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ABSTRACT 

 

VIRUS-SIZE NANOPARTICLES COATED WITH A SYNTHETIC “SELF” 

PEPTIDE INHIBIT PHAGOCYTIC CLEARANCE AND ENHANCE DELIVERY OF 

AN ANTI-CANCER DRUG 

 

Pía Lorena Rodríguez Núñez 

 

Dr. Dennis E. Discher 

 

Professional phagocytes are white blood cells of the innate immune 

system that protect humans and other animals from attacks by foreign pathogens 

by ingesting potentially harmful circulating particles.  However, phagocytes such 

as macrophages may also attack elements that have been intentionally 

introduced into the body, such as implants, artificial tissues, artificial organs and 

vesicles bearing therapeutic agents, reducing their lifetime in the body.  

Nanoparticles and liposomes are similar in size to viruses, and are frequently 

decorated with antibodies for targeted therapeutics or imaging purposes.  

Although such particles are sufficiently small to avoid passive entrapment within 

capillaries in vivo, macrophages in the spleen and liver are known to clear these 

particles within hours or days after injection into the circulation, limiting proper 
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delivery to target disease sites. This dissertation describes the engineering of 

long-circulating nanoscale carriers bearing a universal marker that avoids 

macrophage clearance by mimicking the process of recognition of “self” cells in 

vivo. The membrane protein CD47 is a marker of “self” that impedes 

phagocytosis of “self” cells by signaling through a species-specific, highly 

polymorphic receptor named SIRPα.  Among natural mouse variants, only 

NOD.SCID gamma chain (NSG) mice express a mouse polymorph of SIRPα that 

cross-reacts with human CD47, and thus provided an ideal platform for our in 

vivo assessment of human CD47 on synthetic particles. Based on the co-

crystallized structure of the CD47-SIRPα complex, polypeptides were designed 

by simulation and then synthesized with the further reductionist goal of identifying 

and then exploiting the most minimal components necessary for CD47-SIRPα 

complex interactions.  This thesis details a reductionist approach that avoids 

many potentially confounding biological factors, and constitutes a first example of 

a synthetic, human ligand that is easily attached to synthetic surfaces and can 

successfully mediate binding and signaling to phagocyte receptors to inhibit 

phagocytic uptake. By understanding how both the full-length as well as the 

minimal component of the hCD47-SIRPα interaction works in vivo, this 

dissertation was able to elucidate potential therapeutic roles for anti-hCD47 

antibody targeting in biodistribution of drugs delivered to solid tumors, among 

other applications. 
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CHAPTER 1: Introduction to CD47-SIRP α 
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1.1 – Background 

The immune system has evolved to counteract assault on the body by 

non-“self” entities that may compromise an individual’s health. This tight 

regulation involves complex interactions between membrane proteins on 

Macrophages that play key roles in both the innate and adaptive immune 

responses. Viable cells are normally not phagocytosed since CD47 on their 

surface can interact with the phagocytosis inhibitor receptor signal regulatory 

protein alpha (SIRPα) on the macrophage (Oldenborg 2000). Both CD47 and 

SIRPα are critical aspects of this doctoral dissertation, and therefore we start by 

providing some important background information on both of them. 

The ubiquitously expressed protein CD47 is an Ig superfamily member 

that interacts specifically with SIRPα found on macrophages (Jiang 1999; Seiffert 

1999; Vernon-Wilson 2000) and innate immune cell as a regulator or toll receptor 

signaling (Kong 2007). CD47 interacts with signal regulatory protein-α (SIRPα), 

thrombospondin (TSP)-1 and -2 to mediate various cellular functions (Oldenborg 

2001). In particular, CD47 signaling through SIRPα inhibits the phagocytosis of 

CD47-expressing target cells by SIRPα-expressing macrophages. 

Phosphorylation of the immune-receptor tyrosine-based inhibitory motif (ITIM) in 

the cytoplasmic domain of SIRPα upon ligation with CD47 leads to the 

recruitment of SHP-1 and deactivation of phagocytosis (Vernon-Wilson 2000; 
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Seiffert 2001). The loss of CD47 protein in red blood cells (RBCs), platelets, 

apoptotic cells and lymphocytes results in their rapid elimination by splenic 

macrophages (Oldenborg 2001; Krieser 2002; Oldenborg 2004, Gardai 2005; 

Majeti 2009).  Anti-CD47 monoclonal antibodies inhibiting the interaction of CD47 

and SIRPα promote the phagocytosis of tumor cells by macrophages, and also 

by monocytes and neutrophils (Gresham 1989, Jaiswal 2009).  Anti-CD47 

monoclonal antibodies have been shown to inhibit phagocytosis in vitro and 

significantly inhibit myeloma growth in human fetal bone-free and –bearing 

xenotransplantation models in vivo (Kim 2012).   

The receptor SIRPα is composed of three immunoglobulin superfamily 

(IgSF) domains while CD47 contains only a single IgSF domain with a disulfide 

link across one of the loops between the transmembrane regions (Tsai 2008), 

which may be required for optimal binding of SIRPα. The crystal structure of the 

SIRPα-CD47 complex indicates a high degree of flexibility in the SIRPα loops, 

and that CD47 binds SIRPα at its N-terminal ligand-binding domain (Hatherley 

2008).  

Expression of both SIRPα and CD47 on the surface of macrophages 

raises the possibility that these proteins interact on the same macrophage 

surface (in cis). The occurrence of cis interactions would have implications for 

SIRPα’s ability to bind to CD47 on target cells (in trans) (Doucey 2004).  
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CD47 binds to SIRPα with relatively low affinity, and the interaction does 

not result in strong cell-cell adhesion (Hatherley 2007; Subramanian 2007). The 

lower affinity interaction of CD47-SIRPα instead allows for transient cis or trans 

interactions during intracellular or intercellular binding. CD47 expression is not 

limited to red blood cells, being present in many other cell types including 

macrophages. SIRPα belongs to the “paired receptors” class of membrane 

proteins, and exhibits homology to other receptors on innate immune cells 

including natural killer (NK) cells, as well as to major histocompatibility complex 

(MHC) proteins (Lanier 2005).  

Recently, research on the high degree of polymorphisms in the SIRPα N-

terminal domain reported by Takenaka et al. (2007) implicated the SIRPα locus 

in the more efficient engraftment of human bone marrow stem cells into the non-

obese diabetic severe combined immunodeficiency (NOD.SCID) mouse strain 

over other strains. In general, there is little cross reaction between CD47 from 

one species and SIRPα of another (Subramanian 2006, 2007). However, the 

allele of SIRPα in the NOD.SCID mouse is sufficiently different from other mouse 

strains to enable binding to human CD47 and mediate protection of human cells 

from host macrophages, allowing for xenogenenic engraftment. (Barclay 2009). 

Recent studies have showed that some transgenic BALB/c mice exhibited 

increased engraftment of human hematopoietic cells improved functionality of the 

human immune cells over NOD.SCID, and NOD.SCID gamma (NSG) mice 
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(Strowig 2011, Legrand 2011). However, further analysis of the SIRPα proteins in 

these strains need to be done to show the binding affinity constant of those 

SIRPα to hCD47. In this dissertation, we have adopted a conservative approach 

by electing to utilize the NSG strain as the host in which to study the CD47-

SIRPα interaction.  

1.2 – Motivation for reductionist approach with par ticles 

A major challenge in injecting particles or implanting biomaterials into the 

body is the possibility that they will activate an immune response. The 

internalization of extracellular material into cells is commonly performed by a 

process called endocytosis, which is divided into two general categories: 

phagocytosis, which involves the uptake of particles, and pinocytosis, which 

involves the uptake of fluid and solutes. Phagocytosis is an essential arm of the 

immune response whose main function is to clear and destroy invading 

pathogens (Allen 1996). This chore is conducted primarily by highly specialized 

cells, such as macrophages, monocytes and neutrophils, with the goal of clearing 

pathogens and/or debris (Stuart 2008). Interestingly, macrophages have a 

surface receptor mechanism which prevents them from phagocytosing one’s own 

“self” cells. During initial macrophage engulfment, macrophages recognize both 

foreign and “self” targets because both display antibodies or plasma complement 

proteins on their surface. However, before macrophage engulfment, “self” cells 
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are checked for the presence of the surface protein CD47. While it has been 

shown that macrophages are efficient at discriminating between foreign cells and 

particles in the micrometer size range (Tsai 2008), little is known about how this 

“self” signal, CD47, behaves in targets that are less than 500 nanometers in size. 

In fact, particles that are in the nanometer length scales may undergo a process 

other than traditional phagocytosis (Wright 1984, Koval 1998; Rejman 2004). 

Therefore, new research is needed in order to enhance our understanding of how 

macrophage targets use the CD47 “self” signal in the nanometer range, which is 

precisely the focus of this dissertation. In this thesis work, we employ a 

reductionist approach by designing short peptides that can easily attach to 

nanobeads.  This allowed us to quantify binding to and signaling of these 

peptides as well as of soluble-CD47 to its receptor, SIRPα. Inhibition of 

phagocytosis mediated either by peptide-coated or by CD47-coated beads was 

also quantified, as well as the beads’ in vivo clearance kinetics in NSG mice. 

1.3 – Phagocytosis after opsonization  

The extent of macrophage signaling induced by the interaction between 

CD47 ligand to its receptor SIRPα is affected by the expression levels of both 

proteins. Macrophages sense foreign and self through SIRPα recognition of self 

protein, CD47 on target cells stimulate tyrosine activation of the immune-receptor 

tyrosine-based inhibitory motif (ITIM) which leads to recruitment of SHP-1 and 
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subsequent deactivation of cytoskeletal proteins (Tsai 2008). The process of 

phagocytosis is often activated when opsonins such as antibodies attach and are 

recognized by Fc receptors (FcR). Foreign cells and viruses as well as autologous 

cells are typically Ig-opsonized by antibodies (McCullough 1988; Turrini 1993; 

Wilflingseder 2007). Also, since particles are rapidly cleared whenever an 

antibody is added to a nanoparticle, the tradeoff between the amount of Opsonin 

and CD47 protein added onto particle surfaces needs to be studied. For our 

purposes, as NSG mice lack IgG and since IgG is one of the three most 

commonly adsorbed serum proteins, we added the IgG opsonin to the 

nanobeads before injection in order to render the system more analogous to 

normal animals and humans. 

Similarly, in order to study the effect of the ligand-receptor interaction in 

phagocytosis after opsonization, we designed an experimental system in which 

sheep and human red blood cells (RBC) were IgG-opsonized and fed to 

macrophages. We found that the opsonization levels linearly correlated with anti-

serum dilution (Fig 1.1 ), while phagocytosis of sheep RBC by human-derived 

THP-1 macrophages was non-linear, exhibiting a response that could be 

saturated.  

This is consistent with one of our previous findings (Tsai 2010) wherein 

opsinized particles were fed to human or mouse macrophages that lacked 

membrane proteins such as Rh proteins. The particles were avidin-coated and 
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IgG-opsonized with anti-streptavidin in order to allow for FcγR-mediated 

phagocytosis. Human macrophages phagocytosed the uncoated, “CD47-null” 

beads significantly more than beads displaying hCD47. The two ligands, CD47 

and IgG-opsonin, do not compete and do not interfere with SIRPα binding (Tsai 

2008). Thus, the dependence on the level of IgG-opsonization fit that of a 

saturating binding process, which was indicative of the specificity of Fcγ-R 

mediated phagocytosis, as seen with RBC. 

The “decision” of a macrophage to phagocytose a target is in part made 

by assessing the extent of target opsonization. Ig concentrations are typically 

very high in bodily fluids, which seems to lead to absorption or at least weak 

binding in some level to all cells (Turrini 1993)-- especially aged blood cells 

(Fossati-Jimack 2002). Our binding, signaling, and phagocytosis results 

motivated additional characterization of CD47 expression levels on all cells 

involved, especially in light of changes in CD47 expression levels that are seen 

on hematopoietic stem cells (HSC) (Jaiswal 2009).   



 

Fig.1.1.- Pha gocytosis of Ig

macrophages.  

(A) Fresh sheep and human RBC were incubated with anti
dilution ratios and detected by FITC
based on flow cytometry. 
macrophages at different op
showed a saturable type of response
  

The goal of this dissertation was to design polypeptides that could avoid 

species-specific clearance to enhance xenotrasplantation. We

SIRPα binding by inves
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gocytosis of Ig -opsonized sheep RBC by human

Fresh sheep and human RBC were incubated with anti-serum at different 
dilution ratios and detected by FITC-anti-RBC, exhibiting a linear opsonization 
based on flow cytometry. (B) Phagocytosis of shRBC by human
macrophages at different opsonization level observed by DIC microscopy 

d a saturable type of response. 

The goal of this dissertation was to design polypeptides that could avoid 

clearance to enhance xenotrasplantation. We quantified

binding by investigating the inhibitory mechanisms of phagocytosis and 

RBC by human -THP-1 

serum at different 
RBC, exhibiting a linear opsonization 

Phagocytosis of shRBC by human-derived THP-1 
sonization level observed by DIC microscopy 

The goal of this dissertation was to design polypeptides that could avoid 

quantified CD47-

tigating the inhibitory mechanisms of phagocytosis and 
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their implications in body clearance. Based on recent research and collaborative 

work with former graduate students, we followed a bottom-up approach to study 

this “self” recognition protein. CD47 was used to study the phagocytic 

mechanism in macrophages. We were able to show a species-specific 

recognition of “self” by using RBC from sheep and humans as non-“self” and 

“self” targets in vitro. We also developed a mathematical model to understand the 

trans and cis interactions of the “self”-receptor SIRPα in macrophages that 

expressed CD47, and how the cis interaction may impede the ability to effectively 

differentiate between “self” and non-“self” due to inherent inhibitory signals.  

As part of the innate immune response neutrophils are also involved in 

phagocytosis of non-“self” targets. Neutrophils, as with all phagocytizing immune 

cells, are strongly driven to phagocytose by the presence of opsonins such as 

antibodies, highlighting the cooperative nature of the innate and adaptive 

immune responses. Therefore, we extended our studies of phagocytosis into 

migration effects of hCD47 and “self” peptide on neutrophils. 

We also explored the species-specific interaction of SIRPα-CD47 with 

NSG macrophages and RBCs in order to determine the effects of affinity and 

phagocytosis in the clearance process of foreign nanoparticles by the immune 

system.  Finally, we explored the potential for enhanced imaging of tumors with 

near-infrared nanobeads conjugated with hCD47 or “self” peptide. If tumor 

perfusion of the particles and the subsequent enhanced permeability and 
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retention (EPR) effect of immune system evasion were increased, there would be 

potential for biomedical applications. Specifically, we studied whether 

recombinant hCD47 protein or the small synthetic “self” peptide could enhance 

the effects of an anti-cancer drug and whether it could improve the delivery of 

nanoparticles to tumor sites when they contained bioactive antibodies against a 

therapeutic target.   
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Abstract 

Foreign particles and cells are rapidly cleared from the body by 

professional phagocytes that incessantly encounter and recognize “self” cells.  

The membrane protein CD47 appears to be a ‘Marker of Self’ that impedes 

phagocytosis of self cells, with signaling through a species-specific, highly 

polymorphic receptor, SIRPα. Here, minimal “self” peptides were computationally 

designed from human-CD47, synthesized with anchoring groups, and attached to 

virus-size nanoparticles for injection into NOD.SCID (NSG) mice that are known 

to exhibit unique compatibility with human cells.  The hCD47-peptides delay 

splenic clearance of particles by macrophages with an exponential advantage in 

persistent circulation.  The affinity of hCD47 for NSG-SIRPα proves weak but 

within the broad range (0.1~5 µM) measured for ten constructed variants of 

human-SIRPα; several versions of hCD47-peptide are likewise shown to bind 

and potently inhibit nanoparticle uptake by an unexpected cytoskeletal 

mechanism.  The reductionist approach reveals the importance and utility as well 

as some limits of a human ‘Marker of Self’.   

2.1 – Introduction 

Macrophages engulf invading microbes and dying cells in a highly 

coordinated and active process that evolved over eons and occurs also now in 

foreign body responses to injected particles and implants. This clearance 
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function of phagocytes is delayed but not eliminated by dense ‘Stealth’ brushes 

such as with polyethylene glycol (PEG) on circulating nanoparticles and 

liposomes used in therapeutics and imaging (Klibanov 1991, Photos 2003, 

Bartlett 2007).  Coating with PEG of (<500 nm) indeed helps to delay rapid 

clearance and to thereby provide more time for circulation through disease sites 

such as tumors, but neither PEG nor targeting groups can stop the clearance of a 

majority of particles from the circulation by macrophages in the spleen and liver 

(e.g. Klibanov 1991, Photos 2003, Turk 2004, Bartlett 2007, Rossin 2008).  

Delivery to disease sites can also be limited by phagocytic uptake by tumor-

associated macrophages for example (Turk 2004), and the acquired immunity to 

foreign polymers has become an additional concern (Armstrong 2007).  In 

contrast, “self” cells and tissues are in constant contact with and well-tolerated by 

macrophages, which has suggested critical mechanisms of self recognition.  

Here we describe a reductionist approach to a synthetic but humanized “Active 

Stealth” peptide that specifically binds and signals “self” to phagocytes in 

blocking clearance of particles as small as viruses. 

CD47 glycoprotein is a putative ‘Marker of Self’ (Oldenborg 2000) normally 

expressed on all cell membranes in humans, mice and other higher organisms 

(Bentley 2010), and it often associates in cis with integrins (Brown 2001) and in 

other species-specific, immunogenic macrocomplexes on cells (Bruce 2003, 

Mouro-Chanteloup 2003, Subramanian 2006)  Mouse knockouts of CD47 
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(mCD47) are surprisingly viable, but when red blood cells from these mice 

(mRBCs) are injected into the circulation of control mice, the deficient cells are 

cleared within hours by macrophages of the spleen compared to normal mRBC 

that circulate for weeks (Oldenborg 2000).  CD47’s extracellular domain interacts 

with SIRPα (Signal Regulatory Protein-α) on phagocytes (Brown 2001), and the 

binding is species-specific (Subramanian 2006) in part because SIRPα is highly 

polymorphic within a species (Takenaka 2007).  Indeed, NOD.SCID strains of 

mice happen to express one variant of mouse-SIRPα that cross-reacts with 

human-CD47, which explains why human hematopoietic cells engraft and 

circulate in NOD.SCID better than any other mouse strain (Takenaka 2007, 

Strowig  2011).  In vitro, the CD47-SIRPα interaction inhibits mouse macrophage 

uptake of antibody-coated mRBCs (Oldenborg 2000) as well as human 

macrophage uptake of both human-RBC and human-CD47 (hCD47)-coated 

microparticles (Tsai 2008).  SIRPα signaling ultimately inhibits contractility-driven 

uptake of micron-size cells and particles (Tsai 2008), but while contractile forces 

exerted by the cytoskeleton are sensible for uptake of such large objects they are 

widely considered unimportant to internalization of nanoparticles and viruses.   

We address whether human-CD47 and a synthetic “self” peptide on such 

small particles can minimize phagocytic uptake and thereby enhance delivery in 

vivo here using NOD.SCID/Il2rg-/- mice (NSG).  Our reductionist approach 

eliminates confounding, biological factors on cell membranes (e.g. integrins), and 
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the results with a minimal “self” peptide constitute a first example of a synthetic, 

human ligand that binds and signals to phagocyte receptors to passivate 

macrophages. 

2.2 – Results 

2.2.1 – Human CD47 and a “self”-peptide prolong cir culation of 

nanoparticles in vivo  

To check that CD47 is effective in the NSG mouse strain and to also 

establish a method for comparing circulation times, we first sought to show that 

blocking of mCD47 accelerates clearance of mouse-RBCs in NSG mice.  

Competitive circulation studies were designed to maximize accuracy in 

quantitation for each mouse (Fig. 2.1A ), with cells (or nanobeads) split into two 

samples with one sample labeled by red fluorophore and the other sample 

labeled by far-red fluorophore plus anti-mCD47.  The samples were then mixed 

1:1 for injection into the same mouse. Bleeds at subsequent time points 

(including t = 0) are analyzed by flow cytometry for both colors (Fig. 2.S1A ), 

providing a ratio result that minimizes variations mouse-to-mouse.  Since NSG 

mice lack serum IgG (~100 µM in normal mice), cells were also heavily 

opsonized by anti-mRBC to controllably accelerate clearance via phagocytosis 

(Cox 2001).  IgG is also found in abundance on normal RBC in vivo (Turrini 

1993) as well as on nanoparticles (Lundqvist 2008) and on viruses (Wilflingseder 
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2010), and so clearance signals are ever-present. Consistent with a ‘Marker of 

Self’ function of mCD47, the persistence ratio for the mixed sample [mRBC / 

(mRBC with blocked mCD47)] increased exponentially (R2 = 0.93) with a 

doubling time of T = 33 min (Fig. 2.1B ); single color results give T = 30 min (Fig. 

2.S1B), such a doubling time advantage sustained over one full day would yield 

~10-trillion more RBC with CD47 (= 224h/33min) compared to every circulating RBC 

without CD47. This exceeds the daily production of RBCs in humans by about 

100-fold and begins to suggest the potency of CD47 and/or co-factors on RBC.  

RBC membranes are complicated with hundreds of different interacting 

proteins, and some involved in clearance are distinct between mouse and man 

(Mouro-Chanteloup 2003, Glodek 2010). Beads have much better defined 

surface properties and enable addition of ‘Marker of Self’ ligands, but it is well-

appreciated that rigid beads must be far smaller than highly flexible RBC to avoid 

first-pass clearance from the microcirculation (Deplaine 2010).  Nanoparticles are 

thus needed but can be a challenge to characterize in vivo. The extracellular, Ig-

like domain of human-CD47 (hCD47) that binds SIRPα was recombinantly 

expressed, site-specifically biotinylated, and then bound to Streptavidin-coated, 

160 nm polystyrene nanobeads for in vivo and in vitro studies.  Beads were also 

labeled with red or near-infrared dyes (or left unlabeled) and opsonized equally 

with anti-Streptavidin before injection into the tail-vein of an NSG mouse.  Whole 

blood analysis by flow cytometry clearly identified these nanobeads in the 
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circulation based on both distinctive scatter and fluorescence detection of anti-

Streptavidin (Fig. 2.1A, inset ; Fig. 2.S1C ). The persistence ratio for 

(Nanobead+hCD47 / Nanobead) is again well-controlled at every time-point and 

increases exponentially with a relative doubling time T = 30 min (Fig. 2.1C ), 

which is about the same as mouse-RBC above ("doubling time" for beads does 

not refer to an actual ability to replicate, but is instead used as an analogy to 

demonstrate that beads behave similarly to RBC). Mice injected with just a single 

color of nanobead gave similar results (Fig. 2.S1D ). In order to test whether any 

other opsonins would have similar effects in circulation, we tested a targeting 

antibody that yielded similar results (Fig. 2.S1E ). As one of two controls, PEG-

biotin modified beads gave a flat persistence curve with  T > 200 min (Fig. 2.1C, 

Fig. 2.S2B) .  Additionally, longer circulation studies with PEGylated particles 

(Fig. 2.S2A ) provided some evidence that adding CD47 to these particles 

increase the circulation time in vivo even when targeting or opsonizing antibodies 

are not pre-attached onto the beads, which correlates with the phagocytosis 

assays in vitro (Fig. 2.S2D).  Human-CD47 on virus-size nanoparticles thus acts 

as an inhibitor of in vivo clearance, thereby prolonging circulation. 

