and Mature CCR7 knockout DCs 

(white bars) were presented with a single gradient of α = 0 - 2 in a microfluidic device (B).  Response was 

determined by the receptor expression profile (C).  Mature DCs migrated with higher average velocity than 

immature DCs (D, data pooled from all experiments shown in B).  Values are represented as the mean +/- 

S.E.M. * p < 0.03, ** p < 0.001 (Student's t-test). 
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Chemotaxis for a given gradient depends on the average chemoattractant 

concentration 

Under a linear gradient of chemokine, migrating cells experience a constant difference in 

absolute ligand concentration between front and rear ( aΔ ), but a varying average ligand 

concentration ( a ). Therefore, we examined the chemotactic response of cells as a 

function of cell position within the gradient, parameterized by 
a
aΔ

=ε . As the cell 

migrates toward higher concentrations of a, ε decreases. Regardless of chemokine, the 

migratory response was a strong function of ε (Figure 4.6).  At high ε, migrating cells 

were able to coordinate a strong chemotactic response due to a high difference in receptor 

occupancy between the front and rear of the cell.  However, as cells migrate up the 

gradient into higher chemokine concentrations and correspondingly lower ε, their ability 

to follow the gradient is diminished due to receptor saturation.  Cells were significantly 

better able to adapt to the CCL19 gradient, but responses to CCL21 and CXCL12 were 

similar.  Despite the change of chemotactic index as a function of chemokine 

concentration, the cell speed remained unchanged in all regions. 
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Figure 4.6. Chemotactic index is a function of position within the gradient.  Cells were presented with a 

stable gradient of α = 0 - 2 CCL19 (triangles), CCL21 (squares) or CXCL12 (circles) in a microfluidic 

device.  Response depended on the change in chemokine concentration across a cell length (ΔA/cell) 

compared to the local average concentration ( a ).  Greater differential in signal lead to a super-linear 

increase in chemotactic index.  CCL19 shows superior ability to adapt to higher chemokine concentrations.  

Values are represented as the mean +/- S.E.M. * p < 0.001, (Student's t-test). 
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CCL19 antagonism by CCL21 and CXCL12 

In order to simultaneously interrogate the way cells integrate multiple chemotactic 

signals and search for possible hierarchies of chemotactic signaling, cells were presented 

with opposing gradients of two different chemokines.  When mDCs were presented with 

two opposing gradients, each with a  = KD, they migrated more strongly to higher 

concentrations of CCL19 over either CCL21 or CXCL12 (Figure 4.7, A-C).  Despite 

better adaptation to CCL19 at lower ε, this behavior was unexpected due to strong 

chemotactic responses to CCL21 and CXCL12 at high ε.  To validate this response, we 

used CCR7 knockout cells in counter gradients of CCR7 and CXCR4 ligands.  In these 

experiments, DCs responded only to the gradient of CXCR4 ligand and ignored the 

gradients of CCR7 ligands (unpublished data), verifying that the response CCL19 and 

CCL21 was specific for CCR7.  When wild-type cells were placed in opposing gradients 

of CCL21 and CXCL12, the potencies were well-matched and no net preference and no 

net directional motion was observed.  To determine the conditions of equipotency 

between CCL19 and the other chemokines, we lowered the gradient magnitude of CCL19 

until a net balance was achieved.  To reach equipotency against a = KD CXCL12 and 

CCL21 gradients, we needed to lower the CCL19 gradients to a = 0.1(KD) and a = 

0.01(KD), respectively (Figure 4.7, D-E) indicating a cell preference of 10 (CXCL12) to 

100 fold (CCL21) for CCL19. 
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Figure 4.7. CCL19 attracts mDCs more potently than CCL21 or CXCL12 in competition assays.  

Trajectories of individual cells are plotted for α = 0 - 2 gradients of CCL19 against CCL21 (A), CCL19 

against CXCL12 (B) and CCL21 against CXCL12 (C).  The gradient of CCL19 was lowered until there 

was no net cell flux in the direction of the gradient.  For CCL19 against CCL21 (D) and CXCL12 (E), the 

gradient of CCL19 was lowered to α = 0 – 0.2 and 0 – 0.02 respectively. 
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Cell homing in competing gradients 

When equipotent antiparallel gradients of two chemokines were simultaneously presented 

to mDCs there is no net displacement, but surprisingly, individual cells continued to 

migrate.  Cells collected at a midline at which the chemotactic signals from the two 

chemokines led to no preferential directed motion. Cells located initially far from the 

midline migrated toward the midline with long persistence times, sometimes greater than 

100 µm (Figure 4.8).  Upon reaching a central location where the effect of each gradient 

was equal (where the ε of each gradient was the same), the cells displayed random 

migration (Figure 4.8).  The persistence length in the region near the midline shortened to 

approximately 25 µm, indicating the cells turned much more frequently as cells could not 

maintain orientation toward either gradient.  The motion in this region was not directed 

but was also not truly random, because the mean squared displacement tended toward 

zero; thus, the motion was not chemokinetic, but rather, the cells were constrained 

chemically to remain within a narrow band. Interestingly, speed did not vary between 

regions, and speeds were similar to when the cells were undergoing chemokinesis at 

approximately 7 µm/min.  This behavior was recreated in counter gradients of CCR7 

ligands against the CXCR4 ligand and also surprisingly with counter gradients of CCL19 

and CCL21, despite the fact that each bind the same receptor.  This observation indicates 

that the cell is able to differentiate not only between signals from different receptors, but 

also between two ligands binding to the same receptor.   
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Figure 4.8. Homing behavior was observed in competing chemokine gradients.  (A) Traces of cells 

responding to a distant CXCL12 gradient (blue, Region I), cells responding to a distant gradient of CCL19 

(red, Region III), and cells retained in the central focusing region (black) are plotted with arrows (grey, 

Region II) indicating direction of motion at 10 minute intervals.  Persistence times and persistence lengths 

are longer outside the focusing region (B).  In the focusing region, persistence is similar to chemokinesis.  

Chemotactic indices are higher outside the focusing region (C).  Values are represented as the mean +/- 

S.E.M. * = p < 0.001 (Student's t-test). 
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Chemical inhibitors alter speed or directional sensing 

A number of chemosensory and structural molecules have been implicated in the motility 

of amoeboid cells, and we used pharmacological inhibitors to understand which of these 

was responsible for directed DC migration. To determine which molecular pathways are 

relevant for DC chemotaxis, we used chemical inhibitors to knock down a variety of 

intracellular targets.  Since the Ras/Raf/MEK/ERK pathway has been implicated in cell 

migration (42-43), we used PD-98059 to inhibit MEK1.  Even at high doses, this 

inhibitor did not affect cell migration (Figures 4.9, B and 4.10).  Phosphoinositide 3-

kinase (PI3K) is important for neutrophil polarization and migration (44), and has been 

implicated in controlling signaling at the leading edge through chemokine receptors, so 

we used the inhibitor LY-294002 to determine its role in DC migration.  Surprisingly, 

knocking down this pathway also had no effect on DC speed or ability to move in a 

CCL19 gradient (Figures 4.9, C and 4.10).  These data indicate that the MEK/ERK and 

PI3K pathways are not required for DC chemotaxis. 

Chemokines signal through 7-transmembrane G-protein coupled receptors, so we used 

PTX to lock Gαi in its inactive state.  As expected, PTX-treated cells were not able to 

sense the chemokine gradient, and migrated randomly (Figure 4.9, G;H).  Speed was not 

decreased in the absence of G-protein signaling, demonstrating that on fibronectin 

surfaces, DCs are motile in the absence of chemokine stimulation.  



 99

 

Figure 4.9. Effect of chemical inhibitors of DC chemotaxis.  Cells were dosed with inhibitor for 1 hour (24 

hours for PTX), then observed in an optimal gradient of CCL19 (α = 0 – 2).  Cell trajectories for a 60 

minute experiment are shown (A-G) with final positions toward the gradient (blue) or away from the 

gradient (red).  Inhibitors of actin/myosin showed no change in chemotactic index (H), but decreased 

migration speed (I).  PTX blocked chemotactic sensing, but not speed.  P13K and MEK inhibitors did not 

affect speed or chemotactic index.  * = p < 0.001, ** = p < 0.001 (Student's t-test). 
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Figure 4.10. CCL19 stimulation in DCs increases the level of phospho-Akt but not phospho-Erk1/2. (A) 

Phospho-Akt and total Akt expression in DCs under the CCL19 stimulation without or with 50 �M LY-

294002. (B) Phospho-Erk1/2 and total Erk1/2 expression in DCs under the CCL19 stimulation without or 

with 100 �M PD-98059. GAPDH was used as a loading control. Normalized phospho-Akt/total Akt (C) or 

phospho-Erk1/2/total Erk1/2 (D) level measured from the Western blots. The level of phospho Akt/total 

Akt or phospho-Erk1/2/total Erk1/2 in a control (which is a set without a inhibitor nor CCL19) was set to 1 

and relative protein levels were calculated. 
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Actin polymerization occurs at the leading edge of migrating DCs, and it has been  

previously shown that actin polymerization alone can propel DC migration in vitro (45).  

When DCs in the most potent gradient of CCL19 ( a  = KD) were preincubated with 

Latrunculin A to inhibit actin polymerization, they developed a spherical phenotype with 

few protrusions.  At low doses, the cells were able to move directionally toward the 

chemokine gradient, but with reduced speed (unpublished data).  At higher doses, cell 

migration was completely abrogated (Figure 4.9, D;H;I).  Myosin II produces contractile 

forces that are thought to propel the nucleus and exert traction forces (2).  We used 

blebbistatin to inhibit myosin II, which lead to a highly branched morphology 

characterized by several stable lamellipodia, but treated cells had difficulty detaching 

adhesions.  This led to a decrease in cell speed, and a small decrease in chemotactic index 

(Figure 4.9, E;H;I).  Rho is an upstream effector of myosin II, which we blocked with the 

compound Y-27632.  This produced an effect similar to blebbistatin (Figure 4.9, F), with 

a highly branched morphology, reduced speed, but no effect on chemotactic index.  

Overall, inhibition of actin or myosin did not affect gradient sensing, but did affect 

migration speed. 

We extended the use of inhibitors to counter-gradients, to determine whether signal from 

one ligand may be differentially processed through a specific pathway.  For example, it 

has been shown that CCL19 shows greater ERK phosphorylation than CCL21, so we 

used PD-98059 at conditions where CCL19 and CCL21 were equipotent.  However, we 

did not observe a significant difference from the control (Figure 4.11).  We also used the 

PI3K inhibitor LY-294002 and the ROCK inhibitor Y-27632 in counter-gradients of 
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CCL19 and CCL21, but did not observe any change in chemotactic behavior from the 

control experiment (Figure 4.11), though Y-27632 did reduce speed, as seen in a single-

gradient.  We conclude that the PI3K and ERK pathways are not critical for bone marrow 

DC chemotaxis.  
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Figure 4.11. Dendritic cells migrating in 

CCL19-CCL21 counter gradients with inhibitors 

(Left).  Cells were simultaneously exposed to 0-

200 pM CCL19 and 20-0 nM CCL21 and treated 

(or not) with LY-294002, PD-98059 or Y-27632.  

No significant difference was observed from 

control (Student's T-test).  See Methods section 

for experimental procedure.  Each data point 

represents a unique cell migration path. 

 

Figure 4.12. Investigation of haptotaxis due to 

"bound" chemokine (Right).  Chemokine 

gradients were flowed through the microfluidic 

device for 60 minutes, simulating a typical 

experiment.  The flow was then stopped, the 

chamber flushed, and cells introduced.  Cells 

were allowed to migrate for 60 minutes, but did 

not show directional migration (|CI| < 0.02), 

indicating chemokine binding to migration 

surface did not affect trajectories.  Each data 

point represents a unique cell migration path. 
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Discussion 

The tissue microenvironment near and within SLOs presents multiple chemotactic stimuli 

to numerous cells involved in immune surveillance, including antigen-presenting DCs. 

Because DCs must navigate complex chemokine environments to perform their function, 

we studied their response to multiple soluble ligands (some which bind the same 

receptor) in a controlled environment.  We presented cells with single and multiple 

oppositely oriented chemokine gradients generated by a custom-built microfluidic device 

which allowed us to investigate quantitatively the relationship between multiple spatial 

chemokine gradients and directional motion.  The device is especially well suited to 

studying moderately-adhesive cell types such as mDCs, T cells and B cells due to the low 

shear stresses generated within the chamber while still providing a linear gradient which 

is stable in space and time.  It should be noted that while we minimized shear forces, 

hydrodynamic flow did affect cell trajectories.  However, since the direction of flow is 

orthogonal to the gradient, the resulting effects can be treated independently.  The 

presentation of multiple gradients mimics the in vivo environments where mDCs must 

correctly integrate both extrinsic and intrinsic signals in order to leave a site of 

inflammation, navigate to a proximal lymph node, and seek a final position within the 

lymph node for antigen presentation. 

