
1	
	

  MASTER	THESIS	
Penn	Dental	Medicine	
Summer 8-15-2016  

DR.LUJAIN	S.	ALHUWAYRINI	

 
Dentin Remineralization Around 
Ceramir Restoration 
	

 

 
 



2	
	

Table of content  
 
Introduction 
 

• Overview  

• Caries-Preventive nanofillers 

• Recurrent Caries 

• Enamel Anatomy and Remineralization 

• Dentin Anatomy and Remineralization 

• Concepts of Calcium Phosphate Biomineralization  

• Biomimetic Remineralization of Dentin 

• Bottom-up Remineralization Strategy 

• Amorphous calcium phosphate ( ACP ) Development   

• Amorphous calcium phosphate ( ACP ) and its role in forming 
Hydroxy appatite  

• Amorphous calcium phosphate ( ACP ) and its application in 
dentistry  

• CPP-ACP  

• CPP-ACP Mechanism of Action 

• Clinical Safety of CPP-ACP Usage  

• ACP-filled polymeric composites 

• Enhanced Glass Ionomer - Ceramir 

• Surfactant and HA formation 

• Aim of the study  

 



3	
	

 

 

Materials and methods 

• Sample Selection 

• Sample Preparation and Baseline Measurement  

• Demineralization and Cavity Preparation 

Results  

Discussion  

Conclusion 

limitation 

Conflict of interest  

References  

   

 

 

 

 
 
 

 



4	
	

 

AKNOWLEDGEMENTS  

    I am grateful to my mentor, Dr. Francis Mante for accepting me into his lab as a 
master student. I am thankful for the kindness, guidance, motivation and thoughtful 
insight he graciously provided.   

  I am grateful forever to my parents and brothers for their support and encouragement 
throughout my life. I wouldn’t be where I am today if it wasn’t for them.  

   And I will like to express my appreciation to the members of my thesis committee, Dr. 
Fusun Ozer, Dr. Thomas Sollecito and Dr. Scott Odell for their encouragement and for 
providing valuable expertise during this project.  

 

 

 

 

 

 

 

 

 

 

 

 

 



5	
	

  
Introduction  
 

Overview: 
  

     Teeth are the most heavily mineralized tissues in the human body. Demineralization 

and remineralization processes coexist in teeth during the entire life of an individual. In 

pathological conditions, demineralization outweighs remineralization [1]. Fermentation 

of dietary carbohydrates by acidogenic bacteria results in the production of acids such as 

lactic acid, acetic acid and propionic acid that demineralize enamel and dentin. As the 

carious lesion progresses into dentin, activation of endogenous, bound matrix 

metalloroteinases and cysteine cathepsins will lead to the degradation of collagen fibrils 

and decrease in the mechanical properties of dentin [2,3]  

    In the last decade, the focus of caries research has shifted from only restoring missing 

tooth structure to the development of methodologies for the detection of early caries 

lesions and the non-invasive management of caries lesions through remineralization to 

preserve tooth structure.[4] Fluoride is generally known to promote remineralization, but 

its remineralization process relies on calcium and phosphate ions from saliva. Therefore, 

several new remineralizing agents have been introduced. These agents supplement and 

enhance the ability of fluoride to restore tooth minerals by increasing availability of 

these ions.[5,6] . 

    Fluoride is the cornerstone of the non-invasive management of non-cavitated caries 

lesions, but its ability to promote net remineralization is limited by the availability of 

calcium and phosphate ions (Reynolds et al., 2008)[7]. Fluoride ions can drive the 

remineralization of extant non-cavitated caries lesions if adequate salivary or plaque 

calcium and phosphate ions are available when the fluoride is applied. For fluorapatite or 

fluorhydroxyapatite to form, calcium and phosphate ions are required, as well as fluoride 

ions. Several authors have now shown that enamel remineralization in situ and the 

retention of fluoride in plaque are dependent on the availability of calcium ions (Chow et 

al., 2000; Whitford et al., 2005; Reynolds et al., 2008; Vogel et al., 2008)[8,9,10].  
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     Hence, on topical application of fluoride ions, the availability of calcium and 

phosphate ions can be the limiting factor for fluoride retention and net enamel 

remineralization. Under hyposalivation conditions  the lack of available calcium and 

phosphate ions is  highly exacerbated (Reynolds et al., 2008)[7]. When adequate levels 

of calcium and phosphate ions are present together with the fluoride ions, it has been 

shown in vitro that this combination can produce substantial remineralization of lesions 

of enamel and even those penetrating the underlying dentin in pH-cycling experiments 

(ten Cate, 2001; ten Cate et al., 2008)[11,12]. Therefore, the challenge now is to achieve 

this clinically, since salivary remineralization of enamel promoted by topical fluoride 

(particularly high concentrations) has been shown to give rise to predominantly surface 

remineralization (Arends and Ten Cate, 1981; ten Cate et al., 1981; Ögaard et al., 1988; 

Willmot, 2004).[13,14,15,16] Surface-only remineralization does little to improve the 

aesthetics and structural properties of the deeper lesion. Ideally, a remineralization 

system should supply stabilized bioavailable calcium, phosphate, and fluoride ions that 

favor subsurface mineral gain rather than deposition only in the surface layer. [17] 

   In recent years, biomimetic treatment of early caries lesions by the application of 

various types of nano-sized hydroxyapatite or calcium carbonate has received 

considerable attention (Huang S et al., 2009, 2010, 2011; Nakashima et al., 2009). 

[18,19,20,21] An experimental dentifrice containing 1% nano-sized amorphous calcium 

carbonate particles (several tens to hundreds of nm), applied twice a day over 20 days, 

yielded statistically significant mineral gain and remineralization of artificial caries 

lesions in an in vitro system that used collagen-coated wells as a model for oral mucosal 

surfaces (Nakashima et al., 2009) [21]. The authors concluded that the experimental 

dentifrice has the potential to remineralize incipient enamel lesions due to the unique 

properties of the nano-sized calcium carbonate, which had been retained on the collagen-

coated surfaces in the in vitro model system and thus might also be retained on oral 

surfaces, thereafter releasing Ca ions into oral fluids for remineralization (Nakashima et 

al., 2009).[21] 
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Caries-Preventive Nano fillers  

 

Several studies have indicated that nano- apatite, in principle, has the potential to 

remineralize, at least in part, initial enamel caries lesions under dynamic pH-cycling 

conditions in vitro (Huang S et al., 2009, 2010, 2011).[18,19,20,20] A 10% suspension 

of nano-hydroxyapatite particles (10-20 nm diameter, 60-80 nm length) promotes 

preferential remineralization of the superficial layer of artificial caries lesions, and thus 

might be effective in reversing lesion progression in the outer surface layer of initial 

caries lesions measuring 20 to 40 µm (Huang S et al., 2010).[19] However, little 

remineralization could be obtained by nano-hydroxyapatite in the body of the lesion 

(Huang S et al., 2010, 2011).[19.20] Interestingly, hydroxyapatite nanoparticles promote 

remineralizing effects under in vitro conditions, in contrast to a control solution 

containing an equivalent concentration of free ions as provided by the nano-HA solution 

at equilibrium (Huang et al., 2011).[20] These observations suggest that intrinsic 

characteristics of the nano-HA, such as size and structure or chemical composition, may 

be of considerable relevance for the remineralization process (Huang et al., 

2011).[20]Apparently, not only the size of the apatite nanoparticles used for 

remineralization purpose but also the pH of the remineralizing agent will affect the 

process of mineralization (Huang et al., 2011). More mineral was deposited in the body 

part of the lesion if the pH-value was reduced from 7.0 to 4.0 (Huang et al., 2011).[20] 

Recurrent Caries  

 

     Secondary caries and restoration fracture are still the main reasons for dental 

restoration failure, thus limiting the longevity of (resin composite) restorations. 