Minimizing the 117 amino acid, recombinant hCD47 domain to a binding 

site peptide could provide, we thought, the clearest evidence that binding and 

signaling of hCD47 to mSIRPα is the molecular mechanism of inhibition in vivo.  

Mouse and human CD47 differ by about 40% in the sequence of SIRPα’s N-
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terminal domain, and these differences include one or more amino acids in each 

of three distinct binding sequences in the co-crystal structure of hCD47-hSIRPα 

(Hatherley, 2008). Multiple mutations in each sequence decrease binding 

substantially (Hatherley, 2008), but the highest density of interactions with 

hSIRPα are in one loop in hCD47 between canonical β-strands ‘F’ and ‘G’, where 

a nine amino acid sequence constitutes 40% of hCD47’s contacting residues.  

Our first guess design was a 21 amino acid “self”-peptide, which was simulated 

for stability and interactions (see below) and then synthesized with the aims of (i) 

minimizing species specificity (Strowig 2011), (ii) eliminating the glycosylation of 

CD47 that impedes binding (Subramanian 2007), and (iii) developing Scrambled, 

inactive peptides. Biotinylation on an amino-terminal PEG linker provided a 

means of attachment to Streptavidin-beads for in vivo studies. Surprisingly, the 

“self”-peptide increased persistence of beads in the circulation compared even to 

recombinant hCD47:  the faster growing exponential has a 40% smaller doubling 

time of  T = 18 min compared to control nanobeads (Fig. 2.1C ). In comparison, 

Scrambled-peptide has little impact on circulation, which suggests specificity to 

interactions as analyzed in detail below for these and additional synthetic 

designs. An apparent difference between hCD47 and ‘Self’ peptide is not 

significant (p = 0.18). 
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2.2.2 – hCD47 binds NSG-SIRP αααα weakly but within a broad range of 

affinities for human polymorphisms  

Flow cytometry enables detailed analysis of the surface of nanobeads 

before injection (Fig. 2.S2C) and in blood drawn at various time points post-

injection. While anti-streptavidin IgG remains stably bound to beads, a fraction of 

the biotinylated-hCD47 is often lost from the bead surface (30% in Fig. 2.2A , 

inset bargraph; Fig. 2.S4A ), even though the biotin part of the protein was 

strongly attached to avidin present on the bead surface. This could be due to the 

presence of a biotinylase enzyme in circulation that has been shown to 

compromise avidin:biotin binding (Kuroishi 2008; Jeong Lee 2000). Thus, CD47 

could be binding free biotin upon detaching from the beads. Covalent attachment 

of biotinylated-hCD47 might ameliorate this problem. Nonetheless, the %-

Clearance of nanobeads at 35 min versus the measured density of hCD47 at 35 

min fit well to a simple inhibition model that also fits our “self”-peptide results 

(Fig. 2.2 A ) with:  

Ki,in-vivo = 110 molecules per 160 nm Nanobead 

This appears independent of circulating bead number over at least a ~ten-

fold range (Fig. 2.S4 B ).This corresponds to a density of hCD47 that is about 

ten-fold higher than the lowest densities reported for human RBC (i.e. ~25 

hCD47 molecules/µm2 (Mouro-Chanteloup 2003)).  Indeed, saturable binding of 

soluble hCD47 to fresh, NSG-SIRPα+ phagocytes yields a weak, effective affinity 
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of just Kd = 4 µM (Fig. 2.2B ).  Lymphocytes do not express SIRPα (Seiffert 1999) 

and show no binding to CD47.   

To compare the affinity for NSG-mouse to human-SIRPα (hSIRPα), ten 

reported human polymorphic variants of hSIRPα (Takenaka 2007) were 

constructed here as C-terminal GFP fusions and expressed on CHO cell 

membranes as done previously with CD47-GFP (Subramanian2007). Many of 

the amino acid changes in SIRPα occur near but not in the hCD47 binding site 

(Hatherley 2008), making predictions difficult. Saturation binding of soluble 

hCD47 to each variant yields a surprisingly broad, 60-fold range of affinities with 

Kd = 0.08 − 5 µM (Fig. 2.2C ). Soluble protein showed the same trend (Fig. 2.S5 ).  

The co-crystal structure of hCD47-hSIRPα shows all of the amino acid 

differences in these variants occur outside of the binding interface (Hatherley 

2008), and so the effects here seem likely to reflect allosteric and conformational 

mechanisms, including SIRPα homodimers (Lee 2010). When plotted versus 

human allele frequency of SIRPα, variants of intermediate affinity (e.g. v1, v2) 

are most common and are similar to results for soluble- SIRPα(v1) binding to 

CHO-displayed hCD47-GFP (Subramanian 2007).  Importantly, the 4 µM affinity 

for NSG-SIRPα phagocytes proves weak but within the range of ten human 

variants, consistent with the cited success of human xenografts in NOD.SCID 

mice.  
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In addition, to show that the CD47-SIRPα interaction is indeed involved in 

the delay of clearance of the beads in vivo, we blocked mouse-SIRPα in NSG 

mice by pre-injecting anti(mSIRPα) antibodies that block binding of mSIRPα to 

CD47 in vitro.  After nanoparticles were injected to these pre-injected mice, the 

circulating particle ratio at 35 min was measured as in Fig. 2.2A. CD47 particles 

provided no advantage in circulation (Fig. 2.2B , inset) when blocking SIRPα 

antibody is bounded to splenic macrophages. 

2.2.3 – Minimal “self”:  conformational constraints  limit activity 

Given the important, allosteric effects of SIRPα variants on affinity for 

hCD47, the impact of “self”-peptide conformation on binding and signaling is 

conceivably just as important. The recent co-crystal structure of the hCD47 Ig-

like domain in association with the hSIRPα Ig-like domain suggested important 

electrostatic interactions of the “self”-peptide’s loop, but stability of this hairpin 

was unknown and seemed important to binding. Three versions of the peptide 

were therefore designed and simulated by all-atom Molecular Dynamics (Fig. 

2.2D; Fig. 2.S6 ):  (i) the 21-aa “self”-peptide that was shown functional above, 

and also (ii) a 12-aa “self”-SS-peptide with a T107C substitution opposite in the 

hairpin to C96 intended to disulfide-stabilize the β-hairpin, together with (iii) a 10-

aa “self”-hairpin centered on the loop. Equilibration of the three peptide designs 

and also hCD47 respectively show that, relative to the “self”-SS-peptide, the 

“self”-peptide maintains a smaller β-hairpin (Fig. 2.2D , upper plot) that achieves 
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more salt bridges in docking simulations with hSIRPα (Fig. 2.2D , lower plots).  

The “self”-SS-peptide undergoes a large torsional distortion that alters the 

surface charge distribution, whereas the short “self”-hairpin completely loses its 

initial loop but is not over-constrained in a misfolded state.    

Synthesis of the three designs and Scrambled-peptides (with or without 

biotin attached via a PEG linker or an aminohexanoic acid linker ‘C6’), enabled 

functional testing of binding to hSIRPα as well as inhibition of nanobead 

phagocytosis.  When immobilized on beads, the “self”-peptide’s affinity for 

soluble hSIRPα (Kd ≈ 0.1-0.2 µM; Fig. 2.2E- i,ii) proves high on the affinity scale 

for polymorphisms (Fig. 2.2C ) and consistent with functionality of peptide in vivo 

(Fig. 2.1 ) and in vitro (see below).  In contrast, the disulfide-stapled “self”-SS-

peptide showed no significant affinity for hSIRPα and no statistically significant 

inhibition of phagocytosis, thus revealing the importance of flexibility in 

maintaining the β-hairpin’s surface charge distribution. While the PEG linker 

between biotin and peptide improves solubility, the more hydrophobic C6 linker 

has little impact on hSIRPα binding, whereas scrambling the peptide eliminates 

binding as well as any statistically significant inhibition of phagocytosis (Fig. 

2.2E-ii).   

The 10-aa “self”-hairpin was also synthesized without attachment of biotin 

for use as a soluble inhibitor of hSIRPα binding to hCD47-beads. While the 

scrambled peptide lacked function once again, this short “self”-hairpin inhibited 
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hCD47-hSIRPα interactions, and although the extent of inhibition was less than 

with the longer “self”-peptide, a similar Ki ≈ 0.1 – 0.2 µM (Fig. 2.2E- iii) proves 

consistent with the affinities measured above.  The results all substantiate the 

general approach to specific binding and signaling (see below) from a minimal 

‘Marker of Self’ peptide. 

2.2.4 – In vivo persistence of “self” correlates with inhibition o f 

phagocytosis in vitro.   

Whether phagocytosis of nanoparticles – including viruses – involves 

mechanisms similar to larger particles remains a significant question in the field 

of phagocytosis (Swanson 2004), and CD47 on nanobeads here could help 

clarify the minimal limits to phagocytic uptake. The spleen generally clears 

nanoparticles (Fig. 2.S3A-D ), and fluorescence imaging of tissue sections shows 

the strong tendency of nanobeads to colocalize with macrophages (Fig. 2.3A, 

inset- i), consistent with the well-established role of the mononuclear phagocyte 

system. Human-derived THP1 macrophages express one of the common 

variants of hSIRPα (v1), which is why hCD47 has been reported to inhibit 

phagocytosis of microparticles by these cells in vitro (Tsai 2008).  Nanoparticles 

are not sufficiently large or dense to settle to the bottom of a culture dish, which 

limits bead contact with such cells, but since binding is a surface-based process, 

opsonized nanobeads that are added at the same total surface area as micro-

beads (Fig. 2.S7A ) are seen to be taken up just as efficiently in culture by THP1 
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macrophages (Fig. 2.3A, iia).  Myosin-II accumulates at the phagocytic synapse 

formed with opsonized beads except when hCD47 is attached to beads (Fig. 

2.3A, iia-inset, iib). The result is similar to results with micro-particles and 

microbes (i.e. bacteria) (Fig. 2.S7B ).   

The mechanism for inhibiting phagocytosis appears independent of 

length-scale or curvature. Indeed, the amount of hCD47 required to impede 

uptake in vitro by THP1 cells further proves independent of particle size from at 

least 100 nm to 10 µm (Fig. 2.3A, iic; Fig. 2.S7C ). Similar inhibition of nanobead 

uptake was found with the biotinylated “self”-peptide, using two types of linkers, 

whereas both Scrambled and “self”-SS peptides showed no significant inhibition 

of phagocytosis (Fig. 2.2E, i,ii-insets ). Inhibition with hCD47 is remarkably 

potent with   

Ki,in-vitro ≈ 1.0 ± 0.3 molecule / [4π( Equiv. Radius)2]   for  Equiv. Radius = 60nm. 

This very low density of hCD47 is about the same as the lowest densities 

reported for human RBC (Mouro-Chanteloup 2003), and despite the fact that 

maximum inhibition for any particle studied here is incomplete (<80%), the above 

Ki,in-vitro  indicates that a nanoparticle of 60 nm Radius requires only 1 CD47 

molecule to inhibit uptake. Nanobeads used throughout the studies here were 

significantly larger to ensure that the vast majority of particles start with at least a 

few molecules of hCD47, but the results highlight the potency of this ‘Marker of 

Self’.   
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Our previous knockdown and overexpression of myosin-II in THP1 cells 

demonstrated that – unless hCD47 is on the target particles – IgG driven uptake 

is linearly proportional to myosin-II activity (Tsai 2008). This is consistent with a 

specialized and signal-responsive role for the cytoskeleton in phagocytosis (Cox 

2001, Swanson 2004).  With nanobeads here, hCD47 blocks uptake and so does 

acute inhibition of myosin-II with blebbistatin (Fig. 2.3A, inset- iic).  Myosin-II’s 

enrichment near the nanobead extends deeply into the cytoplasm (~5 µm) 

relative to bead size, suggestive of a diffuse signal that directs cytoskeletal 

assembly.  When CD47 binds SIRPα, Tyrosines in SIRPα’s cytoplasmic tail are 

hyperphosphorylated and activate the hematopoietic-restricted phosphatase 

SHP1 (Matozaki 2009) which dephosphorylates multiple proteins, including 

myosin-II (Tsai 2008).  Inhibition of SHP1 here produces the expected increase 

in phagocytosis of hCD47-nanobeads as well as hCD47-microbeads (Fig. 2.3A, 

inset- iic; Fig. 2.S7D ). Consistent with inhibition of this signal in THP1 

macrophages, binding of hCD47 and “self”-peptide leads to a significant increase 

in phospho-SIRPα whereas Scrambled-peptide shows no significant effect 

relative to controls (Fig. 2.3B ).  Consistent with a common mechanism in vitro 

and in vivo, uptake of the various nanoparticles by THP1 cells correlates 

inversely with persistence in NSG mice (Fig. 2.3C ).   

In vitro uptake by the human-derived THP1 cells (at 45 min) correlates 

inversely with the in vivo persistence ratio in the NSG mice at a similar time point 
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(y = 1/x, Fig. 2.3C ).  hCD47 inhibits the number of opsonized particles taken up 

per cell in vitro by ~60% and “self”-peptide inhibits by ~75%, whereas PEG and 

scrambled peptide lead to only a slight reduction in phagocytosis (average of 

~25%). The results thus establish a major inhibitory effect and suggest that 

potency might be engineered further with CD47-inspired peptides. 

2.3 – Discussion  

Phagocytes are found in all tissues of the body in addition to the spleen 

and liver, and they have key roles in recognizing and clearing foreign cells and 

particles as well as contributing to inflammatory responses with cytokine release 

and oxidative burst.  Recently we showed that implantation of polyurethane slabs 

coated with hCD47 will inhibit oxidation of the polymer (Stachelek 2011), 

indicating a general capacity of this ‘Marker of Self’ to passivate via active 

signaling to Macrophages – a form of ‘Active Stealth’ (Fig. 2.4 ).  A potency here 

as low as 1 molecule per 60 nm particle is far smaller than the PEG densities 

needed to inhibit phagocytes, and because CD47 is naturally expressed on all 

cells, it seems far less likely to be as antigenic as PEG (Armstrong 2007).   

The nanobead results suggest CD47 on viruses might also be useful or 

important, especially since viruses are likewise cleared from circulation by spleen 

and liver (Pan 2002).  Initial results for HIV-related Lentivirus that display CD47-

GFP indeed show decreased infection of macrophages (not shown).  Moreover, 
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a putative homolog of CD47 encoded by at least one type of poxvirus has been 

reported to maximize virulence (Cameron 2005). Structure analyses had 

questioned interactions of the viral protein with SIRPα (Hatherley 2008), but the 

minimal “self” peptides here lack amino acids that contribute in full length hCD47 

to SIRPα binding, and yet binding is strong. Likewise, the ten human-SIRPα 

variants here involve mutations far from the hCD47 binding site, and yet affinities 

vary ~60-fold.   Allosteric mechanisms are clearly in need of further study. 

Whether CD47 or peptides are displayed on particles, viruses, or surfaces, 

“self” signaling across length scales offers further opportunities in application as 

well as understanding.  In terms of molecular mechanisms and likely limits, the 

synthetic “self”-peptide here works similar to or better than recombinant hCD47, 

probably because the latter possesses five carbohydrate chains that inhibit 

binding (Subramanian2007). On the other hand, conformation requirements of 

the peptide will likely limit further reductionism (Fig. 2.2D ). Based on the 

polymorphism studies, an intermediate affinity for SIRPα is best and is 

understandable (Fig. 2.2C ) as a trade-off between adhesion that is not too strong 

(‘must let go’) and signaling that is not too weak (‘don’t eat me’).  Polymorphisms 

in CD47 have been recently listed in databases as “damaging” 

[www.1000genomes.org], but validation of these as well as the variants reported 

for SIRPα are needed. Additionally, since CD47 is reportedly lacking in the 

genome of amphibia and other lower species (Bentley 2010), and since the 
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CD47-knockout mouse is viable if immune compromised (Oldenborg  2000), 

additional and more ancient ‘Marker of Self’ proteins seem likely to contribute to 

homeostasis in shifting the innate immune system further away from clearance 

by macrophages in the liver, spleen, (tumors), and other tissues. Further 

elaboration and application of “self” peptides might therefore help deliver imaging 

agents and therapeutics more effectively to disease sites rather than to 

phagocytes. 

2.4 – Materials and Methods 

2.4.1 – Chemicals  

Streptavidin polystyrene beads were of different radius: 160nm, 1.1µm, 

3.5µm, (Spherotech) and 100nm (Ademtech).  Dulbecco’s phosphate-buffered 

saline (DPBS) without Ca2+ or Mg2+ (Invitrogen) was supplemented with 1% 

BSA and 0.05% Tween 20 (Sigma-Aldrich). TBS (Tris-buffered saline) and TTBS 

(TBS with Tween 20) were used in Western blotting. Hoechst 33342 (Invitrogen, 

Carlsbad, CA) was used for DNA stains. RBC lysis Buffer (Roche Diagnostics 

Corporation) was used in Neutrophil isolation from NSG mice. The near-infrared 

lipophilic dye, DiR, and the deep red dye, DiD, were purchased from Invitrogen, 

Inc. and PKH26 Red Fluorescent Cell Linker Kit for General Cell Membrane 

Labeling from Sigma Aldrich. Chloroform, methanol, and hydrochloric acid were 

purchased from Fisher Scientific. N-Biotinyl-NH-(PEG)4-COOH was purchased 
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from EMD Chemicals, PEG Biotin, MW 550 was purchased from Nanocs Inc., 

and mPEG-Biotin, MW 5,000 from Laysan Bio Inc.  Blebbistatin (±) was 

purchased from EMD Biosciences, and NSC-87877 was from Sigma. 

2.4.2 – Antibodies  

The fluorescein-labeled antibody B6H12-FITC (BD Biosciences) and 

mIAP301-FITC (BD Biosciences) were used against human CD47 and mouse 

CD47 respectively. Quantification of SIRPα was performed using anti-SIRPα 

(SE7C2) (Santa Cruz Biotech). Human SIRPαex (this laboratory) used for 

experiments comparing binding affinities between species. Antibodies against 

NMM IIA, actin was obtained from Sigma-Aldrich. Opsonizing antibodies against 

mouse RBCs included rabbit anti-mouse RBC (Sigma-Aldrich); Opsonizing 

antibodies streptavidin coated polystyrene beads (Spherotech) included rabbit 

anti-streptavidin (Sigma-Aldrich), rabbit anti-streptavidin conjugated with FITC 

(Rockland Immunochemicals) and Biotin anti-human CD47 Antibody (BioLegend) 

were used as IgG opsonin. Secondary antibodies used for detecting opsonin 

levels and uningested beads included goat anti-rabbit FITC or goat anti-rabbit 

F(ab’)2 R-PE (Sigma-Aldrich). Secondary antibodies used for detecting soluble 

SIRPαex or biotinylated CD47 binding included anti-GST Alexa 488 (Invitrogen) 

and Cy5 conjugated Affinity Purified Anti-Biotin goat (Rockland 

Immunochemicals) respectively. Primary antibody used to measure the level of 
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PEG molecules and Biotin anti-human CD47 bounded to streptavidin coated 

polystyrene beads was Biotin-4–fluorescein (Anaspec). 

2.4.3 – Proteins and Peptides 

We followed the protocol described by (Tsai 2008) for the production of 

recombinant human CD47 and soluble human SIRPα, proteins were storage at -

20˚C in PBS. Human was the focus due to a lack of in vivo experiments on 

human-CD47 and known differences with mouse. 

In considering synthesis of a ‘Self’-peptide, mouse and human CD47 differ 

by about 40% in the sequence that binds SIRPα’s N-terminal domain, and these 

differences include one or more amino acids in each of three distinct binding 

sequences in the co-crystal.  ‘Self’-Peptides were simulated for stability and 

interactions and then synthesized by standard solid phase methods in order to 

assess whether a synthetic, human-based ligand binds and signals to phagocyte 

receptors to passivate the innate immune cells responsible for clearing foreign 

objects of many forms.  The peptides are:  

(1a) 21 aa, >80% purity, Biotin-Acp (N-Terminal) – GNYTCEVTELTREGETIIELK 

(1b) 21 aa, >90% purity, Biotin-dPEG4 (N-Terminal) –  GNYTCEVTELTREGETIIELK   

(2) 12 aa, >80% purity, Biotin-Acp – CEVTELTREGEC (disulfide bridged) 

(3) 10 aa, 10 mg, >90% purity, Biotin-dPEG4 (N-Terminal) – EVTELTREGE 

(4) 10 aa, 10 mg, >90% purity, Biotin-dPEG4 (N-Terminal) – EGERTLETVE (Scrambled) 
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2.4.4 – SIRPα reverse transcriptase PCR and sequence  

The SIRPα variant expressed in THP-1 macrophages were confirmed by 

RNA extraction (Qiagen) and using a one step reverse transcriptase PCR (RT-

PCR) amplification (Invitrogen). Samples of the PCR product were run on 1% 

agarose gel and gel purified for sequencing. Primers used for both RT-PCR 

sequencing include the following 5′-GGGTGAGGAGGAGCTGCAGGTGATT-3′ 

and 5′-GCGCTCGAGCCGTTCATTAGATCC -3′. 