We first demonstrated chemotaxis of mature mouse bone-marrow derived DCs in single 

gradients of CCR7 ligands CCL19, CCL21 and the CXCR4 ligand CXCL12.  Although 

DC migration in confined microchannels has been demonstrated (46), this is the first 

experiment demonstrating DC chemotaxis to chemokines in an engineered two 
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dimensional microenvironment.  We showed that mDCs respond more strongly to CCR7 

ligands than CXCR4 ligands, which is most likely related to higher receptor expression 

levels of CCR7.  Using a CCR7 knockout mouse, we observed that when CCR7 is not 

present, the response through CXCR4 is increased.  Since both receptors signal through 

G-proteins, the lack of CCR7 may increase the supply of G-proteins available to CXCR4 

to generate signal.  Similarly, although CXCR4 expression is upregulated during 

maturation, its fraction of all receptors may be decreased due to high CCR7 expression, 

leading to the ultimate decrease in chemotactic response to CXCR4 ligands. 

In competition assays, CCL19 outperformed CCL21 and CXCL12 in its ability to attract 

mDCs.  In vivo, CCL21 coats afferent lymphatic vessels, and while both CCL19 and 

CCL21 are expressed within SLOs, CCL19 is approximately 100 fold less prevalent in 

lymph nodes (14).  Matrix-binding of CCL21 has been shown to affect DC migration 

(47), but in our reductionist system, we did not observe adsorbed chemokine leading to 

haptotaxis (Figure 4.12).  Our data indicates that CCL19 is approximately 100 fold more 

potent, so despite the lower abundance of CCL19, both chemokines can be expected to 

play a role in positioning within a lymph node.  Our findings also agree with previous 

reports of calcium activation in T cells (35) in response to CCL21 as well as the 

physiological observation that mDCs first encounter CCL21 in the lymphatics (1) but do 

not stall in the subcapsular sinus once they reach the CCL19-rich lymph node.   

We find that CXCL12 is equally as potent as CCL21.  In vivo, deletion of CCR7 or 

deletion of its ligands CCL19 and CCL21 (as in the plt mouse) does not fully impair DC 

migration to lymph nodes (48-49), implying that the process is complex and that 
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CXCL12 may also be involved in trafficking to the afferent lymphatics.  Although 

CCL19 is approximately 10 times more potent than CXCL12, both chemoattractants are 

highly expressed in specific zones of SLOs.  CCL19 is expressed on stromal cells in the 

T-cell rich paracortex of lymph nodes while CXCL12 is expressed on the high 

endothelial venules (HEVs) (15).  Similarly, CCL19 is found in the T-dependent areas of 

white pulp in the spleen, while CXCL12 is in the red pulp and marginal bridging 

channels (50).  Mature DCs may integrate these competing signals to find their correct 

final positioning within SLOs. 

With the use of temporally stable gradients, we demonstrate "central homing" of a cell 

population in competing gradients.  To our knowledge, this is the first demonstration of 

cells seeking and remaining within a central zone which can be tuned based on the 

gradients presented.  Previous reports have indicated that PMNs and T lymphocytes are 

able to respond to distant gradients, but were not able to identify a central collecting 

region (31, 51).  Despite CCL19 and CCL21 binding the same receptor, our studies and 

several others (7, 52-53) have shown that the cell perceives them as unique entities.  In 

cross-desensitization studies, CCL19 inhibits CCL21 signaling, but not vice-versa (35, 

53), and despite similar G-protein activation and calcium mobilization, differences have 

been shown in receptor desensitization, internalization, and recycling (52-55).  In our 

direct competition assays between CCL19 and CCL21, opposing gradients of equal 

concentrations resulted in a biased response toward CCL19.  Further, when equal potency 

gradients were used, the cells displayed the same central homing behavior observed when 

two different chemokines engage multiple receptors.  The central homing mechanism 
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may be exploited by several leukocytes to find their highly specific spatial positions 

within the complex chemokine environment of SLOs.  For example, expression of CCR7 

and CXCR5 by B lymphocytes is known to draw them into a boundary zone between the 

lymph node B-cell follicle and T-cell zone (56). Thus, this may serve as a common 

mechanism to ensure the spatial restriction of immune cells at their targets, thus allowing 

for effective cell-cell communication. 

We used a microfluidic device to measuring chemotaxis and chemokinesis in dendritic 

cells in response to chemokines.  We tracked individual DC chemotaxis within a stable, 

well defined environment which allowed a detailed, compartmentalized analysis of cell 

behavior as a function of the surrounding chemokine gradient(s).  We were able to study 

signal integration using single and multiple, competing chemoattractant gradients to tease 

out a hierarchy of receptor signaling in mDCs where CCL19  > CCL21 > CXCL12; 

however, each ligand can promote effective DC trafficking.  Finally, we observed a 

unique homing phenomenon in which murine bone-marrow derived DCs collected in a 

spatially restructed region that balanced the signal of competing chemoattractants.  The 

homing behavior was generalizable to all competing gradients we studied, and was 

observed even when chemoattractants bound the same receptor.  We suggest that this 

ability to simultaneously respond to overlapping gradients may be used by leukocytes to 

find their final position within secondary lymphoid organs, and conversely exploited by 

SLOs to direct interactions between multiple leukocyte subpopulations.  
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Abstract 

Dendritic cells (DCs) are professional antigen presenting cells that reside in peripheral 

tissues and survey the body for pathogens.  Upon activation by pathogen products, DCs 

undergo a maturation process and migrate to lymphoid organs where they present 

pathogen-derived antigens to T cells.  DC function depends heavily on actin-regulatory 

proteins to reprogram the actin cytoskeleton during this switch from antigen surveillance 

to migration.  We investigated the role of the actin-regulatory protein HS1, the 

hematopoietic homologue of cortactin, in reprogramming DCs.  We find HS1 localizes to 

actin rich-structures associated with adhesion and migration, including podosomes and 

lamellipodial protrusions.  Immature DCs from HS1-/- mice formed recognizable 

podosomes, but the arrays were loosely packed and improperly localized within the cell.  

Loss of HS1 did not affect actin turnover within preexisting podosomes or podosome 

function as sites of matrix metalloproteinase deposition, but did slow the rate of new 

podosome formation.  Analysis of mature DCs, which lack podosomes, showed HS1 is 

not required for migration in transwell or in vivo migration assays, but is required for 

persistent chemotaxis in a chemokine gradient.  Together, these results support a model 

in which HS1 functions to stabilize actin structures in DCs, allowing efficient migration 

in response to chemokine.   
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Introduction 

Dendritic cells (DCs) are professional antigen presenting cells that play a unique role in 

bridging innate and adaptive immunity (reviewed in (1-3)).  DCs reside in peripheral 

tissues and and continually sample the environment for pathogens. In response to 

pathogen-derived inflammatory molecules, these cells undergo a maturation program that 

induces their migration to lymphoid organs, where they present antigens obtained in the 

periphery to naïve T cells to initate an adaptive immune response.  DC function is 

critically dependent on the ability to migrate long distances, traverse barriers, and 

navigate diverse tissues with variable surface characteristics (3).  DCs achieve this by 

mechanical adaptation of cytoskeletal dynamics.  Depending upon the nature of the 

substrate with which they are interacting, DCs can move by integrin-independent 

amoeboid protrusion into an open space within a 3D matrix, or by pushing against 

integrin-based adhesive contacts with extracellular substrates (4-5). In this latter mode, 

movement is driven by the combined force of actin polymerization and myosin 

contractility, pushing against integrin-dependent contacts.  This mechanism is 

characterized by extension of an actin-rich lamellipodium at the front of the cell, often 

accompanied by the formation of adhesive contacts termed podosomes just behind the 

edge of this protrusion.  Podosomes are short-lived structures comprised of actin-rich 

cores surrounded by adhesion molecules, including vinculin, talin and integrins (reviewed 

in (6-9). While the exact function of podosomes is still unclear, these structures serve as 

sites of matrix metalloproteinase deposition and are are thought to facilitate adhesion and 

migration through tissue barriers such as the lymphatic endothelium.  In addition, 
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podosomes may function as part of the mechanosensing mechanism that allows DCs and 

other hematopoietic cells to alter their cytoskeletal dynamics in response to changing 

substrates.   

 

The plasticity of DC migration is mediated by tightly regulated changes in actin 

dynamics. Several individual actin regulatory proteins have been shown to be important 

for controlling specific aspects of DC migration. One key protein is WASp, the protein 

defective in the immunodeficiency disorder Wiskott Aldrich Syndrome. DCs deficient for 

WASp (or for WIP, a WASp binding protein that protects WASp from degradation) show 

an almost complete lack of migratory capacity (10-14). WASp and WIP co-localize with 

F-actin in podosome cores and are essential for the formation of podosomes (15-18). 

WASp functions by activating the Arp2/3 complex, a 7-subunit protein complex that 

promotes actin polymerization by generating new actin on the sides of pre-existing 

filaments (19). Two other proteins that have been shown to be important for DC 

migration, CDC42 and Vav1, also function to activate Arp2/3-dependent actin 

polymerization (20-21).   Formation of branched actin filaments is important for 

generating lameillipodial protrusions as well as for generating podosome cores, which 

turn over rapidly and exchange actin continuously (18, 22-23). 

 

Another important actin regulatory protein in DCs is hematopoietic cell specific lyn 

substrate 1 (HS1) (24).  HS1 is the hematopoietic homologue of cortactin, a protein 

involved in adhesion, spreading, endocytosis and migration in many cell types (25-28).  

Cortactin is upregulated or hyperphosphorylated in a number of metastatic cancers, and 
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plays an important role in the formation of invadopodia, stuctures that resemble, but are 

distinct from, podosomes (29-31).  Cortactin stabilizes branched actin filaments in vitro 

(32-33), and enhances the persistence of actin-rich lamellipodial protrusions in fibroblasts 

(25).  Like cortactin, HS1 is involved in the stabilization of branched actin filaments (34). 

Both of these proteins have a modular structure, with an N-terminal region that binds 

Arp2/3 complex and actin filaments, and a C-terminal adaptor region that can connect 

multiple proteins within the actin network, including Lck, Itk, Vav1, WASp, WIP and 

Nck (35-38).  HS1 promotes lamellipodial protrusion in T cells (35-36), and regulates 

adhesion and migration in NK cells and B cells (39-40).  Thus, HS1 and cortactin appear 

to carry out homologous functions in hematopoietic and non-hematopoietic cells, 

respectively.  Though HS1 has recently emerged as an important actin-regulatory protein 

in hematopoietic cells, its role in DC function has not been investigated. 

 

In this study, we show that HS1 is the sole cortactin family member expressed in murine 

BMDCs. HS1 localizes to actin-rich structures involved in cell migration, including 

lamellipodia and podosomes, and localization of HS1 to podosomes requires SH3-

domain dependent interaction with WASp. Side-by-side analysis of DCs singly- and 

doubly-deficient for HS1 and WASp reveals that these proteins play distinct roles: WASp 

is essential for podosome formation, while HS1 is necessary to organize the podosome 

array within the cell. Similarly, while WASp is required for overall migration of DCs, 

HS1 is required for directional persistence during chemotaxis.  These studies show that 

HS1 functions to fine-tune DC cytoarchitecture and direct cell migration. 
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Materials and Methods 

Reagents and Antibodies 

All flow cytometry antibodies were from Biolegend, unless specified.  Rabbit anti-human 

HS1 (35) and rabbit anti-mouse HS1 (36) were previously described.  Mouse anti-HS1 

(3A3) was from Stressgen Bioreagents.  Anti-GAPDH was from Calbiochem.  Anti-

cortactin (GK18), anti-vinculin and lipopolysaccharide (LPS) were from Sigma.  Anti-

green fluorescent protein (GFP), Alexa Fluor 594 phalloidin, anti-mouse IgG1 Alexa 

Fluor 488, anti-mouse IgG Alexa Fluor 594, anti-rat Alexa Fluor 488, anti-rabbit IgG 

Alexa Fluor 488, anti-goat IgG Alexa Fluor 488 and FITC-gelatin were from Invitrogen.  

Anti- cortactin (4F11), anti-phosphotyrosine (4G10) and anti-WASp were from Upstate 

Biotechnology.  Anti-β2-integrin (CD18, C71/16) was from BD Pharmingen.  Anti-talin 

(C-20) was from Santa Cruz.  Type B CpG oligonucleotide ODN 1668 and control 

oligonucleotide for murine TLR9 ligand 1668 were from Invivogen.   

 

Recombinant HS1 was made as previously described (41).  To generate recombinant 

cortactin, full-length human cortactin cDNA was subcloned into pGEX-4T-2 vector (GE 

Healthcare) and expressed in BL21-DE3 bacteria.  The recombinant cortactin was 

purified using glutathione Sepharose 4B (GE Healthcare).  
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Mice 

HS1-/- mice on the C57Bl/6J background have been previously described (42), and WASp 

knockout mice were from The Jackson Laboratory.  To generate HS1 and WASp double 

knockout (DKO) mice, HS1+/- and WASp-/y mice were bred and the F1 progeny were 

then interbred.  All mice were housed under pathogen-free conditions in the Children’s 

Hospital of Philadelphia animal facility.  All studies involving animals were reviewed 

and approved by the CHOP Institutional Animal Care and Use Committee. 