Recurrent caries around composites is strongly linked to leakage through marginal gaps 

caused by polymerization shrinkage.[22] To control caries-induced demineralization at 

the resin composite-tooth interface, calcium and phosphate ion-releasing nanofillers have 

been developed, such as nanoparticles of dicalcium phosphate anhydrous (112 nm in 
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size) or of amorphous calcium phosphate (116 nm in size) (Xu et al., 2007a,b, 2010b, 

2011; Moreau et al., 2011).[23,24,25,26] These additives enable the resin composite to 

release calcium and phosphate when the pH is dropped down under in vitro conditions, 

providing caries-inhibiting properties (Xu et al., 2007a,b, 2010b, 2011; Chen, 

2010).[23,24,25,27]Nanocomposites containing 40% nanoparticles of amorphous 

calcium carbonate have been shown to rapidly neutralize a lactic acid solution of pH 4.0 

by increasing the pH to 5.69 within 10 min (Moreau et al., 2011).[26] The mechanical 

properties of the calcium- and phosphate-releasing experimental composites match those 

of commercial hybrid composites (Chen, 2010; Moreau et al., 2011; Xu et al., 2011). 

[25,26] 

      Most recent developments are novel nanocomposites which contain antibacterial 

agents, such as chlorhexidine (10%) and quaternary ammonium dimethacrylate (7%) 

alone or in combination with silver nanoparticles (0.028%), in addition to calcium and 

phosphate ion-releasing nanofillers (Cheng et al., 2012a,b,c).[28,29,30] Incorporation of 

these antibacterial components into nanocomposites has been shown to yield 

antibacterial capabilities, thereby reducing the biofilm colony-forming unit counts, the 

metabolic activity, and lactic acid production of Streptococcus mutans biofilms under in 

vitro conditions (Cheng et al., 2012a,b,c).[28,29,30]  In the presence of marginal gaps 

caused by polymerization shrinkage.However, the effectiveness of all these strategies for 

the control of demineralization processes still needs validation, on the one hand, by in 

vitro studies focusing on the caries-inhibiting potential of ion-releasing and antibacterial 

resin composites, as well as by subsequent clinical studies, on the other. [31] 

 

Enamel Anatomy and Remineralization  

     Dental Enamel is the outermost covering of teeth. It is the hardest mineralized tissue 

present in the human body. Enamel faces the challenge of maintaining its integrity 

through periods of demineralization and remineralization within the oral environment 

and it is vulnerable to wear, damage, and caries. Enamel is composed of crystalline 

calcium phosphate of 96% mineral with the remaining 4% consisting of organic 
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components and water. The organic content consists of breakdown products of major 

enamel protein amelogenin [32]. The main component of enamel includes rods, which 

are bundles of aligned crystallites that are woven into intricate architecture that are 3-5 

µm in diameter [32]. The second component of the enamel matrix is inter-rod enamel 

which surrounds and packs between the rods [33]. The third structure, aprismatic 

enamel, refers to the structures containing HA crystals that show no mesoscale or 

macroscale alignment. 

    The mature enamel is acellular and does not regenerate itself unlike other 

biomineralized tissues such as bone and dentin [34]. To replace enamel that is damaged 

by dental caries, dentistry has formulated artificial replacement materials that mimic the 

hardness of enamel [35]. But none of these materials could mimic all the physical, 

mechanical, and aesthetic properties of enamel [36]. Recently scientists have shown 

much interest in the direction of synthesizing artificial enamel [34]. Thorough 

understanding of structure and pattern of ameloblast gene products, control of protein 

self-assembly and simultaneous hydroxyapatite crystallization allows one to design 

biomimetic approaches to create synthetic enamel [34]. There is now a transition of 

emphasis from traditional synthetic biomaterials toward biological materials [37]. 

Advances in tissue engineering methods paves a way for enamel regeneration. 

     Based on the understanding of biological process involved in amelogenesis and 

advances in nanotechnology, Chen et al., fabricated fluoapatite nanorods, which 

resembles enamel prism like structures from a supersaturated chemical solution under 

physiological condition. These nanorods have similar characteristics to those of natural 

enamel crystals isolated from rat incisor enamel [38]. Yin et al., regenerated enamel like 

microstructures using a simple chemical approach, which may have  a potential clinical 

application to repair enamel damage in dental clinics [39]. Zhang et al., have achieved an 

ordered dental enamel-like structure of hydroxyapatite (HAP) through a solution 

mediated solid-state conversion process with organic phosphate surfactant and gelatin as 

the mediating agent [40]. 

     Stephen Mann and colleagues prepared electrospun hydrogel mats of amorphous 

calcium phosphate and polymer nano and micro fibres. Mats generated HAP crystals as 
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an immediate layer, which covers the enamel surface. Hence, it could be used for re-

growing enamel surfaces that have been lost due to erosion/or wear [41]. Ying et al., 

used an agarose hydrogel method, which mimics the natural enamel at secretory or 

matrix formation stage. This biomimetic mineralization model regenerates enamel like 

prismatic structure with hardness similar to natural enamel [42]. 

      Hontsu et al., successfully fabricated a freestanding flexible HAP sheet, which was 

directly attached to enamel surface of extracted teeth using a calcium phosphate solution. 

The interface between sheet and surface was not completely adhered. [43] To improve 

the adhesiveness HAP sheet coated with a tricalcium phosphate layer. The adhesive 

strength of the HAP/TCP sheet was markedly higher than that of the HAP sheet that 

indicates sheet may be used for restoration [44,45]. 

 

Dentin Anatomy and Remineralization 

    Dentin is a complex mineralized tissue arranged in an elaborate 3-dimensional 

framework composed of tubules extending from the pulp to the dentin–enamel junction. 

The mineral portion is composed of carbonate apatites. Fibrillar type I collagen accounts 

for 90% of the organic matrix, while the remaining 10% consists of non-collagenous 

proteins, such as phosphoproteins and proteoglycans. The peri-tubular dentin, i.e., dentin 

surrounding the tubules, is highly mineralized (95 vol% of mineral), while most organic 

content is localized at the inter-tubular dentin (30vol% of mineral) [46]. Dentin 

undergoes modifications by physiological aging and disease processes to produce 

different forms of dentin [47]. This process affects the biomechanics and biochemistry of 

the tissue. 

    Although similar in composition to bone, dentin does not share the same ability to 

remodel. This limits site regenerative therapies. An advantage of dentin over enamel is 

the presence of a collagen based scaffold that provides an appropriate cell- free backbone 

for tissue repair and regeneration. The presence of such a scaffold is a key to advance 

new concepts in tissue engineering approaches to the treatment of missing hard tissue. 
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Recently, bio- modification of dentin has been investigated as a biomimetic strategy 

therapy to mechanically strengthen the existing collagen network and also control 

biodegradation rates of extracellular matrix (ECM) components. [48] 

      Different strategies have been employed for remineralizing demineralized dentin. For 

instance, fluoride, amorphous calcium phosphate (ACP)-releasing resins or resin-based 

adhesives containing bioactive glass have been used to improve the resistance of bonded 

restorations to secondary caries [49,50] However, most of these studies focused on 

remineralizing partially demineralized carious dentin, which was based on the epitaxial 

deposition of calcium and phosphate ions over existing apatite seed crystallites [51].  

     With these traditional ion-based strategies, remineralization does not occur in 

locations where seed crystallites are absent [52]. Thus, the classical ion-based 

crystallization concept may not be applicable for remineralizing completely 

demineralized dentin within hybrid layers created by etch-and-rinse adhesive systems or 

the superficial part of a caries-affected dentin lesion left behind after minimally invasive 

caries removal, due to the unavailability of seed crystallites in those regions for 

accomplishing homogeneous nucleation of apatite crystallites [53,54].  