2.4.5 – Plasmid construction and polymorphism mutat ions   

The plasmid vector containing a cytomegalovirus promoter in pEGFP-N1 

(Clontech laboratories, Mountain View, CA) containing the DNA fragment 

encoding full length human SIRPα using primers 5′-

GCAGAGCTGGTTTAGTGAACCG-3′ and 5′- 

CGTCGCCGTCCAGCTCGACCAG-3′. Full-length human SIRPα variants 1-10 as 

denoted (Takenaka 2007) were generated by making point mutants based on 

human SIRPα variant 2; using the QuikChange Site-Directed Mutagenesis kit 

(Stratagene). For convenience human SIRPα variants 1-10 are denoted as 

hSIRPα v1-10. hSIRPα variant 2 to 1 was constructed based on multiple 

mutagenesis by using the following primers: 

5′-CTGGAGAGACGGCCACTCTGCGCTGCACTGCGACCTCCC-3′ and  
5′- GGGAGGTCGCAGTGCAGCGCAGAGTGGCCGTCTCTCCAG-3′  
for mutations S54T, I56T, H58R, V61A;  
5′-GAGGAGCTGGACCAGGCCGGGAATTAATCTA-3′ and  
5′-TAGATTAATTCCCGGCCTGGTCCAGCTCCTC-3′ for mutations A79G;  
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5′-CACTTCCCCCGGGTAACAACTGTTTCAGATTTAACAAAGAGAGAAAACA-3′ 
and  

5′-TGTTTTCTCTCTTTGTTAAATCTGAAACAGTTGTTACCCGGGGGAAGTG-3′ 
for mutations E99D;  

5′- ATTCAGCCTGACAAGTCCGTATTAGTTGCAGCTGG-3′ and  
5′-CCAGCTGCAACTAATACGGACTTGTCAGGCTGAAT-3′ for mutations S48L;  
5′- GTTTCAGATTTAACAAAGAGAAATAACATGGACTTTTCCATCAGG-3′ and  
5′-CCTGATGGAAAAGTCCATGTTATTTCTCTTTGTTAAATCTGAAAC-3′  
for mutations E104N; 
5′-CATGGACTTTTCCATCAGGATCGGTAACATCACCCCAGCAG-3′ and  
5′-CTGCTGGGGTGATGTTACCGATCCTGATGGAAAAGTCCATG-3′  
for mutations S111R, S113G; 
5′-GGAAAGGGAGCCCTGACGTGGAGTTTAAGTCTGGAG-3′ and  
5′-CTCCAGACTTAAACTCCACGTCAGGGCTCCCTTTCC-3′ for mutations 

T135V; 
5′-GAAAGGGAGCCCTGACGACGTGGAGTTTAAGTCTGG-3′ and  
5′-CCAGACTTAAACTCCACGTCGTCAGGGCTCCCTTTC-3′ for inserting D at 

135. 
hSIRPα variant 2 to 3 was constructed with the primers  
5′- GTCGGCCATTCTGCTCTGCACTGTGACCT-3′ and  
5′- AGGTCACAGTGCAGAGCAGAATGGCCGAC-3′ for mutations H58L.  
hSIRPα variant 2 to 4 was constructed using primers:  
5′-GCGGGTGAGGAGGGGCTGCAGGTGATT-3′ and  
5′- AATCACCTGCAGCCCCTCCTCACCCGC-3′ for mutations E37G;  
5′-TCTGCACTGCACTGCGACCTCCCTGATCC-3′ and  
5′- GGATCAGGGAGGTCGCAGTGCAGTGCAGA-3′ for mutations V61A.  
hSIRPα variant 2 to 7 was constructed using the following primers:  
5′- CTGTCTGTGCGTGGCAAACCCTCTGCC-3′ and  
5′- GGCAGAGGGTTTGCCACGCACAGACAG-3′ for mutations A149G.  
hSIRPα variant 2 to 10 was constructed using primers  
5′- TGCGCCTGGTCAAGAGTGGCGGGTG-3′ and  
5′-CACCCGCCACTCTTGACCAGGCGCA-3′ for mutations G31R. 
hSIRPα variant 1 to 5 was constructed using primers  
5′- GGTGATTCAGCCTGACAAGTTCGTATTAGTTGCAG-3′ and  
5′- CTGCAACTAATACGAACTTGTCAGGCTGAATCACC-3′ for mutations S46F.  
hSIRPα variant 1 to 6 was constructed using primers: 
5′- AGATTTAACAAAGAGAAATAACATGGACTTTCCCATCAGGATCGGTAA-3′ 

and  
5′- TTACCGATCCTGATGGGAAAGTCCATGTTATTTCTCTTTGTTAAATCT-3′ 

for mutations S109P.  
hSIRPα variant 1 to 9 was constructed using primers  
5′- ACTTTTCCATCAGGATCAGTAACATCACCCCAGCA-3′ and  
5′-TGCTGGGGTGATGTTACTGATCCTGATGGAAAAGT-3′.  
All constructs were confirmed by sequencing. 
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2.4.6 – Cells culture and transfection  

COS-1, CHO-K1, A549, THP-1 cells (American Type Culture Collection) 

were respectively maintained in DMEM, MEMα, F-12, RPMI 1640, and DMEM 

low glucose media (Invitrogen) supplemented with 10% heat inactivated FBS 

(Sigma-Aldrich). Cells were detached using 0.25% Trypsin/0.5mM EDTA 

(Invitrogen) for passaging. Differentiation of THP-1 cells was achieved in 100 

ng/mL phorbol myristate acetate (PMA) (Sigma-Aldrich) for 2 days and confirmed 

by attachment of these cells to tissue-culture plastic. Peripheral blood monocytes 

from human donors were obtained through the Human Immunology Core 

(University of Pennsylvania). Human blood was obtained from finger pricks of 

healthy donors. Blood from other species was obtained from Covance and 

washed 3x in PBS plus 0.4% BSA. 

hSIRPα v1-10 was transfected into CHO-K1 cells with Lipofectamine 2000 

(Invitrogen) according to manufacturer’s instructions. Clones resistant to 400 

µg/ml G418 (Invitrogen) were selected. Expression of hSIRPα was confirmed. 

Transfected cells were harvested using DPBS supplemented with 2 mM EDTA 

(Invitrogen) 1-2 days post-transfection for analysis. In addition to detection for 

GFP signals, anti-SIRPα (Santa Cruz Biotech) was used to confirm surface 

expression by fluorescent microscopy and flow cytometry. 
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2.4.7 – Preparation and characterizations of Nanobe ads with CD47, ‘Self’ 

peptide, and Opsonin 

Beads enable facile addition of ‘Marker of Self’ ligands, but rigid beads 

must be far smaller than highly flexible RBC to avoid first-pass clearance from 

the microcirculation (Deplaine 2010).  Nanoparticles are thus needed but if they 

are too small, then they can be a challenge to controllably modify and fully 

characterize after injection. 

Streptavidin-coated polystyrene beads of 160 nm radius (SVP-03-10; 

Spherotech, Lake Forest, IL) were washed and blocked 3x in PBS plus 0.4% 

BSA. Manufacturer specifications of about 3x104 Biotin–fluorescein sites per 

nanobead were confirmed by flow cytometry with fluorescence calibration beads 

and equate to about 1 biotin site per 10 sq.nm (Fig. S2A).  This is the maximum 

density of modification (eg. PEGylation) achievable with these nanobeads, and 

compares well with useful densities in related contexts.  Malmsten et al. reported 

95% suppression of protein adsorption (at a specified time point) for PEG 

surfaces with 1 polymer per 10 sq.nm although protein adsorption was still 

measurable. In addition, with liposomes the area per lipid is 0.7 sq.nm, and 

PEGylated liposomes exhibit ‘stealth’ in circulation with 2-5% PEGylation (eg. 

Photos2003), which equates to one PEG chain per 14 - 35 sq.nm.   

Recombinant biotinylated hCD47 or synthetic biotinylated ‘Self’-peptide 

were attached to the beads and then rabbit anti-Streptavidin conjugated with 
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FITC was added as an opsonizing IgG-antibody (Rockland Immunochemicals).  

Beads were incubated at room temperature for 30 min, washed 3x, and re-

suspended in PBS plus 0.4% BSA. The density of hCD47or ‘Self’ on the beads 

was determined by binding to soluble hSIRPα at 1 µM (see Binding Isotherms 

below) and, for hCD47, labeling with 15 µl of anti-hCD47-FITC (clone B6H12, BD 

Biosciences).  Binding of hSIRPα was thus used to confirm similar levels of 

attachment of hCD47or ‘Self’ on the beads (see Fig. 3A).  The opsonin density 

on the beads was determined with 1 µl goat anti-rabbit F(ab’)2 R-PE incubated 

for 30 min at room temperature. Beads were washed and resuspended in PBS 

for flow cytometry and further analyses.  

 Zeta potential measurements (Malvern Zetasizer) on key samples 

of Fig. 1C showed no significant differences:  for (anti-streptavidin nanobeads), 

(hCD47 + anti-streptavidin nanobeads), (‘Self’-peptide + anti-streptavidin 

nanobeads), (Scrambled peptide + anti-streptavidin nanobeads) all had a 

measured Zeta potential = -3.5 ± 1 mV.  Sizes from light scattering for these 

nanobeads as well as PEGylated nanobeads conformed to manufacturer’s 

specifications within about 10%. Forward and Side scatter in flow cytometry from 

pre-injected nanobeads provided additional evidence of uniformity of size even 

after the modifications. 
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2.4.8 – Binding isotherm for soluble hSIRP α for hCD47 and Polypeptides  

The binding isotherm of soluble hSIRPα was performed for Polypeptides 

and hCD47 attached to the streptavidin polystyrene beads as noted over a range 

of concentration using flow cytometry. Forward scatter, side scatter and 

fluorescence (FL1, FL2, FL3, FL4 channels in logarithmic mode) were acquired 

for at least 104 events using a FACScan or FACSCalibur (BD Immunocytometry 

Systems).  Data points from flow cytometry were plotted and fitted to obtain the 

Kd values as shown.  

2.4.9 – Phagocytosis Assay  

For phagocytosis assays, macrophages were plated in 4cm2 Lab-Tek II 

Chambered Coverglass (Nalge Nunc International) at 1 x 105/4cm2. Streptavidin 

polystyrene beads were added to macrophages at a number ratio of 20:1 and 

allowed to incubate at 37˚C for 45 min. Non-phagocytosed beads were washed 

with PBS. Cells were fixed with 5% formaldehyde (Fischer Scientific) for 5 min, 

followed by immediate replacement with PBS. For differentiation of non-

internalized beads, beads were labeled with a primary antibody, rabbit anti-

streptavidin (Sigma) at 1:1,000 in PBS for 20 min at 25°C. A second antibody, 

anti-rabbit R-PE (Sigma) was added at 1:1,000 in PBS to the cells and incubated 

for an additional 20 min at 25°C. Cells were then w ashed with PBS/ 0.4% BSA 

and then quantified by light and fluorescent microscopy. At least 200 cells were 

scored per well and experiments were repeated at least three times. 
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For stimulated phagocytosis assays, beads with or without Polypeptide, 

PEG or CD47 were incubated with rabbit anti-streptavidin as the opsonin. Beads 

were opsonized at the respective concentration for 30 min at RT. Opsonized 

beads were washed 2x and resuspended in 50 µl of PBS/0.4% BSA. Phagocytes 

were washed with PBS beads were labeled as described above.  

For cytoskeletal involvement at the phagocytic synapse, streptavidin 

beads opsonized with rabbit anti-streptavidin FITC. Opsonized beads of different 

sizes were added to PMA treated THP-1 cells and immediately placed at 4°C for 

10 min to synchronize phagocytosis. The temperature of the cells was then 

immediately increased to 37°C for 10 min and then f ixed with 5% formaldehyde 

for immunofluorescence. For studies involving blebbistatin (EMD Biosciences), 

macrophages were treated for 10 min at 4ºC prior to temperature increase to 

37ºC or for 45 min. Macrophages treated with DMSO were used to verify no 

solvent effects. 

Images were acquired with an inverted microscope (Olympus; IX71) with a 

60x and 150x (oil, 1.4 NA) objective using a Cascade CCD camera 

(Photometrics, Tuscon, AZ). Image acquisition was performed with Image Pro 

software (Media Cybernetics, Silver Spring, MD). All subsequent image analysis 

was done using ImageJ. 
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2.4.10 – SHP-1 inhibitor effect on phagocytosis  

PMA activated THP-1 macrophage was treated with a SHP-1 inhibitor 

(NSC-87877) provided by Dr. Frank L. Conlon (University of North Carolina) from 

0-100 nM in DI water for 5 min prior to the addition of IgG-opsonized particles. 

Phagocytosis assay of IgG-opsonized particles coated with or without CD47 at 

100 nm and 1.1 µm radius were conducted as described above. 

2.4.11 – Inhibition of nanoparticle uptake  

THP-1 macrophages activated with PMA were incubated with 10 µg/ml 

chlorpromazine in distilled water or 30 µM cytochalasin B in DMSO (Sigma-

Aldrich) for 30 min at 37°C. Control cells were inc ubated with the medium with 

solvent. Followed by incubation with the above inhibitors, THP-1 cells were used 

for uptake studies with or without IgG-opsonized 100 nm radius particles targets 

as described above. 

2.4.12 – Immunofluorescence microscopy  

Immunostaining was performed after cells were fixed and blocked for 1 h 

with 5% BSA in PBS. Staining with primary antibody anti-rabbit PE-conjugated 

(1:200) was used for detection of non-phagocytosed beads for 1 h at room 

temperature in PBS. After washing, samples were fixed with 5% formaldehyde 

and imaged. In order to ensure that the cells were not permeable to labeling an 
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antibody against myosin IIA was used to confirm not labeling occurred (Sigma-

Aldrich).   

Images were acquired on an inverted microscope (IX71; Olympus) with a 

40x or a 60× (oil, 1.4 NA) objective using a Cascade CCD camera 

(Photometrics). Image acquisition was performed with Image Pro software 

(Media Cybernetics, Inc.). All subsequent image analysis was done using 

ImageJ.  

2.4.13 – Immunoprecipitation and Western blotting  

Human Phagocytes, THP-1 wild-type (2x106) were cultured and 

differentiated in 6-well plates for 48 hours after PMA differentiation. Human 

CD47, PEG and Polypeptides were attached to 2.1µm diameter beads at specific 

densities as described above and added at a bead to cell ratio of 20:1 for 10 

minutes. Following the incubation time, the cells were washed with ice-cold PBS 

and then lysed on ice in 300 µl of lysis buffer (50 mM Tris-HCl (pH 7.4), 150 mM 

NaCl, 1mM EDTA, 1% NP-40, 1% protease inhibitor cocktail [Sigma-Aldrich] and 

2mM activated sodium orthovanadate). For immunoprecipitation, whole lysate 

was mixed with 1:200 anti-SIRPα (SE7C2) antibody (Santa Cruz Biotechnology, 

Inc.) with Protein G agarose (Pierce) at 4˚C overnight. Precipitated proteins was 

placed in 4-12% SDS-PAGE in MOPS buffer (Invitrogen), transferred to PVDF 

membrane, blocked and labeled via phosphotryosine IgG HRP-conjugated (Cell 
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Signaling) and anti-SIRPα (C-20) (Santa Cruz Biotechnology, Inc.) as primary 

antibodies and anti-goat-HRP (Amersham). All Westerns were run in duplicate, 

along with an additional blot for actin to ensure constant protein load among 

samples. 

2.4.14 – Biodistribution Study with dye-labeled Bea ds  

All mice were treated in accordance with approved IACUC protocols at the 

University of Pennsylvania. Near Infrared Fluorophore (NIRF)-labeled and 

unlabeled streptavidin coated polystyrene beads were injected into the tail veins 

of healthy Adult Immune-deficient (NSG) Mice (4-8 weeks).  The range of 

injected beads was ~107 per ml, with some variability due to accuracy of locating 

the tail vein. Every 10 min, 5 µl blood samples were collected by retro-orbital 

bleeding. At 35min following injection, mice were sacrificed and whole blood, 

liver, spleen, lungs, kidneys, heart and brain were collected. The whole blood 

was then centrifuged and plasma collected.  

Organs were imaged on the LiCor Odyssey imaging system (LI-COR 

Biosciences, Lincoln, NE) at 800 nm excitation. The integrated fluorescence 

intensity of the organs was normalized using the organ correction factor found by 

Christian et. al. (Christian 2009) and applied to all other measured intensities for 

all organs. The NIR intensity of the plasma was measured on the LiCor and 

calculated by fitting the slope of the linear dilution curve.  
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2.4.15 – Preparation of erythrocytes for injection 

Blood from NSG mice were acquired by Cardiac Puncture, erythrocytes 

were separated from the rest of the blood component by centrifugation gradient 

to isolate the RBC pellet package.  Samples were divided into two groups, they 

were labeled with a hydrophobic dye DiD and PKH 26 respectively and incubate 

for 20 min at room temperature (RT). Both samples were washed with PBS/ 

0.4% BSA and then one of them was incubated with anti-mCD47 (mIAP) primary 

antibody for 45 minutes and both of them were opsonized with excess rabbit anti-

mRBC prior to mixing cells together and injecting into the tail vein for 30 min at 

room temperature (RT). Cells were then washed with PBS/ 0.4% BSA and one 

quantified by light and fluorescent microscopy 

2.4.16 – Measuring Beads and RBC in circulation  

The total numbers of beads remaining in circulation were measured using 

flow cytometry with 10ul the samples collected from each mouse. 

Beads, in whole blood sample (or serum), were labeled with 15µl of 

B6H12-FITC (BD Biosciences) against human-CD47 and with 1µl goat anti-rabbit 

F(ab’)2 R-PE against rabbit anti-streptavidin (Sigma-Aldrich) for 30 min at room 

temperature. Beads were washed and resuspended in PBS for flow cytometry 

analysis.   
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Forward scatter, side scatter and fluorescence (FL1, FL2, FL3, FL4 

channels in logarithmic mode) were acquired using a FACScan or FACSCalibur 

(BD Immunocytometry Systems).  Data points from flow cytometry were plotted 

and the total number of beads in each 10ul sample was counted by the total 

number of events with the appropriately distinct forward and side scatter.  These 

events also appeared positive for Opsonization and human-CD47. 

2.4.17 – In vivo Blocking mouse-SIRP α  

We pre-inject 4 NSG mice (30-120min and 24 hour before particle 

injections) with 100ug of CD172a (BD Biosciences) antibody. hCD47 

nanoparticles were injected to each of the pre-injected mice and to 1 not pre-

injected (control).  At 35min following injection, mice were sacrificed and whole 

blood and spleen were collected. 

The circulating particle ratio at 35 min was measured using flow 

cytometry. Forward scatter, side scatter and fluorescence (FL1, FL2, FL3, FL4 

channels in logarithmic mode) were acquired using a FACScan or FACSCalibur 

(BD Immunocytometry Systems).   

2.4.18 – Collagenase Digestion.  

Spleens were chopped into pieces and placed into tubes containing 1 ml 

of collagenase/DNase solution [1 mg/ml type II collagenase (Worthington 

Biochemicals) and 0.1% DNase I (Sigma) in RPMI medium 1640 plus 10% FBS]. 
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The suspension was pipetted intermittently for 20-30 min at 37°C. Cells were 

then washed, treated to remove red blood cells, and counted before staining for 

flow cytometry to immunostain for macrophages with F4/80 (Bioscience, Inc.). 

Forward scatter, side scatter and fluorescence (FL1, FL2, FL3, FL4 

channels in logarithmic mode) were acquired using a FACScan or FACSCalibur 

(BD Immunocytometry Systems).   
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(A) Competitive circulation experiment in which two colors of nanobeads or 
cells are mixed and injected into the same mouse after labeling with either red 
(PKH26) or a far-red (DiD) fluorophores.  50 µl of blood was periodically 
sampled, and flow cytometry analysis of decays in particle numbers are used to 
calculate the time-dependent persistence ratio in each mouse.  (B) Circulation 
experiment in which mouse-RBC (mRBC) from NSG mice were CD47-blocked or 
not and also opsonized with excess anti-mRBC prior to mixing cells together and 
injecting into the tail vein (n = 3 mice; R2 = 0.93 for fit of means with indicated T).  
(C) Upper sketch:  nanobeads in blood flow being cleared by a splenic 
macrophage (left) or else recognized as “self” and let go (right).  Circulation 
experiments used 160 nm polystyrene beads with covalently attached 
streptavidin incubated with biotinylated versions of:  synthetic ‘Self’ peptide (n = 
4; R2 = 0.94 for fit of means), recombinant hCD47 (n = 6; R2 = 0.92 for fit of 
means), or negative controls of either scrambled peptide (n = 3) or PEG (n = 5).  
Nanobeads were also opsonized with anti-streptavidin and then 107 were 
injected.  Flow cytometry quantitation was typically done on 100-10,000 particles 
at each time point, and typically included quantitation of both hCD47 and opsonin 
on the nanobeads.  For hCD47 and ‘Self’ peptide, a separate fit for each mouse 
gives the indicated mean T ± SEM for each group, which is within 10% of the T 
obtained from fitting the group averages (dashed curves).  Based on these 
analyses, an apparent difference between hCD47 and ‘Self’ peptide is not 
significant (p = 0.18), but nearly all datapoints do differ from PEG-nanobeads (* p 
< 0.05).  All data are mean ±SEM.  
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Fig. 2.2.-  Persistence of hCD47- and “self”- nanob eads depends on hCD47 
density, consistent with low affinity binding to NS G-mouse SIRP α relative 
to human-SIRP α variants.   
(A) The number of hCD47 molecules on the 160 nm beads at 35 min after 
injection was either measured in two color experiments (solid; n = 7 mice) or 
single color experiments (open; n = 6 mice), with an average of 30% protein lost 
in circulation (inset).  ‘Self’ peptide levels are estimated to have a similar loss (n = 
4 mice).  Fluorescent nanobeads (PKH26+ in flow cytometry, upper plots) were 
confirmed by forward/side scatter, and fluorescent anti-hCD47 measured hCD47 
levels (left plot is control nanobead sample, and right plot is hCD47 nanobead 
sample).  The inhibition curve gives Ki = 110 molecules/nanobead.   (B) Affinity 
of soluble hCD47 for fresh NSG neutrophils and monocytes, using flow cytometry 
analysis of Cy5-anti-Biotin. Lymphocytes are negative for SIRPα and do not bind 
soluble hCD47. In inset we show a blocking experiment for mSIRPα using anti-
mouse SIRPα antibodies that block binding of mouse-SIRPα to hCD47. We pre-
inject the antibody into 4 mice (30-120min before) and we didn’t inject antibody in 
one of the mice. The circulating particle ratio at 35 min was measured and we 
also broke up the spleen and used flow cytometry to immunostain for 
macrophages with F4/80. (C)Ten reported variants of hSIRPα’s N-terminal 
domain (Takenaka2007) were displayed on CHO cells to determine affinities for 
soluble hCD47 (Fig. 2.S4 ). The putative allele frequency is plotted versus the 
measured affinities, with the highest frequency at intermediate affinity. On this 
scale, the affinity of hCD47 for mSIRPα on NSG phagocytes (blue square) 
proves weak while the affinity of “self”-peptide for hSIRPα is strong (green 
diamond). The Lorentzian fit is inspired by other mechanobiological signaling 
processes and has the form:  y = 1+ 0.05x11/(0.5011 + x11)2, R2 = 0.85.   (D) The 
co-crystal structure of hCD47 and hSIRPα (Hatherley 2008) identified the FG 
loop in hCD47 as one of two interaction sites, and so it formed the basis for 
design and simulation of several polypeptides (details, Fig. 2.S5). The upper right 
plot shows loop dimensions versus time in solution for hCD47, for the “self”-
peptide, and for the disulfide containing “self”-SS-peptide, which tends to be 
larger (regime c).  The lower histograms show the frequency of salt bridges 
formed between these two peptides and hSIRPα when docking various 
configurations from the size ranges a-c.  (E) Affinities of peptides on beads for 
soluble hSIRPα based on flow cytometry measurements of beads (see Methods). 
Fits to saturation binding gave the indicated dissociation constants, Kd.  Neither 
the “self”-SS-peptide nor the Scrambled-peptide exhibit any affinity for hSIRPα. 
The assays in (iii) use soluble versions of the peptides, lacking biotin, and show 
the unstructured “self”-hairpin is a weak inhibitor of the interaction.  Bargraph 
insets in (i,ii) show in vitro phagocytosis assay results with the human THP1 cell 
line (see Methods), demonstrating that only the “self”-peptide (with C6 or PEG 
linkers) significantly inhibits phagocytic uptake (p < 0.05). 
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Fig. 2.3.- Phagocytosis of nanobeads is efficient a nd recruits Myosin-II, 

unless CD47 or “self”-peptide bind SIRP α and signal inhibition through 

SHP1.   