 

BMDC Primary Culture 

Granulocyte-monocyte colony-stimulating factor (GM-CSF) was produced from the 

B78Hi/GMCSF.1 cell line provided by T. Laufer (U. Penn.).  Bone marrow was isolated 

from leg bones, cleaned of muscle tissues and sterilized in 70% EtOH using IMDM 

(Gibco) containing 1% FBS (Atlanta Biologicals).  The cells were centrifuged at 1600 

rpm and 4°C for 10 min and resuspended in DC culture media (IMDM, 10% FBS, 

penicillin/streptomycin, GlutaMax, 55 μM β-mercaptoethanol, 3% supernatant GM-CSF) 

at a concentration of 1x106 cells/ml.  1 ml of cell suspension was added to wells of 24 

well plates and supplemented with 1 ml of media on day 2.  Starting on day 5, 1 ml of 

media was replaced daily.  Differentiation into DCs was verified on day 6 by flow 

cytometric analysis of surface CD11c levels (typically 70-80%).   Cultures were used 

between days 6 and 9.  To induce maturation, DCs between days 6 and 8 were cultured 

with 100 ng/ml LPS for 24 hours. 
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DNA Constructs, Retroviral Production and Transduction 

Vector expressing the GFP-variant Venus [Venus/pCS2, (43)] was provided by A. 

Miyawaki (Brain Science Institute, RIKEN, Yokohama).  Human HS1 cDNA was 

provided by D. Billadeau (Mayo Clinic, Rochester, MN) (35).  Human HS1 and Venus 

were amplified and ligated into the pMSCV2.1 retroviral vector (provided by W. Pear, U. 

Penn.).  GFP-Actin (Clontech) was amplified and ligated in place of existing GFP in the 

MiGR retroviral vector (provided by W. Pear, U. Penn.).  Retrovirus was produced by 

calcium phosphate co-transfection of 293T cells with 30 μg of the DNA of interest, the 

constructs encoding the viral envelope protein for mouse ectopic virus and the gag and 

pol genes.  Supernatant was harvested at 24 and 30 hours post transfection and titered 

using NIH-3T3 fibroblast cells. 

 

BMDCs were transduced by spin infection with retrovirus expressing Venus-HS1, GFP-

WASp or GFP-Actin on day 2 of culture.  Retrovirus and 4 μg/ml Polybrene (Sigma) 

were added to the wells of a 24 well culture plate and centrifuged at 2000 rpm and 32°C 

for 2 hours.  Retrovirus-containing media was then replaced with DC culture media and 

the cultures were cared for as described above.  Transduction efficiency (typically 45% or 

better) was determined on day 6 by detection of Venus or GFP expression by flow 

cytometry. 

 

RAW/LR5 cells were a gift from D. Cox (Albert Einstein College of Medicine) and were 

cultured and transduced as previously described (18).  Cells were either transduced with 
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control virus or virus to knockdown HS1. HS1 knockdown was verified by western 

blotting.  

 

Flow Cytometry 

BMDCs were harvested and 2x105 cells were labeled for each condition.  Fc receptors on 

the BMDCs were blocked using 2.4G2 antibody, made from the 2.4G2 hybridoma 

(provided by T. Laufer, U. Penn.).  Cells were stained with anti-CD11c-PE alone or with 

anti-CD80-FITC, anti-CD86-FITC, anti-CD40-FITC or anti-mouse I-A/I-E-Alexa Fluor 

488.  Alternatively, cells were labeled with CD11c-APC alone or with anti-H-2Kb/H-

2Db-PE.  Live cells were identified by exclusion of 7-AAD (Invitrogen).  Cells were 

collected on a FACS Calibur flow cytometer and analyzed using FlowJo (Treestar). 

 

Transwell Migration Assay 

96 well transwell plates, 5 μm pore size, were from NeuroProbe Inc.  Immature and 

mature WT and HS1-/- BMDCs were harvested, pelleted at 1500 rpm and RT for 5 

minutes and resuspended at 2x106 cells/ml.  Migration media alone (IMDM, 1% serum) 

or containing chemokine (200 ng/ml CXCL12 (Peprotech, Inc) or 500 ng/ml CCL21 

(R&D Systems)) was added to the bottom well.  5x104 cells were placed on the filter and 

the plate was incubated at 37°C for 3 hours.  The filter was removed and the cells in the 

bottom well were counted using a hemocytometer.  The percentage of migrated cells was 

calculated by dividing the number of cells in the bottom well by the number of input 
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cells.  Chemokine receptor expression and cell maturation were verified by flow 

cytometry of input cells.  

 

Western Blotting 

For analysis of cortactin, HS1 and WASp expression, cells were lysed in lysis buffer (20 

mM Hepes pH 7.5, 1% NP-40, 0.5% deoxycholate, 0.1% SDS, 50 mM NaCl, 5 mM 

EDTA, 10 μg/ml leupeptin, 500 mM AEBSF, 1 mM Na3VO4 and 5 mM NaF) on ice, 

cleared by centrifugation, and protein concentration was determined by BCA Assay 

(Pierce).  Lysates were resolved on 4-12% NuPage gels (Invitrogen) (Fig. 1) or tris-

glycine SDS-PAGE gels (Fig. 3F and 4A), transferred to nitrocellulose membranes, 

blocked in 5% milk in PBS and probed with primary antibodies in TBST followed by 

secondary antibodies (goat anti-mouse IgG-Alexa Fluor 680 (Invitrogen) or goat anti-

rabbit IgG-IR Dye 800 (Rockland)).  Proteins were visualized and analyzed 

ratiometrically using the Licor Odyssey infrared fluorescence system, taking care to 

remain within the linear range. 

 

Immunofluorescence Microscopy 

BMDCs were harvested and cultured on coverslips at 2x105 cells/well in 6 well plates 

overnight.  The coverslips were washed in HBSS followed by fixation in 3% 

paraformaldehyde/PBS.  Cells were permeabilized with 0.3% Triton X-100, and blocked 

with 0.05% Saponin/1.25% fish skin gelatin in TBS.  Cells were labeled for F-actin with 
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Alexa Fluor 594-phalloidin and with primary antibodies followed by appropriate 

fluorescently-tagged secondary antibodies.  For endogenous HS1 staining, cells were 

fixed and permeabilized simultaneously using a protocol from (44).  For visualization of 

Venus or GFP tagged proteins, anti-GFP was used followed by anti-Rabbit IgG Alexa 

Fluor 488.   

 

Cells were imaged using a Zeiss Axiovert 200 microscope equipped with Perkin Elmer 

Ultraview ERS6 spinning disk confocal system and a 63x 1.4 NA objective.  Images were 

collected using an Orca ER camera (Hamamatsu) and analyzed using Volocity v.5 

software (Improvision).   

 

Podosome Analysis 

For array analysis, images were collected without bias using spinning disk confocal 

imaging.  Cell profiles were determined using the “find object” function in Volocity, and 

the borders of each podosome array were drawn by hand.  The areas were calculated in 

Volocity.  The percentage of the total area of individual cells covered by podosome 

arrays was then calculated.  To determine the number of podosomes per cell, the actin 

cores were identified and counted using the “find object” function in Volocity, with 

verification and correction by eye.   

 

For analysis of array localization and packing, slides were blinded to experimental 

conditions.  Cell polarization was determined based on the presence of an actin-rich, 
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spread lamellipodium.  The number of arrays per cell was counted and placed into one of 

the following groups: touching the leading edge (touch), behind the leading edge but not 

touching it (behind), in the middle of the cell not touching an edge (middle), opposite of 

the leading edge (back), lateral to the leading edge (side) or circular rosettes (rosette).  

Array packing was based upon the tightness of podosome packing within individual 

arrays, with cells scored as tight if most of the podosomes contacted one another in a 

regular pattern, and loose if gaps were evident between many of the podosomes.  

Approximately 200 cells were analyzed per experiment. 

 

For the add-back experiments, approximately 100 cells from each condition were blindly 

counted to determine if the cells had podosomes, whether the arrays were loosely packed 

and finally, whether HS1 or WASp were in the podosome cores. Graphs are averages 

from 3-5 independent experiments. 

 

Podosome Reformation Assay and FRAP analysis 

Reformation of podosomes was assayed based on a modification of (18).  Briefly, 

BMDCs were cultured on coverslips overnight.  DC culture media containing 1 μM 

cytochalasin D (Calbiochem) was added for 30 minutes at 37°C.  The cells were then 

washed twice with warm DC culture media and incubated for the indicated times at 37°C, 

fixed and labeled for actin and vinculin.  Slides were blinded and approximately 200 cells 

were scored for the presence or absence of podosome arrays. 
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To measure actin turnover within podosomes, BMDCs transduced with GFP-actin were 

cultured in four-well Lab-Tek II chambered coverglasses (Nalge Nunc) at 5x104 

cells/chamber overnight.  Fresh media was added and overlayed with mineral oil before 

imaging.  Cells were imaged by spinning disk confocal microscopy using the Volocity 

v.5 FRAP plugin.  The cells were imaged every 3 seconds before bleaching. A 20 μm2 

area within the podosome array of each cell was then bleached for 50 cycles, and images 

were captured at the fastest speed for 15 seconds, every second for 45 seconds and every 

3 seconds for 180 seconds.  Analysis was conducted using a single constrained 

exponential algorithm.  Results are shown as τ1/2, the time required for fluorescence to 

recover to half the original value.   

 

Analysis of MMP Secretion  

For zymography, 2.5x106 BMDCs were cultured in serum-free media in bacteriological 

10 cm dishes for 24 hours.  Supernatant was concentrated using a <30kDa cutoff 

centrifugal filter device (Millipore).  Proteins were separated on tris-glycine gels 

containing 1 mg/ml gelatin (Sigma).  The gel was then incubated in renaturation buffer 

(2.5% v/v Triton X-100, 50 mM Tris-HCl, 0.05% NaN3) for 3 hours at 37°C and in 

developing buffer (50 mM-Tris HCl, 150 mM NaCl, 10 mM CaCl2, 0.05% NaN3) at 

37°C overnight.  Non-degraded gelatin was visualized by Coomassie blue staining and 

imaged on a Licor Odyssey fluorescence scanner. 

 



 128

FITC-gelatin degradation assays were performed as described in (45).  Briefly, coverslips 

were acid-washed, coated with 2% FITC-gelatin (Invitrogen) and quenched in serum-free 

media for 1 hour at 37°C.  BMDCs were cultured on coverslips overnight, washed and 

fixed.  Cells were labeled for actin and imaged by spinning disk confocal microscopy.   

 

Fabrication of microfluidic device 

A microfluidic gradient generator was fabricated in polydimethylsiloxane (PDMS, 

Sylgard 184, Dow Corning) using soft lithography as described previously (46) with 

modifications.  Briefly, soft lithography was used to create an SU-8-2050 photoresist 

(MicroChem) on silicon master. Positive replicas with embedded channels were 

fabricated by molding PDMS against the master.  The PDMS replica and a glass 

microscope slide were activated by oxygen plasma treatment then irreversibly contact-

bonded.  The adhesion surface was functionalized by incubation with 10 μg/ml 

fibronectin (Sigma) for 1 hour at 20°C and blocked with 1% BSA (Sigma) in PBS for 2 

hours at 20°C.  

 

Chemotaxis Assay 

The chemotaxis assay was performed as previously described (46) with the following 

changes.  BMDCs were cultured as described in (47) and matured for 24 hours with 100 

ng/ml LPS, harvested by pipetting and loaded into a syringe.  The chemoattractant 

solution used was CCL19 (Peprotech).
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Results 

HS1, but not cortactin, is expressed in dendritic cells 

The structural changes associated with DC migration are orchestrated by several actin-

regulatory proteins, including Rho family GTPases, Vav1, and WASp (10, 13, 20-21, 

48). The cortactin homologue HS1 functions as part of this actin regulatory complex in 

lymphocytes and NK cells (35-36, 39-40), but its role in DCs has not been addressed. 

HS1 and cortactin usually exhibit mutually exclusive expression patterns, with HS1 

expressed in hematopoietic lineage cells and cortactin expressed in other cell types. 