 

Concepts of Calcium Phosphate Biomineralization  

       Biomineralization is the process by which living organisms secrete inorganic 

minerals in the form of biominerals (e.g. magnetite, silica, oxalates, various crystalline 

forms of calcium carbonate and carbonated apatite) within cell cytoplasm, shells, teeth 

and bony skeletons [55,56]. This process exhibits a high level of spatial and hierarchical 

control as mineralization usually takes place in a confined reaction environment under 

ambient temperature and pressure conditions. Calcified human tissues consist of the 

collagen matrix and the hierarchically arranged carbonated apatite inorganic phase; 

deposition of the latter is regulated by non-collagenous proteins [57,58]. It is generally 

believed that non-collagenous proteins, along with specific matrix metalloproteinases 

and other important enzymes secreted by odontoblasts, play critical roles to orchestrate 
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dentin mineralization. They possess carboxylic acid and phosphate functional groups that 

act as preferential sites for Ca/P nucleation and subsequent apatite crystallization. 

[59,60]. As the therapeutic use of native or recombinant non-collagenous proteins for in 

situ biomineralization is not yet economically viable, research scientists have resorted to 

the use of polyelectrolyte and poly(acid) macromolecules to mimic the functional 

domains of these naturally occurring proteins, in biomimetic mineralization [61,62]. In 

the past few years, this field of research has attracted a lot of attention, resulting in 

changing concepts of calcium phosphate biomineralization.[63] 

 

Biomimetic Remineralization of Dentin  

     Biomimetic remineralization represents a different approach to this problem by 

attempting to backfill the demineralized dentin collagen with liquid-like amorphous 

calcium phosphate nano-precursor particles that are stabilized by biomimetic analogs of 

non-collagenous proteins [63]. 

     Several nano-technological approaches have been reported for remineralization of 

early caries lesions. Casein phosphopeptide-amorphous calcium phosphate nano-

complexes (CPP-ACP) have been shown to promote remineralization and provide anti-

cariogenic activity in laboratory, animal, and human experiments. The casein 

phosphopeptides stabilize calcium and phosphate ions by formation of amorphous nano-

complexes. The calcium phosphate from these complexes is biologically available for 

remineralization of initial lesions. [31] 

    This is achieved by adopting the recently discovered, non-classical particle-based 

crystallization concept utilized by Nature in various biomineralization schemes, ranging 

from the mineralization of sea-shells (calcium carbonate), siliceous shells of diatoms and 

sponges (amorphous silica) to the deposition of calcium phosphate salts in fish scales 

and bone [64,65].  

      Intra-fibrillar mineralization of fibrillar collagen not only significantly increases its 

mechanical properties [66,67], but also protects the collagen molecules from external 
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challenges, such as temperature, endogenous enzymes, bacterial acids and other 

chemical factors. Using this biomimetic remineralization strategy, both hybrid layers 

created by etch-and-rinse adhesives and moderately aggressive self-etch adhesives 

[53,68,69], as well as 250–300 nm thick completely demineralized dentin lesions can be 

remineralized [70,71]. This bottom-up remineralization strategy does not rely on seed 

crystallites, and may be considered as a potentially useful mechanism in extending the 

longevity of resin–dentin bonds [72] via restoring the dynamic mechanical properties of 

the denuded collagen within the hybrid layer to approximate those of mineralized dentin 

[73]. 

 

Bottom-up Remineralization Strategy 

     Nanotechnologies involved in the fabrication of biomaterials may be classified as top-

down or bottom-up approaches [74]. The top-down approach starts from a bulk material 

that incorporates critical nanoscale details. In this approach, a biomaterial is engineered 

by scaling down a complex entity into its component parts, such as creating small 

crystals from a bulk mineralized hard tissue via acid-etching. By contrast, the bottom-up 

approach assembles materials from the nanoscopic scale, such as molecules and atoms, 

to form larger structures [75]. Examples of the bottom-up approach include self-

assembly and molecular patterning [74]. Biomineralization, which involves the spatial 

regulation of amorphous mineral phases via matrix proteins and organization of 

nanoscopic crystal-line mineral units into hierarchical structures, represents the perfect 

example of a bottom-up approach [76,77]  

    Biominerals found in bone and teeth are carbonated apatites with dimensions that are 

small enough to fit within the gap zones of type I collagen molecules. This hierarchical 

arrangement of over-lapping platelets can be identified as cross-banded patterns in 

unstained, non-demineralized ultrastructural sections [78,79]. Partial demineralization of 

a mineralized collagen matrix by acids derived from bacteria or clastic cells represents 

an example of a top-down approach in generating seed crystallites [74] as nidi of 

heterogeneous nucleation [80]. The orientation of those mineral lattices is determined by 
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the lattice of the seed crystallites [81]. Conventional mineralization strategies often 

involve the use of metastable calcium and phosphate ion-containing solutions or gels 

[82,83]. This example of a top-down mineralization approach [75] does not occur by 

spontaneous nucleation of minerals on the organic matrix but rather by epitaxial growth 

over existing seed crystallites [84]. Throughout the evolution of biomineralization, 

matrix proteins play a pivotal role in the regulation of mineral nucleation and growth 

[85,86]. In the absence of seed crystallites, matrix protein–mineral interactions are 

responsible for overcoming the thermodynamic barriers in homogeneous nucleation [87].  

     The precise control of crystal growth at the nanoscale and the creation of natural 

structures based on bottom-up self-assembly mechanisms have inspired scientists to 

mimic these non-classical strategies in the fabrication of novel biomaterials [87]. The 

literature abounds with examples of the use of bottom-up, self-assembly approaches in 

the fabrication of hybrid nanostructures [88]. A biomimetic mineralization strategy has 

been developed [89] based on the use of polyanionic molecules to mimic the functions of 

matrix proteins in biomineralization [90,91]. In this strategy, a polycarboxylic acid-based 

biomimetic analog is employed as a sequestration agent [92] to stabilize amorphous 

calcium phosphate (ACP) derived from set Portland cement and simulated body fluid 

(SBF) in the form of nanoparticles that are moldable enough to infiltrate the water 

compartments of a collagen fibril. Another phosphorus-based analog mimicking the 

collagen-binding function of matrix phosphoproteins [93] is used as a template to 

promote nanoprecursor recruitment to the gap zones of the collagen fibrils, where they 

nucleate and self-assemble into hierarchically arranged apatite nanocrystals within the 

fibril. This example of a particle-mediated [94], bottom-up [77] crystallization strategy 

differs from the classical top-down crystallization approach in two aspects. Firstly, it 

recapitulates the progressive dehydration mechanism in natural biomineralization [95] by 

replacing free and loosely bound water within the internal compartments of a collagen 

fibril by apatite crystallites [96] Secondly, this self-assembly approach proceeds in the 

absence of apatite seed crystallites and natural matrix phosphoproteins in a collagen 

matrix and can be duplicated using reconstituted collagen [97].  
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       The mineral phase in collagenous hard tissues such as bone and dentin is classified 

as intrafibrillar apatites, which are deposited within or immediately adjacent to gap zones 

of the collagen molecules and extend along the microfibrillar spaces within the fibril; 

and extrafibrillar apatites, which are located within the interstitial spaces separating the 

collagen fibrils [78,98]. Previous studies have shown that intrafibrillar apatites play a 

significant role in the mechanical properties of mineralized tissues [99,100]. Thus, 

biomimetic mineralization must recapitulate both the dimension and hierarchical 

arrangement of apatites present in natural mineralized tissues [101,102].  