(A) Nanobead uptake in vivo in NSG mice and in vitro with human-derived THP1 
macrophages. (i) Splenic macrophages co-localize with nanoparticles in situ.  
Spleens harvested at 35-40 min were frozen-sectioned, fixed and permeabilized 
for immunostaining green for macrophages (MΦ) and red with a secondary 
antibody against anti-streptavidin opsonized beads (goat anti-rabbit F(ab’)2). 
Nuclei are stained blue with Hoechst dye. (ii) Phagocytosis of fluorescent 100 nm 
beads (red) by THP1 cells in vitro was assessed at 45 min by immunostaining 
cultures that were fixed (but not cell permeabilized) for non-ingested beads using 
secondary antibody against anti-streptavidin. Nonmuscle Myosin-IIA (a, lower 
panel) enriches near the nanoparticle unless hCD47 is on the bead (b, plot). 
Myosin-II’s enrichment near the nanobead extends deeply into the cytoplasm (~5 
µm) relative to bead size, suggestive of a diffuse signal that directs cytoskeletal 
assembly.  Nanobeads with anti-streptavidin are readily engulfed at about 1 bead 
per cell (c), but uptake is inhibited by hCD47 and by inhibition of Myosin-IIA with 
blebbistatin (50 µM).  Inhibition of SHP1, downstream of SIRPα, with NSC-87877 
blocks the inhibition of uptake by hCD47.  DMSO is the solvent for the drugs.  (B) 
Phosphorylation of hSIRPα tyrosines in THP1 cells upon contact with opsonized 
nanobeads bearing hCD47 and ‘Self’ peptide.  hSIRPα was immunoprecipitated 
from cell lysates and phosphotyrosine was immunoblotted for quantitation (n = 3; 
*p < 0.05).  (C) Inverse correlation between in vivo persistence ratio at 35 min 
and in vitro inhibition of phagocytosis by hCD47 and ‘Self’ peptide at 45 min for 
160 nm beads.  All data are mean ±SEM. 
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Fig.2.S1.- Two-color RBC show for each color that m ouse-CD47 prolongs 

Circulation, and Single Color Nanobeads show hCD47 and “self”-peptide 

prolong Circulation.  

  (A) Representative images of blood samples taken at 10 min after injection of 
NSG mouse-RBC (mRBC) treated with anti-CD47 antibody (blue) or unblocked 
control mRBC (green). The opsonization level of the RBC was measured for 
each condition before injection, which showed approximately 2000 
molecules/um2 for both samples. (B)  Two-color RBC experiment shows that 
mouse-CD47 prolongs circulation independent of fluorescence labeling.  50 µl of 
blood was periodically sampled, and flow cytometry analysis of the decays in 
particle numbers were used to calculate the circulation kinetics for each condition 
in each mouse.  A doubling time similar to that in Fig.2.1B can be estimated from 
these results, and if it were extrapolated to one full day would yield 224h/33min (~10-
trillion) more RBC with CD47 compared to every circulating RBC without CD47.  
This exceeds by ~100-fold the daily production of RBCs in humans and begins to 
suggest the potency of CD47 and/or co-factors on RBC.  (C) Nanobeads in 
whole blood samples were identified using a unique methodology in flow 
cytometry for nanobeads in circulation . Forward and side scatter were used to 
separate nanoparticles from the rest of the blood components as well as by using 
anti-streptavidin antibody and the appropriate isotype controls (histograms) (D) 
Single Color Nanobeads show hCD47 and “self”-peptide prolong circulation.  50 
µl of blood was periodically sampled from mice injected with one type of 
functionalized bead (hCD47, “self” peptide, or IgG control), and the circulation 
kinetics of the beads was measured by flow cytometry. Bare 320nm beads were 
cleared in vivo slower than IgG-opsonized but faster than beads functionalized 
with Opsonin+hCD47 and Opsonin+”self” peptide. (E) Any Targeting antibody will 
also opsonize nanoparticles and promote in vivo clearance.  Since CD47 has 
been therapeutically targeted with antibodies, we attached biotinylated-(anti-
hCD47) (see Methods) to the nanobeads and co-injected in mice with beads 
having anti-streptavidin (n = 3 mice).  Periodic bleeds were analyzed by flow 
cytometry with quantitation of 100-1000 particles and verification of antibody 
attachment to the nanobeads.  Beads are cleared equally for both antibodies. 

 



 

Fig.2.S2.- IgG gives rapid clearance, while PEG (no IgG) gives  long 

circulation and PEG + CD47 is better. 

 
 
 

56 

IgG gives rapid clearance, while PEG (no IgG) gives  long 

circulation and PEG + CD47 is better.   

 

IgG gives rapid clearance, while PEG (no IgG) gives  long 



57 

 

(A) Single Color Nanobeads show PEG beads and hCD47-PEG beads prolong 
circulation.  50 µl of blood was periodically sampled from mice injected with one 
type of functionalized bead (hCD47 or IgG control), and the circulation kinetics of 
the beads was measured by flow cytometry. PEG  320nm beads were cleared in 
vivo slower than IgG-opsonized Beads but faster than beads functionalized with 
PEG+hCD47.  (B) Circulation experiments used 160 nm polystyrene beads with 
covalently attached streptavidin (Spherotech) incubated with biotinylated 
versions of:  PEG MER (n = 1), PEG 0.5K (n = 2), PEG 5K (n = 1).  Beads were 
also opsonized with anti-streptavidin and then ~107 were injected.  Flow 
cytometry quantitation was done on 100-1000 particles at 35min time point.  
Error bars are SEM; Characterization of beads size and surface charge were 
made with DLS and they didn’t show any significant different between the 
particles. (C) Flow results for PEG molecules attached to nanobeads in vitro. 
Numbers of Fluorescein-Biotin molecules on the 160 nm beads were measured 
by flow cytometry at different concentration of Biotin-PEG attached to the beads 
first.  The color arrows point to the max density used in vivo for each PEG size. 
(D) Phagocytosis in vitro for PEG-Beads. in vitro inhibition of phagocytosis by 
hCD47 at 45 min for 160 nm Pegylated beads.   
 
  



 

 

 

 

 

Fig.2.S3.- Human and Mouse CD47 inhibit Splenic clearance base d on 

imaging the Spleen  and Tumor imaging is enhanced a fter second injection 

of hCD47- Nanobeads. 
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(A) Human CD47 inhibits splenic clearance of highly opsonized (6000 
molecules/µm2) nanobeads in NSG mice. Accumulation of NIR-labeled 
nanobeads in the spleen was determined by total splenic NIR fluorescence 
intensity as measured by an Odyssey imaging system (LI-COR Biosciences) (B) 
Flow cytometry data shows binding of soluble mouse-SIRPα-GST to recombinant 
mouse CD47 attached to particles and also to nanoparticles with blocked 
mouseCD47 (mIAP301). Beads in circulation were collected 30 and 60 minutes 
after injection, and the concentration of beads opsonized with anti-streptavidin 
was compared to opsonized beads also coated with biotinylated mouse CD47.  
Spleens were harvested at 60 min after injection (n=3) and the number of 
particles were measured by splenic NIR fluorescence intensity (C) At 40 min 
post-injection of two colors of nanobeads, mice were sacrificed and whole blood, 
liver, spleen, lungs, kidneys, heart and brain were collected. NIR fluorescence 
intensity of each organ was measured and normalized for organ weight and 
optical density as well as for NIR signal resulting from particles in the blood 
volume of each organ. The NIR fluorescence intensity of the plasma was 
calculated by serial dilution in PBS. Plot showed results for n = 6 animals per 
group of control 160 nm polystyrene opsonized beads (blue bar) and similar 
beads functionalized with biotinylated hCD47 (red bar). All error bars are SEM, 
and (*) indicates p < 0.05.  For Scrambled-peptide, measurements were more 
limited but clearly show rapid clearance from blood. (D) Normalized NIR 
fluorescence intensity for all organs in tumor-bearing mice measured by the 
Odyssey imaging system (n=2). 
  



 

Fig.2.S4.- CD47 is progressively lost from Nanobeads in circul ation, and 

Nanobead Numbers at early times do not

endpoint.  
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(A) Increased surface density of hCD47 on the Nanobeads enhances the number 
of Nanobeads in circulation in single color bead experiments. Circulating Beads 
Numbers are proportional to the hCD47 concentration found on the surfaces of 
the beads measured by flow cytometry. Blood samples were taken at 10, 21 and 
35min after single color beads injections. (B) In two color bead experiments, the 
number of beads at early timepoints does not correlate with the ratio at 35 min.  
In other words, PEG and Scrambled peptide fail to enhance persistence in 
circulation over a broad range of particle numbers, while ‘Self’ and hCD47 do 
work over a broad range of particle numbers but otherwise show no trend.  
These results suggest that the macrophages are not saturated by the beads in 
these experiments;  if the macrophages were saturated, then the likely trend 
would be a decay in hCD47 beads toward a ratio of 1 because control beads 
would no longer be cleared.  Dashed lines indicates means.   



 

Fig.2.S5.- hSIRPα variants exhibit di
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 (A) GFP-tagged full-length human SIRPα GFP (hSIRPα-GFP) was confirmed to 
be transiently expressed in CHO-K1 cells by GFP expression, and surface 
expression was confirmed with anti-SIRPα antibody by flow cytometry. (B) 
Affinities of  surface-expressed hSIRPα variant 10 for soluble hCD47 was 
measured by flow cytometry. Saturation binding fits gave the indicated 
dissociation constants, Kd.  (C) Human SIRPα polymorphisms variants 1-9 
expressed on CHO cells with affinity binding to soluble hCD47 was based on flow 
cytometry. Saturation binding fits yield the dissociation constant, Kd was 
summarized in the plot with binding curves repeated in triplicate ± standard 
deviation. (D) The binding affinity of hCD47 bound to the surface of beads to 
hSIRPα was measured using varying concentrations of soluble hSIRPα v10 to 
determine the dissociation constant, Kd. (E) Linear relationship between the Kd 
obtained for surface-expressed hSIRPα polymorphisms variants 2,7 and 10 and 
soluble hCD47 and Kd obtained for hCD47 attached to beads and soluble 
hSIRPα variants.  



 

Fig.2.S6.- Molecular Dynamics Simulations of Structures reveal  Folding and 

Interactions.   
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(A) Full atomistic molecular dynamics (MD) simulations were performed for over 
50 ns with the hCD47-hSIRPα complex (PDB: 2JJS), with each component in 
water at the indicated solution conditions in constant particle isothermal-isobaric 
ensemble (NPT) constraints.  Systems were equilibrated for over 5 ns followed 
by production runs for structural analysis.  (B) The “self”-peptide has interstrand 
hydrogen bonds that increase the stability of the hairpin, while the “self”-SS-
peptide has a mutation at T107C that promotes a disulfide bridge with C96 and 
induces a torque and splay in the circularized peptide.  Both peptide structures 
are stable since unstable configurations tend to rearrange within 10 ns (Ivetac 
2008). For electrostatic calculations of Fig. 2.3D we used Adaptive Poisson-
Boltzmann Solver (APBS) (Baker 2001) as implemented in VMD (Humphrey 
1996).  (C) Peptide complexes with hSIRPα were obtained via computational 
docking.  Structural heterogeneity of the peptide was taken into account by 
sampling of 100 representative configurations from a 100 ns long MD trajectory.  
Docking was performed using HADDOCK (Dominguez 2003), an algorithm able 
to bias the stochastic exploration of the configurational space via aptly defined 
distance restraints between sets of residues from the two complex constituents. 
The configurational space of the complex was sampled via a three-stage 
protocol: (i) Randomization of orientations and rigid body energy minimization; (ii) 
Semi-flexible simulated annealing in torsion angle space; (iii) Final refinement by 
MD simulations in Cartesian space with explicit solvent. For each conformation of 
the peptide, 2,000 structures of the complex were generated, and from these the 
best 200 were employed for further analysis.  Salt bridges of Fig. 2.3E were 
calculated by identifying pairs of negatively and positively charged atoms within 4 
Å, (Barlow 1983) without accounting for relative orientation. 
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Fig.2.S7.- The role of particle size, Myosin IIA, a nd SHP-1 in particle 

phagocytosis by macrophages 

 (A) Nano to micron sized IgG-opsonized particles can be observed in phase 
contrast images (top) and fluorescent microscopy (bottom) to determine 
phagocytosed (green) versus non-phagocytosed particles (yellow) (see materials 
and methods). The number of IgG-opsonized particles per phagocyte was plotted 
for 160 nm and 1.1 µm at either a constant particle surface area or constant 
particle number, with 200 phagocytes counted (n=3, ± SD). (B) In the presences 
of bacteria, THP-1 phagocytes expressing (i) wild-type GFP-Myosin IIA (MYH9) 
show localization with arrows indicating points of contact in phase contrast and 
GFP image insets. (ii) A tyrosine mutation of GFP-MYH9 results in non-functional 
MyH9 and thus no GFP localization in the presence of bacteria. (iii) In THP-1 
macrophages expressing wild-type GFP-MYH9, GFP signal localizes around 1.1 
µm particles alone. (iν) hCD47 attached to the particle surface inhibits GFP-
MYH9 localization around the particles (ν) Larger 3.4 µm particles show GFP-
MYH9 localization (inset). Scale bar 10 µm  (vi) hRBC provide a hCD47 control 
for GFP-MYH9 localization in THP-1 cells. (C) Streptavidin beads were coated 
with varying concentrations of biotinylated hCD47 and anti-streptavidin IgG as 
the opsonin. Inhibition of phagocytosis is dependent on the density of human 
CD47 on beads but independent of particle sizes ranging from 100 nm to 3.5 µm. 
Phagocytosis inhibition occurs with an effective Ki ≈ 20 molecules/µm2 for 
particles from micro to nano-meter beads. The vertical blue bar is the normal 
density of CD47 found on normal human RBC (~250 CD47/µm2) and the 
horizontal gray bar indicates the level of phagocytosis of unopsonized beads. (D) 
IgG-opsonized particles of radius 100 nm or 1.0 µm with or without hCD47 on the 
surface were incubated with THP-1 macrophages with an SHP-1 Inhibitor (NSC-
87877) at 62.5 nM. The effects of SHP-1 inhibition were determined by the ratio 
of ingested particles per THP-1 phagocyte (see Materials and Methods). The 
numbers of particles ingested are shown based on 200 phagocytes counted (n ≥ 
3, ± SD). Inset shows the concentration dependence of NSC-87877 effect on 
particle uptake. 
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CHAPTER 3 - Synthetic “self” peptide or hCD47 recom binant 

protein can enhance the effect of an anti-cancer dr ug  

 Pia L. Rodriguez, Takamasa Harada, Anthony Secreto and Dennis E. 
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Abstract 

Anti-phagocytic signals mediated by CD47–SIRPα interactions on cancer 

cells enable them to “hide” from innate immune system surveillance. CD47 is a 

critical regulator of innate immune surveillance, and is found in increased levels 

in various tumors. Monoclonal antibodies targeted to CD47 have been shown to 

lead to phagocytosis of cultured solid tumor cells in vitro and to prevent the 

metastasis of human tumor cells. Here, recombinant hCD47 or synthetic “self”-

peptide was attached to virus-size nanoparticles for injection into NOD.SCID 

(NSG) mice-- which are known to exhibit unique compatibility with human cells—

resulting in enhanced imaging of tumors with Near-Infrared nanobeads, 

increased tumor perfusion of the particles and a subsequent EPR effect. This 

indicates that the beads might be able to evade the immune system and thus be 

of potential biomedical application. The “self”-beads and hCD47-beads enhanced 

near-infrared imaging of human tumor xenografts by over tenfold. The hCD47 

beads also led to statistically significant tumor shrinkage similar to that observed 

with beads carrying Cremophor® EL-paclitaxel (Taxol) treatments, but without 

the noted toxicity of Cremophor® EL. We successfully targeted human cancer 

cells with antibodies against CD47, where the “self”-peptide blocked phagocytic 

clearance from circulation and suppressed tumor growth within one day after 

injection. The antibody targeting approach revealed the importance and utility as 
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well as limitations of a human ‘Marker of “self”’ to improve drug delivery when 

bound to nanobeads along with a bioactive antibody against a therapeutic target. 

3.1 – Introduction 

The concept of tumor immune surveillance-- the identification and 

elimination of cancer cells by the immune system-- was first discussed over a 

century ago, and since then multiple immune system components have been 

implicated (Swann 2007). However, the role of macrophage phagocytosis in 

tumor pathogenesis has been relatively unexplored. Recent studies have 

demonstrated that tumors evade macrophage phagocytosis through the 

expression of anti-phagocytic signals, especially the ones mediated by 

antagonists of the CD47–SIRPα interaction against cancer cells (Chao 2011, 

Zhao 2011). CD47 is a critical regulator of innate immune surveillance in that 

monoclonal antibodies targeted to CD47 enable the phagocytosis of solid tumor 

cells in vitro and prevents the metastasis of human tumor cells (Willingham, 

2012).  

The increased expression of CD47 on many different human tumor types 

enables tumors to escape innate immune system surveillance through evasion of 

phagocytosis. This process occurs through binding of CD47 on tumor cells to 

SIRPα on phagocytes, thus promoting inhibition of phagocytosis and tumor 

survival (Chao 2012) and suggests the potential for targeting the CD47–SIRPα 
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pathway as a common therapy for human malignancies. CD47 on nanoparticles 

should likewise limit uptake by tumor-associated macrophages of nano-particle 

imaging agents and therapeutics and thus improve delivery to cancer cells.  Here 

we demonstrate that nanobeads coated with “self” peptide or hCD47 injected 

intravenously into NSG mice-- which express a unique SIRPα strain compatible 

with human CD47—persist in circulation and exhibit enhanced perfusion, 

allowing for better imaging of tumors with nanobeads.  

Anti-CD47 antibodies have demonstrated preclinical activity against many 

different human cancers both in vitro and in mouse xenotransplantation models 

(Majeti 2009). While monotherapies targeting CD47 were efficacious in several 

preclinical tumor models, combination strategies involving inhibition of the CD47–

SIRPα pathway offer even greater therapeutic potential (Chao 2012). Concurrent 

administration of chemo-radiation therapy with anti-CD47 antibody is a 

combination strategy that may increase efficacy. However, this approach may 

also lead to increased toxicity as cell surface calreticulin is expressed on 

noncancerous cells undergoing apoptosis, a principle effect of chemo-radiation 

therapy (Gardai 2005, Obeid 2007). Anti-CD47 antibodies may facilitate 

elimination of tumor cells through a variety of mechanisms, but the role of CD47–

SIRPα interactions in the context of antibody therapy against cancer, still need 

conclusive evidence. Here we describe a therapeutic application with “self” 



76 

 

peptide that it improves drug delivery when it’s combined on nanobeads with 

bioactive antibody against a therapeutic target.   

3.2 – Results 

3.2.1 – “self”-Peptide enhances perfusion and imagi ng of tumors with 

nanoparticles 

Prolonged circulation of hCD47-beads and “self”-beads is based on a 

delay of particle clearance by the spleen and liver, which rapidly accumulate 

nanobeads in whole body imaging of near-infrared fluorescent beads (Fig. 3.1A ).  

Spleen and liver dominate biodistributions in the analysis of isolated organs in 

Chapter 2 and in many studies of others (e.g. Libanov 1991, Armstrong 2000, 

Photos 2003, Bartlett 2007, Rossin 2008).  Recombinant mouse-CD47 gave 

results for circulation and splenic clearance similar to human-CD47 (Fig. 2.S3B ), 

but hCD47 seemed more important to focus on due to known differences with 

mouse (Mouro-Chanteloup 2003,  Subramanian  2006) and a lack of in vivo 

experiments on human-CD47.  In particular, we hypothesized that persistent 

circulation of even a fraction of particles should enhance perfusion of other highly 

vascularized tissues such as a subcutaneous tumor.   

Human-derived A549 lung epithelial cells were xenografted in the flanks of 

NSG mice, and the subsequent tumors were quantitatively imaged both in situ 

and ex vivo using Near-Infrared (NIR) fluorescent nanobeads.  As early as 10 
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min after tail vein injection of nanoparticles, hCD47- and “self”-nanobeads gave 

mean tumor intensities 2-fold above those of non-injected mice while control 

beads gave background-level signal (Fig. 3.1B ).  With hCD47- and “self”-

nanobeads, the fluorescence at every time point is significantly higher than 

control beads (p < 0.05), and the increase fits to first order kinetics (T = 52 min), 

consistent with enhanced perfusion that is limited by progressive clearance.  

Notably, at 40 min, both hCD47- and “self”-nanobeads give ~10-20 fold higher 

signals than controls.  A second injection of hCD47-nanobeads after 2 hrs 

exhibits a similar increase in signal consistent with linearity (Fig. 3.S1A, B ).  An 

initial doubling time for tumor accumulation of particles can be estimated as To = 

12 min from the first order fit (for t << τ) and proves much shorter than control 

nanobeads (T = 210 min).  Both doubling times are similar to those obtained in 

blood analysis for persistent circulation in chapter 2 (Fig. 2.1C ), consistent with 

the hypothesis that enhanced tumor signal results from persistent circulation.   

Tumors and other major organs in one experiment were subsequently 

excised and imaged in order to remove background from nearby tissue and 

minimize any uncertainty in the region-of-interest (Fig. 3.1C ).  The “self”-beads 

and hCD47-beads show 16- to 22-fold enhancement above the very low signals 

obtained with control beads, with no statistical difference between “self”-peptide 

and hCD47.  The fraction of nanobeads in the blood within the tumor is small 

(Fig. 3.1C, inset ), and so the majority of signal derives from beads that have 
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accumulated in the tumor, most likely by Enhanced Permeation and Retention 

(EPR) through the leaky vasculature that is characteristic of many solid tumors 

(Matsumura 1986, Cabral 2011). The NSG-mouse results are thus suggestive of 

active suppression of clearance through binding of both human-CD47 and the 

“self”-peptide to NSG-SIRPα on macrophages.  

3.2.2 – Drug loading on the surface of nanobeads  

We loaded nanobeads with Paclitaxel (Taxol), which is a common anti-

cancer drug in wide clinical use against solid tumors as it induces cell death 

through the stabilization of microtubules (Kim 2004).  The goal was to inject 

various paclitaxel formulations into the tumor-bearing mouse model that was 

used in the imaging studies of Fig (3.1A). 

First, we tried using different concentrations of the organic solvent 

Tetrahydrofuran (THF) to make the particles swell and enable drug to be loaded 

into the polystyrene beads. Fig 3.2A  shows the shape and size of 2.1um beads 

in a water solution and Fig 3.2B  shows how the particles swell when in 20% 

THF. After swelling occurred, we eliminated the THF from solution and allowed 

particles to return to their original size. Panel C (Fig 3.2C ) provides the 

polydispersions of polystyrene beads after THF treatment as measured by flow 

cytometry.  
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However, MTT Cell Proliferation Analysis for A549 cells after Paclitaxel 

drug was loaded into the beads revealed that the particles loaded with this drug 

weren’t able to release the drug to target cells and didn’t show any significance 

difference with plain beads. Therefore we decided to load the particles into 

polystyrene beads in water so the drug can be adsorbed into their surfaces be 

later released to cancer cells to induce cell death (Fig 3.3 ) 

3.2.3 – “self”-Peptide and anti-hCD47 on the surfac e of nanobeads targets 

human cancer cells 

Tumors were induced in mice by injection of human lung cancer derived 

A549 cells, and control mice with untreated tumors received Cremophor® EL, the 

castor oil-based clinical solubilizing agent that is most commonly used clinically. 

This emulsifier has its own dose-limiting side effect, namely cardiotoxicity and 

nephrotoxicity in vivo (Kim 2001, Gligorov 2004). We established the cytotoxic 

effects of these beads in vitro (Fig 3.4A,B ) and we also established the safety of 

the beads along with Cremophor® EL formulations after tail vein injection (Fig 

3.4E). Cremophor® EL is well known to cause allergic reactions, and the NSG 

mice developed tail lesions that were severe enough to require tail amputations 

in most mice, whereas the nanobeads did not exhibit such an effect (Fig 3.4F ). 