However, DCs have been reported to express both proteins (16). Thus, we initiated our 

studies by carefully characterizing the expression patterns of these two proteins in bone 

marrow-derived dendritic cells (BMDCs).  In addition to testing BMDCs from WT mice, 

we tested BMDCs generated from HS1-/- mice, to ask if cortactin expression is 

upregulated to compensate for loss of HS1. BMDCs lacking HS1 differentiate normally 

in culture and upregulate co-stimulatory molecules (CD80 and CD86), CD40, and MHC 

Class I and II similarly to WT BMDCs upon maturation with lipopolysaccharide (LPS) 

(YPH, DKD and JKB, manuscript in preparation).   As shown in Figure 5.1, a polyclonal 

anti-mouse HS1 antibody raised in our lab reacted with recombinant human HS1 but not 

cortactin, and with lysates from hematopoietic cells (T cells and DCs) from WT mice, but 

not HS1-/- mice.  As expected, this antibody failed to interact with lysates from non-

hematopoietic cell types (mouse 3T3 and human 293T). This reagent binds human HS1 

weakly, as indicated by its ability to detect recombinant human HS1, but not HS1 in 

human Jurkat T cells.  Additionally, a polyclonal anti-human HS1 antibody reacts 
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specifically with human HS1 as a recombinant protein or from Jurkat T cells, but not with 

mouse HS1 (DCs and T cells).  Several commercially available antibodies tested 

displayed different patterns of HS1 and cortactin recognition.  A monoclonal anti-

cortactin antibody, 4F11, reacted with mouse and human cortactin (3T3 and 293T cells, 

respectively), but failed to detect HS1 as a recombinant protein or from mouse T cells or 

DCs.  However, another antibody, GK-18, previously used to show that DCs express 

cortactin (16), cross-reacted with HS1 and cortactin in all cell types tested and both 

recombinant proteins.  These findings demonstrate that murine DCs express HS1, but not 

cortactin.  Furthermore, they verify that DCs from HS1-/- mice lack HS1 expression and 

show that these cells do not exhibit compensatory upregulation of cortactin. 
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Figure 5.1.  HS1 is the only cortactin family member expressed in murine BMDCs.  BMDCs and T cells 

were cultured from WT or HS1-/- mice, and whole cell lysates were analyzed by immunoblotting with anti-

HS1 or anti-cortactin antibodies.  Lysates from the non-hematopoietic cell lines 3T3 and 293T were loaded 

as positive controls for mouse and human cortactin, respectively.  Lysate from Jurkat T cells was loaded as 

a positive control for human HS1.  Recombinant human cortactin and HS1 were loaded as positive controls 

for antibody specificity.  GAPDH was used to verify equal loading. 
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Figure 5.2.  HS1 colocalizes with F-actin in structures associated with cell migration.  BMDCs were 

cultured overnight on coverslips, fixed and stained with anti-HS1 to (green) and phalloidin to visualize F-

actin structures (red).  Colocalization of HS1 with F-actin in podosomes (A) and lamellipodial edges (B) is 

shown.  Scale bars equal 10 μm.   
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Figure 5.3.  HS1 is required for efficient localization and organization of podosome arrays.  A.  WT and 

HS1-/- BMDCs were cultured on coverslips overnight, fixed and stained with phalloidin (red) and anti-

vinculin (green) to visualize podosome cores and rings, respectively.  DAPI (blue) was used to stain the 

nucleus.  Images were captured by confocal microscopy.  Arrows mark the leading edge of the cells. Scale 

bars equal 10 μm. B.  Cells were prepared as in A.  The number of podosomes per cell was counted as 

described in Materials and Methods; each dot represents a single cell.  C. WT and HS1-/- BMDCs cultured 

overnight on coverslips were treated for 30 min at 37°C with cytochalasin D, after which time the drug was 

washed out and cells were allowed to recover.  At the indicated times, cells were fixed and labeled with 

phalloidin and anti-vinculin, and the percentage of cells containing podosome arrays was determined. (n ≥ 

200 cells/timepoint)   D and E. Cells were scored for position and organization of the podosome array as 

described in Materials and Methods.  F.  Whole cell lysates were made from RAW/LR5 cells that were 

untransfected or transfected with control or shHS1 RNA and immunoblotted with anti-HS1 antibodies. 

GAPDH was used to verify equal loading.  G. RAW/LR5 cells transduced as in F were prepared as in A 

and the organization of the podosome arrays was determined as described in Materials and Methods.  

(*p<0.05)   
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Figure 5.4.  Podosomes of HS1-/- BMDCs are comprised of characteristic proteins.  WT and HS1-/- BMDCs 

were cultured on coverslips, fixed and stained with phalloidin (red) to label F-actin and with anti-β2-

integrin (green, A), anti-talin (green, B) or anti-phosphotyrosine (green, C).  Scale bars equal 10 μm. 
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HS1 localizes to podosomes, but is dispensable for podosome formation 

Using the anti-mouse HS1 antibody, we next investigated HS1 localization in murine 

BMDCs. As shown in Figure 5.2A, HS1 colocalized with F-actin in podosome cores.  We 

also observed HS1 colocalization with F-actin at the edges of lamellipodia (Fig. 5.2B).  

This distribution is consistent with the localization of cortactin in non-hematopoietic cells 

(49), and with the idea that HS1 functions to regulate actin-rich structures associated with 

cell migration. 

 

To ask if HS1 is required to organize DC cytoarchitecture, WT and HS1-/- DCs were 

plated onto coverslips and the actin cytoskeleton was analyzed by immunofluorescence 

microscopy.  Adhesion and spreading of HS1-/- DCs on both fibronectin-coated and 

uncoated coverslips was grossly normal, although cells exhibiting multiple lamellipodial 

protrusions were somewhat more frequent among HS1-/- DCs (data not shown).   

Labeling with phalloidin and anti-vinculin revealed that both WT and HS1-/- DCs were 

able to make podosomes with actin-rich cores surrounded by vinculin rings (Fig. 5.3A).  

No differences were observed in the number of cells with arrays or the number of arrays 

per cell (data not shown).  Moreover, other markers of podosomes, including talin, β2-

integrin, and phosphotyrosine (50), localized normally within the podosomes of HS1-/- 

DCs (Fig. 5.4).  In addition to exhibiting normal composition, the podosomes of HS1-/- 

DCs were functionally competent as sites of extracellular matrix degradation. 

Supernatants from WT and HS1-/- DCs contained similar levels of functional matrix 

metalloproteinases (MMPs) (Fig. 5.5A).  Moreover, when WT or HS1-/- DCs were 
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cultured on FITC-gelatin-coated coverslips, there was no difference in the size, 

placement or frequency of holes formed in the matrix (Fig. 5.5B).  We conclude that HS1 

is not required for the formation of recognizable podosomes containing many of the 

characteristic proteins.  

 

Podosome number and organization are perturbed in the absence of HS1 

Although the organization of podosome arrays varies widely, even among WT cells, we 

observed clear differences in the podosome arrays of WT and HS1-/- DCs. One difference 

was that HS1-/- DCs exhibited significantly fewer podosomes per cell (Fig. 5.3B). Since 

HS1 stabilizes branched actin filaments, we hypothesized that loss of HS1 would 

decrease the stability of podosome cores. To test this idea, WT and HS1-/- DCs were 

transduced with retrovirus expressing GFP-actin and the exchange of actin molecules 

within podosomes was assessed by fluorescence recovery after photobleaching (FRAP) 

(Fig. 5.5C). No significant differences were observed, showing that loss of HS1 does not 

affect actin turnover within pre-existing podosomes.  To determine if HS1 promotes 

podosome formation, WT or HS1-/- DCs were treated with cytochalasin D to dissolve 

podosomes.  After drug washout, the cells were allowed to recover for varying times, and 

the number of cells with podosome arrays was assessed (Fig. 5.3C).  Prior to treatment a 

similar number of WT and HS1-/- DCs exhibited podosomes (Fig. 5.3C, points on the y-

axis).  In both cell types, podosomes were lost upon drug treatment, and actin cores 

recovered within 30-60 minutes of drug washout (Fig. 5.3C).  However, recovery of 

podosome cores in HS1-/- DCs was slightly, but consistently delayed.  In both WT and 
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HS1-/- cells, recovery of vinculin into rings was not observed until after actin cores were 

formed (data not shown), consistent with the idea that a viable actin core is needed for 

recruitment of ring proteins (14).  These data indicate that HS1 accelerates the early 

stages of podosome genesis, but is not essential for podosome formation. 

 

HS1 is important for organizing the podosome array 

The most striking cytoarchitectural defects we observed in HS1-/- DCs involved 

podosome array organization.  Podosomes in the HS1-/- DCs were not packed as tightly as 

those in WT DCs and the arrays were more randomly distributed throughout the cell (Fig. 

5.3A and Fig. 5.4). To assess differences in the positioning of podosome arrays, cells 

were categorized into one of several groups (Fig. 5.6): touching the leading edge (touch), 

behind the leading edge (behind), centrally located within the cell (middle), opposite the 

leading edge (back), lateral to the leading edge (side) or forming rosettes within the 

center of the cell not adjacent to any edges (rosettes).  Whereas WT DCs more frequently 

showed arrays that touched the leading edge, arrays in HS1-/- DCs tended to be further 

behind the leading edge (Fig. 5.3D).  In addition to array localization, array packing was 

affected (Fig. 5.3E).  Whereas podosomes in WT DCs tended to be tightly packed within 

the array, HS1-/- DCs showed an increased number of cells with loosely packed 

podosome arrays (increased space between adjacent podosomes).  This qualitative 

finding is consistent with our quantitative data showing that HS1-/- DCs have fewer 

podosomes than WT DCs, distributed in arrays that occupy a similar area (Fig 5.3B and 

5D).   
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Figure 5.5. Analysis of podosomes in HS1-/- BMDCs.  A.  Culture supernatants from WT and HS1-/- 

BMDCs were harvested.  Proteins were concentrated and separated on an SDS-PAGE gel supplemented 

with 1 mg/ml gelatin.  The gel was renatured and stained with Coomassie Blue to determine regions of 

degraded gelatin.  B.  WT and HS1-/- BMDCs were cultured on coverslips coated with gelatin containing 

2% FITC-labeled gelatin (green) overnight.  Cells were fixed and stained with phalloidin (red) to visualize 

podosomes.  Scale bars equal 10 μm.  C.  WT and HS1-/- BMDCs were transduced with GFP-Actin, 

cultured overnight on chambered coverglasses and imaged live by spinning disk confocal microscopy.  A 

region of interest within the podosome array was bleached and monitored for recovery of fluorescence, and 

the half-life (τ1/2) for fluorescence recovery within the ROI was measured.  Each dot represents a single 

cell.  D.  Cells were prepared as in figure 5.3A.  The percent of cell area covered by podosomes was 

determined as described in Materials and Methods; each dot represents a single cell. 
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Figure 5.6. Examples of scoring categories used for analysis of podosome array localization and packing in 

Figure 5.3D and E.  BMDCs were prepared as in Figure 5.3A.  Scoring of localization and packing of 

arrays is noted above each picture.    
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To verify that the phenotypes we observe do not reflect developmental changes in the 

HS1-/- mice, and to ask if these results extend to other myeloid cell types, HS1 function 

was tested in RAW/LR5 macrophages, a cell line that efficiently forms podosomes (18, 

51).  Figure 5.3F shows that HS1 could be efficiently silenced in these cells using 

shRNA.  HS1-suppressed RAW/LR5 cells were able to form podosomes with normal 

frequency (data not shown), but the podosome array in these cells became more loosely 

packed (Fig. 5.3G). We conclude that HS1 is not required for podosome formation in 

myeloid cells, but is required for proper organization of podosome arrays. 

 

HS1 and WASp carry out distinct roles in podosome formation and 

organization 

HS1 interacts with WASp, another actin regulatory protein involved in podosome 

formation, and in other systems, HS1 is thought to stabilize branched actin filaments 

generated by WASp and the related protein WAVE2 (34-35).  To investigate the 

relationship between HS1 and WASp in DCs, we compared the phenotypes of DCs 

cultured from mice lacking HS1 alone, WASp alone, or both proteins. DCs cultured from 

these mice exhibit loss of the appropriate proteins, and knockout of one has no effect on 

the expression levels of the other (Fig. 5.7A).  As shown in the filled bars in Fig 5.7B, 

HS1-/- and WASp-/y DCs differed with respect to the proportion of cells exhibiting 

podosomes.  While significantly fewer WASp-deficient cells displayed podosomes, HS1-

deficiency had no effect on this parameter (the slight increase relative to WT cells in this 

experiment was not reproducible). The defect in podosome formation in WASp-/y DCs is 
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consistent with previous reports (10, 52), though the magnitude of the defect is somewhat 

less severe in our hands.  DCs deficient for both HS1 and WASp were indistinguishable 

from cells deficient for WASp alone.  We next compared the effects of loss of HS1 or 

WASp with respect to podosome organization.  As shown in the filled bars in Fig. 5.7C, 

HS1-/- DCs showed defective packing of the podosome array, but this phenotype was not 

observed in WASp-deficient cells. Podosome packing in DCs deficient in both HS1 and 

WASp was indistinguishable from packing in cells lacking HS1 alone. Taken together, 

these results show that WASp is required for efficient formation of podosomes, while 

HS1 is important for organizing the podosome array.   