    Non-collagenous matrix proteins which serve as promoters or inhibitors of crystal 

nucleation or growth play an important role in intrafibrillar mineralization [103]. In the 

absence of biomimetic analogs of those matrix proteins, there should be no intrafibrillar 

apatite deposition using the top-down mineralization approach.[104] 

 

Amorphous calcium phosphate ( ACP ) Development   

     Generally, it is believed that ACP was firstly described by Aaron S. Posner [105] in 

the mid 1960s. It was obtained as an amorphous precipitate by accident when mixing 

high concentrations (30 mM) of calcium chloride and sodium acid phosphate (20 mM) in 

buffer [106]. In X-ray diffraction, it was shown to have only two broad and diffuse 

peaks, with maximum at 25° 2θ. No other features were obvious and it was clearly not 

apatite. This pattern is typical for substances that lack long range periodic regularity. It 

was found that immediately after being mixed, the spontaneously formed precipitate was 

a non-crystalline, or amorphous, calcium phosphate with calcium to phosphorus molar 

ratio (Ca/P) of 1.50. After several hours, it could convert to poorly crystalline apatite on 

ageing. Afterwards, this solid converts slowly to crystalline apatite (Ca/P = 1.67) by an 

autocatalytic mechanism [107].  

     In 1965, Eanes et al. identified ACP as a bone component [106]. ACP in bone, along 

with the apatite, might account for the broad diffraction pattern and variable composition 

of bone minerals. An age-dependent change in the ACP content of bone was also 
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described, with the proportion of ACP decreasing with age [107]. In 1975, ACP was 

found in the mineralized cytoplasmic structure isolated from the blue crab 

hepatopancreas, with a very similar short-range atomic structure to synthetic amorphous 

calcium phosphate [108].  

    Amorphous calcium phosphate (ACP) is the initial solid phase that precipitates from a 

highly supersaturated calcium phosphate solution, and can convert readily to stable 

crystalline phases such as octacalcium phosphate or apatite products. Its morphological 

form, structural model and X-ray diffraction patterns are typical for non-crystalline 

substances with short-range periodic regularity. ACP has been demonstrated to have 

better in vivo osteoconductivity than hydroxyapatite (HAP), better bio-degradability than 

tricalcium phosphate, good bioactivity but no cytotoxicity [105]. These excellent 

biological properties make ACP widely used in dentistry, orthopedics and medicine.  

 

Amorphous calcium phosphate ( ACP ) and its role in forming 

Hydroxy appatite  

      After the discovery of amorphous calcium phosphate, the early studies were focused 

on the structure of ACP. It was suggested that synthetic ACP particles, which appear as 

300- 1000 Å spheres in the electron microscope, consist of a random assembly of ion 

clusters 9.5 Å in diameter, dimensions consistent with the chemical composition of 

Ca9(PO4)6 [108]. And the 15-20% of water found in synthetic amorphous calcium 

phosphate was shown to be mostly in the interstices between, and not within, the 

individual Ca9(PO4)6 clusters [109]. Aggregated    ACP particles readily dissolve and 

crystallize to form apatite, a thermodynamically stable phase. The typical radial 

distribution of noncrystalline ACP cluster structures, calculated from the x-ray 

diffraction patterns, is only two broad and diffuse peaks showing the rapid drop-off of 

atomic periodicity. Short-range order exists in these amorphous structures but no long-

range order such as that in crystalline hydroxyapatite [109]. Infrared analysis showed a 

similar lack of crystalline order about the PO4 anions in the ACP structure 



17	
	

[110]However, Wuthier et al reported that ACP, with Ca/PO4 molar ratio as low as 1.15 

precipitated at more acidic preparative pHs, i.e.6.9 [111].  

    More importantly, it has been shown that ACP particles are nanometer particles. 

Primary particle sizes of ACP is about 40-100 nm. The morphology of ACP solids 

appears to be a curvilinear shape when viewed by TEM, rather than the faceted, angular 

shape of crystalline calcium phosphates. However, this curvilinear appearance has only 

been clearly established with dried ACP [112]. The initial flocculates collected 

immediately after precipitation of highly hydrated ACP have a low-contrast disk-shaped 

appearance. High-contrast spherical particles begin to appear as ACP suspensions age, 

and become the dominant shape with time [113].  

    The ACP precipitate, with little long-range order, is a highly unstable phase and 

hydrolyzes almost instantaneously to more stable phases. In the presence of other ions or 

under in vivo conditions, ACP may persist for appreciable periods due to kinetic 

stabilization [114]. Although the exact mechanism of stabilization of ACP is not 

understood, the presence of Mg
2+

, F
-

, carbonate, pyrophosphate, diphosphonates, or 

polyphosphorylated metabolites or nucleotides, in sufficient quantity will prevent the 

transformation of synthetic ACP to hydroxyapatite [115,116].  

 

Amorphous calcium phosphate (ACP) and its application in 

dentistry  

   ACP has been widely applied in biomedical field due to its excellent bioactivity, high 

cell adhesion, adjustable biodegradation rate and good osteoconduction [117,118]. As 

discussed above, the first quantitative studies on synthetic ACP were done in the mid 

1960s [105]. From then on, more and more attention has been attracted in the 

development and the application of ACP-containing products, especially in orthopedic 

and dental fields. It is also used as filler in ionomer cements to fill carious lesions or as a 

colloidal suspension in toothpastes, chewing gums or mouthwashes to promote 

demineralization of carious lesions and/or to prevent tooth demineralization .[119] 
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CPP-ACP  

   CPP-ACP is an acronym for a complex of casein phosphopeptides (CPP) and 

amorphous calcium phosphate (ACP). Caesins are a heterogenous family of proteins 

predominated by alpha 1 and 2 and beta caesins. CPPs are phosphorylated casein-derived 

peptides produced by trypsin digestion of caesin. This protein nanotechnology combines 

specific phosphoproteins from bovine milk with  nanoparticles of ACP.  

The precise ratio is 144 calcium ions; 96 phosphate ions; and six peptides of CPP. [119] 

      The possible cariostatic potential of dairy products is the subject of many reports in 

the literature.[120,121] .In 1991, the complex CPP-ACP, derived from a major protein 

found in milk called casein, was patented in the United States.[122]The complex is 

presented as an alternative remineralizing agent that is remarkably capable of stabilizing 

calcium phosphate, maintaining a state of supersaturation of these ions in the oral 

environment. As a consequence, the tooth structure would benefit from the high levels of 

calcium phosphate in the biofilm,and  remineralization would occur.[123,124]CPP-ACP 

nanocomplexes have been shown to prevent demineralization and promote 

remineralization of enamel subsurface lesions in animal and in-situ caries models.By 

stabilizing calcium phosphate in solution, the CPP maintains high-concentration 

gradients of calcium and phosphate ions and ion pairs in the subsurface lesion and, thus, 

causes high rates of enamel remineralization. The calcium phosphate in these complexes 

is biologically available for intestinal absorption and remineralization of subsurface 

lesions in tooth enamel.[125] 

 

CPP-ACP Mechanism of Action 

      CPP has been shown to stabilize calcium and phosphate, preserving them in an 

amorphous or soluble form called amorphous calcium phosphate (ACP). ACP (Ca3H.,0) 

is postulated as a precursor in the formation of hydroxyapatite (HA). The ACPs exhibit a 

very high solubility and are readily converted to HA, which makes them suitable 

mineralizing agents. The main advantage of ACP is its facile, single solid phase 
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phosphate formulation and its biocompatibility with both hard and soft tissues, which is 

equal to that of HA and various di-, tri-, and tetracalcium phosphates.[125] 

The following mechanism is responsible for a consistent level of remineralization 

through CPP-ACP.Casein phosphopeptide-amorphous calcium phosphate is a 

technology based on amorphous calcium and phosphate (ACP) stabilized by casein 

phosphopeptides (CPP). CPP containing the cluster sequence -Ser(P)- Ser(P)-Ser(P)-

Glu-Glu- stabilizes ACP in metastable solution. Through the cluster sequence, the CPP 

binds to forming clusters of ACP, preventing their growth to the critical size required for 

nucleation and phase transformation.[125] 

     Rose and Hogg investigated the affinity and capacity of Streptococcus mutans for 

CPP-ACP. Using the equilibrium dialysis system they described, their results 

demonstrated that CPP-ACP binds with about twice the affinity of the bacterial cells for 

calcium up to value of 0.16g/g wet weight cells. Application of CPP-ACP to plaque may 

cause a transient rise in plaque fluid-free calcium, which may assist remineralization. 