The nanobeads thus had a toxicity advantage. The NSG mouse results thus 

reveal active suppression of clearance by both human-CD47 and ‘Self’ peptide, 

thereby enhancing both tumor imaging and drug delivery. 
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Efficacy was studied with two bead systems. First, we compared the non-

treated mice and the Cremophor® EL-paclitaxel treated mice to the same beads 

from Chapter 2, which were loaded with drug instead of dye. All of the drug 

treatments suppressed tumor growth at day-4 and not earlier. However, the 

CD47 beads also showed statistically significant tumor shrinkage similar to the 

standard Cremophor® EL-paclitaxel (Taxol) treatments but without the noted 

toxicity of Cremophor® EL (Fig. 3.4C ). 

Secondly, we targeted human cancer cells with antibodies against CD47. 

We attached a biotinylated anti-hCD47 to the beads instead of the opsonizing 

antibody (anti-Avidin), and we then showed that the anti-CD47 beads bind to 

A549 cells in vitro, and any such targeting antibody still acts in vivo as an 

opsonin and promotes clearance. The “self”-peptide blocks this clearance and 

the anti-CD47 antibody cannot bind “self”-peptide. PEG was also attached to the 

beads although it provides no advantage for antibody-targeted beads. The anti-

CD47 target beads with “self”-peptide suppressed tumor growth after just one 

day, and were statistically better than beads without “self”-peptide (Fig 3.4D ).  

Tax-loaded beads that displayed either recombinant hCD47 (Fig 3.4C ) or 

Self-peptide plus PEG and anti-hCD47 targeting antibody (Fig 3.4D ) consistently 

shrunk tumors more than beads lacking ‘Self’.  The ‘Self’ beads also did as well 

or better than the standard paclitaxel nanocarrier Cremophor®. The NSG mouse 
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results thus reveal active suppression of clearance by both human-CD47 and 

‘Self’ peptide, thereby enhancing both tumor imaging and drug delivery. 

3.3 – Discussion 

The understanding of the CD47-SIRPα interaction is beginning to suggest 

possible applications for disease, as blocking of CD47 on tumor cells allows for 

tumor-associated macrophages to attack the tumor (Willingham 2012).  CD47 on 

nanoparticles should likewise limit uptake of nanoparticle imaging agents and 

therapeutics by tumor-associated macrophages and thus improve delivery to 

cancer cells.  While SIRPα is abundant on macrophages and its key downstream 

phosphatase SHP1 is unique to hematopoietic lineages (such as macrophages), 

SIRPα is also expressed on other cell types.  The A549 cancer cells used here 

(Fig. 3.1 ) indeed express low levels of SIRPα, but we find that our nanobeads 

(±hCD47) are not internalized by A549 cells in vitro compared to the THP1 cells 

used in chapter 2 (Figs. 2.2E, 2.3 ).  Enhanced imaging of tumors with hCD47 

and “self”-peptide on Near-Infrared nanobeads (Fig. 3.1 ) is therefore likely to 

result from increased tumor perfusion of the particles and the subsequent 

Enhanced Permeation and Retention (EPR) effect.  It should be pointed out that 

a particle which stays in circulation will not guarantee delivery to a tumor site 

(Hong 1999). 
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We showed that “self” peptide improves delivery when combined on 

nanobeads with bioactive drug against a therapeutic target, consistent with 

previous results reported recently in the literature (Majeti 2009, Chao 2012, Zhao 

2012, Willingham 2012). This is done in combination because chemotherapeutics 

are increasingly being combined with antibodies for tumor targeting. Many 

chemotherapeutics such as Taxol can kill tumor cells but will also permeate 

many non-tumor tissues where cytotoxic effects limit the dose that can be 

administered to patients. 

Here we have shown that the drug treatments suppressed tumor growth at 

day 4 (Fig. 3.4C ) and not earlier. However, the CD47 beads also showed 

statistically significant tumor shrinkage similar to the standard Cremophor® EL-

paclitaxel (Taxol) treatments but without the noted toxicity of the Cremophor® EL 

excipient.   

We also reported that targeting the human cancer cells with antibody 

against CD47 attached to the nanobeads coated with “self”-peptide was able to 

suppress tumor growth in NSG mice after just one day of injection, which was 

statistically better than beads without “self”-peptide. Even though Biotinylated 

anti-hCD47 antibody acts in vivo as an opsonin and promotes clearance, the 

“self”-peptide is able to block this clearance (the anti-CD47 antibody cannot bind 

“self”-peptide). The upper inset in (Fig 3.4D) shows soluble hSIRPα binding to 

Self-peptide on beads with anti-hCD47, which indicates that anti-hCD47 does not 
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inhibit Self-peptide activity or binding. PEG was also attached to the beads as a 

control, as it provides no advantage for antibody-targeted beads. 

In this study, we have thus shown that nanobeads coated with “self” 

peptide and anti-CD47 antibody are a promising novel therapeutic target for 

cancer cells. Blocking CD47-SIRPα interaction promoted the phagocytosis of 

tumor cells and inhibited their growth. In order to draw further conclusions about 

the anti-cancer effects of these nanobeads, more drug doses and cytotoxic 

effects need to be evaluated. Still, it is a promising idea to combine a “self” 

peptide with targeting antibodies; perhaps a better delivery system such as 

filomicelles or toroidal polymers rather than polystyrene beads would be 

desirable as the study moves onto clinical stages. 

3.4 – Materials and methods 

3.4.1 – Chemicals  

Dulbecco’s phosphate-buffered saline (DPBS) without Ca2+ or Mg2+ 

(Invitrogen) was supplemented with 1% BSA. Hoechst 33342 (Invitrogen, 

Carlsbad, CA) was used for DNA stains. The near-infrared lipophilic dye, DiR, 

was purchased from Invitrogen, Inc. and PKH26 Red Fluorescent Cell Linker Kit 

for General Cell Membrane Labeling from Sigma Aldrich. Chloroform, methanol, 

and hydrochloric acid were purchased from Fisher Scientific. N-Biotinyl-NH-

(PEG)4-COOH was purchased from EMD Chemicals Inc., PEG Biotin, MW 550 
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was purchased from Nanocs Inc., and mPEG-Biotin, MW 5,000 from Laysan Bio 

Inc. 

3.4.2 – Antibodies  

The fluorescein-labeled antibody B6H12-FITC (BD Biosciences) and 

mIAP301-FITC (BD Biosciences) were used against human CD47 and mouse 

CD47 respectively. Opsonizing antibodies streptavidin coated polystyrene beads 

(Spherotech) included rabbit anti-streptavidin (Sigma-Aldrich), rabbit anti-

streptavidin conjugated with FITC (Rockland Immunochemicals) and Biotin anti-

human CD47 Antibody (BioLegend) were used as IgG opsonin. Secondary 

antibodies used for detecting opsonin levels and uningested beads included goat 

anti-rabbit FITC or goat anti-rabbit F(ab’)2 R-PE (Sigma-Aldrich). Primary 

antibody used to measure the level of PEG molecules bounded to streptavidin 

coated polystyrene beads was Biotin-4–fluorescein (Anaspec).  

3.4.3 – Biodistribution Study with dye-labeled Bead s    

All mice were treated in accordance with approved IACUC protocols at the 

University of Pennsylvania. Near Infrared Fluorophore (NIRF)-labeled and 

unlabeled streptavidin coated polystyrene beads were injected into the tail veins 

of healthy Adult Immune-deficient (NSG) Mice (4-8 weeks).  The range of 

injected beads was ~107 per ml, with some variability due to accuracy of locating 

the tail vein. Every 10 min, 50µl blood samples were collected by retro-orbital 
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bleeding. At 35min following injection, mice were sacrificed and whole blood, 

liver, spleen, lungs, kidneys, heart and brain were collected. The whole blood 

was then centrifuged and plasma collected.  

Organs were imaged on the LiCor Odyssey imaging system (LI-COR 

Biosciences, Lincoln, NE) at 800 nm excitation. The integrated fluorescence 

intensity of the organs was normalized using the organ correction factor found by 

Christian et. al. (Christian 2009) and applied to all other measured intensities for 

all organs. The NIR intensity of the plasma was measured on the LiCor and 

calculated by fitting the slope of the linear dilution curve.  

The fraction of total blood in the tumor must be estimated in order to 

determine the % of injected nanobeads within the Tumor blood (Fig. 3.1C, 

inset ).  The typical tumor weight is about 500 mg, which we approximate as 1 g, 

and assume the tumor has 10% blood volume like other highly vascularized 

tissues such as liver and spleen (Baxter 1994).  One measurement reported 

tumors are ~2% blood by volume (Jain 1988), so the assume values of 10% and 

1 g provide an overestimation of the amount of NIR intensity in the tumor 

provided by NIRF-labeled particles in the blood.  This overestimation allows us to 

safely determine that particles functionalized with “self”-peptide or hCD47 have 

entered the tumor stroma.  
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3.4.4 – A549 anti-CD47 binding experiments. 

In a first step, A549 cells were preincubated either with 15µl of CD47-

B6H12-FITC at saturating levels (BD Biosciences) or with 10 µg/mL of Biotin anti-

CD47 antibody (Biolegend) for 30 minutes on ice. The cells were then stained 

with Cy5 conjugated Affinity Purified Anti-Biotin goat (Rockland 

Immunochemicals). After washing twice, cells were analyzed on a flow 

cytometer. 

3.4.5 – Biodistribution Study with Two Color-labele d Beads in Tumor-

bearing NSG Mice 

106 human lung carcinoma A549 cells suspended in PBS with 25% 

Matrigel (BD Bioscience) were injected subcutaneously into both flank sites of 

each NSG mouse. After about 5 weeks, the tumor-bearing mice received tail vein 

injection of the mixture of DiD and NIR dye-coated beads. Fluorescent intensity 

from both dyes in tumor areas was monitored at 10min, 40min, 90min and 

120min, using IVIS Spectrum Imaging System (Caliper Life Sciences, Hopkinton, 

MA). After 120 min post-injection, the mice were sacrificed for harvesting tumors 

as well as organs (liver, spleen, lungs, kidneys, heart, brain). Tumors and organs 

were imaged on the LiCor Odyssey imaging system (LI-COR Biosciences, 

Lincoln, NE) at 800 nm excitation. 
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3.4.6 – Paclitaxel loading 

108 polystyrene beads were suspended in 300 mL Milli-Q water. 5 mL of 

4.5 mg/mL paclitaxel (LC Laboratories) in methanol was added to the beads to 

achieve 75 mg/mL concentration. After overnight incubation at room temperature 

and following spin-down, beads were re-suspended in PBS with 10-fold 

concentration. If necessary, beads surface was modified by attaching molecules.  

3.4.7 – MTT Assay 

5000 A549 cells were seeded on wells of 96-well plate, 24 hours prior to 

drug treatment. Cells were treated with series dilution of beads samples loaded 

with paclitaxel, starting from 7.5 mg/mL. After 24 hours incubation at 37°C with 

5% CO2, cells were washed once with PBS and added with 100 mL growth 

medium and 20 mL of 5 mg/mL Thyazolyl Blue Tetrazolium Bromide (Sigma). 

After 4 hours incubation at 37°C with 5% CO2, purple crystal in the cells were 

solubilized by adding 100 mL DMSO. Absorbance was read at 560 nm.  

3.4.8 – Checking body weight loss by paclitaxel-loa ded beads treatment 

NSG mice received intravenous (i.v.) injection of paclitaxel-loaded beads 

or Cremophor® EL (Sigma) at a dose of 7.5 mg/kg. To check weight loss by 

treatments, body weight of each mouse was measured right before and 24 hours 

after the injection. 
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3.4.9 – Tumor inhibition study 

After a month of cancer cell inoculation, tumor-bearing mice were treated 

with 4 daily injections (i.v.) of paclitaxel-loaded beads at a dose of 7.5 mg/kg. 

Tumor size was measured on daily basis, giving an estimation of volume with 

Tumor volume = ½ * (major axis) * (minor axis)2 

As a positive control for tumor shrinkage, paclitaxel solubilized with 

Cremophor® EL was injected at 22 mg/kg.  



 

 

Fig.3.1.- “self”- peptide and human

Infrared particles.  
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(A) NSG mice with flank tumors of A549 lung-derived cells (black circles) 
received tail vein injections of nanobead mixtures in which one bead type is 
labeled with DiR fluorophore.  Images of live mice and calibration standards were 
taken with a Xenogen imager (IVIS Spectrum Imaging System, Caliper Life 
Sciences).  Tumor-bearing mice have persistence ratios of particles in blood at 
35 min similar to results in Fig.2.1C, even though many particles are seen in 
spleen and liver.  (B) The tumor region was estimated in the brightfield image for 
quantitation of total fluorescence at each time point, and all results for “self”-
peptide and hCD47 were combined in the fit.  Results are cumulated from all 
tumors from three different sets of tumor-bearing mice. N, Number of tumors.  (C) 
Tumors were harvested from one set of tumor-bearing mice for ex vivo 
quantitation by an Odyssey imaging system (LI-COR Biosciences).  For control, 
N = 2; for “self”-peptide, N = 4; and for hCD47, N = 6 tumors.  Inset bargraph 
shows the high percentage of nanobeads in the tumor compared to an upper 
bound (see Methods) for the nanobeads in the blood vessels within the tumors (n 
= 2). 

 

  



 

 

Fig. 3.2.- Taxol drug loading in polystyrene beads. 

(A) Optical microscope images of 2.1
(B) Optical microscope images of 2.1
20%THF solution (C) Flow cytometry forward scatter plot for 2.1
particles in water (panel left) and after adding 20%THF to the water solution 
(panel right). 
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Taxol drug loading in polystyrene beads.  

Optical microscope images of 2.1µm polystyrene particles in water solution. 
Optical microscope images of 2.1µm polystyrene particles in 80%water and 

Flow cytometry forward scatter plot for 2.1
particles in water (panel left) and after adding 20%THF to the water solution 

 

 

in water solution. 
particles in 80%water and 

µm polystyrene 
particles in water (panel left) and after adding 20%THF to the water solution 



 

Fig. 3.3.- Taxol drug loading in polystyrene beads added to A5 49 cells. 

Bright field images at the left 
paclitaxel at the right side are shown for A549 cells after 24 hours of 
cells after Paclitaxel drug was added
presented to illustrate 
middle and bottom pictures illustrate 
A549 cells: In solution and loaded 
bar, 10um. 
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Taxol drug loading in polystyrene beads added to A5 49 cells. 

Bright field images at the left side and fluorescence images 
at the right side are shown for A549 cells after 24 hours of 

after Paclitaxel drug was added. The upper representative picture is 
 the non toxicity effect of the particles in A549 cells.  The
ctures illustrate 2 different conditions for drug loading into 

In solution and loaded on the surface of polystyrene beads. 

 

 

Taxol drug loading in polystyrene beads added to A5 49 cells.  

 of Green 488 
at the right side are shown for A549 cells after 24 hours of for A549 

The upper representative picture is 
the non toxicity effect of the particles in A549 cells.  The 

for drug loading into 
polystyrene beads. Scale 



 

Fig. 3.4.- Recombinant hCD47 protein or synthetic “Self”peptid e can 

enhance the effect of an anti
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Recombinant hCD47 protein or synthetic “Self”peptid e can 

effect of an anti -cancer drug.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recombinant hCD47 protein or synthetic “Self”peptid e can 
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(A) In vitro viability of A549 human lung cancer derived cells in the presence of 
various formulations with Paclitaxel (Tax), which is a common anti-cancer drug in 
wide clinical use against solid tumors including lung tumors.  Cremophore is a 
standard clinical carrier of Tax.  Nanobeads of the four rightmost panels are, 
clockwise:  IgG control with anti-Streptavidin, IgG plus biotin-hCD47 per Fig. 1C 
and 2, PEG-biotin, and biotin-(anti-hCD47) (without anti-Streptavidin).  Cell 
viability was measured by standard MTT assay to determine the 50% inhibition 
constant (IC50).  (B) Targeting of A549 cells with biotin-(anti-hCD47). Upper 
panel shows the cancer cells by forward/side scatter, lower left panel shows non-
specific binding of the secondary Ab Cy5-anti-Biotin, and the lower right panel 
shows the specific binding between cells and biotin-(anti-hCD47).  (C) Tumor 
sizes 4 days after daily injections and normalized to initial A549 tumors.  Control 
Tax-nanobeads have anti-Streptavidin IgG (per Fig. 2.1C) and hCD47 Tax-
nanobeads also have this IgG; all beads were injected at the maximum drug load 
of 7.5 mg/kg Tax, whereas Tax-Cremophore was injected at 22 mg/kg.  None of 
the drug treatments showed significant shrinkage until day-4.  Tumor sizes were 
measured daily.  (n ≥ 3 mice; ±SEM). (D) Small molecule therapeutics are 
increasingly being combined with targeting antibodies, and we hypothesized that 
adding Self-peptide would provide further advantage.  Tumor sizes were 
measured 1 day after a single injection of targeted Control Tax-nanobeads (anti-
hCD47 IgG + PEG) or targeted Self-peptide Tax-nanobeads (Self-pept. + anti-
hCD47 IgG + PEG).  CD47 is considered a therapeutic target on cancer cells, 
and chemotherapeutics are increasingly being combined with therapeutic 
antibodies as here.  Note that Tax-Cremophore has no significant effect at day-1, 
whereas Self-peptide effectively shrinks the tumors. (n ≥ 3 mice; ±SEM).  The 
upper inset shows soluble hSIRPα binding to Self-peptide on beads with anti-
hCD47, which indicates that anti-hCD47 does not inhibit Self-peptide activity.  (E) 
In vivo safety of 7.5 mg/kg Tax was assessed by measuring body weight 
changes 24 hr after injection (n = 3 mice each).  All mice showed <10% body 
weight loss, which is the conventional maximum for a tolerable dose, but Tax-
Cremophore alone gave a statistically significant loss of body weight. (F) As part 
of efficacy studies at a higher therapeutic dose of 22 mg/kg Tax-Cremophore, 
visibly necrotic tails near the site of injection (images) were evident in 2 of 3 mice 
injected with Tax-Cremophore, with 1 mouse requiring amputation of the tail 
based on standard of care criteria.  Cremophor is well known to cause allergic 
reactions, but the higher dose was otherwise tolerated with weight losses <10% 
body weight. The hCD47 tax-nanobeads showed no significant loss of body 
weight and no tail necrosis.  All data are mean ±SEM. 
  



 

 

 

 

Fig.3.S1.- Tumor imaging is enhanced after second injection of  hCD47

Nanobeads.  

(A) Tumor imaging is enhanced after second injection of hCD47
120 min after first injection
of beads using a Xenogen IVIS Spectrum Imaging System (
Sciences, Hopkinton, MA). 
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Tumor imaging is enhanced after second injection of  hCD47

Tumor imaging is enhanced after second injection of hCD47
120 min after first injection. (B) Calibration of fluorescence emission and number 

Xenogen IVIS Spectrum Imaging System (
Sciences, Hopkinton, MA).  

 

 

 

 

 

 

 

Tumor imaging is enhanced after second injection of  hCD47-

Tumor imaging is enhanced after second injection of hCD47-Nanobeads at 
Calibration of fluorescence emission and number 

Xenogen IVIS Spectrum Imaging System (Caliper Life 
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Abstract 

A large number of membrane proteins possess extracellular domains that 

interact with extracellular domains of other membrane proteins, transducing 

important signals to cells. Such interactions can occur either in cis (both proteins 

on the same cell’s surface) or in trans (proteins embedded in membranes of 

different cells.) These two possibilities raise important questions about the 

differences between signaling that occurs in cis vs. in trans.  Many cells express 

not only the ubiquitous 'Marker of Self' protein CD47 but also some level of its 

counter-receptor SIRPα (CD172). Here we show that CD47-SIRPα interactions 

occur not only in trans in cell-cell adhesion, but also in cis, modulating 

downstream signals. Activation is clearly increased with CD47-SIRPα 

interactions in trans, resulting in the inhibition of phagocytosis of any CD47-

displaying target. Knocking down CD47 on macrophages decreases the level of 

basal signaling, increases binding of soluble CD47, and enhances phagocytosis 

of opsonized targets above wild-type cells. When multiple knockdowns are 

performed, the effective Kd for binding in trans is shown to depend linearly on cis 

CD47 on the macrophage, consistent with the simplest mathematical modeling 

for cis vs. trans competition. Cis interactions might be unavoidable with this 

system and others studied, but it is also possible that by lowering the threshold at 

which activation exceeds inhibition, cis interactions may optimize discrimination 

in trans. 
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4.1 – Introduction 

Macrophages like other innate immune cells have the ability to clear 

foreign and apoptotic cells. The recognition of these foreign or host cells is 

induced through direct recognition by conserved receptors such as complement 

and Fc receptors that lead to clearance by phagocytosis (Tenner, Robinson et al. 

1995; Ravetch 1997). Recognition of foreign cells may occur through antigen 

recognition, resulting in IgG opsonization (Ravetch and Clynes 1998) that is not 

limited to foreign cells, but autologous cells as well (Turrini, Mannu et al. 1993). 

Binding of macrophage Fcγ-R to IgG opsonin on a target cell leads to extension 

of pseudopodia, creating a phagocytic synapse that “zipper” around the target 

with increasing activation signal (Swanson and Baer 1995). However when host 

cells express CD47 and IgG-opsonized they are recognized by receptors 

transmitting both activating and inhibitory signals to the macrophage. The 

inhibitory signal is occurs when self cells express CD47 that bind to the immune 

inhibitory receptor, SIRPα (Seiffert, Cant et al. 1999). The integration of these 

signal inputs determines whether the target cells will undergo clearance. 

 This ubiquitously expressed protein CD47 protein is an Ig 

superfamily member that interacts specifically with SIRPα found on macrophages 

(Jiang, Lagenaur et al. 1999; Seiffert, Cant et al. 1999; Vernon-Wilson, Kee et al. 

2000). This receptor-ligand interaction signals self in macrophages, enabling 
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selective phagocytosis of foreign cells or particles. Phosphorylation of the 

immune-receptor tyrosine-based inhibitory motif (ITIM) in the cytoplasmic domain 

of SIRPα upon ligation with CD47 leads to the recruitment of SHP-1 and 

deactivation of phagocytosis (Vernon-Wilson, Kee et al. 2000; Seiffert, Brossart 

et al. 2001). The loss of CD47 protein in red blood cells (RBCs) and apoptotic 

cells results in the susceptibility of these self cells to clearance by macrophages 

(Oldenborg, Zheleznyak et al. 2000; Anniss and Sparrow 2002; Krieser and 

White 2002; Gardai, McPhillips et al. 2005).  