 

To confirm these findings, and to ask if HS1 and WASp show interdependent function, 

DCs lacking these proteins individually or together were transduced with WASp, HS1, or 

with an HS1 SH3 domain mutant (W465Y) that abrogates interaction between the two 

proteins. As shown in Fig. 5.7B (hatched bars), ectopic expression of WASp in either 

WASP-/y or double-deficient DCs restores the number of cells displaying podosomes to 

WT levels.  In contrast, expression of HS1 (gray bar) in double deficient DCs does not 

rescue this defect, supporting the idea that WASp, but not HS1, is essential for efficient 

podosome formation.   Expression of the SH3 domain mutant (open bar) actually 

suppressed podosome formation somewhat when expressed in HS1-/- DCs, which may 

represent a mild dominant negative effect of this mutant.   
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Figure 5.7. HS1 and WASp cooperate to form organized podosome arrays.  A. BMDCs were cultured from 

WT, HS1-/-, WASp-/y or HS1-/- WASp-/y (DKO) mice, and whole cell lysates were analyzed by 

immunoblotting with anti-HS1 or anti-WASp antibodies. GAPDH was used to verify equal loading.  B and 

C.  WT, HS1-/-, WASp-/y or DKO cells were untransduced or transduced with Venus-HS1 (HS1-/- and DKO, 

gray), GFP-WASp (WASp-/y and DKO, hatched) or Venus-HS1W465Y (HS1-/-, white) and prepared as in 

figure 5.3A.  Cells were scored for the presence of podosomes (B) and array organization in cells 

containing podosomes (C) as described in Materials and Methods. (*p<0.05; **p<0.01) 
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Figure 5.8. HS1 requires WASp for localization to podosome cores, but WASp localizes independently of 

HS1.  HS1-/-, WASp-/y or DKO cells were untransduced or transduced with Venus-HS1 (HS1-/- and DKO), 

GFP-WASp (WASp-/y and DKO) or Venus-HS1W465Y (HS1-/-).  Cells were prepared as in figure 5.3A, but 

staining with anti-GFP to visualize the transduced proteins.  A.  Cells were scored for the presence of HS1 

in podosome cores as described in Materials and Methods. (**p<0.05)  B.  Cells were scored for the 

presence of WASp in podosome cores as described in Materials and Methods.  C.  Colocalization of HS1 or 

WASp with phalloidin staining in podosomes cores was visualized by confocal microscopy. Scale bars 

equal 10 μm.
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Figure 5.9.  HS1 colocalizes with phosphotyrosine and is surrounded by vinculin in podosomes.  Cells 

were prepared as in Figure 5.2.   Cells were stained with anti-GFP (green) and anti-vinculin (red, A) or 

anti-phosphotyrosine (red, B).  DAPI (blue) was used to identify nuclei.  Scale bars equal 10 μm. 
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When transduced DCs were analyzed with respect to podosome packing, reciprocal 

results were obtained (Fig 5.7C).  The abnormally loose packing observed in HS1-/- DCs 

and double knockout cells was rescued by ectopic expression of HS1 (gray bars).  

Expression of GFP-WASp (hatched bar) in double knockout DCs did not rescue this 

defect, supporting the idea that HS1, but not WASp, is needed to organize a closely 

packed podosome array. Interestingly, the HS1 SH3 domain mutant (open bar) was 

unable to rescue podosome organization in HS1-/- DCs, suggesting that HS1 must interact 

with WASp to carry out its function.     

 

Recruitment of HS1 to podosomes is dependent on interactions with WASp 

To complement our functional analysis of HS1 and WASp interactions, we asked if these 

proteins depend on one another for recruitment to podosomes and function in podosome 

formation/organization.  As shown in Fig. 5.8A and C, Venus-HS1 localized efficiently 

to podosomes cores when expressed in HS1-/- DCs.  Venus-HS1 colocalized with F-actin 

and phosphotyrosine within vinculin rings (Fig. 5.9). In double knockout DCs, however, 

Venus-HS1 localization to podosome cores was faint or nonexistent, and the protein 

instead exhibited a diffuse cytoplasmic distribution (Fig. 5.8A and C).  Similar results 

were obtained when the SH3 domain mutant of HS1 was expressed in HS1-/- DCs. As 

shown in Fig. 5.8B and C, WASp localized efficiently to the podosome core when 

expressed in either WASp-/y or double knockout cells.  Taken together, these results 

indicate that WASp localization to podosome cores is independent of HS1, but HS1 
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localization to podosome cores depends on SH3-domain mediated interactions with 

WASp. 

 

HS1-/- DCs exhibit defects in directional migration 

Podosomes are thought to promote cell migration in some settings, and WASp-/y DCs are 

defective in migration (11, 13, 53).  We therefore asked if HS1 is also required for DC 

migration.  Initial studies were performed using transwell assays. As reported previously 

(54), immature and mature BMDCs from WT mice preferentially migrated toward 

CXCL12 (SDF1α) and CCL21 (SLC), respectively (Fig. 5.10A and B).  HS1-/- DCs 

migrated with the same efficiency as DCs from WT mice, and showed the same switch in 

chemokine sensitivity with maturation.  Furthermore, WT and HS1-/- DCs exhibited 

similar sensitivity in chemokine dose response studies, and flow cytometry analysis 

showed that these two populations express similar surface levels of chemokine receptors 

(data not shown).  We next used video microscopy to compare the ability of WT, HS1-/-, 

WASp-/y and double knockout DCs to undergo chemotaxis in a gradient of CCL19.  As 

shown in Fig 5.10C and D, HS1-/- DCs moved significantly faster than WT DCs, while 

WASp-/y DCs and double knockout cells moved significantly slower.  Analysis of 

directionality revealed HS1-/- DCs exhibit diminished directional persistence 

(chemotactic index) (Fig 5.10C and E).  The magnitude of this defect was greater in 

WASp-/y and double knockout DCs, but all three mutants were significantly less 

persistent that WT DCs.  Taken together, these data show that while WASp is required 

for DC migration per se, HS1 is primarily important for persistent directional migration.  



 148

 

Figure 5.10. HS1-/- BMDCs show altered migration in a chemokine gradient.  A and B. WT and HS1-/- 

BMDCs were treated with 100 ng/ml LPS (Mature) or left untreated (Immature).  Migration toward media 

alone or media containing CXCL12 (SDF1α, C) or SLC (CCL21, D) was assessed by transwell assay.   

Data are averages of replicates from one representative experiment (of 4), +/- StDev.  C, D and E.  WT, 

HS1-/-, WASp-/y or DKO BMDCs were injected into a fibronectin-coated microfluidic chamber with a 

gradient of CCL19 (0-20 nM) (C).  The average velocity of motile cells in the direction of the gradient was 

determined (D).  The chemotactic index, as defined by the distance migrated toward the chemokine source 

divided by the absolute distance traveled for each cell was calculated (E).  Data represent averages of 

multiple cells from one representative experiment +/- SEM. (***p<0.00001) 
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Discussion 

Our analysis of HS1-deficient DCs revealed two related defects, disorganization of the 

podosome array and diminished directional migration.  WASp, which interacts with HS1, 

also affects podosomes and migration, but our analysis shows that the roles of these two 

proteins are distinct. It is well established that WASp and its obligate binding partner 

WIP are essential for formation of the actin-rich cores that nucleate podosome biogenesis 

(10, 14-16, 23, 55-59). (18, 60). Depending on the experimental system, WASp-deficient 

DC and macrophages ether lack podosomes altogether or show severe reductions in 

podosome numbers, and our data are consistent with this.  In contrast, we find that HS1-

deficient DCs and macrophages can form podosomes containing many, if not all, of the 

characteristic components.  However, HS1-deficient cells show disordered podosome 

array packing and mislocalization of the arrays with respect to the leading edge of the 

cell.   

 

The mechanisms through which HS1 controls podosome organization are unclear.  Since 

HS1 stabilizes branched-actin filaments generated by WASp and other Arp2/3 complex 

activators, it seems likely that it stabilizes actin filaments within podosomes.  While our 

FRAP data show that HS1 does not affect actin exchange in mature podosomes, it does 

accelerate podosome re-formation.  Thus, HS1 may stabilize newly-formed actin cores, 

and the diminished numbers and loose packing of podosomes in HS1-deficient cells may 

result from stochastic disassembly of newly-formed podosome cores.  Another appealing 

possibility is that HS1 aids in stabilizing the long actin filaments that form connections 
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between adjacent podosomes (61).  Interestingly, these interconnecting filaments are 

frequently decorated with clathrin coated endocytic pits (61), and the HS1 homologue 

cortactin associates with coated vesicle components (26).  Finally, it should be noted that 

in addition to directly regulating actin dynamics, HS1 functions as an adapter molecule, 

and can recruit other signaling molecules to sites of actin polymerization (35-36).  We 

show here that HS1 is not needed for recruitment of WASp to podosomes, but HS1 could 

recruit Vav1 or PLCγ, proteins that are important regulators of podosome dynamics and 

directional persistence in dendritic cells (21, 62).  

 

In addition to directly affecting F-actin dynamics in podosomes, HS1 may promote 

podosome organization indirectly, via effects on lamellipodial dynamics. HS1 localizes to 

lamellipodial edges in DCs, and it regulates lamellipodial protrusion in T cells (35-36). 

Moreover, cortactin regulates lamellipodial protrusion and retraction in non-

hematopoietic cells (Bryce 2005, Krueger 2003).  Since forward movement of the DC 

lamellipodium is closely linked to the cycle of podosome formation and dissolution (10, 

14, 23, 56, 60), erratic leading edge dynamics in HS1-deficient DCs could result in 

disorganization of the podosome array.  Indeed, this seems the likeliest mechanism to 

create the observed mislocalization of the array with respect to the leading edge of the 

cell.    

 

The importance of HS1 function in podosomes and at the leading edge of the cell are 

demonstrated by the diminished ability of HS1-/- DCs to undergo directional chemotaxis. 

Here, too, the phenotypes of HS1-/- and WASp-/y DCs are related, but distinct. In keeping 
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with the literature (11, 13, 53), we found that WASp expression is essential for DC 

migration.  WASp-/y DCs migrating in a chemokine gradient showed a large decrease in 

velocity, and those cells that did migrate exhibited diminished directional persistence.  In 

contrast, HS1 deficient DCs actually migrated faster than wild type cells, but directional 

persistence was significantly reduced.  The defects in directional persistence in HS1-/- 

cells may reflect defects in lamellipodial dynamics.  Indeed, we observed an increase in 

cells showing multiple leading edges in the HS1-/- population, though this did not reach 

statistical significance.  Alternatively, the defects in directional persistence may reflect 

the role of podosomes in stabilizing a dominant leading edge (14, 16, 52).  In this 

scenario, HS1 would function to fine-tune the packing and localization of podosomes 

formed by WASp to aid the stabilization of the leading edge, promoting efficient 

directional cell migration.  These two possibilities are not mutually exclusive, and in fact 

are likely to represent intertwined aspects of HS1 function. 

 

All of our data point to a hierarchical relationship between WASp and HS1 in controlling 

DC actin dynamics.  WASp localized to podosomes independently of HS1, but HS1 was 

not recruited efficiently to podosomes in the absence of WASp, or if its WASp-

interacting SH3 domain was mutated.  This indicates that HS1 is recruited to podosomes 

through SH3-domain-dependent interactions with WASp.  Functional studies also support 

the view that WASp functions upstream of HS1 in this system.  In cells lacking both 

proteins, the defects in both cell morphology and chemotaxis are indistinguishable from 

cells deficient for WASp alone. Interestingly, even though HS1 localization to 

podosomes is largely dependent on WASp, the cells that do form podosomes in the 
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absence of WASp show tightly packed arrays if HS1 is expressed.  This may reflect 

WASp-independent HS1 function at the leading edge.  Alternatively, it may reflect the 

ability of HS1 to interact weakly with podosomes by binding to F-actin. Evidence that 

such binding occurs is shown by the moderately enhanced podosome localization of the 

HS1 SH3 domain mutant in WASp-sufficient cells as compared with wildtype HS1 in 

WASp-/y DCs (Fig 5.8A).   

 

The mild podosome phenotype we observe in HS1-/- DCs is somewhat surprising given 

that cortactin is essential for formation of invadopodia in metastatic tumor cells (63-64). 

While we cannot exclude the possibility that HS1-/- mice undergo compensatory 

developmental changes that blunt the DC phenotype, we deem this unlikely because we 

found no upregulation of WASp or cortactin, and because similar defects were observed 

with HS1 shRNA in a macrophage cell line.  A more likely possibility is that HS1 and 

cortactin are functionally distinct, and that podosomes and invadopodia differ with 

respect to these two proteins.  In keeping with this idea, cortactin has recently been found 

to be required for matrix metalloproteinase release at invadopodia (65), whereas we find 

that HS1 is not.  Interestingly, cortactin is required for formation of podosomes in 

osteoclasts, which  express both HS1 and cortactin (66).  While this may represent an 

excepction to the podosome/invadopodium distinction, osteoclasts podosomes play an 

important role in matrix degradation, and in this sense may be more like invadopodia.  