Subsequently, CPP-ACP will form a source of readily available calcium to inhibit 

demineralization. Hence, CPP-ACP binds well to plaque, providing a large calcium 

reservoir, which is likely to restrict mineral loss during a cariogenic episode and provide 

a potential source of calcium for subsequent remineralization. In short, once in place, 

CPP-ACP will restrict the caries process. [125] 

   In the United States, up to now, this product is primarily used for abrasive prophylaxis 

pastes and secondarily used for the treatment of tooth sensitivity especially after in-

office bleaching procedures, ultrasonic scaling, hand scaling or root planing. However, 

its use for remineralizing dentin and enamel and preventing dental caries is an off-label 

application. Outside the United States, this product is marketed as GC Tooth Mousse 

[126,127].  
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Clinical Safety of CPP-ACP Usage  

     No serious side effects were reported in studies assessing the clinical safety of CPP-

ACP usage. [128,129,130,131] In Morgan’s two-year follow-up study, no significant 

differences were found in the incidence of side effects (i.e. nausea, headache, and 

diarrhoea) between the intervention and control groups.[128] 

 
No allergies or serious side effects were recorded in Rao’s and Bailey’s trials as 

well.[128,130]
 
Sitthisettapong also confirmed by email corre-spondence that no extra 

calculus formation had occurred on the primary teeth in their experimental group.[131] 

 

ACP-filled polymeric composites  

    ACP has been evaluated as a filler phase in bioactive polymeric composites [132]. 

Skrtic has developed unique biologically active restorative materials containing ACP as 

filler encapsulated in a polymer binder, which may stimulate the repair of tooth structure 

because of releasing significant amounts of calcium and phosphate ions in a sustained 

manner [133,134]. In addition to excellent biocompatibility, the ACP-containing 

composites release calcium and phosphate ions into saliva milieus, especially in the oral 

environment caused by bacterial plaque or acidic foods. Then these ions can be 

deposited into tooth structures as apatitic mineral, which is similar to the hydroxyapatite 

found naturally in teeth and bone [135,136].  

   Compared with more commonly used silanated glass or ceramic filler, more 

hydrophilic and biodegradable ACP-filled composites exhibited inferior mechanical 

properties, durability and water sorption characteristics [137]. The uncontrolled 

aggregation of ACP particulates along with poor interfacial interaction plays a key role 

in adversely affecting their mechanical properties [138]. Their clinical applicability may 

be compromised by relatively poor filler/matrix interfacial adhesion and also by 

excessive water sorption that occurs in both resin and filler phases of these composites 

[139,140].  
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 Enhanced Glass Ionomer - Ceramir 

    Recently Doxa Dental AB,(Uppsala, Sweden) introduced a bioceramic, Ceramir with 

a modified GI composition. The cement has been shown to form apatite on storage in 

simulated body fluids (SBF)and saliva. [141]. The powder contains approximately 50% 

Calcium aluminate in place of Calcium aluminosilicate glass. The high Calcium 

aluminate content is responsible for apatite formation in SBF and saliva which has been 

reported to contain enough phosphate ions to promote this effect. The setting reaction is 

a combination of a glass-ionomer reaction and an acid-base reaction of the type 

occurring in hydraulic cements. The set cement has an acidic pH of 5 and gradually 

increases to 8.5 after 3-2 hours of setting. The set cement is reported to form 

hydroxyapatite on the surface when in contact with phosphate containing solutions. 

Initial setting time of 3mins and final setting time of 6 mins have been reported. [142]. 

Although Vickers hardness increased gradually from 30-110 MPa over a 28 days period 

after mixing. The set cement is alkaline and releases calcium and fluoride ions. The 

incorporation of Calcium Aluminate is believed to fix the GIC structure and hinders the 

ionomer glass from continuous leaching over time. (Parmeijer 2007) When in contact 

with phosphate solutions, such as saliva or body fluids it first forms precursors of HA, 

which transform to apatite which can integrate with bone and dentin. The high pH of the 

set cement inhibits bacterial growth. A comparative study showed that GI cement 

modified by addition of calcium aluminate (Ceramir) induced hydroxyapatite formation 

when immersed in SBF solution. This represents a significant development because use 

of this material could potentially remineralize adjacent hard tissues. Other study 

investigated HA formation of Ceramir in saliva and concluded that saliva contained 

adequate amounts of calcium and phosphate for HA formation and demonstrated HA 

formation on samples stored in saliva. [141] 
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Surfactant and HA formation  

     Hydroxyapatite (HA) is the principal inorganic constituent of bones and teeth [143]. 

HA is used mostly as powders and its usefulness depends on the powder properties such 

as particle size, surface area, and morphology. Nano-structured HA particles with a 

higher surface area would be more desirable for their use in many fields including 

separation processes. [144]. 

     HA can be synthesized by a variety of methods including conventional routes such as 

solid-state reactions [145] and wet chemical routes [146] based on precipitation at low 

temperature.  

     These conventional methods, however, mostly prepare irregular forms of powders. 

Hydrothermal method, which has been proved to be a convenient way to prepare 

materials, including salts, metal oxides, etc., has also been applied, but the control on 

morphology is poor [147]. Nevertheless, the size and morphology would largely 

determine the behavior of a certain material, that’s why a biomineralization process 

usually involves complicated mediation and the final products generally have a delicate 

microstructure [148]. Bone itself is a composite consisting of HAP nanorods embedded 

in the collagen matrix [149].  

     Synthetic HAP crystals are usually prepared as rods or needles, which are similar in 

structure and composition to HAP found in human bone.  

    Hence, HAP nano-rods are desirable when biocompatibility is considered [150]. 

Although control over microstructure seems too big a challenge to traditional methods, 

the biological process itself has given some clues to achieve this: the controlled 

nucleation and crystal growth process mediated by macromolecule control and cell 

organization would finally result in uniform products. A method called biomimetics is 

then aroused [151,152]. Macromolecules, such as stearic acid, monosaccharides and 

related molecules were explored and the molecule addition has exerted significant 

control on the morphology. [152]. Bose and Saha synthesized HAP nano-powders with a 

controlled surface area and particle size by using nonionic surfactant emulsion. [153].
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Another surfactant-templating approach has been extensively used in the preparation of 

various nanoporous or nano tubular  frame-work materials including mesoporous 

silica[154]
 
and many other metal oxides.[155]

 
Y. Wang et al. (2006) shows that the size  

and morphology of precipitated hydroxyapatites can be affected  by adding adequate  a 

surfactant,  Cetyltrimethylammonium bromide (CTAB) and control of the precipitation 

temperature and pH.  

     One current hypothesis is that the use of remineralizing materials in dentistry would 

prevent secondary caries due to a natural formation of apatite between material and 

tooth, leading to a stable interface. [141] 

 

Aim of This Study 

    This study aimed to evaluate the effect of Ceramir and the addition of  mono-n-

Dodecy phosphate to Ceramir as a surfactant in dentin remineralization. 

   Dentin remineralization is expected to occur in two mechanisms : 1. the classical ion-

based crystallization concept. 2. Locations where seed crystallites are absent. The 

surfactant can act a biomemitic analogue OF non-collagenous proteins. To modulate 

remineralization, the latter can lead to increase the calcium precipitation and modify the 

HAP particle size to improve dentin remineralization ability of the Ceramir. 

   This, might be applicable for remineralizing completely demineralized dentin within 

hybrid layers created by etch-and-rinse adhesive systems or the superficial part of a 

caries-affected dentin lesion left behind after minimally invasive caries removal . This 

method would also prevent secondary caries due to a natural formation of apatite 

between material and tooth structure, leading to a stable interface. 