 The receptor SIRPα is composed of three IgSF domains while 

CD47 contains only a single IgSF domain with a disulfide link between one of the 

loops between the transmembrane regions (Tsai, 2008), which may be required 

for optimal binding of SIRPα (Rebres, Vaz et al. 2001). The crystal structure of 

SIRPα-CD47 complex indicates that the loops of SIRPα are highly flexible, and 

that CD47 binds at the N-terminal ligand-binding domain of SIRPα (Hatherley, 

Graham et al. 2008). CD47 has a high specificity to SIRPα. The regions of the 

mammalian brain in which CD47 is particularly abundant overlap substantially 

with those enriched in SIRPα (Mi, Z.P. et al. 2000, Ohnishi, H. et al. 2005). The 

similar expression patterns of SIRPα and CD47 in the brain indicate that the 

transinteraction of the two proteins mediates intercellular signaling in a 

bidirectional manner. By contrast, SIRPα is barely detectable in red blood cells 

(RBCs) or in T or B lymphocytes, whereas CD47 is expressed in a variety of 
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hematopoietic cells (Adams, S. et al. 1998, Veillette, A. et al. 1998, Seiffert, M. et 

al. 1999, Seiffert, M. et al. 2001, Brown, E.J. and Frazier, W.A. 2001). CD47 or 

SIRPα might thus mediate unidirectional signalling in the hematopoietic or 

immune systems. For instance, the binding of CD47 on RBCs (in which minimal 

expression of SIRPα exists) to SIRPα of macrophages regulates phagocytosis by 

macrophages in a unidirectional manner (Matozaki, Murata et al. 2009). CD47 

binding to SIRPα is relatively low affinity, and is less important for cell-cell 

adhesion (Hatherley, Harlos et al. 2007; Subramanian, Boder et al. 2007). The 

lower affinity interaction of CD47-SIRPα allows for rapid interaction on the 

macrophage surface from intracellular (cis) to intercellular (trans) binding to 

target cells.  

Expression of both SIRPα and CD47 on the surface of macrophages 

raises the possibility that these proteins interact on the same macrophage 

surface (in cis). If so, this would have implications for SIRPα’s ability to bind to 

CD47 on target cells (in trans) (Doucey, Scarpellino et al. 2004). To explore the 

possibility that SIRPα and CD47 can interact in cis, we used a CHO cell display 

system. CHO cells expressing human SIRPα were co-expressed with or without 

human CD47. We demonstrated that the binding excluded simultaneous cis and 

trans interaction due to a specific binding site in the SIRPα receptor (Hatherley, 

Harlos et al. 2007). The functional implication of cis interaction was demonstrated 

with CD47 knockdown macrophages that indicated higher level of phagocytosis 
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of IgG-opsonized sheep RBCs. This was a consequent of the loss of the 

inhibitory signal associated with CD47-SIRPα interaction via cis. However this 

had no effect on the phagocytosis of IgG-opsonized human RBCs. From our 

earlier studies with human macrophages, the phagocytic synapse extended but 

eventually retracted. This delayed retraction occurs due to the competitive 

binding of SIRPα with CD47 from cis on macrophage surface to trans on target 

cells.  

4.2 – Results 

4.2.1– Expression profiles of CD47 and SIRP α in human cells 

CD47 expressed on the surface of self cells prevents elimination of these 

cells by binding to the inhibitory receptor SIRPα on the surface of phagocytes. 

Once it is activated, SIRPα inhibits pro-phagocytic signals from Fc and 

complement receptors, resulting in inhibition of phagocytosis (de Almeida 2009). 

In agreement with previous reports (Brown and Frazier 2001), flow cytometry 

analysis revealed that all cells (both professional and non-professional 

phagocytes) express CD47 (Fig. 4.S1 and 4.S2 ). The level of CD47 expression 

was high in red blood cells compared to other eukaryotic cells explored based on 

total CD47 expression. Mature RBCs express high copies of CD47 protein on the 

surface because they are unable to further express CD47 after erythropoiesis 

(Furusawa, Yanai et al. 1998) unlike other eukaryotic cells. As RBCs age the 
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level of CD47 proteins are reduced  that eventually lead to clearance (Anniss and 

Sparrow 2002). However we have previously reported that only 10-20% CD47 

density of normal human RBC (hRBC) is necessary to inhibit uptake by human 

macrophages (Tsai and Discher 2008). In each of the cell types explored, the 

number of CD47 molecules was above the necessary minimum of ~20 CD47 

molecules/µm2. In contrast to CD47, we found that SIRPα expression was 

restricted to phagocytes, including human THP-1 macrophages, peripheral blood 

monocytes (PBMC) and, in lower levels, human mesenchymal stem cells (MSC). 

One interesting observation was that human hematopoietic stem cells displayed 

SIRPα expression that was very similar to the one found in THP-1 macrophages, 

but only after being cultured and induced with granulocyte colony-stimulating 

factor (G-CSF) for 7 days (Fig. 4.1A ). The expression of SIRPα on MSC is in 

agreement with other studies (Vogel, Grunebach et al. 2003) suggesting that 

these cells express Fcγ-R and exhibit low phagocytic capabilities (Charriere, 

Cousin et al. 2006). THP-1 macrophages and MSC had a ratio of 3.2 and 10.9 

CD47 to SIRPα molecules respectively (Fig. 4.1 ). This was calculated based on 

flow cytometry analysis using antibodies against CD47 and SIRPα to obtain the 

ratio in unpermeabilized live cells. In both cell types the total level of CD47 was 

observed to be higher than total level of SIRPα suggesting that macrophages can 

signal self when in contact with other macrophages.  
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To address the molecular basis of the reduced inhibition through SIRPα in 

the presence of CD47, we sought to explore the phosphorylation signal that 

associates with CD47-SIRPα ligation. SIRPα interaction by trans with targets 

presenting CD47 (Fig. 4.2A ) triggers SIRPα’s immunorecptor tyrosine-based 

inhibiting motif (ITIM) activation (Kharitonenkov, Chen et al. 1997) and 

subsequent SHP-1 phosphatase induction (Brown and Frazier 2001; Latour, 

Tanaka et al. 2001), ultimately leading to the inhibition of phagocytosis. Previous 

studies showed an inherent endogenous SIRPα phosphorylation in macrophages 

alone without the presence of IgG-opsonized targets (Oldenborg, Zheleznyak et 

al. 2000; Ide, Wang et al. 2007; Tsai and Discher 2008) which may be attributed 

to the cis interaction on macrophages that we observed in our studies above. 

4.2.2 – Reduced SIRP α function and foreign cell phagocytosis 

In order to directly assess the function of the cis interaction on 

macrophages, CD47 expression was suppressed using RNA interference. The 

expression of CD47 was reduced to levels ranging from 13% to 50% wild-type 

levels (Fig. 4.S3A ) while the levels of SIRPα on these macrophages remained 

unchanged.  

 As observed in the CHO cell system, the level of soluble hSIRPα trans 

interaction was reduced (Fig. 4.6C ) we sought to explore the difference in 

binding affinity in THP-1 macrophages at physiological levels of CD47 and SIRPα 
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as opposed to the extreme overexpressions of CD47 co-expression with SIRPα 

on CHO cells. The macrophages tested demonstrated a moderate affinity and 

saturable interaction of hSIRPα for CD47 in wild-type and the two CD47 blocking 

antibody (Fig. 4.3A ). The binding affinity in wild-type (WT) THP-1 macrophages 

was 1.6 µM with increasing binding affinity to 0.26 µM in cells with blocking anti-

hCD47 antibody B6H12 (clone with high specificity to hCD47 protein) and the 

binding affinity remain the same in the case of blocking anti-hCD47 antibody 2D3 

used as a negative control due to its low specificity to hCD47. The binding affinity 

increased to 0.26 µM in cells with ~13% wild-type CD47 levels (CD47′ THP-1 

cells) and to 0.87 µM in cells with ~48% wild-type CD47 levels (Fig. 4.3B ).  A 

linear relationship was observed in relation to CD47 expression level and the 

measured dissociation constant, Kd where the reduction or elimination of the cis 

interaction between CD47 and SIRPα led to a higher binding affinity with soluble 

hCD47 (Fig. 4.3C ). The reduction of CD47-SIRPα cis interaction led to a linear 

decrease in tyrosine phosphorylation (Fig. 4.4B ). These results suggest that 

CD47-SIRPα may affect the efficiency of macrophages to differentiate non-self 

and self because of the inherent phosphorylation signal associated with cis 

interaction.  

In order to understand the role of CD47-SIRPα cis interaction in 

phagocytosis, IgG-opsonized sheep and human red blood cells (RBCs) were 

used as targets for THP-1 macrophage WT and CD47′ THP-1 cells. 
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Phagocytosis by THP-1 macrophages was studied by imaging in differential 

interference contrast (DIC) microscopy and quantified by the number of ingested 

RBCs per macrophage. The internalization of sheep RBC was seen to increase 

by 20% with CD47′ THP-1 cells compared to wild-type macrophages, but human 

RBC targets showed no statistical difference (p = 0.12) (Fig. 4.5A ). We used two 

CD47 suppression vectors that showed no difference in phagocytosis of human 

RBCs compared to WT THP-1 macrophages. In order to assess that lentiviral KD 

did not impact THP-1 macrophages phagocytic capabilities, a mock knockdown 

was performed that showed IgG-opsonized ShRBC had comparable level of 

phagocytosis to THP-1 WT and knockdown (KD) controls (Fig. 4.S5 ).  

RBCs are common targets used in phagocytosis studies, but RBC 

membranes are complex. We therefore tested whether particles with or without 

CD47 had similar trends as observed with the RBC targets. The extracellular 

immunoglobulin-like domains of human CD47 (hCD47) was recombinantly 

expressed and attached to streptavidin-coated particles (2.1 µm). To study 

phagocytosis, beads were IgG-opsonized by pre-treatment with anti-streptavidin 

to induce FcγR-mediated phagocytosis (Tsai and Discher 2008). As with our 

RBC studies (Fig. 4.5A ), a ~50% higher level of phagocytosis of uncoated beads 

was observed in 13% WT CD47 compared to WT THP-1 (Fig. 5B ). Particles 

coated with hCD47 at the lower limit necessary for inhibition (~24 CD47 

molecules/µm2) showed no difference in phagocytosis. The results from both the 
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RBC and particle targets showed an increase in phagocytosis of non-self targets 

due to lower cis interaction. 

In order to determine if CD47 and SIRPα indeed interact in cis, we sought 

to explore the extreme case by overexpressing both proteins in a model CHO 

display system where expression levels can be controlled (Subramanian, Boder 

et al. 2007). We first compared the effect of CD47 on protein localization on the 

surface. CHO cells co-expressed with human SIRPα showed a reduced level of 

antibody binding compared to hCD47-GFP expression alone (Fig. 4.6A ). The 

level of anti-hCD47 antibody bound was drastically reduced in cells co-

expressing hCD47-GFP and hSIRPα across the different levels of hCD47-GFP 

expression suggesting a competitive interaction (Fig. 4.6B ). Similar to the 

observations with anti-hCD47 antibody hSIRPα bound signal was reduced to 

near background levels in CHO cells co-expressing hCD47 and hSIRPα (Fig. 

4.6C). 

4.2.3 – SIRPα and CD47 physically associated in cis 

In order to determine if CD47 and SIRPα indeed interact in cis, we sought 

to explore the extreme case by overexpressing both proteins in a model CHO 

display system where expression levels can be controlled (Subramanian, Boder 

et al. 2007). We first compared the effect of CD47 on protein localization on the 

surface. Fluorescent microscopy images of unpermeabilized CHO cells 
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expressing hCD47-GFP showed localization of anti-hCD47 antibody labeling and 

soluble human SIRPα (hSIRPα) confirmed pool of hCD47-GFP was properly 

displayed on the surface and functional (Fig. 4.6 ). In order to rule out the 

possibility that the co-expression of hSIRPα was masking the epitope for the 

CD47 antibody (clone 2D3), a number of additional antibodies were used each 

recognizing different epitopes of human CD47 confirmed the above results of 

reduced binding (Fig. 4.S6B ). Poor multimeric binding to SIRPα in the presence 

of CD47 may be the due to steric hindrance as a result of direct or indirect 

association within the plane of the same membrane (in cis). 

4.3– Describing a model for the competitive binding  between CD47-SIRP α 

in cis and in trans interactions 

In order to understand the competitive binding occurring during the 

interaction of SIRPα and CD47 in cis or in trans, we developed an equilibrium 

model (Fig. 4.3 ). We assumed that the two CD47 ligands—denoted as trans (Ct) 

or cis (Cc)-- could only occupy a single site on the macrophages SIRPα (Sv) 

(Rebres, Kajihara et al. 2005; Takenaka, Prasolava et al. 2007). Binding constant 

for cis and trans interactions was defined as Kc and Kt respectively. We began 

calculating the fractional occupation of the site, θ by trans-CD47 (Eq. 1.1). 
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     (Eq. 4.1) 

 

The free receptor SIRPα and ligand concentration CD47 was related to 

the chemical equilibrium through the dissociation constant, Kd (koff/kon) while the 

chemical potential was simultaneously related with the fraction occupation site 

(Eq. 1.2) (Hill 1985). 

 

     (Eq. 4.2) 

 

This model validates the experimental results that the affinity binding 

constant had a linear behavior (Fig. 4.3C ) and confirms that the effective affinity 

of trans-CD47 (Ct) for free SIRPα (Sv) is a function of cis-CD47 (Cc) 

concentration. The accessibility of SIRPα to soluble CD47 in trans was shown to 

have a slower binding with an association constant kon of 0.65min-1 in WT 

compared to 0.36 min-1 in CD47′ THP-1 cells (Fig. 4.S4 ). 

 

4.4 – Discussion 

In this study we have shown that the signal regulatory protein (SIRPα) 

found on macrophages binds to CD47 ligand expressed on target self cells but is 
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also constitutively associated with CD47 in the plane of the macrophages 

membrane (cis interaction). It has been well characterized that the self signal of 

SIRPα and CD47 inhibits macrophages in mouse (Oldenborg, Zheleznyak et al. 

2000; Gardai, McPhillips et al. 2005) and humans (Tsai and Discher 2008) 

through a trans interaction. We proposed that the cis interaction exists and 

restricts the extent to which SIRPα inhibits macrophage phagocytosis of non-self 

cells lacking CD47.  

 We addressed the importance of CD47 in cis on macrophages due 

to the necessity of the protein to function as a marker of self on all cells. Two 

types of THP-1 macrophages, wild-type and 13% WT CD47 showed equal 

phagocytic activity against self targets human RBCs and hCD47 coated particles. 

In contrast, phagocytosis was increased by 25-50% for foreign or uncoated 

“CD47-null” particles in THP-1 cells with reduced cis interaction (Fig. 4.3 ). In 

order to rule out the possibility of knockdown effect on THP-1 phagocytosis 

capabilities, SIRPα expression was confirmed for all knockdowns by flow 

cytometry and a mock lentiviral KD was shown to have comparable phagocytosis 

capabilities to WT THP-1 Cells (Fig. 4.S5 ). This suggests that the cis interaction 

of CD47-SIRPα may negatively inhibit macrophages regardless of targets due to 

the inherent signal. 

 Phagocytosis initiated by the activation of Fcγ-R on macrophages 

through binding to IgG-opsonized targets leads to the phosphorylation of the 
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immune-tyrosine activation motif (ITAM) (Cambier 1995; Lowry, Duchemin et al. 

1998). Alternatively an inhibition signal exists with self cells expressing CD47 that 

interaction with the receptor SIRPα that results in the inhibition of phagocytosis. 

The CD47-SIRPα interaction has been shown to be species-specific 

(Subramanian, Parthasarathy et al. 2006) and normal macrophages have been 

shown to engulf “self” cells at lower frequency than typical targets – foreign and 

apoptotic cells or particles. Self cells signal inhibition through CD47-SIRPα 

interaction in trans results in the recruitment of the SHP-1 phosphatase, but 

inherent phosphorylation has been shown to exist in macrophages that may 

suggest the inefficiency of recognizing non-self and self cells as demonstrated by 

with Sheep RBCs with human THP-1 macrophages (Fig. 4.5A ). However when 

CD47 coated particles or RBCs interact with SIRPα of the same species, this 

results in increased phosphorylation that reaches a saturating level dependent on 

CD47 density (Vernon-Wilson, Kee et al. 2000; Liu, Soto et al. 2005).  

 SIRPα affinity to CD47 is relatively low affinity interaction with a Kd 

of 1.6 µM that allows for rapid exchange of CD47-SIRPα binding from an 

intracellular cis to a intercellular trans interaction (Fig. 4.3 ). Further confirmation 

of the competitive binding was demonstrated through measurement of the 

association constant, kon showing a slower rate for wild-type macrophages 

suggesting the availability of the CD47 to interact by trans was occupied by 

CD47 in cis (Fig. 4.S4 ). The basal level of SIRPα activation suggests the 
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threshold difference needed for inhibition may be local. Soluble CD47 in solution 

with foreign sheep RBC did not have a significant effect in inhibiting phagocytosis 

(data not shown), but a local concentration of SIRPα and CD47 clustering at the 

phagocytic synapse may be necessary to signal self. When human macrophage 

attempts to engulf its targets through pseudopod extension it verifies the 

presence of CD47 as in normal human RBCs. This spurs the macrophage to stop 

mid-swallow, shifting from an intracellular cis to an accumulated intercellular 

trans signal (Tsai and Discher 2008). The observed delayed retraction of human 

RBCs may serve as a function for microbe clearance through CR1 receptor 

found on RBCs where microbe would be removed during macrophage contact 

(Ghiran, Glodek et al. 2008). 

Normal THP-1 macrophages have a higher ratio of CD47 to SIRPα by a 3-

to-1 ratio but in our highest CD47 knockdown the ratio dropped to 0.5-to-1 

resulting in more SIRPα than CD47. That led to a decrease in SIRPα 

phosphorylation levels that fit linear to the extent of CD47 expression (Fig. 4.4B ). 

This elimination of phosphorylation by cis interaction led to a better discrimination 

of foreign and self cells with a 25-50% increase in phagocytosis of IgG-opsonized 

ShRBC and uncoated particles. It is interesting to note that the reduction of cis 

interaction in THP-1 macrophages did not significantly affect HuRBC and hCD47 

coated particles. 
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 Our finding raises the question of how SIRPα is able to bind with 

CD47 both in cis and trans interaction at the binding site. A past crystallographic 

study showed that the CD47/SIRPα complex binds near the N-terminal ligand 

binding domain of SIRPα (Hatherley, Graham et al. 2008). SIRPα and other 

members of the SIRP family have three IgSF domains while CD47 contains only 

a single IgSF domain; this suggest that SIRPα may have some flexibility in the 

structure as the binding site is near the N-terminus as it was shown with the 

computed flexibility model (Fig. 4.2 ). However the structure of CD47 is unique 

because of the disulfide link between the IgSF domain and one of the loops 

between the transmembrane regions was shown to be required for optimal 

binding of SIRPα (Rebres, Vaz et al. 2001).  

In order to account for our findings, our model suggests that SIRPα 

inhibits phagocytosis through CD47 and SIRPα by trans while foreign target cells 

are not able to signal self leading to activation Fcγ-R by IgG-opsonization. In 

wild-type macrophages both cis and trans CD47-SIRPα interaction co-exists with 

the presences of a basal level of inhibitory signal regardless of self or foreign 

cells. The importance of CD47 and SIRPα by cis appears to partially affect 

phagocytosis of foreign particles, but it is important for macrophages to maintain 

their own display of the “marker of self” signal, CD47 to prevent phagocytic 

clearance by other macrophages.  
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4.5– Materials and Methods 

4.5.1 – Chemicals  

Dulbecco’s phosphate-buffered saline (DPBS) without Ca2+ or Mg2+ 

(Invitrogen) was supplemented with either 1% BSA or 1% BSA and 0.05% 

Tween 20 (Sigma-Aldrich).  

4.5.2 – Antibodies  

The anti-human CD47 antibody B6H12 (BD Biosciences), clone 2D3 

(EMD Biosciences), clone 6H9 a gift from Dr. M. Telen (Duke University) was 

used for detection of human CD47 on macrophages or CHO cells expressing full 

length human CD47.  Quantification of CD47 and SIRPα was performed using 

B6H12-FITC and anti-SIRPα (SE7C2) (Santa Cruz Biotech) respectively. Human 

SIRPαex (this laboratory) used for experiments comparing binding affinities 

between species. Opsonizing antibodies against sheep RBCs included rabbit 

anti-sheep RBCs (Sigma-Aldrich) and antibodies against streptavidin coated 

polystyrene beads (Spherotech) included rabbit anti-streptavidin (Sigma-Aldrich) 

and rabbit anti-streptavidin conjugated with FITC (Rockland Immunochemicals) 

was used as IgG opsonin in phagocytosis assays. Secondary antibodies used for 

detecting opsonin levels and uningested beads included goat anti-rabbit FITC or 

goat anti-rabbit F(ab’)2 R-PE (Sigma-Aldrich). Secondary antibodies used for 



116 

 

detecting SIRPαex binding included anti-GST Alexa 488 (Invitrogen). Cytokine G-

CSF was purchased from R&D Systems. 

4.5.3 – Cells culture and transfection  

COS-1, CHO-K1, A549, THP-1 cells (American Type Culture Collection) 

and Human mesenchymal stem cells (MSCs; Osiris Therapeutics) were 

respectively maintained in DMEM, MEMα, F-12, RPMI 1640, and DMEM low 

glucose media (Invitrogen) supplemented with 10% heat inactivated FBS (Sigma-

Aldrich). Cells were detached using 0.25% Trypsin/0.5mM EDTA (Invitrogen) for 

passaging. Differentiation of THP-1 cells was achieved in 100 ng/mL phorbol 

myristate acetate (PMA) (Sigma-Aldrich) for 2 days and confirmed by attachment 

of these cells to tissue-culture plastic. Peripheral blood monocytes from human 

donors were obtained through the Human Immunology Core (University of 

Pennsylvania). Human blood was obtained from finger pricks of healthy donors. 

Blood from other species was obtained from Covance and washed 3x in PBS 

plus 0.4% BSA. Human Hematopoietic Stem Cells were obtained from Fresh 

purified bone marrow (BM)-derived humanCD34+ cells from Lonza. All 

experiments were performed in hematopoietic stem cell (HSC) expansion media 

(StemLine-II; Sigma) and supplemented with 1× antibiotics and G-CSF (100 

ng/mL) for 7 day for cultured cells. 
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4.5.4 – Expression of human CD47-GFP and SIRP α  

Human CD47 (hCD47; isoform 2 (Reinhold, Lindberg et al. 1995)) were 

PCR amplified, digested with XhoI & BamHI (New England Biolabs) and ligated 

to similarly digested vector, pEGFP-N3 (Clontech laboratories). CHO cells were 

plated at 1 x 105 cells/cm2 a day prior to transfection. On the day of transfection, 

medium was replaced with 2 mL Opti-MEM I (Invitrogen) per 25 cm2 surface 

area and 10-15 µL Lipofectamine 2000 and 5 µg plasmid DNA were diluted in 

0.25 mL Opti-MEM I separately and 5 min later mixed and incubated for a 

minimum of 20 min at 25°C. Lipid-DNA complexes in a  total volume of 0.5 mL 

Opti-MEM I was added to the flasks and incubated for 4-6 hrs and then replaced 

with fresh growth medium. Transfected cells were harvested using DPBS 

supplemented with 2 mM EDTA (Invitrogen) 1-2 days post-transfection for 

analysis.  Full-length human SIRPα was expressed in CHO cells similar to 

human CD47-GFP above. 