Regardless of terminology, it seems that the HS1 may be important for adhesive contacts, 

and cortactin for contacts engaged in matrix degradation. It will be interesting to test this 

idea using ‘rescuing’ HS1-/- cells with cortactin, and vice versa. 
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The relationship between HS1 and WASp defined here is also somewhat different from 

the relationship between cortactin and N-WASp in other cell types. While we find that 

WASp recruits HS1 to podosomes, cortactin has been shown to recruit and N-WASp 

activity at sites of actin polymerization (67-68).  Phosphorylation of cortactin has been 

shown to play an important role in its ability to regulate N-WASP (37-38, 63, 69). 

Phosphorylation of HS1 is important for its actin-regulatory function in T cells and NK 

cells (35, 40), but its role in DCs remains to be explored.  

 

An important open question in this field is the extent to which podosomes are important 

for DC function in vivo. WASP-/y DCs have significant migration defects in vivo, but it is 

unclear to what extent this reflects a requirement for podosome formation.  It has long 

been assumed that podosomes are sites for integrin-dependent adhesion to the 

extracellular matrix, but the importance of integrins in regulating DC migration is 

complex and highly dependent on environmental cues (4-5, 70-71). In this context, an 

appealing possibility is that these structures are important as mechanosensors, to allow 

DCs to adapt to movement along variable surfaces (9, 20, 72). Finally, since podosomes 

are most prominent in immature DCs, these structures may a play an important role in 

maintaining cell anchorage and/or dynamics of dendritic processes in peripheral tissues.  

By identifying and characterizing individual proteins that control distinct aspects of 

podosome function, we will have a better understanding of whether and how these 

structures contribute to the regulation of DC movements during an in vivo immune 

response.   
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Abstract  

Dendritic cells (DCs) migrate from sites of inflammation to secondary lymphoid organs 

where they initiate the adaptive immune response.  While motility is essential to DC 

function, the mode or mechanism of their migration is not fully understood.  We used a 

combination of micropost array detectors and a microfluidic gradient generator to 

develop a novel method for probing traction force of murine DCs during directional 

migration.  We find DCs migration is driven by short-lived traction stresses at the leading 

edge or filopodia.  The magnitude (r.m.s. traction forces) of DCs are smaller in 

magnitude than found in neutrophils, and similar during chemotaxis and chemokinesis, at 

18 +/- 1.4 and 16 +/- 1.3 nN/cell, respectively.  Maximal stress in the cell occurs 

perpendicular to the axis of motion, forward of the centroid. We illustrate that 

spatiotemporal pattern of traction stresses can be used to predict changes in the direction 

of DC motion.  Additionally, we determine the characteristic duration of local dendritic 

cell traction forces in the presence of inhibitors.  Blocking chemokine signaling with 

pertussis toxin led to random motion in a chemokine gradient; traction forces were 

similar to that during chemokinesis even in a chemokine gradient.  Overall, DCs show a 

mode of migration distinct from both mesenchymal cells and neutrophils, characterized 

by rapid turnover of traction forces in leading filopodia. 
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Introduction 

Dendritic cells must navigate a series of varied microenvironments to move from sites of 

pathogen entry to lymph nodes where they orchestrate the adaptive immune response (1).  

Several recent studies have shed light on the mechanics of DC migration (2), though none 

have measured the traction forces of these cells.  DCs were shown to be chemotactic 

toward soluble CCL19 and bound CCL21 (3), use actin polymerization and myosin 

contraction for locomotion (4), and readily adaptable to migration on adhesive and non-

adhesive substrates (5). 

 

Amoeboid cells are rapidly crawling cells thought to exert small forces. These cells are 

central to the functioning of the immune system, and elucidating the molecular 

mechanisms of directional control and force generation in these cells would be key to 

manipulating directional homing in the immune system. There is a diversity of modes of 

motility, even within the narrow family of amoeboid cell. Although the actin/myosin-

based modules for cell migration are highly conserved within all cells, various cell types 

use different molecular signals to spatiotemporally organize this machinery.  For 

example, PI3K is essential for neutophil polarization and migration (6), but dispensible 

for DC motility (7), where CDC-42 is important for regulating the leading edge (8).  

Myosin II is required for contractility in all cell types, but its upstream regulator Rho may 

be differentially regulated (9).  Additionally, cells may place varying emphasis on 

contractility, protrusion and adhesion during migration (2, 10).  Contractility and 

protrusion are purely intracellular processes mainly driven by actin/myosin interactions, 

while adhesion involves linkage to extracellular matrix. 
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Lammermann and coworkers have shown that DCs are capable of migrating in the 

absence of integrins (4).  While this result is truly remarkable, subsequent studies have 

shown that there are substantial differences in migration when integrins are present (3, 

11), and that TNF-α activated DCs employ a β2 integrin-dependent mode of 

transmigration through lymphatic endothelium (12).  Bone marrow DCs are able to 

adhere to fibronectin, but not collagen (Figure 3.7), possibly because they express the α5, 

αV and β2 integrin subunits (4) for binding fibronectin (13), but not the α1, α2, or α11 

subunits required for binding collagen. 

 

Amoeboid cells are capable of transmitting force to substrates.  In Dictyostelium, a well-

studied model, forces are strongest at the contractile rear and weaker at the protrusive 

front (14-15).  In fish keratocytes, another common amoeboid model, forces are similarly 

concentrated at the sides and rear of the moving cell, with negligible force detection at 

the leading edge (16-17).  Smith et al. performed the first study with neutrophils, 

showing they also concentrate their forces in the rear on an ICAM-1 surface (18).  A 

subsequent study by Shin et al. showed that for very short time scales on the order of 5 

seconds, the traction forces can oscillate between the rear and front of the cell (19). 

 

To study DC force generation, we placed cells on a micropost array detector (mPAD) 

(20-21).  We chose the micropost force detector because of its greater sensitivity; forces 

exerted by dendritic cells ultimately prove to be much lower than that of neutrophils, and 

gel-based TFM proved inadequate to resolve forces in these cells.  For chemotaxis 
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experiments, the mPADs were placed in a microfluidic gradient generator (7), and 

presented with a 0-20nM gradient of CCL19; cells crawled on fibronectin-coated posts of 

1.5 kPa elasticity.  Using this system, we found that dendritic cells concentrated their 

strongest forces at the leading edge.  We find that the line of maximal stress can be used 

to predict the direction of motion.  Additionally, the force on a micropost has a 

characteristic time scale which can be correlated to the force on that post.  Finally, 

actomyosin inhibitors significantly depleted force generation, but not directional 

navigation.  Conversely, pertussis toxin blocked navigation but did not affect traction 

forces. 

 

Materials and Methods 

Methods Overview 

The experimental methods and protocols are described briefly; a detailed description is 

included below.  The microfluidic gradient generator was fabricated as described 

previously (7).  PDMS micropost array substrates were fabricated as in Tan et al. (20) 

The effective stiffness of the microposts (~1.5 kPa) was on the order of mammalian 

tissue.  The tops of microposts were functionalized with fibronectin and the sides of the 

posts were blocked with an inert polymer.  Murine dendritic cells were obtained by 

culturing stem cells from mouse femurs for 7 days in the presence of GM-CSF and 

matured by 24 h exposure to LPS.  Local force on each post was calculated by a custom-

written MATLAB (Natick, MA) script (22).  Briefly, acquired images were imported, cell 
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area was defined, and mPAD post centroids were automatically determined.  Forces were 

then computed via a known spring constant of the micropost, (1.9 nN⁄μm).  Inhibitors 

were given 1 hour (blebbistatin and Latrunculin A) or 24 hours (Pertussis Toxin) prior to 

the experiment.  The lines of maximal stress and front-rear distribution of forces were 

calculated using custom-made Matlab software.  To determine the time scale of single-

post deflections, half-max full-width (HMFW) analysis was performed on the raw post-

displacement data.  The duration of HMFW was then correlated to the maximum 

magnitude exerted on the micropost. 

 

Cell Isolation and Culture Conditions 

Dendritic cells were generated from murine bone marrow cells according to the 

procedure of Lutz et al. (23) with minor modifications.  Briefly, bone marrow was 

flushed from the tibias and femurs of 8 to 10-week-old C57BL/6 mice and depleted of 

red blood cells using ammonium chloride lysis buffer.  The cells were plated in 10-cm 

petri dishes (2 × 106 cells/ml; 10ml/plate) in RPMI-1640 supplemented with 10% heat-

inactivated fetal bovine serum, 100 U/ml penicillin, 100 mg/ml streptomycin, 50 nM 

BME, and 20 ng/ml rmGM-CSF (Peprotech, Rocky Hill, NJ) at 37°C in 5% CO2. On day 

3 fresh media was added, and on day 6 half of the media was gently replaced.  Immature 

DCs were used in experiments on day 7.  For mature DCs, 1 μg/ml LPS (Sigma-Aldrich, 

St. Louis, MO) were added on day 6 and cells were used in experiments on day 7.  On 

day 7, 80% or more of the non-adherent cells expressed the monocyte lineage marker 

CD11c as confirmed by flow cytometry.  When inhibitors were used, they were added to 
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cell culture 1 hour prior to imaging, with the exception of pertussis toxin, which was 

added 24 hours prior.  All inhibitors were supplied by Sigma-Alrich, St. Louis, MO.  

Inhibitors were Latrunculin A (150nM), blebbistatin (50 μM), and pertussis toxin (100 

ng/ml). 

 

Preparation of Micropost Substrates  

Microposts masters were shaped using deep reactive ion etching (DRIE) as described 

previously (24).  The silicon master is used to create a PDMS negative master, which is 

subsequently passivated with a fluorosilane.  Elastomeric micropost array substrates were 

fabricated via polydimethylsiloxane (PDMS; Sylgard 184, Dow-Corning, Midland, MI) 

by casting against the negative master.  Microposts were patterned with fibronectin by 

micro-contact printing as described previously (20). Subsequently, microposts were 

fluorescently labeled with 5 μg⁄ml Δ9-DiI (1,1′-dioleyl-3,3,3′,3′- 

tetramethylindocarbocyanine methanesulfonate; Invitrogen, Carlsbad, CA).  Cell 

adhesion was restricted to the micropost tips by blocking the unprinted surface with 0.1% 

Pluronics F127 (BASF, Mount Olive, NJ).  The micropost array was incorporated into the 

microfluidic device before plasma bonding, and posts were protected from oxidation by a 

physical barrier. 
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Fabrication of microfluidic device 

A microfluidic gradient generator was fabricated in polydimethylsiloxane (PDMS) using 

soft lithography as described previously (7), with modifications.  The microchannels 

were embossed in PDMS using soft lithography.  First, the micropost array detectors 

were attached to an acrylic support using PDMS glue, then the microchannels were 

plasma bonded (600 mTorr O2, 30 W, 20 s) onto this structure (see Figure 6.1).  

Assembled microfluidic devices containing microneedles were submerged in PBS and 

filled under vacuum.  Chemoattractant solutions of CCL19, CCL21 or neither (Peprotech, 

Rocky Hill, NJ) in complete culture media were prepared for each of the three inlets.  

Fluorescein (Fluka) was added to one inlet at 10-5 M final concentration to aid 

visualization of the gradient and to confirm its persistence during the experiment.  The 

total flowrate within the chamber was maintained at 9 μL/min using a syringe pump, 

resulting in a wall shear rate of 6 s-1.  After the gradient was visually established, the flow 

was stopped, and cells were injected via the side port and allowed to adhere for 10 min 

before resuming flow.  Using custom built LabView (National Instruments, Austin, TX) 

software, 8-12 fields of view were imaged at 40X magnification by phase and red-

channel fluorescence microscopy on a Nikon Eclipse TE300 (Nikon Inc., Melville, NY) 

in a custom enclosure maintained at 37°C and 5% CO2.  Images were captured every 3 

minutes for standard experiments, and every 6 seconds for high time-resolution 

experiments.  Cell trajectories were captured using the ImageJ ManualTracking plugin 

(http://rsbweb.nih.gov/ij), and chemotactic parameters were calculated using a custom-

written MATLAB (Mathworks, Natick, MA) script. 
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PDMS with embossed 
microchannels

coverslip coverslip
with mPAD

PDMS ‘glue’

laser-cut plexiglass support  

Figure 6.1.  Microfluidic mPAD assembly. 
 

Measurement of Traction Forces 

To measure the bending of the microneedles, the tips and base of DiI-labeled 

microneedles were visualized by epifluorescence imaging using a 40X objective on a 

Nikon Eclipse TE300 inverted microscope (Nikon Inc., Melville, NY). The centroids of 

the microneedles at both the tip and base were determined by localized thresholding 

using an automated Matlab program (22) (Mathworks, Natick, MA), to yield the 

deflected and undeflected positions, respectively. After performing image registration on 

the tip and base centroids, the force on each needle is computed by multiplying the 

deflection by the spring constant of the microneedle, which is 1.92 nN⁄μm. 
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Results 

DC Migration on Micropost Surfaces 

We measured the motility of dendritic cells on microposts of 1.5kPa elasticity coated 

with fibronectin with chemokine fields imposed by a microfluidic gradient chamber. 