    Dentin remineralization will be determined by the alteration in micro-hardness of 

dentin surface around Ceramir. The null hypothesis is that none of the filling using 

including: plain Ceramir or Ceramir with mono-n-Dodecyl phosphate would 

significantly affect the Knoop micro-hardness of demineralized dentin surface. [156] 
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Materials and methods: 
 
Sample Selection: 
 

 In this study, 45 permanent, intact, non-carious, non-hypoplastic, unfractured and non-

malformed, upper and lower, anterior and posterior human teeth, freshly extracted for 

orthodontic or periodontic reasons were selected and stored in 0.5% chlorothymol 

solution. Teeth with any defect were excluded.  

All selected teeth were used within three months of extraction as recommended by 

Occupational Safety & Health Administration (OSHA).  

 

Sample Preparation and Baseline Measurement: 
 
     The teeth were cleaned using an ultrasonic scaler (cavitron). The teeth were then 

embedded in self-cured dental acrylic resin to expose buccal or lingual surfaces. The 

buccal/lingual surfaces were wet ground starting with 800 grit silicon carbide paper 

through 1200 and1600 under water cooling to obtain a smooth dentin surface, final 

polishing was accomplished with alumina powder using 9 , 3 and 1 micron grit to obtain 

highly polished surface.  

 

     The Knoop hardness tester (Leco M-400-G1 Hardness Tester). was calibrated with 

standard test blocks provided by the manufacturer. Baseline surface micro-hardness of 

sound dentin was measured using Knoop indenter. A loading force of 50 g and dwell 

time 10 seconds were used. For each sample four indentations were performed in the 

dentin surface and the mean Knoop microhardness value (KHN) was calculated.  

 
 

Demineralization and Cavity Preparation:  
     The dentin surfaces of all specimens were then etched using 37% phosphoric acid for 

5 seconds to demineralize dentin and expose dentin collagen. The dimensions of the acid 

etched area ranged from 7.5 to 8 mm.  After the demineralization process was 
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completed, all the specimens were rinsed in deionized water and blotted dry. The Knoop 

indenter microhardness of the etched dentin was measured. The mean Knoop 

microhardness of etched dentin was calculated.  

 
    Round cavities were prepared with 1/4 round carbide bur in the middle of the etched 

area to obtain 6.35 mm width round cavity and 3 mm depth as shown in figure .1. 

 

 
Figure 1. Study Sample, showing: acid etched area, restoration, Knoop indentation and 

Knoop indentation area in dentin. 

   

   The forty-four specimens were randomly divided into four equal groups: 

Group 1: control group, samples were demineralized and cavity prepared but had no 

restoration placed in them.  

Group 2: cavities prepared in etched dentin and restored with plain Ceramir.  

Group 3: cavities prepared in etched dentin and were restored with Ceramir containing 

2% mono -n-Dodecyl phosphate.  

Group 4: cavities prepared in etched dentin and restored with Ceramir containing 5% 

mono -n-Dodecyl phosphate. 
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    Ceramir capsules were mixed using an amalgamator for 5 seconds following the 

manufacturer’s instructions.   To fabricate experimental samples containing 2% and 5% 

surfactant one Ceramir capsule was mixed and emptied and the weight of the paste 

measured in grams to calculate the 2% and 5% surfactant. Then, the powder of mono -n-

Dodecyl phosphate was measured and added to the Ceramir paste to obtain Ceramir with 

2% and 5% concentration of surfactant. 

     

    Simulated body fluid (SBF) was made according to the International Organization for 

Standardization (ISO) for evaluation of apatite forming-ability. Table 1 lists the reagents 

contained in the SBF solution. The SBF was then transferred to a plastic bottle for 

storage and was kept in a refrigerator set between 5 - 10°C.  Each sample was then 

placed in a small container and completely immersed in simulated body fluid (SBF) and 

stored in an incubator at 37°C to simulate human body environment. 

 

 
Table 1. Reagents for Preparing the 1L of Updated Simulated Body Fluid (SBF)  
 

      Knoop indenter micro-hardness measurements were taken at 10, 20 and 38 days.  

At each test interval samples were wiped dry with tissue paper and four indentations 

were performed per sample within an area of approximately 75 μm  away from the 

filling margin in the dentin surface. 

     The mean KHN value of all teeth in each group was calculated at each interval, we 

calculated the change in the means from both baseline and the pre-filling, etched 

interval. 
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      Dentin surface was evaluated by FEI Quanta 600 environmental scanning electron 

microscope after each testing period. Environmental electronic microscope permits wet 

and insulating samples to be imaged without prior specimen preparation. The use of the 

environmental microscope eliminated the need for specimen preparation by drying and 

sputters coating with gold or carbon that could alter the dentine surfaces. 

        

     One sample in each of the groups restored with 2% and 5% surfactant were excluded 

because the fillings were dislodged after 10 days.  

    Data were expressed in Knoop Hardness Number (KHN) and statistically analysed 

running a Repeated Measures ANOVA Analysis and pair-wise multiple comparison 

procedures on the difference of means for each data point using Sigma Stat version 3.5 

(Systat software , Point Richmond, California ,USA).  Statistical significance was 

determined at p value of 0.05.  

 

Results: 
        

       SEM pictures were taken throughout the study period using (FEI Quanta 600 

Environmental Scanning Electron Microscope). Samples were imaged in low vacuum 

mode without any additional surface treatment. Figure 2 shows SEM of the polished 

dentin surface with dentinal tubules partially blocked by smear layer.  Figure 3 shows 

micrographs of dentin after etching with phosphoric acid with widened dentin tubules  

that appear interconnected.  Figures 4, 5 and 6 show progressive formation of crystal 

precipitates that are blocking the dentin tubules that were opend by acid etching.  
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Figure 2. SEM of non-etched dentin. The dentinal surface revealed smear layer blocking 

dentinal tubules. 

 
Figure 3. SEM of etched dentin surface with 37% phosphoric acid etch for 5 seconds, 

The micrograph depicts open dentinal tubule and exposed collagen fibers. 
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Figure 4. SEM of dentin surface after 10 days depicts minor crystal formation. 

 
Figure 5. SEM of dentin surface after 20 days depicts more crystal formation compared 

to dentin surface after 10 days. 
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Figure 6. SEM of dentin surface after 38 days depicts crystal formation covering dentin 

surface and blocking dentinal tubules. 

 

Knoop micro-hardness mean value (KHN) of polished dentin was 105.3(20). After 

etching KHN was reduced to 73.3(15.2) (Table 2). 

 

Base line Knoop value for samples (SD) Post etching-filling Knoop value (SD) 

105.3 (20)   73.3(15.2)     

 

Table2.  Base Line and Post etching-filling Knoop mean value. 

 

Etching significantly (p<0.05) reduced the micro KHN values of dentin. In samples 

where no restorations were placed, (Group 1), the KHN did not show a significant 

difference through the observation period. (Table 3).  In Group 2 where cavities were 

restored with Ceramir, KHN was increased by 24.1, 40.6 and 48.9 KHN value at 10, 20, 

38 days post restoration respectively when compared to the etched only controls. Table 

3. Samples restored with  Ceramir containing 2% surfactant (Group 3) increased the 

micro hardness as compared to etched only samples by 22.1, 45.5 and 59.2 KHN value at 



31	
	

10,20,38 days respectively 

Samples restored with Ceramir containing 5% surfactant (Group 4) increased the micro 

hardness as compared to etched only samples by  24.2, 33.9 and 43.5  KHN units at 10, 

20, and 38 days respectively. 