4.5.5 – Soluble human SIRP α production  

COS-1 cells were transfected with pcDNA3-based vector (Seiffert, Cant et 

al. 1999) encoding a human SIRPα extracellular domain fused to GST using 

Lipofectamine 2000 (Invitrogen). Secreted SIRPα1-GST (referred as hSIRPαex) 

was affinity-purified using Glutathione Sepharose 4B (Amersham Biosciences) 

and dialyzed against PBS (Invitrogen). The protein was stored at -20°C with or 

without addition of 10% v/v glycerol (Fisher Scientific).  
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4.5.6 – Production of recombinant human CD47  

Plasmid encoding the extracellular domain of human CD47, mouse CD47 

were PCR amplified, digested with XbaI & SalI (New England Biolabs) and 

ligated to similarly digested vector, pEF-BOS-XB (Vernon-Wilson 2000), which 

results in an in-frame fusion of CD4d3+4-biotin at the c-terminus of the 

extracellular domain of CD47. The above vector containing the extracellular 

domain of CD47 was transfected into CHO(-K1) cells using Lipofectamine 2000 

(Invitrogen). Secreted CD47-CD4d3+4 was concentrated using a 10K MWCO 

Amicon (Millipore) and biotinylated at the c-terminus using a biotin-protein ligase 

(Avidity, LLC) and dialyzed against PBS (Invitrogen). The protein was affinity-

purified using a monomeric avidin (Promega) and dialyzed against PBS. 

4.5.7– Measurement of human SIRP α and CD47 on cells 

Human RBCs, THP-1 cells, A549, peripheral blood monocytes, human 

mesenchymal stem cells were labeled with 15µl of B6H12-FITC at saturating 

levels (BD Biosciences) against human CD47 for 30 min at room temperature. 

Cells were washed and resuspended in PBS for flow cytometry analysis. Anti-

human CD47 measurements and detections were performed using B6H12 

antibody. Saturating concentration of anti-SIRPα or anti-human CD47 antibodies 

were used as similarly described for the above cells. 
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4.5.8 – Lentiviral knockdown of CD47 in THP-1 cells   

ShRNA lentiviral supernatants to CD47 purchased from Sigma-Aldrich 

were targeting CD47 (TRC#: TRCN0000007836, TRCN0000007837) resulted in 

50-87% knockdown, respectively. Further details of these clones are available 

from Sigma-Aldrich website. Target THP-1 cells were infected with lentiviral 

supernatants at a multiplicity of infection (MOI) of 10 in the presence of 80 µg/mL 

Polybrene (hexadimethrine bromide) (Sigma-Aldrich) and remained in culture for 

24 hours at 37°C and replaced with fresh RPMI 1640 + 10% FBS. Cells with 

integrated viral sequence were selected using puromycin (Sigma-Aldrich) at 2 

µg/ml and then passaged with continuous puromycin selection. The degree of 

CD47 silencing was regularly monitored by flow cytometry and Western blotting 

with 1:200 anti-SIRP (SE7C2) (Santa Cruz Biotech). Control cell cultures were 

generated with control lentiviruses in parallel. 

4.5.9 – Binding isotherm for soluble hSIRP α for THP-1 and knockdowns  

The binding isotherm of soluble hSIRPα was performed for THP-1 wild-

type and CD47 knockdowns as noted over a range of concentration using flow 

cytometry. Forward scatter, side scatter and fluorescence (FL1, FL2, FL3, FL4 

channels in logarithmic mode) were acquired using a FACScan or FACSCalibur 

(BD Immunocytometry Systems).  Data points from flow cytometry were plotted 

and fitted to obtain the Kd values as shown. 
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4.5.10 – Kinetics Measurements 

Rates of association (kon) of SIRPα with soluble hCD47 were measured 

at room temperature. Mixtures of 8uM,4uM and 2uM soluble hCD47 with 15l of 

B6H12-FITC against human CD47 at saturating levels (BD Biosciences) were 

preequilibrated for 3 hours to produce the primary complex. After mixing, aliquots 

were periodically withdrawn and added to the human THP-1 cells, then washed 

and diluted in PBS (1:30) to measure the hCD47 and SIRPα binding using flow 

cytometry. Forward scatter, side scatter and fluorescence (FL1, FL2, FL3, FL4 

channels in logarithmic mode) were acquired for at least 104 events using a 

FACScan or FACSCalibur (BD Immunocytometry Systems).  Data points from 

flow cytometry were plotted and fitted to obtain the Kon values as shown.  

4.5.11 – Phagocytosis Assay  

For phagocytosis assays, macrophages were plated in 4cm2 Lab-Tek II 

Chambered Coverglass (Nalge Nunc International) at 1 x 105/4cm2. Streptavidin 

polystyrene beads or RBC were added to macrophages at a ratio of 20:1 and 

allowed to incubate at 37˚C for 45 min. Non-phagocytosed beads or RBCs were 

washed with PBS. Cells were fixed with 5% formaldehyde (Fischer Scientific) for 

5 min, followed by immediate replacement with PBS. For differentiation of non-

internalized beads, beads were labeled with a primary antibody, rabbit anti-

streptavidin (Sigma) at 1:1,000 in PBS for 20 min at 25°C. A second antibody, 

anti-rabbit R-PE (Sigma) was added at 1:1,000 in PBS to the cells and incubated 
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for an additional 20 min at 25°C. Cells were then w ashed with PBS/ 0.4% BSA 

and then quantified by light and fluorescent microscopy. At least 200 cells were 

scored per well and experiments were repeated at least three times. Assays 

using RBCs as targets, lysis of uningested RBC was performed by adding 

deionized H2O for 60s, followed by immediate replacement with PBS/0.4% BSA 

and fixing with 5% formaldehyde for 5 min. 

 For stimulated phagocytosis assays, beads with or without CD47 

were incubated with rabbit anti-streptavidin serum and for sheep and human 

RBCs with rabbit anti-sheep RBC, and rabbit anti-human RBC respectively as 

the opsonin. Beads or RBCs were opsonized at the respective concentration for 

30 min at RT. Opsonized beads and RBCs were washed 2x and resuspended in 

50 µl of PBS/0.4% BSA. Phagocytes were washed with PBS and uningested 

RBCs were lysed and uningested beads were labeled as described above. 

4.5.12 – Immunoprecipitation and Western blotting  

Human Phagocytes, THP-1 wild-type and CD47 knockdowns (2x106) were 

cultured and differentiated in 6-well plates for 48 hours after PMA differentiation. 

Human CD47 was attached to 2.1µm diameter beads at specific densities as 

described above and added at a bead to cell ratio of 20:1 for 10 minutes. 

Following the incubation time, the cells were washed with ice-cold PBS and then 

lysed on ice in 300 µl of lysis buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 
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1mM EDTA, 1% NP-40, 1% protease inhibitor cocktail [Sigma-Aldrich] and 2mM 

activated sodium orthovanadate). For immunoprecipitation, whole lysate was 

mixed with 1:200 anti-SIRPα (SE7C2) antibody (Santa Cruz Biotechnology, Inc.) 

with Protein G agarose (Pierce) at 4˚C overnight. Precipitated proteins was 

placed in 4-12% SDS-PAGE in MOPS buffer (Invitrogen), transferred to PVDF 

membrane, blocked and labeled via phosphotryosine IgG HRP-conjugated (Cell 

Signaling) and anti-SIRPα (C-20) (Santa Cruz Biotechnology, Inc.) as primary 

antibodies and anti-goat-HRP (Amersham). All Westerns were run in duplicate, 

along with an additional blot for actin to ensure constant protein load among 

samples. 

4.5.13 – Fluorescent labeling of transfected CHO wi th soluble SIRP α and 

CD47 antibodies 

Five microliters of soluble SIRPµ (final concentration ~1 µM); 5 µl of 2 

mg/ml AlexaFlour 647 rabbit anti-GST; 40 µl DPBS, 1% BSA; and 2.5 x 106 CHO 

cells were mixed and incubated at room temperature for at least 30 min. Cells 

were pelleted and resuspended in 1 ml cold DPBS and analyzed immediately. 

For antibody labeling, saturating levels of anti-CD47 antibody in 50 µl of DPBS, 

1% BSA and 2.5 x 106 CHO cells were mixed together and incubated as above. 

Cells were washed in 0.5 ml of DPBS, 1% BSA and then resuspended in 50 µl of 

DPBS, 1% BSA containing 5 µl of secondary antibody (2 mg/ml). After incubate 
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for 30 min at room temperature, cells were washed once in 0.5 ml of DPBS and 

resuspended in 1 ml of DPBS, 1% BSA and used immediately for imaging. 

4.5.14 – Quantification of fluorescent intensity  

Images were acquired with an inverted microscope (Olympus; IX71) with a 

60x (oil, 1.4 NA) objective using a Cascade CCD camera (Photometrics, Tuscon, 

AZ). Image acquisition was performed with Image Pro software (Media 

Cybernetics, Silver Spring, MD). All subsequent image analysis was done using 

ImageJ. 

4.5.15 – Normal Mode Analysis of SIRP α structure 

To gain insight about the degree of flexibility and mobility of the Signal-

regulatory protein α (SIRPα) we employed Normal Mode Analysis technique. For 

this purpose we used the α-carbon backbone of the recently published crystal 

structure for SIRP-α1 as model (PDB: 2WNG). Our first goal was to detect the 

presence of hinges. This is a challenging problem when only one structure is 

known and several algorithms and techniques have been developed to tackle it. 

(Thorpe et al. 2001; Wells et al. 2005; Flores et al. 2006; Flores et al. 2008). Our 

approximation will use the Gaussian Network Model which assumes that all the 

residue fluctuation around their equilibrium coordinates are gaussian. (Bahar et 

al. 1997; Haliloglu et al. 1997). This method has been tested to be suitable to 

determine structural displacements and consequently backbone motional 
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correlations. By virtue of these correlations, the different domains in the protein 

are determined as well as the location of the hinges. (Kundu et al. 2004; Haibo et 

al. 2007)The normal modes have been obtained using a rcutof f = 15Å and the 

correlations between them were computed using the following expression: 

(Eq. 4.3) 

 

where ir∆  is the total displacement of the α-carbon of the i-th residue from its 

equilibrium position due to the first n normal modes, and  

(Eq. 4.4) 

 

where 2
κω  is the frequency of the k-th normal mode and Lik is the displacement of 

the α-carbon of residue i due to normal mode k. 

The result of this correlation for the first two lowest frequency modes is 

shown in (Fig. 4.2 ). It is possible to distinguish three different regions that 

correspond very accurately with the three domains present in the crystal 

structure. The regions along the diagonal which values close to zero, i.e. regions 

with reduced mobilities, are expected to behave as hinges. (Flores et al. 2008) In 

this way we can determine that the regions limited by residues 113-117 and 220-

222 will act as hinges. The spatial location of these residues can be seen in (Fig. 

4.2B) depicted in space filling representation. Since we were also interested in 
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having a spatial description of the normal modes we needed to make use of the 

Anisotropic Network Model (ANM). (Hinsen et al. 1999) 

We used this method because albeit being less realistic than GNM, it is 

the only possible model when assessing of directions of the motions is needed. 

(Cui and Bahar 2006) Fig. 4.2C  shows the global dynamics of SIRP-α as 

predicted by three out of the first six modes. It is important to remark that the 

almost cylindrical shape of the protein in the crystal structure yields normal 

modes that are very close in energy and that describe almost the same 

movement but in a different plane. In this way we have that the modes 1 and 2, 3 

and 5, as well as 4 and 6 can be represented by Fig. 4.2C . The remarkable 

aspect of these movements is that in all of them, the residues previously 

predicted as hinges seem to have that role, separating domains which move as 

rigid bodies and this dynamical domain overlap almost perfectly with the 

structural domains. 

 

 

  



 

 

Fig. 4.1.- Surface Expression of CD47 and 

(A)  Expression profiles of human cells from different hematopoietic cells show 
relative number of CD47 and 
cytometry using antibodie
CD47 to SIRPα of Non
(passage 4, n=2) and Human lung adenocarcinoma
cytometry data using RBC as a c
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Surface Expression of CD47 and SIRPα  

Expression profiles of human cells from different hematopoietic cells show 
relative number of CD47 and SIRPα surface expression taken from f
cytometry using antibodies against the specific ligands (n=3). (B)

Non-professional phagocytes, Mesenchymal
and Human lung adenocarcinoma, was determine

cytometry data using RBC as a control (n=4). Avg. ± SEM for all results.

 

Expression profiles of human cells from different hematopoietic cells show 
surface expression taken from flow 

(B) The ratio of 
Mesenchymal Stem Cells 

was determine from flow 
Avg. ± SEM for all results. 



 

Fig. 4.2.- Cis interactions between SIRP

computed flexibility of SIRP

(A) Membrane snapshot showing computed deformation of the extracellular 
region of SIRPα together with the CD47 structure (represented in yellow, 
extracted from pdb code 2jjs). 
SIRP-a in ribbon representation: blue (C terminal 
domain), red (N terminal 
residues C-a carbons from Arg
Phe-222 which are estimated to act as hinges. Plot is the covariance matrix of 
the C-a atoms in 2WNG based on the lowest 10 normal modes obt
(C) The first three distinct normal modes obtained by ANM. From left to right: 
mode 1 (mode 2 is similar but in a perpedicular plane), mode 3 (mode 5 invert 
rotations), mode4 (mode 6 is similar but in a perpendicular plane). In all modes 
the protein behaves as a set of three rigid bodies that can rotate and bend 
around the hinges. 
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Cis interactions between SIRP α and CD47 seem consistent with 

computed flexibility of SIRP α. 

Membrane snapshot showing computed deformation of the extracellular 
together with the CD47 structure (represented in yellow, 

extracted from pdb code 2jjs). (B) Crystal structure of the extracellular region of 
a in ribbon representation: blue (C terminal - d1 domain), green (d2 

domain), red (N terminal - d3 domain). In yellow space filling representation the 
a carbons from Arg-114, Ala-115, Lys-116, Arg-220, Val

222 which are estimated to act as hinges. Plot is the covariance matrix of 
a atoms in 2WNG based on the lowest 10 normal modes obt

The first three distinct normal modes obtained by ANM. From left to right: 
mode 1 (mode 2 is similar but in a perpedicular plane), mode 3 (mode 5 invert 
rotations), mode4 (mode 6 is similar but in a perpendicular plane). In all modes 

protein behaves as a set of three rigid bodies that can rotate and bend 

and CD47 seem consistent with 

Membrane snapshot showing computed deformation of the extracellular 
together with the CD47 structure (represented in yellow, 

Crystal structure of the extracellular region of 
d1 domain), green (d2 

n yellow space filling representation the 
220, Val-221 and 

222 which are estimated to act as hinges. Plot is the covariance matrix of 
a atoms in 2WNG based on the lowest 10 normal modes obtained by GNM  

The first three distinct normal modes obtained by ANM. From left to right: 
mode 1 (mode 2 is similar but in a perpedicular plane), mode 3 (mode 5 invert 
rotations), mode4 (mode 6 is similar but in a perpendicular plane). In all modes 

protein behaves as a set of three rigid bodies that can rotate and bend 



 

Fig. 4.3.- CD47-SIRPα

SIRPα on THP-1 Macrophages  
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SIRPα Cis intereaction effect on binding of soluble human

1 Macrophages   

 

Cis intereaction effect on binding of soluble human -
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(A) Affinity of CD47 on THP-1 macrophages wild-type, CD47 knockdowns with 
antibodies against CD47 (Clones 2D3 and B6H12) at saturation levels binding to 
soluble hSIRPα based on flow cytometry. Saturation binding fit gave the 
indicated dissociation constant, Kd. (B) Affinity of CD47 on THP-1 macrophages 
wild-type, CD47 knockdowns with 48% and 13% CD47 wild-type levels binding to 
soluble hSIRPα based on flow cytometry. Saturation binding fit gave the 
indicated dissociation constant, Kd. Since this is a 3D binding constant relevant 
to binding in a narrow membrane gap between two cells, it is equivalent to Kd ≈ 1 
molecule/[10 nm x (10 mm)2], which is the concentration of free SIRPα that 
would half-saturate CD47 on a surface. (C) Dissociation constant was plotted as 
a function of percentage of wild-type CD47 expression and plotted on a linear 
scale (R2 = 0.99). Competitive binding model for cis/trans interaction of CD47-
SIRPα  
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4.- CD47 expression levels on THP

(A) CD47 was knockdow
macrophages. From macrophage lysates, SIRP
anti-SIRPα (SE7C2 clone) and immunoblotted for phospho
SIRPα  (C-20 clone) for normalization. 
data was plotted as a function of the % of wild
the fit of the data gave a linear relationship (R
SIRPα Cis interaction without the presences of targets.
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CD47 expression levels on THP -1 depends on pTyr Signaling

CD47 was knockdown by lentivirus to various efficiency in THP
macrophages. From macrophage lysates, SIRPα was immunoprecipitated with 

 (SE7C2 clone) and immunoblotted for phospho-tyrosine and total 
20 clone) for normalization. (B) Quantification of the immunoblotted 

data was plotted as a function of the % of wild-type CD47 expression levels and 
the fit of the data gave a linear relationship (R2=0.99) that depends on the CD47

 Cis interaction without the presences of targets. 

1 depends on pTyr Signaling  

ency in THP-1 
 was immunoprecipitated with 

tyrosine and total 
antification of the immunoblotted 
type CD47 expression levels and 

=0.99) that depends on the CD47-



 

Fig. 4.5- Reduction of CD47

Macrophages 

(A) IgG-opsonized sheep RBC (ShRBC) and human RBC (HuRBC)  or  
opsonized 2.1 µm particles with or without hCD47 targets were used for 
phagocytosis studies with wild
(white bar) THP-1 macrophages. The ratio of ingested particles per phagocytes 
shown are based on randomly selected phase contrast microscopy images with 
200 phagocytes counted (n 
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Reduction of CD47 -SIRPα Cis Effect on phagocytosis in THP

opsonized sheep RBC (ShRBC) and human RBC (HuRBC)  or  
m particles with or without hCD47 targets were used for 

phagocytosis studies with wild-type (black bar) and 13% CD47 levels of wild
1 macrophages. The ratio of ingested particles per phagocytes 

andomly selected phase contrast microscopy images with 
200 phagocytes counted (n ≥ 3, ± SD).   

 Cis Effect on phagocytosis in THP -1 

opsonized sheep RBC (ShRBC) and human RBC (HuRBC)  or  (B)  IgG-
m particles with or without hCD47 targets were used for 

type (black bar) and 13% CD47 levels of wild-type 
1 macrophages. The ratio of ingested particles per phagocytes 

andomly selected phase contrast microscopy images with 



 

Fig. 4.6- CD47-SIRPα Trans Interaction Reduced  by Cis 

 (A) CHO cells expressing  human CD47
CD47 (clone 2D3), detected us
that the fusion is targeted to the membrane and the Ig domain is accessible to 
antibodies and co-localized (white arrows), but not present with cells co
expressing full length human SIRP
without hSIRPα were labeled with 
hSIRPα were analyzed by flow cytometry. The flow cytometry log
replotted on linear scales to determine binding slopes as a function of hCD47 
GFP Signal to the respective bound ligand signal.
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α Trans Interaction Reduced  by Cis  

CHO cells expressing  human CD47-GFP were labeled with anti
CD47 (clone 2D3), detected using AlexaFluor 647 secondary antibody, showing 
that the fusion is targeted to the membrane and the Ig domain is accessible to 

localized (white arrows), but not present with cells co
expressing full length human SIRPα. CHO cells expressing hCD47

 were labeled with (B) anti-HuCD47 (clone 2D3) or 
 were analyzed by flow cytometry. The flow cytometry log

replotted on linear scales to determine binding slopes as a function of hCD47 
al to the respective bound ligand signal. 

 

GFP were labeled with anti-Human 
ing AlexaFluor 647 secondary antibody, showing 

that the fusion is targeted to the membrane and the Ig domain is accessible to 
localized (white arrows), but not present with cells co-

hCD47-GFP with or 
HuCD47 (clone 2D3) or (C) soluble 

 were analyzed by flow cytometry. The flow cytometry log-log data is 
replotted on linear scales to determine binding slopes as a function of hCD47 

 



 

 

Fig. 4.S1.- Professional Phagocyte CD47

Flow cytometry data shows binding of anti
difference, but no difference in binding of anti
wild-type and cells expressing 13% wild
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Professional Phagocyte CD47 -SIRPα expression 

Flow cytometry data shows binding of anti-CD47 antibody, B6H12 binding 
difference, but no difference in binding of anti-SIRPα antibody, SE7C2 in THP

type and cells expressing 13% wild-type CD47 levels.  

 

CD47 antibody, B6H12 binding 
antibody, SE7C2 in THP-1 



 

Fig. 4.S2.- Non- professional phagocyte CD47

Flow cytometry data shows binding of anti
SIRPα antibody, SE7C2 show different levels of either CD47 or SIRP
for non-professional phagocytes (e.g. red blood cells (RBC), 
cells (MSC), and lung carcino
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professional phagocyte CD47 -SIRPα expression

Flow cytometry data shows binding of anti-CD47 antibody, B6H12 and anti
 antibody, SE7C2 show different levels of either CD47 or SIRP

professional phagocytes (e.g. red blood cells (RBC), Mesenchymal
cells (MSC), and lung carcinoma epithelial cells (A549). 

 

 

expression  

CD47 antibody, B6H12 and anti-
 antibody, SE7C2 show different levels of either CD47 or SIRPα profiles 

Mesenchymal stem 



 

 

Fig. 4.S3.- CD47 Knockdown in THP

(A) CD47 knockdown in THP
CD47 (FITC) showing the extent of CD47 knockdown efficiency using different 
lentiviral ShRNA targets against CD47 and 
detected using anti-SIRP
macrophages using flow cytometry
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CD47 Knockdown in THP -1 Phagoctyes 

CD47 knockdown in THP-1 macrophages was detected with anti
CD47 (FITC) showing the extent of CD47 knockdown efficiency using different 
lentiviral ShRNA targets against CD47 and (B) SIRPα expression levels was 

SIRPα (SE7C2) for each of the CD47 knockdown THP
macrophages using flow cytometry 

 

1 macrophages was detected with anti-human 
CD47 (FITC) showing the extent of CD47 knockdown efficiency using different 

 expression levels was 
ch of the CD47 knockdown THP-1 
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Fig. 4.S4.- Association rate of CD47 in trans 

Association rate of CD47 binding via trans in wild-type macrophages show a 
slower binding rate compared to 13% CD47 wild-type levels based on flow 
cytometry . Saturation association binding fit gave the indicated constant, kon.  

  

  



 

Fig. 4.S5.- Effect of mock lentivirus knockdown on phagocytosis

(A) IgG-opsonized Sheep RBC were incubated with wild
lentivirus knockdown THP
described in Materials and Methods. Phagocytosis of Sheep RBC was measured 
as the ratio of ingested RBC per phagocytes with 200 phagocytes counted (n
±SD). (B) THP-1 wild
knockdowns with 13% wild
based on flow cytometry results
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mock lentivirus knockdown on phagocytosis

opsonized Sheep RBC were incubated with wild-type and mock shRNA 
lentivirus knockdown THP-1 macrophages and allowed to phagocytose as 
described in Materials and Methods. Phagocytosis of Sheep RBC was measured 
as the ratio of ingested RBC per phagocytes with 200 phagocytes counted (n

1 wild-type cells have higher ratio of CD47
knockdowns with 13% wild-type CD47 the number of SIRPα molecule dominate 
based on flow cytometry results 

 

mock lentivirus knockdown on phagocytosis  

type and mock shRNA 
1 macrophages and allowed to phagocytose as 

described in Materials and Methods. Phagocytosis of Sheep RBC was measured 
as the ratio of ingested RBC per phagocytes with 200 phagocytes counted (n≥3, 

type cells have higher ratio of CD47-to-SIRP while 
 molecule dominate 



 

 

Fig. 4.S6.- CHO Expression System of CD47 and SIRP

Flow cytometry data of CHO cells expressing CD47
binding with (A)  soluble SIRP
6H9, 2D3, and B6H12). 
confirmed by GFP and anti
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CHO Expression System of CD47 and SIRP α 

Flow cytometry data of CHO cells expressing CD47-GFP only detected with 
soluble SIRPα-GST or  (B) antibodies against CD47 (Clones 

6H9, 2D3, and B6H12). (C) CHO expression of CD47-GFP and SIRP
confirmed by GFP and anti-SIRPα antibody, P3C4. 