During chemokinesis in the absence of a chemokine gradient, DCs migrated randomly at 

an average velocity of 2.3 ± 0.5 μm/min, similar to their velocity on other substrates (2-3, 

25).  The random motility coefficient on the mPAD surface was 48 μm2/min, slightly 

lower than on glass substrates (7).  This difference may be due to the reduced perceived 

stiffness of the substrate, since substrate mechanics often affect migration parameters 

(26).  During chemokinesis, we measured the average strain energy over the cell to be 2.3 

+/- 0.3 fJ/cell.  Overall, DC migration was not significantly altered by the micropost 

surface. 

 

We use a microfluidic gradient generator in combination with the micropost array surface 

to present DCs with a chemokine gradient while monitoring their traction forces (Fig 

6.2).  We find that DCs concentrate integrin-based contractile forces at the leading edge, 

with almost no force at the trailing edge (Fig. 6.3 A).  This pulling force is often 

characterized by a highly localized contraction of two to three microposts in which the 

net force is always pulling toward the nucleus.  This force must be counterbalanced at the 

rear, and we observe these counterbalancing forces to be diffuse, weak adhesions under 

the cell body. 
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Figure 6.2. A microfluidic gradient generator coupled to a micropost array detector.  Chemokine solutions 

containing 20, 10 or 0 nM CCL19 are perfused into inlets at the top of the chamber at 3 μL/min/inlet.  

Colors in the diagram correspond to chemokine concentration; red, green, and blue correspond to 20, 10 

and 0 nM, respectively.  The three inlets are mixed in a series of microchannels forming a smooth gradient 

in the cell viewing region.  A micropost array detector of effective stiffness 1.5 kPa forms the migration 

surface within the viewing region.  The tips of microposts are functionalized with fibronectin and the sides 

are passivated with an amphiphilic triblock copolymer.  The gradient presented to cells (2 KD/mm) has 

been optimized to induce maximal chemotactic index. 



 172

 

Figure 6.3. DCs migrating in a chemokine gradient concentrate traction forces at the leading edge.  (A) A 

representative trace of a DC following an extracellular gradient of soluble CCL19 (highest at top).  Each 

colored box underneath the cell represents a single micropost. (B-D) Representative traces of DCs treated 

with blebbistatin (B), Latrunculin A (C), or pertussis toxin (PTX) (D).  (E and F) Total cellular strain 

energy and root-mean squared force per post generated by cells in a chemokine gradient (N = 10 per 

condition).  (G) Average speed of cells on microposts in a chemokine gradient.  Speed was significantly 

reduced with actomyosin inhibitors, but not PTX.  (H) Chemotactic index, A modest decrease is observed 

with actomyosin inhibitors, but PTX greatly decreases directional migration.  (I) The cell spread area is 

increased with blebbistatin and PTX treatment. Error bars represent standard error of the mean. 
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DC Forces Depend on Actomyosin, but not Gradient Sensing 

The key components of cell motility are actin-based polymerization, myosin-based 

contraction, integrin-based adhesion, and GPCR-based signaling/polarity (2).  To disrupt 

actin polymerization, we used the chemical inhibitor Latrunculin A.  In the absence of 

actin polymerization, motility was completely abrogated (Fig. 6.3 C and G), and force 

transmission to the microposts was minimal (Fig. 6.3 C, E, and F) as cells failed to 

spread on the substrate (Fig. 6.3 I). After treatment with blebbistatin to disrupt myosin II-

based contractility, cells displayed slower speeds (Fig. 6.3 G) and greater than 50% 

reduction in traction forces (Fig. 6.3 B, E, and F).  We also used pertussis toxin (PTX) to 

disrupt chemokine signaling from the extracellular gradient (Fig. 6.3 H).  This treatment 

gave only a slight reduction in force per post (Fig. 6.3 F), while the average cellular force 

was not affected (Fig. 6.3 D and E) because the treated cells had a greater spread area 

(Fig. 6.3 I).  Taken together, this data shows that in DCs traction force and speed are 

correlated, but traction forces are somewhat independent of gradient sensing. 

 

DC Tractions Stresses Predict Direction of Motion 

While dendritic cells make use of polymerization, contraction and adhesion (2) for 

locomotion, we are able to directly measure the contractile stresses exerted through 

distinct adhesions.  We find that traction forces are stronger at the leading edge than 

under the nucleus or at the rear of the cell.  This was quantified by finding the point of 

maximal stress along the axis of motion (Fig. 6.4 A, grey line), which is typically in front 

of the cell centroid (Fig. 6.4 F).  Even when gradient sensing was lost by PTX inhibition, 
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the point of maximal stress was still generally in front of the centroid (Fig. 6.4 G), 

meaning that forces are still concentrated at the leading edge in the absence of 

asymmetric GPCR signaling.  Treatment with actomyosin inhibitors greatly reduced 

traction stresses, and the point of maximal stress was more likely to be at or near the cell 

centroid (Fig. 6.4 H, I), so directional information was lost. 

 

Using a single traction map, the direction of motion can be calculated a priori.  As a 

prediction, we search for the line of global maximum stress (Fig. 6.4 A, black line), and 

compare it to the line perpendicular to the empirical direction the cell moved over the 

following 5 minutes.  The angle subtended by these lines (Θ) describes the agreement 

between our proposed prediction and experimental outcome.  For mature dendritic cells 

migrating in a strong gradient of CCL19, we find that Θ is small (Fig. 6.4 B) indicating 

that the line of global maximal stress is close to perpendicular to the direction of motion.  

Combined with information about the cell centroid, this line gives accurate predictions 

for the direction of motion.  Again, when PTX is used to disrupt gradient perception and 

induce random migration, the line of maximal stress still predicts the direction of motion, 

though with lesser accuracy, as Θ is not as tightly distributed around 0 and 180° (Fig. 6.4 

C).  The actomyosin inhibitors further widen the distribution of Θ, decreasing the 

sensitivity of the prediction, but the maximal stress may still be used to give a rough 

indication of directionality (Fig. 6.4 D, E).  We propose that a global search of the 

traction stresses from a snapshot in time can be used to predict the direction of dendritic 

cell migration. 
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Figure 6.4.  A single traction map can be used to predict the direction of migration.  (A) Schematic.  

Traction forces are interrogated to find the line of maximal stress (LMS, black line). The angle θ is defined 

by the LMS and the vector normal to the direction of motion.  (B) A histogram of θ for untreated cells.  (C) 

Even in cells treated with PTX, the LMS can be used to approximate the direction of motion.  (D and E) 

Blebbistatin or Latrunculin A treatment decreases the accuracy of predicting the direction of motion.  (F) 

The LMS is generally found in front of the cell centroid.  The intersections are measured from the leading 

edge and scaled to the cell length.  (G) PTX treatment does not significantly change from results from the 

control.  (H and I) Actomyosin inhibitors result in a random distribution of LMS – axis intersections. 
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Temporal Duration of Dendritic Cell Traction Stresses 

DCs are highly motile amoeboid cells, moving on small timescales when compared to 

epithelial cells or fibroblasts.  Consequently, the characteristic timescale of their traction 

forces are much smaller.  DCs exert transient forces, releasing the substrate soon after the 

leading edge has passed.  To measure the timescale of this interaction, we examined 

individual post deflections as the DC leading edge approached, bound, and released the 

post (Fig. 6.5 A, B).  Since the post deflections resemble a pulse waveform, the 

characteristic time-scale (τ) was determined using a full-width, half-max analysis of the 

force profile over time (Fig. 6.5 C).  By accumulating data from posts at the leading edge 

of many cells, we find a maximum in the frequency of τ around 2 minutes, but sometimes 

extending over 6 minutes in duration.  The longer durations were associated with greater 

maximum forces exerted on the post.  More generally, τ and Fmax are correlated (Fig. 6.5 

E), indicating a constant rate of energy input from the cell.  In the relatively fast-moving 

DC, the greatest forces under the leading edge have a characteristic duration whose 

length is determined by the amount of time the cell supplies power to the substrate. 
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Figure 6.5.  Temporal analysis of dendritic cell traction forces.  (A) A dendritic cells deflect microposts 

under the leading edge.  The cell outline was traced from a phase contrast image (blue line).  The location 

of a representative micropost is identified by a black square as the cell approaches, binds and releases the 

post at 0, 5 and 10 minutes.  Scale bar represents 20 microns.  (B) Red-channel fluorescence images of 

microposts at time points corresponding to the traces in A.  Deflected posts are pseudo-colored red for 

emphasis.  The micropost of interest is tugged as the leading edge passes, then is released when underneath 

the cell.  (C) A profile of the magnitude of force on the micropost boxed in A and B.  A max-height full-

width analysis is used to determine the characteristic duration (τ) of force application.  (D) The frequency 

distribution of τ calculated over 144 microposts (N = 26).  The maximum frequency is at approximately 2 

minutes.  (E) The duration of magnitude of force on a post are correlated.  As the characteristic time τ 

increases, the maximum force reached also increases.  This suggests a constant energy output from the cell. 
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Discussion 

Microfluidic devices have become popular for delivering stable chemotactic gradients to 

cells (27-30).  Other methods for inducing chemotaxis, such as transwell assays (31), 

Zigmond chambers (32), and under-agarose assays (33) rely on transient gradients which 

make them difficult to optimize.  Similarly, micropost arrays have become popular for 

measuring traction forces due to their relatively simple fabrication and fidelity of results 

(22).  In the present work, we combine these two technologies to measure DC-substrate 

stresses in an optimized chemotactic gradient.  This type of multi-platform technology for 

accurately measuring the relationship between force and chemotactic signaling, will 

become increasingly important for elucidating cellular migration.  

 

Although the molecular machinery for migration is shared across several subtypes of 

mammalian cells, traction force profiles vary among cell types (18-19, 34).  The majority 

of research on cell-substrate forces has focused on strongly-adhesive cell types, such as 

fibroblasts (34-36), smooth muscle cells (20), epithelial cells (22, 37-38), endothelial 

cells (39-40), and stem cells (41).  Amoeboid cells represent a distinct type of migration 

which does not use focal adhesions, but rather rapidly remodels the cell shape to achieve 

locomotion (5).  It has even been shown that some leukocytes are capable of migrating in 

the absence of integrin-based adhesion (4).  Although subsequent work has shown that 

integrins are used in DC motility (3, 8, 42), no description of traction stresses of denritic 

cells has ever been published.  In contrast to neutrophils which concentrate a squeezing 

force in the uropod (18) and mesenchymal cells which generate stable pulling forces at 
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the leading edge and detachment forces at the uropod (43), we present the first traction 

force maps for DCs and show that their forces are concentrated at the leading edge or 

filopodia.  This finding is in contrast to neutrophils, the other leukocyte subtype studied 

by traction force techniques which move primarily by squeezing at the rear (18-19, 44). 

 

Since DCs have a characteristic force profile, we investigated whether migration 

direction could be predicted from a single force map.  Since the greatest forces are 

generated at the leading edge, the line of maximal stress is generally found in front of the 

cell centroid.  Additionally, by searching for the global axis of maximal stress, we were 

able to accurately predict the direction of migration on time scales shorter than the 

persistence time.  Indeed, even when an external gradient could not be sensed due to 

pertussis toxin treatment, the direction of migration can still be predicted.  When 

actomyosin inhibitors are used, the forces are greatly reduced and the axis of maximal 

stress is a less meaningful predictor. 

 

Many migrating cells make use of focal adhesions to link actomyosin machinery to 

extracellular substrates.  FAs form on the timescale of tens of minutes and last on the 

order of hours (45-47).  Amoeboid cells will often displace a cell diameter or more within 

10 minutes, so they must rely on much shorter-lived adhesions than seen in cells with 

focal adhesions. We find that DC adhesion forces are roughly bell-shaped and their 

characteristic timescale is approximately 2 minutes.  Further, the duration and magnitude 

of the force are positively correlated, indicating that the work rate of the cell is constant 
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during post deflection.  This may indicate that the myosin motors near the adhesion 

operate in an all-on or all-off mode.   

 

To reach T cells in secondary lymphoid organs, mature dendritic cells must migrate 

through peripheral tissue, occasionally cross basement membranes, enter lymphatics, and 

navigate lymphoid tissue in an integrin-mediated fashion (11-12).  Despite the 

requirement of integrins for parts of DC migration, no traction force maps have been 

produced until now.  We show here that in addition to actin-based polymerization and 

myosin-based contraction (4), DCs are able to use short-lived integrin-based adhesions in 

leading filopodia to effect migration.  Understanding these forces and the pathways that 

generate them leads us one step closer to being able to manipulate them for therapeutic 

value. 
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Chapter 7:  Conclusions and Future Work 
 

Specific Aims 

Research presented in this work shows that we were able to successfully characterize 

several aspects of dendritic cell migration. The specific aims of this work were as 

follows. 