 

Filling Type Baseline  
Knoop 
value (SD) 

Post etching-
filling  Knoop 
value (SD) 

 Post 20 days KHN 
(SD) 

Post 38 days KHN 
(SD) 

Control ( no restoration 
)  

105.3 
(20) 

 
73.3 (15.2) 

73.3(15.0) 74.3(14.4) 75.2(16.2) 

Plain Ceramir 101.2 (22.3) 117.7 (21.4) 126.0 (17.1) 
Ceramir with 2% 

surfactant  
90.1 (21.4) 113.5 (18.1) 127.2 (23.4) 

Ceramir with 5% 
surfactant  

93.3 (17.5) 102 (20.0) 112.5 (19.3) 

 

Table 3. Change in Knoop values with time. 

 

      According to the Repeated Measures Anova Analysis, the increase in KHN values 

for the plain Ceramir group were not significantly after 10 days post filling. After 20 and 

38 days post filling the KHN readings show significant increase in values vs etched 

values. Also, significant change found to be between 10 vs 38 days as shown in table 4. 

 
Time period Significance of KHN value 

Etched vs 10 days not significant  
Etched vs 20 days significant 
Etched vs 38 days significant 
10 days vs 20 days not significant 
10 days vs 38 days significant 
20 days vs 38 days not significant 

 
 
Table 4. Significance of KHN value over time period for group 2 (plain Ceramir). 

 
      For group 3 in which samples were restored with Ceramir containing 2% surfactant, 

the increase in KHN values were statistically not significant (p<0.05) after 10 days post 

filling. After 20 and 38 days post filling the KHN readings show statistically significant 
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increase in values vs etched values. Also, statistically significant change found  between 

10 vs 38 days as shown in table 5. 

 
Time period Significance of KHN value 

Etched vs 10 days not significant 
Etched vs 20 days significant 
Etched vs 38 days significant 
10 days vs 20 days not significant  
10 days vs 38 days significant 
20 days vs 38 days not significant  

 
Table 4. Significance of KHN value over time period for group 5 (Ceramir containing 

2% surfactant). 

 

     For group 4 in which samples were restored with Ceramir containing 5% surfactant, 

the increase in KHN values were statistically not significant after 10 days post filling. 

After 20 and 38 days post filling the KHN values were statistically significantly 

increased. No statistically significant differences were found between 10 vs 20 vs 38 

days as shown in Table 6. 

 

 
Time period Significance of KHN value 

Etched vs 10 days not significant 
Etched vs 20 days significant 
Etched vs 38 days significant 
10 days vs 20 days not significant 
10 days vs 38 days not significant 
20 days vs 38 days not significant 

 
Table 6. Significance of KHN value over time period for group 4 (Ceramir contains 5% 

surfactant). 

 

    Statistical Analysis using One Way Repeated Measures ANOVA test followed by 

pairwise comparison of the difference of means for each data point, showed no 

statistically significant difference in  micro hardness between the samples restored with  



33	
	

plain Ceramir compared to the Ceramir with surfactant group after 10 days. 

 

    There is no statistically significant difference between the Ceramir (Group 2) and 

samples restored with Ceramir with 2% surfactant (Group 3) after 20 days while there is 

statistically significant difference between them and the Ceramir with 5% (Group 4). 

 

    There is statistically significant difference in the micro hardness between Ceramir 

with 2% group and Ceramir with 5% group after 38 days and no statistical difference 

between plain Ceramir and Ceramir with 2% groups. 

 

    Change in micro-hardness values compared to baseline and etched values with time in 

percentage summarized in table 7 and 8.  

 
Filling Type 10 days 20 days 38 days 

Control ( no restoration ) -33.69% -32.6% -31.6% 

Plain Ceramir -7.57% 10.2% 19.2% 

Ceramir with 2% 
surfactant  

-14.66% 9.6% 23.96% 

Ceramir with 5% 
surfactant  

-14.77% -4.49% 5.7% 

  
Table 7. Change in micro-hardness values from baseline with time in percentage. 

 
Filling Type 10 days 20 days 38 days 

Control ( no restoration ) 0.03% 0.7% 1.39% 

Plain Ceramir 18.48% 31.30% 37.7% 

Ceramir with 2% 
surfactant  

14.96% 30.6% 40.2% 

Ceramir with 5% 
surfactant  

16.56% 22.77% 29.67% 

  
Table 8. Change in micro-hardness values from etched dentin with time in percentage. 
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    There is no statistically significant difference between the Ceramir (Group 2) and 

Ceramir with 2% surfactant (Group 3) and 5% surfactant (Group 4)  after etching and 

after 10 days while there is statistically significant difference between the Ceramir  

(Group 2) and Ceramir with 2% surfactant (Group 3) with the Ceramir with 5% (Group 

4) after 20 days and 38 days. Change in micro-hardness over time shown in  

Figure 7.   

 

 
Figure 7. Change in micro-hardness over time period vs etched. 

 

Discussion: 
   

      The results of this study show that Ceramir restorations of dentin lesions lead to 

remineralization of dentin within an area that is 75 μm from the margins of the 

restoration. Consequently, the null hypothesis is rejected.  

          Etching changes the micro morphological appearance of enamel and dentin 

surfaces independent of the type of acid, the etching time and the concentration. Many 

techniques have been reported for demineralization as shown in Table 9. [181] In this 
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study 37% phosphoric acid gel was been used for etching because it can be applied for a 

small area as needed also it is quick and effective in providing adequate 

demineralization. 

       The scanning electron micrograph study shows that polished dentin surface was 

covered by a smear layer covering which partially blocked the dentin tubules. Figure 2.     

Etching with phosphoric acid removed the smear layer and widened the openings of the 

dentin tubules. The tubules appeared interconnected due to exposure of collagen fibers in 

inter- tubular regions of the dentin.  

 

    The electron micrographs of samples restored with Ceramir show a sequentially 

increasing precipitate formation over the observation period. It is clear that Nano size 

particles were formed that covered the dentin surface and partially filled the dentinal 

tubules. SEM micrograph exhibited mineral depositions with large two-dimensional, 

plate-like structures and small three-dimensional, cubic structures The amount of 

precipitate particles clearly increases over time as shown in figures 4, 5 and 6. 
    It shows that addition of 2% surfactant to Ceramir tend to increase the 

remineralization over time. Toward the end of the observation period samples restored 

with Ceramir containing 2% surfactant appeared to remineralize at a faster rate than 

plain Ceramir. On the other hand addition of 5% surfactant to Ceramir was not beneficial 

as it led to decrease in the effect of Ceramir.  

 

    Although, the KHN values after 10 days were statistically not significant, there were 

significant increases in KHN in comparing with the etched KHN values. 

 
    Many different techniques have been used to evaluate dentin mineralization. Scanning 

and transmission electron microscopy (SEM and TEM) [157,158], Fourier transform 

infrared spectroscopy (FTIR) [159], Raman spectroscopy[160], X-ray diffraction 

(XRD)[161], energy dispersive X-ray spectroscopy (EDX)[162], micro-

radiography[163,164], micro-CT scanning[165], and nano-indentation to evaluate 

microhardness[166]. 
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    Microhardness is defined as the resistance to local deformation. [167] Microhardness 

tests are commonly used to study the physical properties of materials and they are widely 

used to measure the hardness of teeth. [168.169] These tests are based on the induced 

permanent surface deformation that remains after removal of a load. [167]  Two 

microhardness tests, Knoop and Vickers hardness  are commonly used for evaluation 

dental materials. Both measurements can be correlated with other mechanical properties 

such as fracture resistance, [170] modulus of elasticity, and yield strength. [171,172] 

 

   For our study we used a Knoop indenter (Leco M-400-G1 Hardness Tester) for the 

micro hardness -indentation assessment and evaluation. The dental literature shows that 

Knoop microhardness has been employed extensively in testing the hardness of both 

enamel and dentin and is an effect measure of demineralization. [174] 

 