 

 

GFP only detected with 
antibodies against CD47 (Clones 

GFP and SIRPα was 
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CHAPTER 5 – The Role of “Self signal” on Neutrophil  

attachment-migration on a surface and phagocytosis of 

synthetic microbeads.  
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Abstract 

The ability of a cell to distinguish foreign cells from “self” cells is required 

for a healthy, functioning immune system. One mechanism through which cells 

appear able to differentiate between “self” and foreign cells is through the surface 

protein CD47.  In previous chapters we have shown that synthetic beads labeled 

with CD47are able to remain in circulation far longer than unlabeled ones. One 

drawback to CD47 labeling is that it may be species-specific: one individual’s 

CD47 interacting with their own receptor Sirpα may not prevent an immune 

response in another individual. This chapter will specifically characterize the 

interaction of different neutrophil hSirpα with the “self” peptide and with hCD47 in 

an attempt to determine the effects of this surface interaction on cell attachment, 

and the transmigration and phagocytosis of synthetic microbeads.   

5.1 – Introduction 

The ability of a cell to identify foreign cells from “self” cells is a requirement 

for a healthy, functioning immune system.  Without such a mechanism in place, 

our immune system, and the cells that compose it, would inappropriately attack 

normal tissues.  Tissue or medical device rejection in implantations is a constant 

concern, and patients are placed on immunosuppressive therapy to prevent 

immune rejection of these foreign entities.   
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One mechanism through which cells appear able to differentiate between 

“self” and foreign is through the surface cellular ligand CD47 (Tsai 2010).  CD47-

SIRPα interactions mediate the ability of CD47 to function as a marker for 

macrophages to suppress phagocytosis (Matozaki 2009). CD47 has also been 

implicated in cell migration, (Lindberg 1996), axon extension (Miyashita 2004), 

and T cell co stimulation (Reinhold 1997). Furthermore, immuno-depletion of 

either CD47 or SIRPα leads to an impairment of neutrophil ability to migrate over 

cell mono-layers (Parkos 1996, Liu 2002). However, recent studies of the role of 

CD47 expression on normal or leukemic hematopoietic stem and progenitor 

cells, which are also physiologically migrating, does not support a role for CD47 

in the migration phase of mobilization (Jaiswal 2009). 

Neutrophils are the most abundant white blood cell in mammals and are 

an essential part of the innate immune response.  They are typically present in 

the bloodstream, and are among the first cells to be recruited to sites of 

inflammation as a result of infection (Smith 1994).  Neutrophils play a central role 

in host defense by migrating to the site of infection. Neutrophils mature in the 

bone marrow before entering circulation, where they remain for 4-10 hours 

before exiting to tissue pools where they survive for another1 to 2 days (Smith 

1994).  Although estimates vary, neutrophils are produced in healthy human 

bone marrow at a rate of 1011 cells per day, although infection can drastically 

increase (10x) the number of neutrophils produced (Cannistra 1988).  At sites of 
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inflammation they congregate and adhere to extracellular matrix (ECM) 

components such as laminin and fibronectin (Cronstein 1993).  As part of the 

innate immune response neutrophils then phagocytose pathogens.  Neutrophils, 

as with all phagocytic immune cells, are strongly influenced to phagocytose by 

the presence of opsonins, such as antibodies, highlighting the cooperative nature 

of the innate and adaptive immune responses (Smith 1994). 

The mechanism through which receptor-ligand signaling interactions at the 

neutrophil surface can regulate transmigration and ultimately inflammatory 

diseases remains poorly understood. CD47 has been shown to regulate the rate 

of neutrophil transmigration in mice infected with bacteria as well as across cell 

monolayers and matrix (Cooper 1995, Parkos 1996, Chin 2009). In addition, 

CD47 has been implicated in multiple cellular functions in addition to its role as 

marker of ‘self’ (Oldenborg 2000), such as platelet activation (Chumg 1997), 

macrophage multinucleation (Han 2000), immune cell apoptosis (Pettersen 

1999), and dendritic cell maturation (Demeure 2000). However, CD47 signaling 

pathways in transmigration have not been clearly elucidated. Furthermore, the 

identification of the contribution of the CD47-SIRPα pathway to inflammatory cell 

attachment to different surfaces remains unclear. Recent studies  have 

suggested  that polyurethane slabs coated with hCD47 inhibit polymer oxidation 

in vivo (Stachelek 2011),  indicating that this ‘Marker of Self’ could passivate the 

inflammatory response. 
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5.2 – Results 

5.2.1 – Effect of “self”-peptide on Phagocytosis by  Neutrophils 

For all assays the target number of observed neutrophils was 200, and 

each sample was examined until this number had been reached or the entire 

sample had been examined. To ensure no “double” counting could occur the 

samples were searched in a grid pattern that ensured no field of view was visited 

twice. Following imaging, each photo of a neutrophil was made into a composite 

image of all three fields using ImageJ Software and the number of microbeads 

that were phagocytized were counted to generate a phagocytized 

microbead:neutrophil ratio, representative image shown in Fig. 5.S1 . Neutrophils 

had originally been kept in 10% FBS in non-HEPES CO2 independent media, but 

this led to relatively low levels of phagocytosis. To attempt to increase 

phagocytosis the media was changed to 50% FBS in non-HEPES CO2 

independent media. This led to a 2.4 fold increase in phagocytosis over 

neutrophils tested in 10% serum (Fig. 5.S2)  

We found that in 50% FBS in non-HEPES CO2 independent media there 

was no difference in phagocytosis of peptide-beads as compared to control 

beads after 1 hour (Fig. 5.1 ), (student’s t-test, p>0.05). Further experiments will 

be necessary to rule out the effect that “self” peptide had on phagocytosis in 

neutrophils.  
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5.2.2 – Effect of Sirp α polymorphism in Neutrophil attachment and 

migration on glass surfaces. 

Similar to our hypothesis that CD47-labeled microbeads may decrease the 

phagocytosis response, we wanted to evaluate neutrophils’ ability to migrate and 

adhere to CD47 labeled substrates.  This assay had to be designed to allow for 

neutrophils to access to both CD47 labeled substrate (CD47 + BSA), as well as 

control (BSA-only) labeled substrate (Fig. 5.2 ).  

5.2.3 – Analysis of Migration Abilities 

 First we characterized how the neutrophils responded to BSA substrates 

before we could evaluate whether or not CD47 labeling changed this response.  

When neutrophils were present on the BSA substrate they appeared to adhere 

strongly and generally stopped moving significantly after 5 minutes of exposure 

to the BSA substrate.  When a scratch was made on the slide, the neutrophils in 

the affected area were unable to adhere within such a timeframe and began to 

float, similarly to the RBCs still present in the solution. 

5.2.4 – Effect of Neutrophils from diverse geograph ic populations in 

attachment and migration on CD47-Labeled Substrate 

Although neutrophils had no response to CD47 labeled synthetic beads, 

we observed a very distinct response to CD47 labeled substrates. Neutrophils 

rarely attached to these surfaces, and if they did attach they migrated less and 
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often detached from the surface. This was very encouraging, as reduced 

attachment of neutrophils would be a desirable effect of CD47 labeling on 

xenographic transplants (Zehr 1994). It is unclear why neutrophils would behave 

differently between CD47 labeled substrates and synthetic beads.  

Using both commercially available HL60 neutrophils as well as primary 

donor neutrophils, Stachelek et al demonstrated that CD47 labeling reduced 

neutrophil attachment in fluid flow experiments (Stachelek 2011). The 

observations from our study thus provide further evidence that neutrophils show 

reduced attachment and migratory response to CD47-labeled substrates. The 

differences we observed between some donors may be attributed to 

polymorphisms in SIRPα observed across different geographic populations 

(Takenaka 2007). 

Indeed, donors of European descent were the most CD47-responsive, 

while donors of Indian descent possessed the only neutrophils observed to be 

able to move on CD47 surfaces (non significant differences between BSA and 

CD47/BSA surface), suggesting polymorphisms in SIRPα may affect CD47 

responsiveness (Table 5.1 ). 

Although our observations of reduced migration on CD47 surfaces were 

similar to those of Stachelek et al, our study differed somewhat in respect to their 

observations of what occurs when neutrophils were blocked for either CD47 or 
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SIRPα. We found that when CD47 was blocked, our donor neutrophils behaved 

identically to our control neutrophils, whereas Stachelek et al found CD47-

blocked neutrophils to have reduced activity and binding efficiency to most 

surfaces (Stachelek 2011). Perhaps the difference can be explained by their use 

of HL60 neutrophils for this experiment, compared to our use of primary non-

cancerous donor neutrophils.  

5.3 – Discussion 

Three different approaches to neutrophil isolation were evaluated before 

ultimately settling on one method for analysis. One of the best characterized 

means for extraction of neutrophils is through the protocol published by Oh et al, 

which uses commercially available separation media and centrifugation to 

separate blood into distinct bands (Oh 2008). This protocol requires high 

volumes, which meant we would need to obtain blood from a blood depository. 

Therefore we decided to pursue a protocol (detailed in materials and methods) 

based on blood obtained from a finger prick. This protocol yields a lower purity of 

neutrophils, but is easier to plan and more cost effective, allowing us to run 

several assays over the course of a day.  

Although the effect of “Self” markers in neutrophil phagocytosis and 

transmigration remains unclear, we have provided insight on the different effects 

that human SIRPα polymorphisms could have on Neutrophil behavior on 
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synthetic surfaces coated with recombinant hCD47. These surfaces mimic 

neutrophil flow through vessel walls before attachment and spreading into 

endothelial cells, infection sites, synthetic polymer slabs or biomaterials.  

From the 10 Sirpα polymorphisms we identified using HapMap data 

(www.hapmap.org) along with the structural analysis of the paired SIRPα-CD47 

protein (Hatherley 2008), we discovered in Chapter 2 that there are two SIRPα 

variants (5 and 7) with approximately 20-40 fold reduced binding affinity to 

hCD47. It seems very plausible that macrophages expressing SIRPα variants 5 

and 7 would not recognize “self” cells expressing hCD47, and would therefore be 

prone to clearing “self” cells. Our results in Table 5.1 demonstrate that, assuming 

comparable hSIRPα expression on all cells tested, neutrophils from donors who 

are most likely to express variant 7 based on their geographic origin do not 

strongly bind to hCD47, and their surface attachment and spreading is unaffected 

by the presence of our recombinant protein.     

5.4 – Materials and Methods 

5.4.1 – Neutrophil Extraction 

A reusable needle pen (BD Biosciences) was used with disposable 30 

gauge needles (BD Biosciences). The pen was completely sterilized after each 

use with 70% ethanol wipes and allowed to dry. The donor’s index finger was 

cleaned with 70% ethanol and allowed to dry. Following this sterilization, 
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constricting pressure was applied around the donor’s finger to condense blood 

into the tip of the finger. Blood was extracted with a 200µl pipette and placed into 

a solution of 0.5M EDTA (Gibco)/ 1x DPBS solution (Gibco) in a 0.5ml Eppendorf 

tube. Blood was extracted until the injection site stopped bleeding, which 

generally yielded ~200µl of blood. The blood sample was then spun in a 

centrifuge (Spectrafuge 24D) at 5000 rpm for 5 minutes. The upper plasma/PBS 

layer was then removed and 500µl of RBC lysis buffer (Sigma) was added. Cells 

were allowed to lyse for 5 minutes. The cells were then centrifuged for 3 minutes 

at 3000rpm. The supernatant from this tube was then removed and allowed to 

continue lysing until the solution appeared see-through (5-7 minutes) in a 37°C 

incubator. This tube underwent a subsequent centrifugation step (5 minutes at 

5000rpm) to pellet the neutrophils. The pellet was then re-suspended in 50µl 

50% FBS (Gibco) / non-HEPES CO2 independent media (Gibco) and placed in 

an incubator at 37°C. 

5.4.2 – Neutrophil Phagocytosis Assay 

To analyze neutrophil phagocytosis 2.1 µm opsonized (IgG) microbeads 

(Spherotech) were blocked by washing 3 times in a 1% BSA – 1 x DPBS 

solution, followed by centrifugation for 6 minutes at 10,000 rpm. The ratio used 

was approximately 20:1 microbeads to neutrophils.  
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Following blocking, beads were incubated in a 6 µg/ml solution of 

conjugated anti-streptavidin (Rockland) in PBS for 30 minutes and then spun 

down for six minutes at 10,000 rpm and re-suspended in 1 x PBS. Opsonin (IgG 

)+, CD47- peptide-labeled beads were then incubated with 2uM of CD47 derived 

peptide in PBS overnight at room temperature and then spun down for 5 minutes 

at 7,000 rpm and re-suspended in 1 x PBS. Following CD47-peptide labeling the 

beads were incubated in with anti-streptavidin (Rockland) in PBS for 30 minutes 

and then spin down for 5 minutes at 7000 rpm and resuspended in 1 x PBS. 

Extracted neutrophils were then placed in 2-chambered plates (Labtech) and 

50% FBS / non-HEPES CO2 independent media were added. The cells were 

then placed in an incubator (37°C) for 1 hour. Afte r 1 hour had elapsed following 

microbead addition, the cells were fixed in 0.4% formaldehyde for 10 minutes at 

room temperature. 

The cells were then placed into a 1.5ml Eppendorf tube and centrifuged at 

5000rpm for 5 minutes. The supernatant was removed and the pellet was 

resuspended in 500ul PBS. 

The cells were then incubated for 20 minutes at room temperature with 

anti-rabbit secondary IgG antibody (Thermo Scientific). Cells were then imaged 

and analyzed in the bright field, FITC, and TRITC spectrums. Each sample well 

was searched for any neutrophils that were present and each was imaged first in 

bright field, then in FITC to see if any microbeads had been phagocytized, and 
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then finally in TRITC to analyze secondary antibody staining. Since only non-

phagocytosed microbeads could be bound by secondary antibody, this presented 

a good mechanism to ensure microbeads observed to be attached to or inside of 

a neutrophil had indeed been phagocytized and internalized. The number of 

phagocytosed microbeads was counted to calculate a phagocytosed microbead: 

neutrophil ratio. 

5.4.3 – Migration Assays 

Slides were coated with a 1% BSA solution.  We then added an aliquot of 

neutrophils in suspension to these slides and took sequential images to track 

their migration ability.   

5.4.4 – Neutrophil Imaging 

Images were acquired with an inverted microscope (IX71; Olympus) with a 

60x (oil, 1.4 NA) objective using a Cascade CCD camera (Photometrics). Image 

acquisition was performed with Image Pro software (Media Cybernetics, Inc.). 

Time-lapse imaging was performed using a heated stage (Ibidi GmbH) at 37° C 

in non-HEPES CO2 independent media. Image acquisition was performed with 

Image Pro software (Media Cybernetics, Inc.). All subsequent image analysis 

was done using ImageJ.  

In the migration assay, randomly selected cells were followed from their 

center of mass from time zero up to 45 minutes in 3-minute increments.The total 
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migration distance was obtained by adding the measured distances between the 

center of mass of each selected neutrophil in the field of view 

5.4.5 – CD47 Substrate 

One side of a BSA coated slide was labeled with 2uM of full length CD47 

in PBS and allowed to dry (we followed Stachelek et al.’s recommendation on the 

amount of hCD47 needed to observe an effect on neutrophil response, >16 ng 

CD47/cm2). Using the same neutrophil extraction procedure, 10µl of the 

neutrophil solution was pipetted onto the center of the CD47 slide. A cover slip 

(Fisher brand) was then put on the slide, and sealed with nail polish. Cells were 

then imaged for 45 minutes. No cell death was observed in this time frame due to 

nail polish toxicity.  

5.4.6 – Protein Blocking Experiments 

For protein blocking experiments anti-CD47 (BD Biosciences,B6H12), or 

anti-SIRPα (Santa Cruz, SE7C2) were used. Antibodies were allowed to incubate 

with neutrophils in media at room temperature for 30 minutes. Blocking by 

antibodies was confirmed through fluorescence microscopy where imaged 

neutrophils were examined for appropriate fluorescent signals.  
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Fig. 5.1.- Self- beads don’t inhibit Neutrophil Pha gocytosis 

When hCD47-derived peptide beads were used, there was no significant 
(p>0.05) change in phagocytosis compared to control labeled beads. 
Phagocytosis rates (beads phagocytized/neutrophil number) were compared 
between three samples from the same donor for each condition. Total neutrophils 
counted: Control trials n =748, Peptide trials n=681. 
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Fig. 5.2.- Schematic representation of Migration As say Protocol 

(Described in more detail in Material and Methods) 
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hSIRPα variants  Migration (um over 45 minutes)  

 BSA Surface CD47/BSA Surface 

*Donor 1: V1, V2, V3  66.54 ± 12.06 0 

Donor 2: V4, V7, V8, V2  26.77 ± 2.4 16.55 ± 5.1 

*Donor 3: V1, V2, V3  117.92 ± 32.6 31.84 ±12.1 

*Donor 4: V1, V2  32.26 ± 11.1 0 

Donor 5: V2, V4, V7,V8  41.19 ± 4.3 63.86 ±8.7 

*Donor 6: V2,V3  13.35 ± 3.2 0 

*Donor 7: V9, V10  23.56 ± 5.9 0 

Table 5.1: Effect of SIRP α Polymorphisms on Migration in human 

Neutrophils. 

(B) The effect of SIRPα on migration of neutrophils from various donors was 
tested as previously detailed in Fig. 5.2. Based on the human HapMap data 
(www.hapmap.org) we defined the possible SIRPα variants (denoted as V1- V10 
in the table above) that donors from each geographical location could possess. 
Donors 1 (L.W, n = 6 cells), 3 (J.S, n = 4 cells) and 4 (N.S, n = 4 cells) are of 
European descent. Donors 2 (P.S, n = 6 cells) and 5 (D.D., n = 4 cells) are of 
Indian/Asian descent. Donor 6 (A.B., n = 3 cells) is of Middle Eastern descent 
and Donor 7 (T.H., n = 4 cells) is of Japanese descent.  All data are mean ±SEM. 
(* p < 0.05 between surfaces for each donor). 
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Fig. S5.1.- Neutrophil Phagocytosis 

Phagocytosis was confirmed using a secondary antibody incapable of cell entry. 
Image represents a composite image showing bright field, FITC, and TRIC 
fluorescence. Phagocytized beads fluoresce only in the FITC spectrum (green), 
while beads outside of the cell fluoresce in both the FITC and TRITC (red) 
spectra creating a yellow color. Image taken with 60x objective and a digital 
zoom of 1.5x. 
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Fig. S5.2.- Serum Level Affects Neutrophil Phagocytosis

Changing the serum concentration to 50% FBS led to a 2.4 fold increase in 
phagocytosis of synthetic 2.1um 
neutrophils in media containing 10% FBS serum. 50% serum phagocytosis rates 
are normalized to 10% serum phagocytosis rates
10% FBS n =210, 50% FBS 
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Serum Level Affects Neutrophil Phagocytosis  

Changing the serum concentration to 50% FBS led to a 2.4 fold increase in 
phagocytosis of synthetic 2.1um microbeads by neutrophils, as compared to 
neutrophils in media containing 10% FBS serum. 50% serum phagocytosis rates 
are normalized to 10% serum phagocytosis rates. Total neutrophils counted: 

, 50% FBS n=217. 

 

Changing the serum concentration to 50% FBS led to a 2.4 fold increase in 
microbeads by neutrophils, as compared to 

neutrophils in media containing 10% FBS serum. 50% serum phagocytosis rates 
Total neutrophils counted: 
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CHAPTER 6 – CONCLUSIONS AND FUTURE WORK 

In this dissertation we have shown that the membrane protein CD47 acts 

as a ‘Marker of Self’ that impedes phagocytosis of self cells by signaling through 

a species-specific, highly polymorphic receptor, SIRPα. In each of the preceding 

chapters we have described various findings that have supported this general 

notion.  

In Chapter 2, we introduced our reductionist approach of designing 

minimal “self” peptides derived from human-CD47, synthesized with anchoring 

groups, and attached to virus-size nanoparticles for injection into NOD.SCID 

gamma (NSG) mice. We found only a weak affinity of hCD47 for NSG-SIRPα, but 

that was still within the broad range (0.1~5 µM) of affinity of the different human-

SIRPα variants. The hCD47-peptides delayed splenic clearance of particles by 

macrophages with an exponential increase in persistence in circulation. Our 

reductionist approach thus highlighted the importance of a human ‘Marker of 

Self’.   

In Chapter 3, we applied our reductionist approach to a potential 

therapeutic application. We showed that “self”-beads and hCD47-beads led to a 

16- to 22-fold enhancement of the near-infrared imaging of human tumor 

xenografts. We also showed that hCD47-beads could shrink lung tumor cells with 

similar efficiency as the widely used current standard Cremophor® EL-Paclitaxel 
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(Taxol) treatments, but without the noted toxicity imparted by the Cremophor® EL 

excipient. We also developed an antibody-targeting approach using this “self” 

peptide, which allowed us to successfully target the human lung cancer cells with 

a biotinylated anti-hCD47 antibody. This antibody resulted in more efficient 

delivery to the tumor site, leading to suppression in tumor growth in just one day.  

In Chapter 4, we moved into the molecular level in an effort to understand 

the low affinity of the signal regulatory protein (SIRPα) to hCD47. We found that 

this low affinity was necessary to allow for rapid exchange of CD47-SIRPα from 

an intracellular cis to an intercellular trans interaction. Further confirmation of this 

competitive binding behavior was demonstrated through measurement of the 

association constant, kon, which exhibited a slower rate for wild-type 

macrophages. This suggested that the availability of CD47 to interact in trans 

was influenced by the amount of CD47 that was occupied in cis interactions. The 

CD47-SIRPα cis interactions appear to partially hinder phagocytosis of foreign 

particles, but at the same time it is important for macrophages to maintain their 

own display of the “self” signal to prevent their own phagocytic clearance by 

other macrophages.  

Finally, in Chapter 5 we extended our analysis of marker of “self” to the 

case of neutrophil transmigration. Our preliminary findings in this regard 

suggested that the SIRPα polymorphism in the human population affects the 
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migration process of neutrophils. When higher levels of neutrophil migration on a 

surface were observed, there was a lower affinity of the SIRPα variants for CD47. 

Taken together, the chapters of this dissertation show that we have 

successfully designed a unique CD47 peptide that mimic the effect of the full-

length protein in inhibiting the uptake of nanometer scale particles by 

macrophages in vivo. Our method therefore offers a very attractive platform for 

potential biomedical applications. The antibody targeting approach developed 

here revealed the importance and utility of a human marker of “self” in improving 

drug delivery on nanobeads, which could lead to safer therapies. It remains to be 

seen how our reductionist approach will perform as a human clinical drug 

delivery carrier, e.g. filomicelles or toroidal polymers. Similarly, it would be 

interesting to apply our methods to tissue xenotransplantation.  We hope to 

continue investigating these issues in future research.  

Xenograft rejection remains as a major obstacle to clinical transplantation 

in current medicine. We hope that the methods and evidence provided in this 

dissertation will contribute to a more thorough understanding of this problem. 

 