 

1. Characterize the effect of CCR7 ligands CCL19 and CCL21 on the random 

motility of dendritic cells and assess their adhesion to common extracellular 

matrix proteins. 

 

2. Characterize the integration of chemotactic signals by dendritic cells in 

engineered gradients. 

 

3. Make the first measurements of the forces exerted by DCs during chemokinesis 

and chemotaxis. 
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Specific Findings 

Dendritic Cell Motility and Adhesion with Chemokine Stimulation 

Migration parameters including cell speed, persistence time, and random motility 

coefficient have been measured for a variety of cells from bacterial to mammalian.  

Before this work, no such data existed for dendritic cells.  In Chapter 3, we measured 

these metrics for dendritic cells, and showed them to be consistent with previous studies 

of similar cell types.  We examined the differential adhesion of DCs to substrate ligands 

as a function of chemokine concentration, and we found that DCs are able to bind 

fibronectin, but not collagen.  Adhesion was a relatively weak function of chemokine 

stimulation on both substrates.  Additionally, we showed that DCs undergo haptokinesis 

on chemokine surfaces, increasing their random motility coefficient with higher 

chemokine concentrations.  Additionally, CCL21 proved a superior ligand for inducing 

haptokinesis, which is consistent with new reports about how CCL19 and CCL21 signal 

DC motility (20).  Finally, we showed that the cell speed, persistence time, and random 

motility coefficient are complex functions of CCL19 and CCL21 concentration on 

collagen surfaces, most likely due to CCR7 regulation.  We found that the response is 

biphasic, with a maximum random motility coefficient at approximately 10 nM for both 

chemokines, indicating the KD for CCR7 binding either ligand is ~10 nM.  On 

fibronectin, we found the response to chemokine is minimal, indicating that integrin 

signaling has already saturated cell migration machinery.  The inability of DCs to bind 

collagen is especially relevant for understanding DC literature, where several studies 

examine DC migration in 3D collagen matrices (1-3).   
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Integration of Single and Multiple Chemokine Gradients 

Many studies have shown DCs migrate toward the chemokines CCL19 and CCL21 in 

transwell assays.  These assays are limited in their ability to capture detailed information 

about the mechanisms by which cells polarize themselves and migrate in response to 

stimuli.  In Chapter 4, we used a microfluidic device to quantitatively investigate immune 

cell migration in response to varying chemoattractant gradients (4).  This tool allowed us 

to answer several fundamental questions about chemokine signal integration.  We showed 

that DCs respond almost identically to CCL19, CCL21, and CXCL12 in a single, 

optimized gradient.  Cells were better able to adapt to CCL19, however, which may be 

due to CCL19 binding by CRAM (5-6).  In counter-gradients, we showed that CCL19 is 

preferred to CCL21 or CXCL12, indicating a hierarchy of preferred chemokines.  

Interestingly, in counter-gradient experiments, we showed that cells will seek a central 

position between matched counter-gradients.  We believe this may play a role in how 

DCs find their ultimate position within secondary lymphoid organs.   

Inhibitors of Dendritic Cell Chemotaxis 

In Chapter 4, we went further to examine the role of specific molecular pathways in a 

migrating DC.  By using small molecule inhibitors, we found that actomyosin 

components were required for maintaining optimal cell speed, but did not affect the cell's 

ability to navigate.  Conversely, by using pertussis toxin, we showed that GPCR signaling 

is critical for directional sensing, but cells are fully motile in their absence.  This ability 

to migrate on fibronectin substrates without chemokine cues supports our earlier findings 

from Chapter 3.  Finally, we discovered the surprising result that the PI3K pathway is 
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dispensable for DC chemotaxis.  After we made this observation, similar observations 

were made in a related cell type, monocytes (7). 

Application of Microfluidic Techniques to HS1 Knockout DCs 

Chapter 5 focuses on the role of HS1 in dendritic cells.  This previously unstudied 

molecule is structurally related to cofilin, but its role in dendritic cells was unknown.  We 

carefully characterized the HS1 knockout phenotype, especially its role in dendritic cell 

migration.  This chapter places greater emphasis on immature dendritic cells, which 

coordinate podosomes arrays to facilitate migration.  We found that the greatest impact of 

the HS1 KO phenotype was an inability to organize podosome arrays, which are typically 

found near the leading edge.  After extensive analysis with transwell assays, only small 

differences in chemotaxis could be observed.  By the application of our microfluidic 

gradient generator and direct observation of migration, however, we were able to observe 

subtle nuances of HS1 deficiency.  Specifically, we found that loss of HS1 lead to 

increased migration speed and random motility coefficient, but decreased chemotactic 

index (8).  Thus we were able to conclude that HS1 helps stabilize filopodia extended in 

the correct direction of migration. 

Measurement of Dendritic Cell Traction Forces 

In Chapter 6, we extended the use of microfluidic gradient technology to the study of DC 

migration on substrates suitable for traction force microscopy to enable simultaneous 

measurements of migration and force in individual cells.  DCs have been shown here to 

be "front wheel drive" cells, in contrast to their leukocyte cousins, neutrophils.  In 
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Chapter 6, we used a combination of micropost array detectors and a microfluidic 

gradient generator to develop a novel method for probing traction forces of murine DCs 

during directional migration.  We found that DCs migration was primarily driven by 

short-lived traction stresses near the leading edge.  The magnitude of DC traction forces 

was smaller in magnitude than found in neutrophils, and similar during chemotaxis and 

chemokinesis.  Interestingly, we found that maximal stress in the cell occurs 

perpendicular to the axis of motion, ahead of the cell centroid. We further illustrated how 

the spatiotemporal pattern of traction stresses could be used to predict changes in the 

direction of DC motion.  Additionally, we determined the characteristic duration of local 

dendritic cell traction forces, and found that DCs produce a constant energy output as 

they deflect posts.  When we blocked chemokine signaling with pertussis toxin, we 

observed traction forces similar to that during chemokinesis, even in a chemokine 

gradient.  Overall, we showed that DCs possess a mode of migration distinct from both 

mesenchymal cells and neutrophils, characterized by rapid turnover of traction forces in 

leading filopodia.  This represents the first measurement of traction forces in dendritic 

cells (9). 

Future Recommendations 

This work demonstrated the modulation of dendritic cell motility in a variety of in vitro 

environments. In this section, recommendations will be made for direct extension of the 

aims that have described throughout this dissertation and preliminary data will be 

presented. 
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Extending Knowledge of CCR7 Signaling in DCs 

Our studies focus on observing phenomena at the cellular level.  However, it is often 

useful to extend observations to larger scales, such as animal models, or smaller scales, 

employing molecular biology.  Such is the case with CCR7 signaling.  We cite seminal 

work with CCL19 and CCL21 to show that their KDs are similar (10), and we observe a 

maxima in chemokinesis at the same value (see Chapter 3).  However, in the same paper, 

when Yoshida et al used primary T cells for the same type of experiment they came to 

the following conclusion: "Notably, however, SLC was somehow less efficient in cross-

desensitization against ELC in calcium mobilization and in cross-competition with ELC 

for binding when assessed using cultured normal T cells" (10).  Later, Britschgi et al 

made a related observation (11).  They stained T cells with a CCC19-Fc construct and 

observed that CCL19-Fc could be displaced by untagged CCL19 as expected. However it 

was not possible to outcompete CCL19-Fc binding with CCL21. This may suggest 

different affinities or Kon/Koff rates.  Hence it would be useful to perform radiological 

studies of CCL19-I125 and CCL21-I125 binding to our DCs to more accurately measure the 

specific KD in our experimental system.  

 

In Chapter 4, we showed that cells are better able to adapt to CCL19 gradients than 

CCL21 or CXCL12.  One way to further analyze this phenomenon would be to globally 

increase one attractant and expose the cells to gradients of the other.  Such measurements 

could be extremely interesting as many groups have shown internalization differences 

between CCL19 and CCL21.  Initially the Sallusto group demonstrated this (12) and the 

finding was followed up in numerous studies (13) and the molecular basis of the 
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signaling differences have been investigated (14-15).  MAPK signaling appears to be 

stronger in response to CCL19 and it is firmly established that CCL19 triggers CCR7 

serine phosphorylations, arrestin recruitment and thereby endocytosis while CCL21 does 

not (15).  If the signaling is different between the chemokines the effects in the 

competing gradients could be nicely investigated and the situation might be similar to 

previous findings (16) where it is described on a molecular level how cells can prioritize 

one chemotactic signal over another.  Following up the results of Byers et al, one could 

try to knock down arrestins and investigate the response in competing gradients. 

Combining Microfluidic Gradients with Cell Staining 

Another technique used to gather information about subcellular organization is 

immunocytochemistry (ICC).  ICC is a common laboratory technique that uses antibodies 

that target proteins within a cell via specific epitopes.  These bound antibodies can later 

be detected using several methods, most commonly secondary labeling with an antibody 

conjugated to a fluorophore.  This could give valuable information about where specific 

proteins, such as myosin IIb, Rac, Rho, Cdc42, etc. are distributed in a chemotaxing cell. 

However, this technique is not possible with our current microfluidic system because the 

PDMS microfluidic gradient generator is covalently attached to the glass substrate.  An 

adapted gradient generator has been developed (Figure 7.1) that would allow the PDMS 

channels to be removed from the substrate.  The new gradient generator is sealed to the 

glass surface via vacuum suction and proof of concept experiments have already been 

completed.  This device should be used to induce chemotaxis, then removed and ICC 

used to probe proteins of interest. 



 192

 

Figure 7.1.  Schematic for the photomask of a microfluidic gradient generator.  This gradient generator can 

be vacuum sealed to the migration surface and removed after the experiment allowing facile ICC staining 

of cells undergoing chemotaxis. 

Mathematical Model of DC Navigation 

Chapter 4 provides valuable experimental data for mature dendritic cells migrating in 

overlapping gradients.  We showed experimentally how cells respond to gradients of 

CCL19, CCL21 and CXCL12.  This is a rich data set, which could be applied to a model 

of dendritic cell—or more generally, leukocyte—migration.  Some modeling framework 

for chemokine integration of multiple signals already exists (17).  Indeed, we have 

applied this model to our dataset, and successfully modeled migration in single 

chemokine gradients.  In overlapping gradients, this model fails to predict the cells' 

preference for CCL19 over CCL21 or CXCL12.  We hypothesized earlier that an 

explanation for this preference is the presence of the CRAM receptor on DCs (5).  The 

CRAM receptor binds CCL19, effectively lowering its local concentration.  This would 

explain how DCs are better able to adapt to large concentrations of CCL19.  It also 

provides a qualitative explanation for the behavior we observe in counter-gradients.  
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Mathematical modeling of this behavior would be an elegant addition to our experimental 

data. 

Extension of Overlapping Gradients to Other Cell Types 

This thesis deals exclusively with dendritic cells, which hold a special place in this 

researcher's heart.  However, the techniques developed in this thesis are readily adaptable 

to studying other cell types.  Specifically, endothelial cell chemotaxis in controlled 

gradients has only recently been attempted, and several questions remain unanswered.  

Additionally, the mPAD system is well suited to studying small forces, below the force 

resolution of polyacrylamide gels, so other 'weak' cells such as T and B lymphocytes, 

macrophages, and NK cells could be examined.  We hope the platform developed here is 

extended to several motile cells, allowing commonalities to be identified and 

comparisons to be made. 

Comparison of Traction Force Techniques 

As described in Chapter 2, several techniques have been developed for studying the 

forces cells transmit to their surroundings.  The two most prominent platforms at present 

are polyacrylamide gels and micropost arrays.  Since these platforms are both designed to 

measure the same forces, yet have distinct characteristics—most notably a continuous 

versus discontinuous binding surface—it would be interesting to compare their results.  

Dendritic cells may not be optimally suited for this side-by-side experiment, since their 

forces are so small that they are difficult to resolve using polyacrylamide gels.  

Neutrophils would be an excellent choice because they are motile under a variety of 
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conditions (18), they exert reasonably strong traction forces (19), and they are well 

studied in literature.  A side-by-side comparison could highlight the relative strengths and 

weaknesses of these two traction force techniques. 

 

Final Thoughts 

This thesis attempts to address the question of how cells migrate to perform their 

function.  Although the work contained in this thesis is substantial, it is but a small step 

forward in a journey of many miles.  The problem of cell migration is so vast that it has 

spawned new journals, inspired a handful of annual conferences, and attracted incredible 

sums of research dollars.  Cell migration is absolutely essential for physiological 

processes such as wound healing, cancer metastasis, innate and adaptive immune 

responses, neurological development, and maintaining homeostasis.  This thesis answers 

fundamental questions about dendritic cell migration, but it is my hope that it will help 

form the foundation for future work that will ultimately improve the quality of human 

life. 
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