    The Knoop micro-indentation method requires only a tiny area of specimen surface 

for testing. Using this technique, the specimen surfaces are impressed with a diamond 

indenter. The geometry of this indenter is an extended pyramid with the length to width 

ratio being 7:1 and respective face angles are 172 degrees for the long edge and 130 

degrees for the short edge. The depth of the indentation can be approximated as 1/30 of 

the long dimension at a certain load for a certain period of time. After load removal, 

diagonals of the indentation are measured with an optical microscope. The hardness 

number is defined by the ratio between the indentation load and the area of the residual 

impression, which depends on the indenter shape. Then the hardness of materials was 

calculated using these equations:  

KHN = 14230 (F/d2) for Knoop microhardness or HV = 1854 (F/d2) for Vickers 

microhardness. [173] 

The Knoop indentation is longer and shallower than Vickers indentation and the load 

impression can be applied to brittle materials without cracking. Also, the longer diagonal 

is easier to read than the short diagonal of the Vickers. However, the advantage of the 

Knoop’s longer diagonal is offset by the difficulty in deciding where the tapered tip ends 

on the surface of the dentin. [173] 

 
     The chief characteristic of the Knoop microhardness test is its sensitivity to surface 
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effects and textures. [175,176] For a given load, the Vickers indenter penetrates about 

twice as far into the specimen as the more shallow Knoop indenter, and the diagonal is 

about one-third the length of the longest diagonal of the Knoop indentation. Thus, the 

Vickers test is less sensitive to surface conditions and, due to its shorter diagonals, more 

sensitive to measurement errors when equal loads are applied. [175,176,177,178] 

 

 

Figure 8: difference between Vickers (A) and Knoop indenter (B). 

 

The indentation load for the micro hardness test can range from 1 to 1,000 g, and with 

various loading dwell times.  

     Dentin Knoop micro-hardness KHN values for baseline measurements ranges from 

70 up to 90 depending on tooth location and area of indentation. [180][187][188] 

Anterior teeth tend to show lower hardness value than posterior. Victoria Fuentes et al. 

(2003) evaluated microhardness of superficial and deep sound human dentin using 

Knoop indenter. [173] 

 

    Indentations closer to the dentin-enamel junction give higher KHN and decrease as we 

move toward pulp direction. Because the tubules in dentin are not randomly oriented, 

properties may be directionally dependent. This is because the mineral content in dentin 

is higher at the dentin-enamel junction and as we move toward the pulp the mineral 

content decrease as the organic content increase. [187] 

 

In this study KHN was measured at sites close to the DEJ (Figure 1)  and found to be 

slightly higher than literature values reported by Huang et al. (20) Knoop micro-hardness 

values increase as the mineral content increase and decrease as mineral content decrease. 
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This can explain the results in this study. After etching which is the process in which 

mineral content of material removed the KHN was found to be decreased. And gradually 

as particles forms and mineral precipitate increase, the KHN would increase as well. 

[187]  

    Similar to our study, several studies have used microhardness measurements to 

evaluate both enamel and dentin remineralization process.  

    Manuel Toledano et al. (2004) used Knoop indenter to asess microhardness of acid-

treated and resin infiltrated human dentine. The study concluded that treating dentine 

with either H3PO4 alone or H3PO4 followed by NaOCl caused marked reduction of its 

surface hardness. The removal of the mineral phase of dentine surfaces by acidic 

treatments modifies their surface morphology and properties, and undoubtedly their 

hardness. [180] 

    E. Bresciani et al. (2010) used Knoop indenter to evaluate dentin Microhardness 

beneath a calcium-phosphate cement [188]. The study reported  that according to the 

structure of dentin, microhardness may be related to 3 different forms of mineralization, 

represented as: (a) plate-shaped crystals within tubule lumina, (b) uniform mineral 

distribution in peritubular and intertubular dentin; and (c) intra- and interfibrillar mineral 

in collagen. Also the study suggested that acid-etching opens dentin tubules and may 

assist in the mineralization of intertubular and peritubular dentin close to the interface.  

     Hussam Milly et al. (2014) also used Knoop indenter in their study of enamel white 

spot lesion remineralization using bio-active glass and polyacrylic acid-modified bio-

active glass powders , and showed that increasing KHN represents increasing in the 

mineral content of enamel. 

      In our study, the mean Knoop microhardness found to show marked reduction of its 

surface hardness after treating dentine with 37% phosphoric acid. We assume that the 

removal of the mineral phase of dentine surfaces by acidic treatments modifies their 

surface morphology and properties, and undoubtedly their hardness. In agreement with 

our study  Panighi and G’Sell also observed a positive correlation between hardness and 
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the mineral content of the tooth. They indicate that a comparable decrease in mechanical 

properties of dentine can be observed after acid etching treatment. [180] In this study we 

used the SBF to mimic saliva rule in providing phosphateions. 
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Table 9. Demineralization Techniques. 
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    In this study SBF was used as storage medium for samples to mimic saliva role for 

providing phosphate. Using human saliva in this study is not applicable for two 

reasons; first, it difficult to obtain large amount of saliva needed for all samples, 

second, the relatively long study period affects sterility of  samples.    

  

   The control etched sample (group 1) showed slight increase in micro-hardness in 

storage in SBF. 

 

      The simulated body fluid (SBF) is widely used for the study of biomineralization. 

[182][183].When a material is incubated in SBF solution, the formation of apatite layer 

on the surface of pellet goes through a sequence of chemical reactions like spontaneous 

precipitation, nucleation and growth of calcium phosphate [184]. It has been suggested 

that surface chemistry plays an important role in this process [185] and even the 

functional groups of materials have a large effect on the bone-bonding property. It is 

well known that HAp structure consists of Ca, PO4 and OH groups closely packed 

together. The OH and PO4 3−groups are responsible for negative charge  of HAp surface 

and Ca2+ ions form the positive group. The process of apatite formation mainly depends 

on negative group, which in turn depends on the large number of negative ions (i.e. OH 

and PO43−) on the surface. During incubation period, the positive Ca2+ ions from SBF 

are attracted by the OH and PO43−ions present on HAp surface. Therefore, the surface 

gains positive charge with respective to the surrounding SBF and further attracts the 

negatively charged OH- and PO43− ions from the SBF. This promotes formation of the 

apatite layer [186]. 

 

 Spanos et al. (2006) conducted a study about the the precipitation of calcium 

phosphates in simulated body fluid (SBF) with pH 7.40 and 37°C.The crystal growth 

experiments in which SBF solutions of variable supersaturations were seeded with 

hydroxyapatite crystals showed that the precipitation of calcium phosphates took place 

on specific active sites provided on the surface of the synthetic seed crystals.[182]      
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Chavan et al (2009) showed that the Simulated Body Fluid (SBF) can support Hap 

formation. The ion exchange process is carried out to exchange calcium cation by 

sodium and potassium. The pure HAp and ion exchanged HAp pellets are used as source 

of nucleating agent for apatite layer formation, in SBF maintained at 37◦C using 

incubator for different periods of time to study the bioactivity. [183] 

 

Conclusion:  

 
     Within the limitations of this study, Ceramir was found to have a remineralization 

effect on demineralized dentin. Adding 2% surfactant to plain Ceramir increased the rate 

of remineralization. More than 2% surfactant is still questionable while adding 5% 

surfactant to Ceramir cement decreased the material’s effect in remineralization.   Our 

findings confirm that Ceramir can be used clinically for restorations of root lesions and 

remineralization of the margin of the cavity to reduce the secondary caries. Based on the 

remineralization effect observed, Ceramir could also have a beneficial effect in reducing 

root sensitivity. 

 

      Further studies of the biomimetic molecules involved in calcium fluoride phosphate 

stabilization and nucleation may provide  improvements in the development of novel 

remineralization treatments. Of the remineralization technologies currently commercially 

available, the CPP-ACP technology has the most evidence to support its use. The clinical 

benefits of using Ceramir are still being investigated. Well-designed random clinical 

trials are needed to improve the level of evidence in this area. 
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